JP2000088455A - Method and apparatus for recovering and refining argon - Google Patents

Method and apparatus for recovering and refining argon

Info

Publication number
JP2000088455A
JP2000088455A JP10260653A JP26065398A JP2000088455A JP 2000088455 A JP2000088455 A JP 2000088455A JP 10260653 A JP10260653 A JP 10260653A JP 26065398 A JP26065398 A JP 26065398A JP 2000088455 A JP2000088455 A JP 2000088455A
Authority
JP
Japan
Prior art keywords
gas
argon
nitrogen
path
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10260653A
Other languages
Japanese (ja)
Inventor
Masahiro Tamura
雅洋 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP10260653A priority Critical patent/JP2000088455A/en
Publication of JP2000088455A publication Critical patent/JP2000088455A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover a high purity argon gas from exhaust gas discharged from a silicon monocrystal producing furnace. SOLUTION: From the exhaust gases discharged from a monocrystal producing furnace 1, solid particles of the exhaust gases are removed by a dust collector 2, and then an oil content thereof is removed by an oil-removing cylinder 4 and an oil-removing filter 5. Then, hydrogen is added thereto and sent to a catalyst cylinder 7, where oxygen is converted into water, and then moisture and carbon dioxide are removed in an adsorbing cylinder 8. Further, the remaining gases are supplied to a fractionating column comprising a high pressure column 9, and a low pressure column 11. In the high pressure column, a component of a higher boiling temperature than that of argon is fractionated, and in the low pressure column, a component of a lower boiling temperature than that of argon is fractionated. Argon gas of high purity is extracted from the low pressure column to be recycled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルゴンの回収精
製方法及び装置に関し、詳しくは、半導体の基盤素材と
して使用されるシリコン単結晶のような単結晶を製造す
る単結晶製造炉などの半導体製造装置から排出されるア
ルゴンを含む排ガスから、高純度アルゴンを回収して精
製するための方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for recovering and purifying argon, and more particularly to a semiconductor manufacturing method such as a single crystal manufacturing furnace for manufacturing a single crystal such as a silicon single crystal used as a base material of a semiconductor. The present invention relates to a method and an apparatus for recovering and purifying high-purity argon from an exhaust gas containing argon discharged from the apparatus.

【0002】[0002]

【従来の技術】アルゴンガスは、不活性な性質を有して
いることから、溶接用のシールドガスや金属の熱処理の
ための雰囲気ガス等として各種産業分野で広く利用され
ている。そして、近年は、半導体の基盤素材として使用
されるシリコン単結晶のような単結晶を製造する単結晶
製造炉では、高品質の単結晶を得るために高純度(9
9.999容量%)のアルゴンガスを炉内雰囲気ガスと
して使用している。したがって、このような単結晶製造
炉からは、アルゴンを主成分とする排ガスが排出される
が、この排ガスの組成は、99〜99.9容量%がアル
ゴンであり、炉の雰囲気ガスとして使用された結果、酸
化珪素、二酸化珪素、炭素等の粉塵が混入して同伴され
るだけでなく、油分、水分、一酸化炭素、二酸化炭素、
酸素、水素、窒素、炭化水素等の様々な成分が不純物と
して微量ではあるが混入した状態になっている。
2. Description of the Related Art Since argon gas has an inert property, it is widely used in various industrial fields as a shielding gas for welding, an atmosphere gas for heat treatment of metals, and the like. In recent years, in a single crystal manufacturing furnace for manufacturing a single crystal such as a silicon single crystal used as a base material of a semiconductor, a high purity (9
9.999% by volume) of argon gas is used as the atmosphere gas in the furnace. Therefore, an exhaust gas containing argon as a main component is discharged from such a single crystal production furnace, and the composition of the exhaust gas is such that 99 to 99.9% by volume of argon is used as an atmosphere gas of the furnace. As a result, not only dust such as silicon oxide, silicon dioxide, and carbon is mixed and entrained, but also oil, moisture, carbon monoxide, carbon dioxide,
Various components such as oxygen, hydrogen, nitrogen, and hydrocarbons are mixed as impurities, though in trace amounts.

【0003】このような成分の排ガスからアルゴンを回
収して再利用する方法は、従来から種々提案されてお
り、例えば、特開昭63−189774号公報,特開平
1−230975号公報,特開平2−272288号公
報,特開平2−282682号公報,特開平3−398
86号公報,特公平4−12393号公報,特公平5−
29834号公報,特開平5−256570号公報,特
開平9−72656号公報等に開示されている。
Various methods for recovering and reusing argon from exhaust gas of such components have been proposed in the past, for example, Japanese Patent Application Laid-Open Nos. 63-189774, 1-230975 and 1-230975. JP-A-2-272288, JP-A-2-282682, JP-A-3-398
No. 86, Japanese Patent Publication No. 4-123393, Japanese Patent Publication 5-
No. 29834, JP-A-5-256570, JP-A-9-72656 and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方法では、上述のような他種類にわたる不純物を効率よ
く除去することが困難であり、未だ充分な精製方法があ
るとはいえなかった。そこで、本発明は、アルゴンを主
成分とし、粉塵、油分、水分、一酸化炭素、二酸化炭
素、酸素、水素、窒素、炭化水素等の種々の不純物成分
を含む単結晶製造炉などの半導体製造装置からの排ガス
から、高純度のアルゴンガスを効率よく回収することが
できるアルゴンの精製方法及び装置を提供することを目
的としている。
However, in the conventional method, it is difficult to efficiently remove other types of impurities as described above, and it has not been said that there is still a sufficient purification method. Therefore, the present invention provides a semiconductor manufacturing apparatus such as a single crystal manufacturing furnace containing argon as a main component and various impurity components such as dust, oil, moisture, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen, and hydrocarbons. It is an object of the present invention to provide an argon purification method and apparatus capable of efficiently recovering high-purity argon gas from exhaust gas from wastewater.

【0005】[0005]

【課題を解決するための手段】かかる課題を解決するた
め、請求項1の方法は、アルゴンを主成分とし、粉塵等
の固形分、油分、水分、一酸化炭素、二酸化炭素、酸
素、水素、窒素、炭化水素等を不純物として含む単結晶
製造炉などの半導体製造装置からの排ガス中のアルゴン
を回収精製する方法であって、前記粉塵等の固形分を除
去する工程と、前記排ガスを圧縮する行程と、前記油分
を除去する工程と、該排ガス中の酸素との反応に必要な
化学量論量より過剰量の水素を添加して酸素を触媒反応
で水に転化する触媒反応工程と、該触媒反応工程で転化
した水と前記水分及び二酸化炭素を複数の吸着筒で吸着
工程と再生工程を交互に切り替えて行い連続的に吸着除
去する吸着除去工程と、前記各工程を経た排ガスを液化
精留で得られた低温戻りガスにより冷却する工程と、冷
却した排ガスを液化精留することによって排ガスからア
ルゴンより沸点の高い高沸点成分を濃縮した高沸点成分
濃縮液とアルゴンより沸点の低い低沸点成分を濃縮した
粗アルゴンガスとに分離する高沸点成分分離工程と、該
高沸点成分分離工程で分離した粗アルゴンガスを液化精
留することによって粗アルゴンガスから高純度アルゴン
とアルゴンより沸点の低い低沸点成分を濃縮した廃ガス
とに分離する低沸点成分分離工程と、該低沸点成分分離
工程で得られた高純度アルゴンを前記排ガスとの熱交換
により昇温して回収する工程とを有する。
According to a first aspect of the present invention, there is provided a method according to the first aspect, comprising argon as a main component, solids such as dust, oil, moisture, carbon monoxide, carbon dioxide, oxygen, hydrogen, A method for recovering and purifying argon in an exhaust gas from a semiconductor manufacturing apparatus such as a single crystal manufacturing furnace containing nitrogen, hydrocarbon, or the like as an impurity, wherein the step of removing solids such as the dust and the step of compressing the exhaust gas A step of removing the oil component; a step of adding hydrogen in excess of a stoichiometric amount necessary for the reaction with the oxygen in the exhaust gas to convert oxygen into water by a catalytic reaction; An adsorption removal step of continuously switching the water and the water and carbon dioxide converted in the catalytic reaction step between the adsorption step and the regeneration step by using a plurality of adsorption columns to continuously adsorb and remove the exhaust gas, and liquefying the exhaust gas passing through each of the above steps. Low temperature obtained by distillation A high-boiling component concentrate obtained by condensing a high-boiling component having a higher boiling point than argon from a flue gas by liquefying the cooled exhaust gas, and a crude argon condensing a low-boiling component having a lower boiling point than argon. A high-boiling-point component separation step of separating into a gas and a high-purity argon and a low-boiling point component having a lower boiling point than argon are concentrated from the crude argon gas by liquefying and rectifying the crude argon gas separated in the high-boiling point component separation step. A low-boiling-point component separation step of separating the waste gas into waste gas; and a step of recovering the high-purity argon obtained in the low-boiling-point component separation step by raising the temperature by heat exchange with the exhaust gas.

【0006】また、請求項2の方法は、請求項1の方法
において、触媒反応工程に導入する排ガス温度を、前記
排ガス中の水素と一酸化炭素が反応しない温度に調節す
る。
According to a second aspect of the present invention, in the method of the first aspect, the temperature of the exhaust gas introduced into the catalytic reaction step is adjusted to a temperature at which hydrogen and carbon monoxide in the exhaust gas do not react.

【0007】また、請求項3の方法は、請求項1の方法
において、前記吸着除去工程における前記吸着筒の再生
工程の再生ガスとして、前記吸着除去工程を導出した排
ガス、及び前記高沸点成分分離工程で分離した高沸点成
分濃縮液を気化して得られたガス、及び前記低沸点成分
分離工程で分離した廃ガスのいずれか少なくとも1つの
ガスを用いる。
In the method of claim 1, the exhaust gas derived from the adsorption and removal step and the high-boiling-point component separation are used as the regeneration gas in the regeneration step of the adsorption column in the adsorption and removal step. At least one of a gas obtained by vaporizing the high-boiling component concentrated liquid separated in the step and a waste gas separated in the low-boiling component separating step is used.

【0008】また、請求項4の方法は、請求項1の方法
において、前記高沸点成分分離工程と前記低沸点成分分
離工程が、高圧塔,主凝縮器及び低圧塔を含む複式精留
塔により行われ、前記高沸点成分分離工程が、前記排ガ
スを塔中段に導入し底部蒸化器で生成した上昇ガスと前
記主凝縮器で生成した還流液との気液接触により液化精
留して塔底部から前記高沸点成分濃縮液を導出するとと
もに塔頂部から前記粗アルゴンガスを導出する前記高圧
塔で行われ、前記低沸点成分分離工程が、前記高圧塔で
分離した粗アルゴンガスを塔中段に導入し前記主凝縮器
で生成した上昇ガスと頂部凝縮器で生成した還流液との
気液接触により液化精留して塔下部から前記高純度アル
ゴンを導出するとともに塔頂部から前記廃ガスを導出す
る前記低圧塔で行われる。
The method of claim 4 is characterized in that, in the method of claim 1, the high-boiling component separation step and the low-boiling component separation step are performed by a double rectification column including a high-pressure column, a main condenser and a low-pressure column. The high-boiling-point component separation step is performed by introducing the exhaust gas into the middle stage of the column, liquefying and rectifying the gas by liquid-gas contact between the rising gas generated in the bottom evaporator and the reflux liquid generated in the main condenser. The high-boiling-point component separation step is performed in the high-pressure column that derives the high-boiling component concentrate from the bottom and the crude argon gas from the top, and the low-boiling-point component separation step converts the crude argon gas separated in the high-pressure column into a middle column. Liquefied and rectified by gas-liquid contact between the rising gas generated in the main condenser and the reflux liquid generated in the top condenser, leading the high-purity argon from the bottom of the column, and leading the waste gas from the top of the column In the low pressure tower It is.

【0009】また、請求項5の方法は、請求項4の方法
において、前記底部蒸化器に循環圧縮機で圧縮した圧縮
窒素ガスを導入して前記高圧塔の塔底液を気化して上昇
ガスを生成する工程と、該高圧塔の上昇ガスを生成する
工程で液化した液化窒素を減圧し前記頂部凝縮器に導入
して前記低圧塔の塔頂ガスを液化して還流液を生成する
工程と、該低圧塔の還流液を生成する工程で気化した窒
素ガスを前記循環圧縮機に戻して圧縮する工程と、該圧
縮した窒素ガスを再び前記上昇ガスを生成する工程に供
給して循環させる窒素循環工程とを有する。
According to a fifth aspect of the present invention, in the method of the fourth aspect, compressed nitrogen gas compressed by a circulating compressor is introduced into the bottom evaporator to vaporize the bottom liquid of the high-pressure column and rise. A step of generating a gas, and a step of reducing the pressure of liquefied nitrogen liquefied in the step of generating a rising gas in the high-pressure column, introducing the reduced pressure into the top condenser, and liquefying the top gas of the low-pressure column to generate a reflux liquid. Returning the compressed nitrogen gas to the circulating compressor to compress the nitrogen gas vaporized in the step of generating the reflux liquid of the low-pressure column; and supplying the compressed nitrogen gas to the step of generating the ascending gas again to circulate the same. A nitrogen circulation step.

【0010】請求項6の方法は、請求項5の方法におい
て、前記窒素循環工程における液化窒素に、外部から導
入した液化窒素を付加して寒冷供給を行う。
[0010] According to a sixth aspect of the present invention, in the method of the fifth aspect, liquefied nitrogen introduced from the outside is added to the liquefied nitrogen in the nitrogen circulating step to perform cold supply.

【0011】請求項7の方法は、請求項5の方法におい
て、前記窒素循環工程における圧縮した窒素ガスの一部
を膨張して得られた寒冷で寒冷供給を行う。
According to a seventh aspect of the present invention, in the method of the fifth aspect, the cold supply is performed at a low temperature obtained by expanding a part of the compressed nitrogen gas in the nitrogen circulation step.

【0012】請求項8の方法は、請求項5の方法におい
て、前記吸着除去工程における前記吸着筒の再生工程の
再生ガスとして、前記窒素循環工程の窒素ガスを用い
る。
The method according to claim 8 is the method according to claim 5, wherein nitrogen gas from the nitrogen circulation step is used as a regeneration gas in the regeneration step of the adsorption column in the adsorption removal step.

【0013】また、請求項9の装置は、アルゴンを主成
分とし、粉塵等の固形分、油分、水分、一酸化炭素、二
酸化炭素酸素、水素、窒素、炭化水素等を不純物として
含む単結晶製造などの半導体製造装置からの排ガス中の
アルゴンを回収精製する装置であって、前記粉塵等の固
形分を除去する集塵手段と、前記排ガスを所要の圧力に
圧縮する圧縮手段と、前記油分を除去する油除去手段
と、前記排ガスに水素を添加して排ガス中の酸素と反応
させて水に転化する触媒反応手段と、複数の吸着筒を用
い吸着工程と再生工程を交互に切り替えて前記触媒反応
手段で転化した水と前記排ガス中に含有する前記水分及
び二酸化炭素を連続的に吸着除去する吸着除去手段と、
排ガスを液化精留で得られた低温戻り流体と熱交換して
冷却する主熱交換器と、該主熱交換器で冷却され残存す
る不純物を含む低温排ガスを液化精留してアルゴンより
沸点の高い高沸点成分を濃縮した高沸点成分濃縮液とア
ルゴンより沸点の低い低沸点成分を濃縮した粗アルゴン
ガスとに分離する高圧塔,該高圧塔で分離した粗アルゴ
ンガスを液化精留して高純度アルゴンとアルゴンより沸
点の低い低沸点成分を濃縮した廃ガスとに分離する低圧
塔,前記高圧塔の頂部ガスと前記低圧塔の塔底液とを熱
交換させ前記高圧塔の還流液及び前記低圧塔の上昇ガス
を生成する主凝縮器を含む複精留塔と、該複精留塔の前
記低圧塔で分離した高純度アルゴンを前記主熱交換器を
通し回収する製品回収経路とを備える。
A ninth aspect of the present invention is directed to the production of a single crystal comprising argon as a main component and solids such as dust, oil, moisture, carbon monoxide, carbon dioxide oxygen, hydrogen, nitrogen, and hydrocarbons as impurities. A device for collecting and purifying argon in exhaust gas from a semiconductor manufacturing device such as a dust collecting device for removing solids such as the dust, a compression device for compressing the exhaust gas to a required pressure, and the oil component. Oil removing means for removing, catalytic reaction means for adding hydrogen to the exhaust gas and reacting with oxygen in the exhaust gas to convert it to water, and using a plurality of adsorption columns to alternately switch an adsorption step and a regeneration step to the catalyst. Adsorption removing means for continuously absorbing and removing the water and carbon dioxide contained in the water and the exhaust gas converted by the reaction means,
A main heat exchanger that exchanges heat with the low-temperature return fluid obtained by the liquefaction rectification to cool the exhaust gas, and a liquefied rectification of the low-temperature exhaust gas that is cooled by the main heat exchanger and contains the remaining impurities and has a boiling point higher than that of argon A high-pressure column that separates a high-boiling component concentrate containing a high-boiling component and a crude argon gas containing a low-boiling component having a boiling point lower than that of argon. A low-pressure column for separating pure argon and low-boiling components having a lower boiling point than argon into a concentrated waste gas; heat exchange between a top gas of the high-pressure column and a bottom solution of the low-pressure column; A double rectification column including a main condenser for generating a rising gas of a low pressure column, and a product recovery path for collecting high purity argon separated by the low pressure column of the double rectification column through the main heat exchanger are provided. .

【0014】請求項10の装置は、請求項9の装置にお
いて、前記触媒反応手段は、加熱器と触媒筒と排ガス経
路と添加水素経路とを備えるとともに、前記加熱器と前
記触媒筒を連絡する前記排ガス経路に設けられた温度検
出器と、該温度検出器からの信号で前記加熱器の加熱容
量を制御する加熱容量制御器とからなる触媒反応温度制
御手段を備える。
According to a tenth aspect of the present invention, in the device of the ninth aspect, the catalyst reaction means includes a heater, a catalyst tube, an exhaust gas path, and an added hydrogen path, and connects the heater to the catalyst tube. The catalyst reaction temperature control means includes a temperature detector provided in the exhaust gas path, and a heating capacity controller for controlling a heating capacity of the heater based on a signal from the temperature detector.

【0015】請求項11の装置は、請求項9の装置にお
いて、前記複精留塔の前記低圧塔の頂部に分離した廃ガ
スを前記主熱交換器を通して抜出す経路と、該経路から
抜出した廃ガスを、前記吸着除去手段における吸着筒の
再生ガスとして供給する経路を備える。
An apparatus according to an eleventh aspect is the apparatus according to the ninth aspect, wherein a waste gas separated at the top of the low pressure column of the double rectification column is extracted through the main heat exchanger, and the waste gas is extracted from the path. A path for supplying waste gas as a regeneration gas for the adsorption cylinder in the adsorption and removal means is provided.

【0016】請求項12の装置は、請求項9の装置にお
いて、前記複精留塔の高圧塔の底部に分離した高沸点成
分濃縮液を抜出す経路と、該経路から抜出した高沸点成
分濃縮液を気化して昇温する手段と、該手段を導出した
高沸点成分気化ガスを、前記吸着除去手段における吸着
筒の再生ガスとして供給する経路を備える。
The apparatus according to claim 12 is the apparatus according to claim 9, wherein a path for extracting the high-boiling component concentrate separated at the bottom of the high-pressure column of the double rectification column, and a high-boiling component concentrated for extraction from the path. A means for evaporating the liquid and raising the temperature, and a path for supplying the high-boiling component vaporized gas derived from the means as a regeneration gas for the adsorption column in the adsorption and removal means are provided.

【0017】請求項13の装置は、請求項12の装置に
おいて、前記高沸点成分濃縮液を気化して昇温する手段
が、前記主熱交換器である。
In the apparatus according to a thirteenth aspect, in the apparatus according to the twelfth aspect, the means for vaporizing the high-boiling-point component concentrate and raising the temperature is the main heat exchanger.

【0018】請求項14の装置は、請求項9の装置にお
いて、循環窒素ガスを圧縮する循環圧縮機と、該循環圧
縮機で圧縮された圧縮窒素ガスを加熱源として前記高圧
塔の塔底液を気化して上昇ガスを生成する底部蒸化器
と、該底部蒸化器で液化した液化窒素を減圧する減圧弁
と、該減圧弁で減圧した液化窒素を寒冷源として前記低
圧塔の塔頂ガスを凝縮して還流液を生成する頂部凝縮器
と、該頂部凝縮器で気化した窒素ガスを前記循環圧縮機
の吸入側に循環させる経路とを有する窒素循環経路を備
えている。
The apparatus according to claim 14 is the apparatus according to claim 9, wherein a circulating compressor for compressing the circulating nitrogen gas and a bottom liquid of the high-pressure column using the compressed nitrogen gas compressed by the circulating compressor as a heating source. A bottom evaporator for producing ascending gas by evaporating the gas, a pressure reducing valve for reducing the liquefied nitrogen liquefied by the bottom evaporator, and a top of the low pressure column using the liquefied nitrogen depressurized by the pressure reducing valve as a cold source. There is provided a nitrogen circulation path having a top condenser for condensing gas to generate a reflux liquid, and a path for circulating nitrogen gas vaporized by the top condenser to the suction side of the circulating compressor.

【0019】請求項15の装置は、請求項14の装置に
おいて、前記窒素循環経路における液化窒素経路に、外
部からの寒冷用液化窒素を導入する寒冷供給経路が接続
されている。
According to a fifteenth aspect of the present invention, in the device of the fourteenth aspect, a refrigeration supply path for introducing liquefied refrigeration nitrogen for cooling from the outside is connected to the liquefied nitrogen path in the nitrogen circulation path.

【0020】請求項16の装置は、請求項14の装置に
おいて、前記窒素循環経路の窒素ガスを、前記吸着除去
手段における吸着筒の再生ガスとして供給する経路が設
けられている。
A device according to a sixteenth aspect of the present invention is the device according to the fourteenth aspect, further comprising a path for supplying the nitrogen gas in the nitrogen circulation path as a regeneration gas for the adsorption column in the adsorption and removal means.

【0021】さらに、請求項17の装置は、請求項14
の装置において、前記窒素循環経路における循環圧縮機
吐出側の圧縮窒素ガスを導入し断熱膨張して寒冷を発生
する膨張タービンと、該膨張タービンで発生した寒冷を
回収した後前記窒素循環経路における循環圧縮機の吸入
側に戻す経路からなる寒冷発生経路を有する。
Further, the device according to claim 17 is the device according to claim 14.
In the apparatus, an expansion turbine that introduces compressed nitrogen gas on the discharge side of the circulating compressor in the nitrogen circulation path to adiabatically expand to generate cold, and that the cold generated in the expansion turbine is recovered and then circulated in the nitrogen circulation path. It has a cold generation path consisting of a path returning to the suction side of the compressor.

【0022】[0022]

【発明の実施の形態】図1及び図2は、本発明の一形態
例を示すもので、図1は前段部を示す系統図、図2は後
段部を示す系統図である。このアルゴンの精製装置は、
単結晶製造炉、例えばシリコン単結晶製造炉から排出さ
れるアルゴン含有排ガスを処理してアルゴンを高純度で
回収するものであって、図1に示す前段部には、単結晶
製造炉1からの排ガス中の粉塵等の固形分を除去する集
塵手段である集塵機2と、排ガスを所要の圧カに圧縮す
る圧縮手段である排ガス圧縮機3と、抽分を除去する油
除去手段である油除去筒4及び油除去フィルター5と、
排ガスに水素を添加して排ガス中の酸素を触媒反応で水
に転化する触媒反応手段である予熱器23,加熱器2
4,添加水素経路6及び触媒筒7と、水分と二酸化炭素
とを吸着除去する吸着除去手段であるゼオライト等の吸
着剤を充填した複数の吸着筒8とを備えている。図2に
示す後段部には、排ガスを導入して液化精留を行うこと
により、アルゴンより高沸点の不純物を濃縮した高沸点
成分濃縮液と低沸点不純物を濃縮した粗アルゴンガスと
に分離する高圧塔9,主凝縮器10,前記粗アルゴンガ
スを導入して液化精留を行うことにより、高純度アルゴ
ンと低沸点の不純物を濃縮した廃ガスとに分離する低圧
塔11を含む複式精留塔と、前記高圧塔9の塔底液を気
化する底部蒸化器12の加熱源及び前記低圧塔11の塔
頂ガスを液化する頂部凝縮器13の冷却源としての窒素
を循環供給する循環圧縮機14等から構成される窒素循
環経路等を備えている。
1 and 2 show an embodiment of the present invention. FIG. 1 is a system diagram showing a front part, and FIG. 2 is a system diagram showing a rear part. This argon purifier
It is for treating argon-containing exhaust gas discharged from a single-crystal production furnace, for example, a silicon single-crystal production furnace, to recover argon with high purity. In the former part shown in FIG. A dust collector 2 which is a dust collecting means for removing solids such as dust in the exhaust gas, an exhaust gas compressor 3 which is a compression means for compressing the exhaust gas to a required pressure, and an oil which is an oil removing means for removing a fraction. A removal cylinder 4 and an oil removal filter 5,
A preheater 23 and a heater 2 which are catalytic reaction means for adding hydrogen to the exhaust gas to convert oxygen in the exhaust gas into water by a catalytic reaction.
4, an additional hydrogen path 6 and a catalyst cylinder 7, and a plurality of adsorption cylinders 8 filled with an adsorbent such as zeolite, which is an adsorption and removal means for adsorbing and removing moisture and carbon dioxide. In the latter part shown in FIG. 2, effluent is introduced to perform liquefaction rectification to separate into a high-boiling-point component concentrated liquid in which impurities having a higher boiling point than argon are concentrated and a crude argon gas in which low-boiling impurities are concentrated. Double rectification including a high-pressure column 9, a main condenser 10, and a low-pressure column 11 for introducing the crude argon gas to perform liquefaction rectification to separate high-purity argon and waste gas in which low-boiling-point impurities are concentrated. Circulation compression for circulating and supplying nitrogen as a heating source of a column and a bottom evaporator 12 for vaporizing a bottom liquid of the high pressure column 9 and a cooling source of a top condenser 13 for liquefying a top gas of the low pressure column 11. A nitrogen circulation path and the like constituted by the machine 14 and the like are provided.

【0023】先ず、図1において、単結晶製造炉1から
の排ガス、例えば、固形粉塵150mg/Nm3、水素
100体積ppm、酸素1500体積ppm、一酸化炭
素3000体積ppm、二酸化炭素200体積ppm、
窒素7000体積ppm、炭化水素(メタン換算)50
体積ppm、油分10体積ppm及び飽和量の水分から
なる不純物を含む排ガス100Nm3/hは、単結晶製
造炉1の運転圧力より必要に応じて設けられるブロワー
15でlkPaG程度に圧縮された後、経路16を経て
ガスホルダー17に貯えられる。ガスホルダー17内の
排ガスは、経路18により集塵機2に導入され、排ガス
中に含まれる酸化珪素、二酸化珪素、炭素等の固形粉塵
が除去されて経路19に導出される。
First, in FIG. 1, the exhaust gas from the single crystal production furnace 1, for example, 150 mg / Nm 3 of solid dust, 100 ppm by volume of hydrogen, 1500 ppm by volume of oxygen, 3000 ppm by volume of carbon monoxide, 200 ppm by volume of carbon dioxide,
Nitrogen 7000 volume ppm, hydrocarbon (methane conversion) 50
Exhaust gas 100 Nm 3 / h containing impurities consisting of ppm by volume, 10 ppm by volume of oil, and a saturated amount of water is compressed to about lkPaG by a blower 15 provided as required from the operating pressure of the single crystal production furnace 1. It is stored in the gas holder 17 via the path 16. Exhaust gas in the gas holder 17 is introduced into the dust collector 2 through the path 18, and solid dust such as silicon oxide, silicon dioxide, and carbon contained in the exhaust gas is removed and led out to the path 19.

【0024】次に、排ガスは、排ガス圧縮機3により、
製品高純度アルゴンの圧力や以後の工程での処理に必要
な圧力に圧縮される。例えば、圧力が490kPaGの
製品高純度アルゴンを得るためには、排ガスを730k
PaGに圧縮する。圧縮された排ガスは、アフタークー
ラー20で圧縮熱が除去され、経路21を通って油除去
筒4に導入され、筒内に充填されている活性炭等により
油分が除去され、さらに、2基切換式の油除去フィルタ
ー5に導入されてここで残留油分が除去される。なお、
油除去筒4及び油除去フィルター5は、排ガス中の油分
の状況に応じていずれか一方のみを設けるようにしても
よい。
Next, the exhaust gas is discharged by the exhaust gas compressor 3.
The product is compressed to the pressure of high-purity argon or the pressure required for processing in the subsequent steps. For example, in order to obtain a product high-purity argon with a pressure of 490 kPaG, the exhaust gas must be 730 kPaG.
Compress to PaG. The compressed exhaust gas is subjected to removal of heat of compression by an aftercooler 20, introduced into an oil removal cylinder 4 through a path 21, and oil is removed by activated carbon or the like charged in the cylinder. And the residual oil is removed therefrom. In addition,
Only one of the oil removing cylinder 4 and the oil removing filter 5 may be provided according to the situation of the oil component in the exhaust gas.

【0025】粉塵及び油分を除去された排ガスは、経路
22から触媒反応手段を構成する予熱器23,加熱器2
4を経て所定温度、例えば100〜300℃に加熱され
て経路25に導出され、添加水素経路6の経路26から
添加される水素と混合されて触媒筒7に導入される。こ
の触媒筒7には、パラジウムや白金等の触媒が充填され
ており、触媒筒7に導入された排ガス中の酸素と添加さ
れた水素との反応が促進され、酸素分を水に転化するこ
とによって排ガス中から酸素分を除去する。
The exhaust gas from which dust and oil have been removed is passed through a passage 22 through a preheater 23 and a heater 2 which constitute a catalytic reaction means.
4, is heated to a predetermined temperature, for example, 100 to 300 ° C., is led out to a path 25, is mixed with hydrogen added from a path 26 of an additional hydrogen path 6, and is introduced into the catalyst cylinder 7. The catalyst tube 7 is filled with a catalyst such as palladium or platinum, and the reaction between the oxygen in the exhaust gas introduced into the catalyst tube 7 and the added hydrogen is promoted to convert the oxygen content into water. To remove oxygen from the exhaust gas.

【0026】なお、この触媒反応による反応温度が約3
50℃以上になると、排ガス中の一酸化炭素と水素が反
応して炭化水素(メタン)が生成され炭化水素が増加す
るとともに、この反応により水素が消費されて酸素と反
応させる水素が減少し酸素が十分に反応除去できなくな
るという問題があった。このため、この回収精製装置で
は、加熱器24を導出して触媒筒7に導入する排ガス経
路25に温度検出器を設け、該温度検出器と、これから
の信号により、加熱器24の加熱容量を調節する加熱容
量制御器を制御する温度調節計(TIC)24aとから
なる触媒反応温度制御手段を設け、触媒筒7の反応温度
を一酸化炭素と水素が反応しない温度範囲(300℃以
下)に保持するように構成されている。
The reaction temperature of this catalytic reaction is about 3
When the temperature rises to 50 ° C. or higher, carbon monoxide and hydrogen in the exhaust gas react with each other to generate hydrocarbons (methane), and the amount of hydrocarbons increases. However, there has been a problem that the reaction cannot be sufficiently removed. For this reason, in this recovery and purification apparatus, a temperature detector is provided in an exhaust gas path 25 which leads out the heater 24 and is introduced into the catalyst tube 7, and the heating capacity of the heater 24 is reduced by the temperature detector and a signal from the temperature detector. A catalyst reaction temperature control means including a temperature controller (TIC) 24a for controlling a heating capacity controller to be adjusted is provided, and the reaction temperature of the catalyst tube 7 is set to a temperature range (300 ° C. or lower) where carbon monoxide and hydrogen do not react. It is configured to hold.

【0027】前記添加水素経路6から導入添加される水
素量は、前記排ガス経路22を流れる排ガス中の酸素を
水に転化するために必要な化学量論量より過剰な量とな
るように、排ガス中に含まれている酸素分と水素分とを
考慮して決められる。例えば、経路22に酸素濃度計
(QOI)27と流量計(FI)28とを設けて、触媒
筒7に向かう排ガス中の酸素量を測定するとともに、触
媒筒7を導出した排ガス経路29に水素濃度計(QH
I)30を設けて残留している水素量を測定し、測定し
た酸素量及び水素量に応じた添加水素量を演算して、演
算した結果の信号を添加水素経路6に設けた水素流量調
節計(FIC)31に送り添加水素調節弁31aの開度
を調節することにより、適量の水素を添加することがで
き、排ガス中の酸素分を確実、且つ効果的に除去するこ
とができる。
The amount of hydrogen introduced and added from the addition hydrogen passage 6 is set to be an amount exceeding the stoichiometric amount required to convert oxygen in the exhaust gas flowing through the exhaust gas passage 22 into water. It is determined in consideration of the oxygen content and the hydrogen content contained therein. For example, an oxygen concentration meter (QOI) 27 and a flow meter (FI) 28 are provided in the path 22 to measure the amount of oxygen in the exhaust gas toward the catalyst cylinder 7, and to supply hydrogen to the exhaust gas path 29 from the catalyst cylinder 7. Densitometer (QH
I) Providing 30 to measure the amount of remaining hydrogen, calculating the amount of added hydrogen according to the measured amount of oxygen and the amount of hydrogen, and using the signal of the calculation result as the hydrogen flow rate provided in the added hydrogen path 6 By adjusting the degree of opening of the additional hydrogen control valve 31a by sending it to the meter (FIC) 31, an appropriate amount of hydrogen can be added, and the oxygen content in the exhaust gas can be reliably and effectively removed.

【0028】触媒筒7で酸素を水に転化することによっ
て酸素分が除去された排ガスは、予熱器23で熱回収さ
れて経路29に導出し、冷却装置32で約10℃に冷却
された後、吸着除去手段を構成する吸着工程中の吸着筒
8に導入される。なお、冷却装置32は、排ガスを冷却
することにより吸着筒8の吸着効率を向上させて吸着筒
8の小型化を図るために設けられるものであるが、状況
によっては省略することもできる。
The exhaust gas from which oxygen has been removed by converting oxygen to water in the catalyst tube 7 is recovered in heat by the preheater 23, led out to the path 29, and cooled by the cooling device 32 to about 10 ° C. Is introduced into the adsorption cylinder 8 during the adsorption step which constitutes the adsorption removing means. The cooling device 32 is provided to improve the adsorption efficiency of the adsorption column 8 by cooling the exhaust gas to reduce the size of the adsorption column 8, but may be omitted depending on the situation.

【0029】複数基の吸着筒8を用いて構成された吸着
除去手段は、吸着筒8の内部に充填した吸着剤によって
水分や二酸化炭素を吸着除去する吸着工程と、吸着剤に
吸着した水分や二酸化炭素を脱着する再生工程とを順次
切り換えて行うもので、吸着筒8の前後に設けられた切
換弁を所定の順序で開閉することにより、前記吸着工程
と再生工程とに切り換えられる。吸着筒8の内部には、
水分や二酸化炭素を吸着除去する吸着剤としてゼオライ
ト等が充填されており、排ガスを吸着剤に通すことによ
り、排ガス中の水分や二酸化炭素が吸着除去される。
The adsorption and removal means constituted by using a plurality of adsorption columns 8 comprises an adsorption step of adsorbing and removing water and carbon dioxide by an adsorbent filled in the adsorption column 8, and a method of removing water and carbon adsorbed by the adsorbent. The regeneration step for desorbing carbon dioxide is performed by sequentially switching. The switching step provided before and after the adsorption column 8 is opened and closed in a predetermined order, so that the adsorption step and the regeneration step can be switched. Inside the adsorption tube 8,
Zeolite or the like is filled as an adsorbent for adsorbing and removing moisture and carbon dioxide. By passing exhaust gas through the adsorbent, moisture and carbon dioxide in the exhaust gas are adsorbed and removed.

【0030】なお、吸着筒8の再生工程は、経路33か
ら導入した再生ガス、例えば窒素ガスを再生加熱器34
で加熱して吸着筒8に導入し、吸着剤から水分や二酸化
炭素を脱着する操作と、その後、再生加熱器34を停止
して吸着剤を冷却する操作とを有し、さらに、再生後の
吸着筒8を吸着工程の圧力まで高める充圧操作を有する
こともある。なお、再生ガスとしては、吸着工程を終え
て吸着手段を導出する排ガスの一部を、図1に破線で示
す経路33aに分岐して用いることもできる。
In the regeneration step of the adsorption column 8, the regeneration gas, for example, nitrogen gas introduced from the passage 33 is supplied to the regeneration heater 34.
And heating to introduce into the adsorption column 8 to desorb water and carbon dioxide from the adsorbent, and then stop the regenerator 34 to cool the adsorbent. There may be a charging operation for increasing the pressure of the adsorption cylinder 8 to the pressure of the adsorption step. In addition, as the regeneration gas, a part of the exhaust gas that is led out of the adsorption means after the adsorption step can be used by branching to a path 33a indicated by a broken line in FIG.

【0031】前述のように、集塵器2、油除去筒4及び
油除去フィルター5、触媒筒7、吸着筒8を経て粉塵等
の固形分、油分、酸素分、水分、二酸化炭素等を除去さ
れた排ガスは、経路35を通って図2に示す後段部に送
られる。この経路35を通る排ガス 98Nm3/hは、
アルゴンより沸点の高い高沸点成分であるメタン50体
積ppm、アルゴンより沸点の低い低沸点成分である窒
素7000体積ppm、一酸化炭素3000体積pp
m、前記過剰添加分1体積%を含む水素ll00体積p
pmを含んでおり、これらの高沸点成分及び低沸点成分
を液化精留する前記複式精留塔や、液化精留を行うため
に必要な主熱交換器36、底部蒸化器12、頂部凝縮器
13及び過冷器37等の低温機器類が収納されたコール
ドボックス38に導入される。
As described above, solids such as dust, oil, oxygen, moisture, carbon dioxide, etc. are removed through the dust collector 2, the oil removing cylinder 4, the oil removing filter 5, the catalyst cylinder 7, and the adsorption cylinder 8. The discharged exhaust gas is sent to a rear part shown in FIG. Exhaust gas 98Nm 3 / h passing through this route 35 is
50 vol ppm of methane which is a high boiling component having a higher boiling point than argon, 7000 vol ppm of nitrogen which is a low boiling component having a lower boiling point than argon, and 3000 vol pp of carbon monoxide
m, hydrogen 100 vol. p containing 1 vol.
pm, and the double rectification column for liquefying these high-boiling and low-boiling components, the main heat exchanger 36, the bottom evaporator 12, and the top condensate necessary for performing liquefaction rectification. It is introduced into a cold box 38 in which low-temperature equipment such as the cooler 13 and the subcooler 37 are stored.

【0032】経路35からコールドボックス38内に流
入した排ガスは、主熱交換器36で高純度アルゴンガス
等の低温戻りガスと熱交換を行って所定温度に冷却さ
れ、経路39を経て複精留塔を構成する高圧塔9の中段
に導入される。高圧塔9に導入された排ガスは、塔底部
の底部蒸化器12から上昇するガスと、塔頂部の主凝縮
器10から流下する還流液との気液接触によって精留さ
れ、高沸点成分であるメタンを濃縮した高沸点成分濃縮
液が塔底部に、低沸点成分を濃縮し実質的に高沸点成分
を含まない粗アルゴンガスが塔頂部に、それぞれ分離さ
れる。
The exhaust gas flowing into the cold box 38 from the path 35 exchanges heat with a low-temperature return gas such as high-purity argon gas in the main heat exchanger 36 and is cooled to a predetermined temperature. It is introduced into the middle stage of the high pressure tower 9 constituting the tower. The exhaust gas introduced into the high-pressure column 9 is rectified by gas-liquid contact between the gas rising from the bottom evaporator 12 at the bottom of the column and the reflux liquid flowing down from the main condenser 10 at the top of the column, and has a high boiling point component. A high-boiling component concentrate obtained by condensing a certain methane is separated at the bottom of the column, and a crude argon gas which concentrates a low-boiling component and contains substantially no high-boiling component is separated at the top of the column.

【0033】高圧塔9の底部に分離して経路40から抜
き出される高沸点成分濃縮液5Nm 3/hは、メタン9
80体積ppmを含んだ液化アルゴンであり、この液化
アルゴンは、大気や他の適当な流体を加熱源として用い
て気化して昇温する手段である蒸発器41で気化昇温し
た後、経路42より大気に放出される。また、気化して
昇温する手段として、前記主熱交換器36を用いること
ができ、この場合は構成が簡単となる。なお、気化昇温
したガスは、必要に応じて、前記吸着除去手段の吸着筒
8の再生ガスとして使用することができる。
Separated at the bottom of the high pressure tower 9 and removed from the path 40
5Nm of high boiling component concentrate Three/ H is methane 9
Liquefied argon containing 80 ppm by volume
Argon uses air or other suitable fluid as a heating source
Evaporator 41 is a means for evaporating and raising the temperature.
After that, it is released from the path 42 to the atmosphere. Also vaporize
Using the main heat exchanger 36 as a means for raising the temperature
In this case, the configuration is simplified. In addition, vaporization temperature rise
The adsorbed gas, if necessary,
8 can be used as a regeneration gas.

【0034】一方、高圧塔9の塔頂部に分離して、塔頂
部から経路43に抜出される低沸点成分を濃縮した粗ア
ルゴンガス93Nm3/hは、窒素7400体積pp
m、一酸化炭素3200体積ppm、水素1200体積
ppmを含むアルゴンガスであり、その一部は、経路4
3aから主凝縮器10に導かれ低圧塔11の塔底液であ
る高純度液化アルゴンと熱交換して、低圧塔11の上昇
ガスを生成するとともに、自身は液化して高圧塔9の還
流液となり、経路43bから高圧塔9の頂部に還され
る。
On the other hand, the crude argon gas 93 Nm 3 / h, which is separated at the top of the high pressure column 9 and concentrated at a low boiling point component withdrawn from the top of the high pressure tower 9 through the passage 43, is supplied with 7400 vol.
m, argon gas containing 3200 ppm by volume of carbon monoxide and 1200 ppm by volume of hydrogen.
3a is led to the main condenser 10 and exchanges heat with high-purity liquefied argon, which is the bottom liquid of the low-pressure column 11, to generate ascending gas in the low-pressure column 11 and to liquefy itself to form the reflux liquid of the high-pressure column 9. And is returned to the top of the high pressure tower 9 from the path 43b.

【0035】前記経路43に抜出された残りの前記組成
の粗アルゴンガスは、減圧弁44で528kPaGに減
圧された後、低圧塔11の中段に導入され、前記塔底部
の主凝縮器10で生成された上昇ガスと、塔頂部の頂部
凝縮器13で生成された還流液との気液接触によって更
に液化精留され、塔底部の高純度液化アルゴンと塔頂部
の低沸点不純物を濃縮した廃ガスとに分離される。
The remaining crude argon gas having the above composition extracted into the passage 43 is reduced in pressure to 528 kPaG by the pressure reducing valve 44, then introduced into the middle stage of the low pressure column 11, and passed through the main condenser 10 at the bottom of the column. The liquefied rectification is further performed by gas-liquid contact between the generated ascending gas and the reflux liquid generated in the top condenser 13 at the top of the tower, and high-purity liquefied argon at the bottom of the tower and low-boiling impurities at the top of the tower are concentrated. Separated from gas.

【0036】低圧塔11の頂部に分離して経路45から
抜き出される廃ガスは、窒素14体積%、一酸化炭素6
体積%、水素22体積%、アルゴン58体積%の組成で
あり、その内の一部5Nm3/hが経路45から主熱交
換器36に導かれ、前記経路35から導入される排ガス
を冷却することにより昇温し、経路46を経てコールド
ボックス38から排出される。この排ガスは必要に応じ
て、前記吸着除去手段の吸着筒8の再生ガスとして使用
することができる。
The waste gas separated at the top of the low-pressure column 11 and extracted from the passage 45 is composed of 14% by volume of nitrogen and 6% of carbon monoxide.
% Of hydrogen, 22% by volume of hydrogen, and 58% by volume of argon, of which 5 Nm 3 / h is partly guided to the main heat exchanger 36 from the passage 45 to cool the exhaust gas introduced from the passage 35. As a result, the temperature rises and is discharged from the cold box 38 via the path 46. This exhaust gas can be used as a regeneration gas for the adsorption column 8 of the adsorption and removal means as needed.

【0037】前記経路45に抜出された残りの前記組成
の廃ガスは、経路45aから頂部凝縮器13に導入され
冷却源流体と熱交換して液化され、低圧塔11の還流液
として経路45bから低圧塔11の頂部に還される。
The remaining waste gas having the above-mentioned composition extracted through the passage 45 is introduced into the top condenser 13 through the passage 45a and liquefied by exchanging heat with the cooling source fluid. To the top of the low pressure column 11.

【0038】一方、低圧塔11の底部に分離された高純
度液化アルゴンは、前記のように主凝縮器10で高圧塔
9の頂部粗アルゴンガスと熱交換して蒸発気化され上昇
ガスとなり、含有不純物が窒素1体積ppm以下、酸素
1体積ppm以下、一酸化炭素1体積ppm以下、二酸
化炭素1体積ppm以下、水素1体積ppm以下、メタ
ン1体積ppm以下の高純度アルゴンガスとなって、そ
の一部88Nm3/hは、塔下部から製品回収経路を構
成する経路47に導出されて主熱交換器36に導かれ、
前記経路35から導入される排ガスを冷却することによ
って昇温し、製品高純度アルゴンガスとして製品回収経
路の末端部分を構成する経路48、弁49を経て回収さ
れ、再び単結晶製造炉1に供給される。
On the other hand, the high-purity liquefied argon separated at the bottom of the low-pressure column 11 undergoes heat exchange with the crude argon gas at the top of the high-pressure column 9 in the main condenser 10 as described above, and is evaporated and vaporized to become a rising gas. The impurities are high-purity argon gas of 1 volume ppm or less of nitrogen, 1 volume ppm or less of oxygen, 1 volume ppm or less of carbon monoxide, 1 volume ppm or less of carbon dioxide, 1 volume ppm or less of hydrogen, and 1 volume ppm or less of methane. A portion of 88 Nm 3 / h is led from the lower part of the tower to a path 47 constituting a product recovery path, and is led to the main heat exchanger 36,
The temperature of the exhaust gas introduced from the passage 35 is increased by cooling, and the exhaust gas is recovered as high-purity argon gas through a passage 48 and a valve 49 constituting an end portion of the product collection passage, and supplied to the single crystal production furnace 1 again. Is done.

【0039】前記底部蒸化器12の加熱源と、前記頂部
凝縮器13の冷却源には、循環圧縮機14により圧縮さ
れて循環する窒素が用いられる。循環圧縮機14で1.
72MPaGに圧縮された圧縮窒素ガス650Nm3
hは、経路50を経てコールドボックス38内に導入さ
れ、主熱交換器36で前記低温戻りガスと熱交換を行い
所定温度に冷却された後、経路50aから底部蒸化器1
2に加熱源流体として導入される。底部蒸化器12に導
入された圧縮窒素ガスは、高圧塔9の塔底液と熱交換を
行い、該塔底液を蒸発気化して上昇ガスを生成するとと
もに、自身は凝縮液化して液化窒素となる。底部蒸化器
12で生成した液化窒素は、経路51から導出されて過
冷器37で更に冷却された後、減圧弁52で700kP
aGに減圧され経路54から頂部凝縮器13に冷却源流
体として導入される。また、コールドボックス38への
侵入熱に対する寒冷を供給するために、寒冷供給経路5
3を経て注入される外部からの液化窒素20Nm3/h
が経路54に合流されている。
As the heating source of the bottom evaporator 12 and the cooling source of the top condenser 13, nitrogen circulated by circulating compressor 14 is used. In the circulation compressor 14,
650 Nm 3 / compressed nitrogen gas compressed to 72 MPaG
h is introduced into the cold box 38 via the path 50 and exchanges heat with the low-temperature return gas in the main heat exchanger 36 to be cooled to a predetermined temperature.
2 is introduced as a heating source fluid. The compressed nitrogen gas introduced into the bottom evaporator 12 exchanges heat with the bottom liquid of the high-pressure column 9 and evaporates and vaporizes the bottom liquid to generate ascending gas. It becomes nitrogen. The liquefied nitrogen generated in the bottom evaporator 12 is led out of the passage 51 and further cooled by the supercooler 37, and then 700 kP by the pressure reducing valve 52.
The pressure is reduced to aG and introduced into the top condenser 13 from the passage 54 as a cooling source fluid. Further, in order to supply the cold against the heat entering the cold box 38, a cold supply path 5 is provided.
Liquefied nitrogen 20 Nm 3 / h from outside injected via
Are joined to the path 54.

【0040】頂部凝縮器13に導入された冷却源流体と
しての液化窒素は、低圧塔11の塔頂ガスを凝縮液化し
て還流液を生成させるとともに、自身は蒸発して再び窒
素ガスとなる。この窒素ガスは、頂部凝縮器13から経
路55に導出され、過冷器37、経路56を経て、主熱
交換器36で排ガスを冷却することにより昇温して、経
路57によりコールドボックス38を導出し、再び前記
循環圧縮機14に戻されて前記経路(窒素循環経路)を
循環する。なお、起動時に不足する窒素ガスは、循環圧
縮機14の吸入側経路57に分岐して設けられた経路の
弁58から供給される。また、前記注入された液化窒素
により、窒素循環経路で余剰となる窒素ガス20Nm3
/hは、循環圧縮機の吸入側経路57に分岐して設けら
れた経路の弁59より排出される。なお、この窒素ガス
は、必要に応じて前記吸着除去手段の吸着筒8の再生ガ
スとして使用することができる。
The liquefied nitrogen introduced as a cooling source fluid into the top condenser 13 condenses and liquefies the gas at the top of the low-pressure column 11 to generate a reflux liquid, and evaporates itself to become nitrogen gas again. The nitrogen gas is led from the top condenser 13 to the path 55, passes through the subcooler 37 and the path 56, and is heated by cooling the exhaust gas in the main heat exchanger 36, and the cold box 38 is passed through the path 57. And returned to the circulating compressor 14 again to circulate through the path (nitrogen circulation path). Insufficient nitrogen gas at the time of startup is supplied from a valve 58 provided on a path branched from the suction side path 57 of the circulating compressor 14. In addition, the injected liquefied nitrogen causes excess nitrogen gas 20 Nm 3 in the nitrogen circulation path.
/ H is discharged from a valve 59 of a path branched from the suction side path 57 of the circulating compressor. This nitrogen gas can be used as a regeneration gas for the adsorption column 8 of the adsorption and removal means as needed.

【0041】このように本形態例のアルゴンの回収精製
方法及び装置は、アルゴンと沸点が近く液化精留で分離
除去が難しい不純物としての酸素を、液化精留に先立っ
て、水素を添加して触媒反応で除去することにより、そ
の他の不純物としての高沸点成分あるいは低沸点成分の
液化精留による分離を効率的に行うことができる。
As described above, according to the method and apparatus for recovering and purifying argon of the present embodiment, oxygen as an impurity having a boiling point close to that of argon and difficult to separate and remove by liquefied rectification is obtained by adding hydrogen prior to liquefied rectification. By removing by a catalytic reaction, high boiling components or low boiling components as other impurities can be efficiently separated by liquefied rectification.

【0042】また、触媒反応工程において、触媒反応温
度を、廃ガス中の水素と一酸化炭素が反応しない温度に
調節することにより、酸素と反応する水素量を安定化さ
せるとともに、炭化水素の発生を抑制し、不純物として
の酸素を確実に、且つ効率的に除去するとともに、不純
物としての炭化水素を増やすことなく液化精留で効率的
に除去することができる。
Further, in the catalytic reaction step, the amount of hydrogen reacting with oxygen is stabilized while the amount of hydrogen reacting with oxygen is stabilized by adjusting the temperature of the catalytic reaction to a temperature at which hydrogen in the waste gas does not react with carbon monoxide. , And oxygen as impurities can be reliably and efficiently removed, and efficiently removed by liquefaction rectification without increasing hydrocarbons as impurities.

【0043】また、不純物としての高沸点成分及び低沸
点成分を液化精留で分離除去するに当たり、先ず高沸点
成分を分離除去し、次いで低沸点成分を分離除去する構
成にすることにより、これを逆にした場合に比較して、
高圧塔頂部に分離されるガス中の低沸点成分含有量が少
なくてすむから、主凝縮器の熱交換における高圧塔と低
圧塔の圧力差を小さくでき、製品収率を低下させること
なく低圧塔の運転圧力を高めて、単結晶製造炉へ供給す
る圧力で直接製品の高純度アルゴンを抜出すことができ
る。したがって、製品アルゴン圧縮機を設ける必要がな
く、あるいは、排ガス圧縮機の圧縮動力を低減すること
ができる。
In separating and removing high-boiling components and low-boiling components as impurities by liquefaction rectification, the high-boiling components are separated and removed first, and then the low-boiling components are separated and removed. Compared to the opposite case,
Since the low-boiling-point component content in the gas separated at the top of the high-pressure column can be small, the pressure difference between the high-pressure column and the low-pressure column in the heat exchange of the main condenser can be reduced, and the low-pressure column without lowering the product yield. , The high-purity argon of the product can be extracted directly by the pressure supplied to the single crystal production furnace. Therefore, there is no need to provide a product argon compressor, or the compression power of the exhaust gas compressor can be reduced.

【0044】さらに、液化精留で分離除去する高沸点不
純物濃縮液を気化したガスあるいは低沸点成分を濃縮し
た廃ガス、あるいは寒冷供給用に導入した液化窒素を気
化した窒素ガスを、吸着除去手段の吸着筒の再生ガスに
利用することにより、設備構成を簡素化でき設備費や運
転費を低減することができる。
Further, a gas obtained by vaporizing a high-boiling-point impurity concentrated liquid separated or removed by liquefaction rectification, a waste gas containing concentrated low-boiling-point components, or a nitrogen gas vaporized from liquefied nitrogen introduced for cold supply is adsorbed and removed. By utilizing the gas for regeneration of the adsorption column, the equipment configuration can be simplified, and equipment costs and operating costs can be reduced.

【0045】図3は、本発明における後段部の他の形態
例を示す系統図である。なお、前段部は、前記図1に示
した形態例と同様に形成できるので、図示及び説明は省
略する。また、図2に示した形態例における構成要素と
同一の構成要素には同一の符号を付してその詳細な説明
は省略する。
FIG. 3 is a system diagram showing another embodiment of the latter part of the present invention. Since the former part can be formed in the same manner as the embodiment shown in FIG. 1, illustration and description are omitted. The same components as those in the embodiment shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0046】本形態例は、寒冷供給として外部からの液
化窒素を供給する代わりに、窒素循環経路の圧縮窒素ガ
スを膨張タービン62で断熱膨張して寒冷を発生する寒
冷発生経路を備え、該寒冷発生経路で発生した寒冷で、
寒冷供給をするように構成したものである。
In this embodiment, instead of supplying liquefied nitrogen from the outside as a cold supply, a cold generation path is provided which adiabatically expands the compressed nitrogen gas in the nitrogen circulation path by the expansion turbine 62 to generate cold. In the cold that occurred in the outbreak route,
It is configured to supply cold.

【0047】すなわち、図2に示す形態例と同様に、循
環圧縮機14で所要圧力に圧縮された圧縮窒素ガスは、
圧縮熱を除かれた後経路50から主熱交換器36に導入
され、低温戻りガスと熱交換して冷却されて経路50a
から加熱源として底部蒸化器12に導入され、塔底液と
熱交換により液化して液化窒素となり経路51に導出す
る。この液化窒素は過冷器37を通り減圧弁52で減圧
され冷却源として頂部凝縮器13に導入され、低圧塔1
1の塔頂ガスと熱交換して蒸発気化して窒素ガスとな
り、経路55,過冷器37,経路56,主熱交換器36
を通って昇温され、経路57から再び循環圧縮機14の
吸入側に戻され循環する。
That is, similarly to the embodiment shown in FIG. 2, the compressed nitrogen gas compressed to a required pressure by the circulation compressor 14 is:
After the heat of compression is removed, the heat is introduced into the main heat exchanger 36 from the path 50, exchanges heat with the low-temperature return gas, and is cooled.
Is introduced into the bottom evaporator 12 as a heating source, and is liquefied by heat exchange with the column bottom liquid to become liquefied nitrogen, which is led out to the path 51. The liquefied nitrogen passes through the subcooler 37 and is decompressed by the pressure reducing valve 52 and introduced into the top condenser 13 as a cooling source.
The heat exchange with the top gas of No. 1 evaporates and evaporates into nitrogen gas, and the path 55, the subcooler 37, the path 56, the main heat exchanger 36
Through the passage 57 and returned to the suction side of the circulating compressor 14 to circulate.

【0048】そして、圧縮窒素ガスの一部が、前記主熱
交換器36で冷却途上で、寒冷発生経路を構成する経路
61に分岐導出されて膨張タービン62に導入される。
膨張タービン62に導入された圧縮窒素ガスは、断熱膨
張して降圧,降温して寒冷を発生し寒冷発生経路を構成
する経路63から、前記頂部凝縮器13で気化して前記
循環圧縮機14の吸入側へ戻る経路56に合流され主熱
交換器36に導かれる。
Then, a part of the compressed nitrogen gas is branched and led out to a path 61 constituting a cold generation path and is introduced into an expansion turbine 62 while being cooled by the main heat exchanger 36.
The compressed nitrogen gas introduced into the expansion turbine 62 is adiabatically expanded to lower the pressure and lower the temperature to generate cold, and from a path 63 constituting a cold generation path, is vaporized by the top condenser 13 and vaporized by the circulation compressor 14. It is joined to the path 56 returning to the suction side and guided to the main heat exchanger 36.

【0049】発生した寒冷を保持する窒素ガスは、主熱
交換器36に導かれ、前記排ガスや前記圧縮窒素ガスと
熱交換することにより寒冷が回収され昇温して、再び循
環圧縮機14に還され窒素循環経路を循環する。
The generated nitrogen gas for maintaining the cold is led to the main heat exchanger 36, where the cold is recovered by exchanging heat with the exhaust gas and the compressed nitrogen gas, and the temperature is raised. And circulate through the nitrogen circulation path.

【0050】このように、本形態例では、装置内部の窒
素ガスを膨張して発生した寒冷で寒冷供給を行うように
構成することにより、外部から、寒冷供給用の液化窒素
を注入する必要がないので、運転管理が容易となる。
As described above, in this embodiment, it is necessary to inject liquefied nitrogen for cold supply from the outside by arranging such that the cold gas generated by expanding the nitrogen gas inside the device is supplied. Because there is no operation management, it becomes easy.

【0051】[0051]

【発明の効果】以上説明したように、請求項1および9
記載の方法および装置によれば、単結晶製造炉などの半
導体製造装置からの排出されるアルゴンを主成分とし、
粉塵、油分、水分、一酸化炭素、酸素などの不純物を含
む廃ガスから高純度のアルゴンガスを効率よく回収でき
る。また、不純物の酸素を液化精留に先だって水素添加
触媒反応で除去しているので、後段でのアルゴンよりも
高沸点成分あるいは低沸点成分の液化精留を効率よく行
うことができる。
As described above, claims 1 and 9
According to the described method and apparatus, the main component is argon discharged from a semiconductor manufacturing apparatus such as a single crystal manufacturing furnace,
High-purity argon gas can be efficiently recovered from waste gas containing impurities such as dust, oil, moisture, carbon monoxide, and oxygen. Further, since oxygen as an impurity is removed by a hydrogenation catalytic reaction prior to liquefaction rectification, liquefaction rectification of a component having a higher boiling point or a component having a lower boiling point than argon in the subsequent stage can be performed more efficiently.

【0052】また、請求項2および10に記載の方法お
よび装置によれば、触媒反応工程において反応温度を廃
ガス中の水素と一酸化炭素が反応しない温度に調節する
ことができ、酸素と反応する水素量を安定化させて酸素
を確実に除去できるとともに、炭化水素の発生を抑制す
ることができる。
According to the method and the apparatus according to the second and tenth aspects, the reaction temperature in the catalytic reaction step can be adjusted to a temperature at which the hydrogen and carbon monoxide in the waste gas do not react, and the reaction temperature with the oxygen can be controlled. In addition to stabilizing the amount of hydrogen to be removed, oxygen can be reliably removed, and generation of hydrocarbons can be suppressed.

【0053】また、請求項3,8に記載の方法および請
求項11,12,13,16に記載の装置によれば、吸
着除去手段の吸着筒の再生ガスに精製工程で不要となっ
た各種ガスなどを利用でき、設備の簡素化ができ、運転
費用も低減できる。
According to the method described in the third and eighth aspects and the apparatus described in the eleventh, twelfth, thirteenth, and sixteenth aspects, various types of unnecessary gas in the refining process can be used for the regeneration gas in the adsorption cylinder of the adsorption removing means. Gas can be used, equipment can be simplified, and operating costs can be reduced.

【0054】また、請求項4に記載の方法によれば、不
純物の高沸点成分の除去を高圧塔で行い、ついで低沸点
成分の除去を低圧塔で行うため、製品高純度アルゴンを
比較的高い圧力で得ることができ、製品アルゴン圧縮機
を設ける必要がなく、排ガス圧縮機の圧縮動力を低減で
きる。
According to the method of claim 4, since the high-boiling components of impurities are removed by the high-pressure column and the low-boiling components are removed by the low-pressure column, the product high-purity argon can be prepared at a relatively high level. Pressure can be obtained, and it is not necessary to provide a product argon compressor, and the compression power of the exhaust gas compressor can be reduced.

【0055】また、請求項5に記載の方法および請求項
14に記載の装置によれば、窒素循環経路を設けて、循
環窒素を高圧塔の加熱源および低圧塔の冷却源としてい
るので、外部から寒冷エネルギーの供給量を低減でき、
運転費用を低減できる。
According to the method described in claim 5 and the apparatus described in claim 14, a nitrogen circulation path is provided, and the circulating nitrogen is used as a heating source for the high-pressure column and a cooling source for the low-pressure column. Can reduce the supply of cold energy from
Operation costs can be reduced.

【0056】また、請求項6に記載の方法および請求項
15に記載の装置によれば、窒素循環経路に不足する寒
冷を外部から必要に応じて補給でき、安定な運転が継続
できる。
Further, according to the method described in claim 6 and the apparatus described in claim 15, refrigeration that is insufficient in the nitrogen circulation path can be replenished from the outside as necessary, and stable operation can be continued.

【0057】さらに、請求項7に記載の方法および請求
項17に記載の装置によれば、装置内で運転に必要な寒
冷をまかなうことができ、外部から寒冷の供給が不要に
となり、運転管理が容易となる。
Furthermore, according to the method described in claim 7 and the device described in claim 17, it is possible to cover the cold required for the operation in the device, and it is not necessary to supply the cold from the outside. Becomes easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の装置の一形態例の前段部を示す構成
図である。
FIG. 1 is a configuration diagram showing a front part of an embodiment of the apparatus of the present invention.

【図2】 本発明の装置の一形態例の後段部を示す構成
図である。
FIG. 2 is a configuration diagram showing a rear part of an embodiment of the apparatus of the present invention.

【図3】 本発明の装置の他の形態例の後段部を示す構
成図である。
FIG. 3 is a configuration diagram showing a rear part of another embodiment of the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…単結晶製造炉、2…集塵機、3…排ガス圧縮機、4
…油除去筒、5…油除去フィルター、6…添加水素経
路、7…触媒筒、8…吸着筒、9…高圧塔、10…主凝
縮器、11…低圧塔、12…底部蒸化器、13…頂部凝
縮器、14…循環圧縮機、36…主熱交換器、62…膨
張タービン
DESCRIPTION OF SYMBOLS 1 ... Single crystal manufacturing furnace, 2 ... Dust collector, 3 ... Exhaust gas compressor, 4
... oil removal cylinder, 5 ... oil removal filter, 6 ... added hydrogen path, 7 ... catalyst cylinder, 8 ... adsorption cylinder, 9 ... high pressure tower, 10 ... main condenser, 11 ... low pressure tower, 12 ... bottom evaporator, 13: Top condenser, 14: Circulating compressor, 36: Main heat exchanger, 62: Expansion turbine

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 アルゴンを主成分とし、粉塵等の固形
分、油分、水分、一酸化炭素、二酸化炭素、酸素、水
素、窒素、炭化水素等を不純物として含む単結晶製造炉
などの半導体製造装置からの排ガス中のアルゴンを回収
精製する方法であって、前記粉塵等の固形分を除去する
工程と、前記排ガスを圧縮する工程と、前記油分を除去
する工程と、該排ガス中の酸素の反応に必要な化学量論
量より過剰量の水素を添加して酸素を触媒反応で水に転
化する触媒反応工程と、該触媒反応工程で転化した水と
前記水分及び二酸化炭素を複数の吸着筒で吸着工程と再
生工程とを交互に切り替えて行い連続的に吸着除去する
吸着除去工程と、前記各工程を経た排ガスを液化精留で
得られた低温戻りガスにより冷却する工程と、冷却した
排ガスを液化精留することによって排ガスからアルゴン
より沸点の高い高沸点成分を濃縮した高沸点成分濃縮液
とアルゴンより沸点の低い低沸点成分を濃縮した粗アル
ゴンガスとに分離する高沸点成分分離工程と、該高沸点
成分分離工程で分離した粗アルゴンガスを液化精留する
ことによって粗アルゴンガスから高純度アルゴンとアル
ゴンより沸点の低い低沸点成分を濃縮した廃ガスとに分
離する低沸点成分分離工程と、該低沸点成分分離工程で
得られた高純度アルゴンを前記排ガスとの熱交換により
昇温して回収する工程とを有することを特徴とするアル
ゴン回収精製方法。
1. A semiconductor manufacturing apparatus such as a single crystal manufacturing furnace containing argon as a main component and containing solids such as dust, oil, water, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen, and hydrocarbons as impurities. A method for recovering and purifying argon in exhaust gas from a process, comprising the steps of removing solids such as dust, compressing the exhaust gas, removing the oil component, and reacting oxygen in the exhaust gas. A catalytic reaction step of adding oxygen in excess of the stoichiometric amount necessary to convert oxygen to water by a catalytic reaction, and the water converted in the catalytic reaction step, the water and the carbon dioxide in a plurality of adsorption columns. An adsorption removal step for continuously performing adsorption removal by alternately switching the adsorption step and the regeneration step, a step of cooling the exhaust gas having passed through each of the above steps with a low-temperature return gas obtained by liquefaction rectification, and Liquefaction rectification A high-boiling-point component separation step of separating a high-boiling-point component concentrated liquid having a higher boiling point than argon from the exhaust gas and a crude argon gas having a low-boiling-point component having a lower boiling point than argon concentrated. A low-boiling-point component separation step of liquefying the crude argon gas separated in the separation step to separate high-purity argon and low-boiling components having a lower boiling point than argon from the crude argon gas into a concentrated waste gas; And recovering the high-purity argon obtained in the component separation step by raising the temperature by heat exchange with the exhaust gas.
【請求項2】 前記触媒反応工程において、該触媒反応
工程に導入する排ガス温度を、前記排ガス中の水素と一
酸化炭素が反応しない温度に調節することを特徴とする
請求項1記載のアルゴン回収精製方法。
2. The method according to claim 1, wherein in the catalytic reaction step, the temperature of the exhaust gas introduced into the catalytic reaction step is adjusted to a temperature at which hydrogen and carbon monoxide in the exhaust gas do not react. Purification method.
【請求項3】 前記吸着除去工程における前記吸着筒の
再生工程の再生ガスとして、前記吸着除去工程を導出し
た排ガス、及び前記高沸点成分分離工程で分離した高沸
点成分濃縮液を気化して得られたガス、及び前記低沸点
成分分離工程で分離した廃ガスのいずれか少なくとも1
つのガスを用いることを特徴とする請求項1記載のアル
ゴン回収精製方法。
3. A gas obtained by vaporizing an exhaust gas derived from the adsorption removal process and a high-boiling component concentrate separated in the high-boiling component separation process as a regeneration gas in the regeneration process of the adsorption column in the adsorption and removal process. At least one of the separated gas and the waste gas separated in the low boiling point component separation step.
2. The method for recovering and purifying argon according to claim 1, wherein two gases are used.
【請求項4】 前記高沸点成分分離工程と前記低沸点成
分分離工程が、高圧塔,主凝縮器及び低圧塔を含む複式
精留塔により行われ、前記高沸点成分分離工程が、前記
排ガスを塔中段に導入し底部蒸化器で生成した上昇ガス
と前記主凝縮器で生成した還流液との気液接触により液
化精留して塔底部から前記高沸点成分濃縮液を導出する
とともに塔頂部から前記粗アルゴンガスを導出する前記
高圧塔で行われ、前記低沸点成分分離工程が、前記高圧
塔で分離した粗アルゴンガスを塔中段に導入し前記主凝
縮器で生成した上昇ガスと頂部凝縮器で生成した還流液
との気密接触により液化精留して塔下部から前記高純度
アルゴンを導出するとともに塔頂部から前記廃ガスを導
出する前記低圧塔で行われることを特徴とする請求項1
記載のアルゴン回収精製方法。
4. The high-boiling component separation step and the low-boiling component separation step are performed by a double rectification column including a high-pressure column, a main condenser, and a low-pressure column. Liquefied and rectified by gas-liquid contact between the ascending gas generated in the bottom evaporator introduced in the bottom evaporator and the reflux liquid generated in the main condenser, and the high boiling component concentrated liquid is derived from the bottom of the column and the top of the column. The low-boiling-point component separation step is performed in the high-pressure column that derives the crude argon gas from the high-pressure column. The liquefaction and rectification by airtight contact with a reflux liquid generated in a vessel, the high-purity argon is led out from the lower part of the column, and the waste gas is led out from the top part of the column in the low-pressure column.
The method for recovering and purifying argon described above.
【請求項5】 前記底部蒸化器に循環圧縮機で圧縮した
圧縮窒素ガスを導入して前記高圧塔の塔底液を気化して
上昇ガスを生成する工程と、該高圧塔の上昇ガスを生成
する工程で液化した液化窒素を減圧し前記頂部凝縮器に
導入して前記低圧塔の塔頂ガスを液化して還流液を生成
する工程と、該低圧塔の還流液を生成する工程で気化し
た窒素ガスを前記循環圧縮機に戻して圧縮する行程と、
該圧縮した窒素ガスを再び前記上昇ガスを生成する工程
に供給して循環させる窒素循環工程とを有することを特
徴とする請求項4記載のアルゴン回収精製方法。
5. A step of introducing a compressed nitrogen gas compressed by a circulating compressor into the bottom evaporator to vaporize a bottom liquid of the high-pressure column to generate a rising gas; Liquefied nitrogen liquefied in the generating step is decompressed and introduced into the top condenser to liquefy the top gas of the low-pressure column to generate a reflux liquid, and vaporize in the step of generating a reflux liquid in the low-pressure column Returning the compressed nitrogen gas to the circulating compressor and compressing it;
5. The method for recovering and purifying argon according to claim 4, further comprising a nitrogen circulating step of supplying and circulating the compressed nitrogen gas again to the step of generating the ascending gas.
【請求項6】 前記窒素循環工程における液化窒素に、
外部から導入した液化窒素を付加して寒冷供給を行うこ
とを特徴とする請求項5記載のアルゴン回収精製方法。
6. The liquefied nitrogen in the nitrogen circulation step,
6. The method for recovering and purifying argon according to claim 5, wherein the liquefied nitrogen introduced from outside is added to perform the cold supply.
【請求項7】 前記窒素循環工程における圧縮した窒素
ガスの一部を膨張して得られた寒冷で寒冷供給を行うこ
とを特徴とする請求項5記載のアルゴン回収精製方法。
7. The method for recovering and purifying argon according to claim 5, wherein a cold supply is performed at a low temperature obtained by expanding a part of the compressed nitrogen gas in the nitrogen circulation step.
【請求項8】 前記吸着除去工程における前記吸着筒の
再生工程の再生ガスとして、前記窒素循環工程の窒素ガ
スを用いることを特徴とする請求項5記載のアルゴン回
収精製方法。
8. The method for recovering and purifying argon according to claim 5, wherein a nitrogen gas in said nitrogen circulation step is used as a regeneration gas in a regeneration step of said adsorption column in said adsorption removal step.
【請求項9】 アルゴンを主成分とし、粉塵等の固形
分、油分、水分、一酸化炭素、二酸化炭素、酸素、水
素、窒素、炭化水素等を不純物として含む単結晶製造炉
などの半導体製造装置からの排ガス中のアルゴンを回収
精製する装置であって、前記粉塵等の固形分を除去する
集塵手段と、前記排ガスを所要の圧力に圧縮する圧縮手
段と、前記油分を除去する油除去手段と、前記排ガスに
水素を添加して排ガス中の酸素と反応させて水に転化す
る触媒反応手段と、複数の吸着筒を用い吸着工程と再生
工程を交互に切り替えて前記触媒反応手段で転化した水
と前記排ガス中に含有する前記水分及び二酸化炭素を連
続的に吸着除去する吸着除去手段と、排ガスを液化精留
で得られた低温戻り液体と熱交換して冷却する主熱交換
器と、該主熱交換器で冷却され残存する不純物を含む低
温排ガスを液化精留してアルゴンより沸点の高い高沸点
成分を濃縮した高沸点成分濃縮液とアルゴンより沸点の
低い低沸点成分を濃縮した粗アルゴンガスとに分離する
高圧塔,該高圧塔で分離した粗アルゴンガスを液化精留
して高純度アルゴンとアルゴンより沸点の低い低沸点成
分を濃縮した廃ガスとに分離する低圧塔,前記高圧塔の
頂部ガスと前記低圧塔の塔底液とを熱交換させ前記高圧
塔の還流液及び前記低圧塔の上昇ガスを生成する主凝縮
器を含む複精留塔と、該複精留塔の前記低圧塔で分離し
た高純度アルゴンを前記主熱交換器を通し回収する製品
回収経路とを備えたことを特徴とするアルゴン回収精製
装置。
9. A semiconductor manufacturing apparatus such as a single crystal manufacturing furnace containing argon as a main component and containing solids such as dust, oil, water, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen, hydrocarbons and the like as impurities. An apparatus for recovering and purifying argon in exhaust gas from a plant, comprising: dust collecting means for removing solids such as dust, compression means for compressing the exhaust gas to a required pressure, and oil removing means for removing the oil component And a catalytic reaction means for adding hydrogen to the exhaust gas and reacting with oxygen in the exhaust gas to convert it to water, and a plurality of adsorption columns were used to alternately switch an adsorption step and a regeneration step to convert the water by the catalytic reaction means. Adsorption removal means for continuously adsorbing and removing the water and carbon dioxide contained in the water and the exhaust gas, and a main heat exchanger for cooling the exhaust gas by exchanging heat with a low-temperature return liquid obtained by liquefaction rectification, Cooled in the main heat exchanger Liquefaction of low-temperature exhaust gas containing impurities and remaining impurities is liquefied and rectified to separate a high-boiling component concentrate containing high-boiling components having a higher boiling point than argon and a crude argon gas containing low-boiling components having a lower boiling point than argon. A high-pressure column, a low-pressure column for liquefying the crude argon gas separated in the high-pressure column and separating it into high-purity argon and a waste gas in which low-boiling components having a lower boiling point than argon are concentrated, a top gas of the high-pressure column and A double rectification column including a main condenser that exchanges heat with the bottom liquid of the low pressure column and generates a reflux liquid of the high pressure column and an ascending gas of the low pressure column is separated from the double rectification column by the low pressure column. A product recovery path for recovering high-purity argon through the main heat exchanger.
【請求項10】 前記触媒反応手段は、加熱器と触媒筒
と排ガス経路と添加水素経路とを備えるとともに、前記
加熱器と前記触媒筒を連絡する前記排ガス経路に設けら
れた温度検出器と、該温度検出器からの信号で前記加熱
器の加熱容量を制御する加熱容量制御器とからなる触媒
反応温度制御手段とを備えたことを特徴とする請求項9
記載のアルゴン回収精製装置。
10. The catalyst reaction means includes a heater, a catalyst cylinder, an exhaust gas path, and an added hydrogen path, and a temperature detector provided in the exhaust gas path connecting the heater and the catalyst cylinder. 10. A catalytic reaction temperature control means comprising a heating capacity controller for controlling a heating capacity of the heater by a signal from the temperature detector.
The apparatus for purifying and recovering argon described above.
【請求項11】 前記複精留塔の前記低圧塔の頂部に分
離した廃ガスを前記主熱交換器を通して抜出す経路と、
該経路から抜出した廃ガスを、前記吸着除去手段におけ
る吸着筒の再生ガスとして供給する経路を備えたことを
特徴とする請求項9記載のアルゴン回収精製装置。
11. A path for extracting waste gas separated at the top of the low pressure column of the double rectification column through the main heat exchanger,
The argon recovery and purification apparatus according to claim 9, further comprising a path for supplying waste gas extracted from the path as a regeneration gas for the adsorption column in the adsorption and removal means.
【請求項12】 前記複精留塔の前記高圧塔の底部に分
離した高沸点成分濃縮液を抜出す経路と、該経路から抜
出した高沸点成分濃縮液を気化して昇温する手段と、該
手段を導出した高沸点成分気化ガスを、前記吸着除去手
段における吸着筒の再生ガスとして供給する経路を備え
たことを特徴とする請求項9記載のアルゴン回収精製装
置。
12. A path for extracting the high-boiling component concentrate separated at the bottom of the high-pressure column of the double rectification column, means for evaporating the high-boiling component concentrate extracted from the path and raising the temperature; 10. The argon recovery and purification apparatus according to claim 9, further comprising a path for supplying the high-boiling component vaporized gas derived from the means as a regeneration gas for the adsorption column in the adsorption and removal means.
【請求項13】 前記高沸点成分濃縮液を気化して昇温
する手段が、前記主熱交換器であることを特徴とする請
求項12記載のアルゴン回収精製装置。
13. The argon recovery and purification apparatus according to claim 12, wherein the means for vaporizing the high-boiling-point component concentrate and raising the temperature is the main heat exchanger.
【請求項14】 循環窒素ガスを圧縮する循環圧縮機
と、該循環圧縮機で圧縮された圧縮窒素ガスを加熱源と
して前記高圧塔の塔底液を気化して上昇ガスを生成する
底部蒸化器と、該底部蒸化器で液化した液化窒素を減圧
する減圧弁と、該減圧弁で減圧した液化窒素を寒冷源と
して前記低圧塔の塔頂ガスを凝縮して還流液を生成する
頂部凝縮器と、該頂部凝縮器で気化した窒素ガスを前記
循環圧縮機の吸入側に循環させる経路とを有する窒素循
環経路を備えていることを特徴とする請求項9記載のア
ルゴン回収精製装置。
14. A circulating compressor for compressing a circulating nitrogen gas, and a bottom evaporator for producing a rising gas by vaporizing a bottom liquid of the high-pressure column using the compressed nitrogen gas compressed by the circulating compressor as a heating source. Vessel, a pressure reducing valve for reducing the liquefied nitrogen liquefied in the bottom evaporator, and a top condenser for condensing the top gas of the low pressure column with the liquefied nitrogen decompressed by the pressure reducing valve as a cold source to produce a reflux liquid. 10. The argon recovery and purification apparatus according to claim 9, further comprising a nitrogen circulation path having a condenser and a path for circulating the nitrogen gas vaporized in the top condenser to the suction side of the circulation compressor.
【請求項15】 前記窒素循環経路における液化窒素経
路に、外部からの寒冷用液化窒素を導入する寒冷供給経
路が接続されていることを特徴とする請求項14記載の
アルゴン回収精製装置。
15. The argon recovery / purification apparatus according to claim 14, wherein a cold supply path for introducing liquefied nitrogen for cooling from the outside is connected to the liquefied nitrogen path in the nitrogen circulation path.
【請求項16】 前記窒素循環経路の窒素ガスを、前記
吸着除去手段における吸着筒の再生ガスとして供給する
経路が設けられていることを特徴とする請求項14記載
のアルゴン回収精製装置。
16. The argon recovery / purification apparatus according to claim 14, wherein a path is provided for supplying the nitrogen gas in the nitrogen circulation path as a regeneration gas for the adsorption column in the adsorption and removal means.
【請求項17】 前記窒素循環経路における循環圧縮機
吐出側の圧締窒素ガスを導入し断熱膨張して寒冷を発生
する膨張タービンと、該膨張タービンで発生した寒冷を
回収した後前記窒素循環経路における循環圧縮機の吸入
側に戻す経路からなる寒冷発生経路を有することをする
特徴と請求項14記載のアルゴン回収精製装置。
17. An expansion turbine for introducing a compressed nitrogen gas on the discharge side of a circulating compressor in the nitrogen circulation path and adiabatically expanding to generate cold, and recovering the cold generated by the expansion turbine, and then recovering the nitrogen circulation path. 15. The argon recovery / purification apparatus according to claim 14, wherein the apparatus has a cold generation path comprising a path returning to the suction side of the circulating compressor.
JP10260653A 1998-09-14 1998-09-14 Method and apparatus for recovering and refining argon Pending JP2000088455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260653A JP2000088455A (en) 1998-09-14 1998-09-14 Method and apparatus for recovering and refining argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260653A JP2000088455A (en) 1998-09-14 1998-09-14 Method and apparatus for recovering and refining argon

Publications (1)

Publication Number Publication Date
JP2000088455A true JP2000088455A (en) 2000-03-31

Family

ID=17350916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260653A Pending JP2000088455A (en) 1998-09-14 1998-09-14 Method and apparatus for recovering and refining argon

Country Status (1)

Country Link
JP (1) JP2000088455A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013743A1 (en) * 2008-08-01 2010-02-04 国立大学法人大阪大学 Polarized xenon gas concentration method, polarized xenon gas manufacturing supply device, and mri system
JP2010537151A (en) * 2007-08-24 2010-12-02 エクソンモービル アップストリーム リサーチ カンパニー Natural gas liquefaction process
JP2011184287A (en) * 2010-02-10 2011-09-22 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
CN102730653A (en) * 2011-04-12 2012-10-17 住友精化株式会社 Purification method for argon and purification device thereof
DE102011050247A1 (en) * 2011-05-10 2012-11-15 Reicat Gmbh Separating argon from gaseous mixture, comprises collecting gaseous mixture, roughly removing the gaseous mixture, compressing, cooling, finely removing the gaseous mixture, catalytically oxidizing carbon monoxide in gas mixture
JP2012229151A (en) * 2011-04-12 2012-11-22 Sumitomo Seika Chem Co Ltd Method and device for purifying argon gas
JP2013010679A (en) * 2011-05-30 2013-01-17 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
WO2013085907A1 (en) * 2011-12-07 2013-06-13 Praxair Technolgy, Inc. Inert gas recovery and recycle for silicon crystal growth pulling process
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2014092341A (en) * 2012-11-06 2014-05-19 Air Water Inc Producing method of argon and argon producing equipment used in the same
JP2014092342A (en) * 2012-11-06 2014-05-19 Air Water Inc Gas supply equipment and gas supply method using the same
KR20160114598A (en) 2014-01-29 2016-10-05 신에쯔 한도타이 가부시키가이샤 Method for recovering and purifying argon gas from single-crystal-silicon production device, and device for recovering and purifying argon gas
CN111637685A (en) * 2020-07-03 2020-09-08 上海迎飞能源科技有限公司 Single-tower cryogenic rectification argon recovery system and method with argon circulation and hydrogen circulation
CN113244766A (en) * 2020-02-10 2021-08-13 新特能源股份有限公司 Single crystal furnace tail gas purification and recovery system and method
CN113998678A (en) * 2021-10-13 2022-02-01 安徽华中半导体材料有限公司 Argon recovery and purification device and purification method thereof
CN114735666A (en) * 2022-06-09 2022-07-12 北京化工大学 Process for separating and refining rare gas

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537151A (en) * 2007-08-24 2010-12-02 エクソンモービル アップストリーム リサーチ カンパニー Natural gas liquefaction process
WO2010013743A1 (en) * 2008-08-01 2010-02-04 国立大学法人大阪大学 Polarized xenon gas concentration method, polarized xenon gas manufacturing supply device, and mri system
US8624594B2 (en) 2008-08-01 2014-01-07 Osaka University Polarized xenon gas concentration method, polarized xenon gas manufacturing supply device, and MRI system
JP5191543B2 (en) * 2008-08-01 2013-05-08 国立大学法人大阪大学 Polarized xenon gas concentration method, polarized xenon gas production and supply apparatus, and MRI system
JP2011184287A (en) * 2010-02-10 2011-09-22 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2012229151A (en) * 2011-04-12 2012-11-22 Sumitomo Seika Chem Co Ltd Method and device for purifying argon gas
CN102730653A (en) * 2011-04-12 2012-10-17 住友精化株式会社 Purification method for argon and purification device thereof
KR101800031B1 (en) * 2011-04-12 2017-11-21 스미또모 세이까 가부시키가이샤 Purifying method and purifying apparatus for argon gas
DE102011050247B4 (en) * 2011-05-10 2019-02-21 Reicat Gmbh Process and apparatus for separating argon from a gas mixture
DE102011050247A1 (en) * 2011-05-10 2012-11-15 Reicat Gmbh Separating argon from gaseous mixture, comprises collecting gaseous mixture, roughly removing the gaseous mixture, compressing, cooling, finely removing the gaseous mixture, catalytically oxidizing carbon monoxide in gas mixture
JP2013010679A (en) * 2011-05-30 2013-01-17 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
KR101823154B1 (en) * 2011-05-30 2018-01-29 스미또모 세이까 가부시키가이샤 Purifying method and purifying apparatus for argon gas
US9114989B2 (en) 2011-12-07 2015-08-25 Praxair Technology, Inc. Inert gas recovery and recycle for silicon crystal growth pulling process
WO2013085907A1 (en) * 2011-12-07 2013-06-13 Praxair Technolgy, Inc. Inert gas recovery and recycle for silicon crystal growth pulling process
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2014092341A (en) * 2012-11-06 2014-05-19 Air Water Inc Producing method of argon and argon producing equipment used in the same
JP2014092342A (en) * 2012-11-06 2014-05-19 Air Water Inc Gas supply equipment and gas supply method using the same
KR20160114598A (en) 2014-01-29 2016-10-05 신에쯔 한도타이 가부시키가이샤 Method for recovering and purifying argon gas from single-crystal-silicon production device, and device for recovering and purifying argon gas
US9890044B2 (en) 2014-01-29 2018-02-13 Shin-Etsu Handotai Co., Ltd. Method for recovering and purifying argon gas from silicon single crystal manufacturing apparatus and apparatus for recovering and purifying argon gas
CN113244766A (en) * 2020-02-10 2021-08-13 新特能源股份有限公司 Single crystal furnace tail gas purification and recovery system and method
CN111637685A (en) * 2020-07-03 2020-09-08 上海迎飞能源科技有限公司 Single-tower cryogenic rectification argon recovery system and method with argon circulation and hydrogen circulation
CN113998678A (en) * 2021-10-13 2022-02-01 安徽华中半导体材料有限公司 Argon recovery and purification device and purification method thereof
CN114735666A (en) * 2022-06-09 2022-07-12 北京化工大学 Process for separating and refining rare gas

Similar Documents

Publication Publication Date Title
JP3277340B2 (en) Method and apparatus for producing various gases for semiconductor manufacturing plants
US4566886A (en) Process and apparatus for obtaining pure CO
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH04222381A (en) Manufacture of high-purity argon
US5783162A (en) Argon purification process
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JP2579261B2 (en) Method and apparatus for producing crude neon
JP2585955B2 (en) Air separation equipment
JPH11228116A (en) Recovering and purifying method of argon and device therefor
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP3532465B2 (en) Air separation device
JP3424101B2 (en) High purity argon separation equipment
JP4024347B2 (en) Argon recovery method and apparatus
JPH07127971A (en) Argon separator
JP3256811B2 (en) Method for purifying krypton and xenon
JP3297935B2 (en) Method and apparatus for separating high purity argon
JP3466437B2 (en) Air separation equipment
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JP2002115965A (en) Method of recovering rare gas
JP3254523B2 (en) Method and apparatus for purifying nitrogen
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JP3532466B2 (en) Air separation device
JP4072841B2 (en) Method and apparatus for producing ultra high purity gas
JP3385410B2 (en) Noble gas purification method and apparatus
JPH1137643A (en) Method and facility for separating air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708