JP2002115965A - Method of recovering rare gas - Google Patents

Method of recovering rare gas

Info

Publication number
JP2002115965A
JP2002115965A JP2000305852A JP2000305852A JP2002115965A JP 2002115965 A JP2002115965 A JP 2002115965A JP 2000305852 A JP2000305852 A JP 2000305852A JP 2000305852 A JP2000305852 A JP 2000305852A JP 2002115965 A JP2002115965 A JP 2002115965A
Authority
JP
Japan
Prior art keywords
rare gas
tower
oxygen
gas
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000305852A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsui
義昭 松井
Kiyoto Imahashi
清人 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2000305852A priority Critical patent/JP2002115965A/en
Publication of JP2002115965A publication Critical patent/JP2002115965A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • F25J3/04757Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04963Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipment within or downstream of the fractionation unit(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the quantity of consumed energy of the reboiler heat source of the first condensing column of rare gas, by enabling xenon to be separated and recovered efficiently. SOLUTION: A method of recovering rare gas from liquefied oxygen containing the rare gas consisting of krypton and xenon taken out of the lower part of the upper column of an air liquefying separator 1, comprises a process of introducing the liquefied oxygen into the first condensing column 6, taking out condensed liquefied oxygen 9 where the rare gas is condensed from the bottom of the column, returning its one part to the first condensing column via a reboiler 11, taking out oxygen gas 8 from the column head, and returning its one part to the first condensing column; and a process of introducing a part of the above condensed liquefied oxygen into the second condensing column 14 via a decarbonized hydrogen processor 13, and taking out rare gas from the column bottom. Besides, the heat source of the above reboiler 11 is made nitrogen gas or dry air, and the inner pressure of the first condensing column 6 is decompressed to or under atmospheric pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気液化分離装置
の精留塔上塔下部の液化酸素中に濃縮されるクリプトン
及びキセノンからなるレアガス、特にキセノンを回収す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a rare gas composed of krypton and xenon, particularly xenon, which is enriched in liquefied oxygen at the lower part of the upper part of a rectification column of an air liquefaction separation apparatus.

【0002】[0002]

【従来の技術】クリプトン、キセノン等のレアガスは、
空気液化分離装置の液化酸素中に濃縮されているので、
これを更に濃縮して95%以上のレアガスとして回収す
ることが行われている。また、クリプトン、キセノンを
95%以上含むレアガスは、更に蒸留してそれぞれを分
離回収することが行われている。
2. Description of the Related Art Rare gases such as krypton and xenon are:
Since it is concentrated in the liquefied oxygen of the air liquefaction separation unit,
This is further concentrated and recovered as a rare gas of 95% or more. Further, rare gas containing 95% or more of krypton and xenon is further distilled and separated and recovered.

【0003】レアガスの回収装置は、精留、吸着、触媒
反応等の工程を繰り返し、クリプトン90〜95%及び
キセノン5〜10%のレアガス液を得て、その後必要に
より、クリプトンとキセノンとを分離するようにしてい
る。一般的には、空気液化分離装置の上塔下部、例えば
メインコンデンサーと称されるリボイラーコンデンサー
付近から取出される液化酸素を、第一濃縮塔、炭化水素
吸着器、炭化水素を酸化させる触媒反応器、触媒反応器
で生成した水、二酸化炭素を吸着除去する吸着器及び第
二濃縮塔を備える回収工程を経てレアガスを回収し、こ
のレアガスを更に精留してクリプトン及びキセノンを得
ている。
[0003] The rare gas recovery apparatus repeats the steps of rectification, adsorption, catalytic reaction and the like to obtain a rare gas liquid of 90 to 95% of krypton and 5 to 10% of xenon, and then separates krypton and xenon if necessary. I am trying to do it. Generally, liquefied oxygen extracted from the upper and lower towers of an air liquefaction separator, for example, from the vicinity of a reboiler condenser called a main condenser, a first concentration tower, a hydrocarbon adsorber, a catalytic reactor for oxidizing hydrocarbons A rare gas is recovered through a recovery step including an adsorber for adsorbing and removing water and carbon dioxide generated in the catalytic reactor and a second concentration tower, and the rare gas is further rectified to obtain krypton and xenon.

【0004】空気液化分離装置は、酸素と窒素に分離す
ることを主目的とするが、レアガスの回収を副次的な目
的とする場合がある。レアガスの回収を行う場合、クリ
プトンは、酸素と沸点が近いため、酸素に同伴されやす
いという問題があるため、これをを減少させるため、空
気液化分離装置の上塔下部であって、リボイラーコンデ
ンサーより上部にトレイを設けて、レアガスの分離効率
を高めることが行われる。この場合、リボイラーコンデ
ンサー付近の液化酸素中のレアガス濃度も上昇するが、
酸素より沸点の高いメタン等の炭化水素濃度も上昇す
る。液化酸素中の炭化水素は、その濃度が増えると爆発
の危険性が増大することが知られており、これは、レア
ガスの回収量を上げようとすればするほど、増大する。
しかしながら、大気中に含まれるクリプトン及びキセノ
ンは、それぞれ1.14ppm及び0.086ppmと
極微量であるため、これを高度に回収するためには、濃
縮率を高めることが必要であり、これと沸点の近接する
大気中に含まれる炭化水素の濃縮は避けられない。従来
は、レアガス回収工程の設備稼働率の低下を防止するた
め、レアガスの大部分を占めるクリプトンの回収率が高
めることに重点をおいていたが、クリプトンよりはるか
に存在量の少ないキセノンの需要が増えてきている。そ
こで、クリプトンの回収率を犠牲にすれば、キセノンは
沸点が酸素より十分に高いため、分離効率を高めるため
のトレイは不要となるだけでなく、液化酸素中の炭化水
素、特にメタン濃度もそれほど高まることはないという
利点があることが見出された。
The main purpose of the air liquefaction / separation apparatus is to separate it into oxygen and nitrogen, but the secondary purpose may be to recover rare gases. When recovering rare gas, krypton has a problem that it is easily entrained by oxygen because it has a boiling point close to that of oxygen.To reduce this, the lower part of the upper tower of the air liquefaction and separation unit is used. A tray is provided at the top to increase the rare gas separation efficiency. In this case, the rare gas concentration in the liquefied oxygen near the reboiler condenser also increases,
The concentration of hydrocarbons such as methane, which has a higher boiling point than oxygen, also increases. Hydrocarbons in liquefied oxygen are known to increase the risk of explosion as their concentration increases, which increases as the rare gas recovery rate is increased.
However, since krypton and xenon contained in the atmosphere are extremely small at 1.14 ppm and 0.086 ppm, respectively, it is necessary to increase the concentration rate in order to recover them at a high level. Concentration of hydrocarbons contained in the air in the vicinity is inevitable. In the past, in order to prevent a decrease in the capacity utilization rate of the rare gas recovery process, the emphasis was on increasing the recovery rate of krypton, which accounts for the majority of the rare gas, but the demand for xenon, which is much less abundant than krypton, was It is increasing. Therefore, at the expense of krypton recovery, xenon has a boiling point sufficiently higher than that of oxygen, and not only does not require a tray to increase the separation efficiency, but also the concentration of hydrocarbons, especially methane, in liquefied oxygen is so low. It has been found that it has the advantage of not increasing.

【0005】レアガスの回収方法として、特開平7−2
70067号公報では、第二濃縮塔からの塔頂ガスの一
部を精製後、循環させる方法を提案しており、特開平5
−79756号公報では、第一濃縮塔からの濃縮液化酸
素から炭化水素を除去したのちの一部を第一濃縮塔の塔
底の循環する方法を提案している。また、特開平7−9
1826号公報では、第二濃縮塔の塔底からのレアガス
液の一時保存方法を提案しており、特開平7−1339
81号公報では、触媒反応及び吸着工程の一部を省略す
ることのできるを方法を提案している。しかしながら、
空気液化分離装置における炭化水素濃縮を抑制すること
や、第一濃縮塔のリボイラー熱源のエネルギー消費量を
減らすことを教えるものではない。
As a method for recovering rare gas, Japanese Patent Application Laid-Open No. 7-2
Japanese Patent No. 70067 proposes a method in which a part of the top gas from the second concentration tower is purified and then circulated.
Japanese Patent Application Laid-Open No. 79756/1999 proposes a method in which hydrocarbons are removed from concentrated liquefied oxygen from the first concentration tower and a part of the liquefied oxygen is circulated at the bottom of the first concentration tower. In addition, Japanese Patent Application Laid-Open No. 7-9
No. 1826 proposes a method for temporarily storing a rare gas liquid from the bottom of the second concentration tower.
No. 81 proposes a method in which a part of the catalytic reaction and the adsorption step can be omitted. However,
It does not teach suppressing hydrocarbon enrichment in an air liquefaction separator or reducing the energy consumption of the reboiler heat source in the first enrichment tower.

【0006】[0006]

【発明が解決しようとする課題】本発明は、特にキセノ
ンを効率的に分離回収することができ、しかも空気液化
分離装置における炭化水素濃縮の抑制が可能な精製方法
を提供することを目的とする。更に、第一濃縮塔のリボ
イラー熱源のエネルギー消費量を減らすことを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a purification method capable of efficiently separating and recovering xenon, in particular, and suppressing the concentration of hydrocarbons in an air liquefaction separator. . It is another object of the present invention to reduce the energy consumption of the reboiler heat source of the first concentration tower.

【0007】[0007]

【課題を解決するための手段】本発明は、空気液化分離
装置の上塔下部から取出されるクリプトン及びキセノン
からなるレアガスを含む液化酸素からレアガスを回収す
る方法において、前記液化酸素を第一濃縮塔に導入し
て、塔底からレアガスが濃縮された濃縮液化酸素を取出
し、この少なくとも一部をリボイラーを経由させて第一
濃縮塔に戻し、塔頂から酸素ガスを取出し、この少なく
とも一部を凝縮器を経由させて第一濃縮塔に戻し工程
と、前記濃縮液化酸素の一部を脱炭化水素処理する工程
と、脱炭化水素処理された濃縮液化酸素を第二濃縮塔に
導入して塔頂から酸素ガスを取出し、塔底からレアガス
液を取出す工程とを備え、且つ前記リボイラーの熱源を
窒素ガスとし、第一濃縮塔の塔内圧を大気圧以下の減圧
とすることを特徴とするレアガスの回収方法である。こ
こで、空気液化分離装置から取出される液化酸素中のキ
セノン/クリプトン比を、炭化水素を濃縮することなく
大気中の存在比より2倍以上高めることが有利であり、
また、回収されるレアガスが主にキセノンであることが
有利である。なお、各工程における液化酸素は、その一
部が熱侵入によりガス化していてもよい。
According to the present invention, there is provided a method for recovering rare gas from liquefied oxygen containing a rare gas consisting of krypton and xenon taken out from the upper and lower portions of an air liquefaction / separation apparatus. Introduced into the column, take out concentrated liquefied oxygen in which the rare gas is concentrated from the bottom of the tower, return at least a part of this to the first concentration tower via a reboiler, take out oxygen gas from the top of the tower, and remove at least a part of this. Returning the first concentrated tower via a condenser, dehydrocarbonizing a part of the concentrated liquefied oxygen, introducing the dehydrocarbonated concentrated liquefied oxygen into the second concentrated tower, Removing the oxygen gas from the top and removing the rare gas liquid from the bottom of the tower, and using a nitrogen gas as the heat source of the reboiler, and reducing the internal pressure of the first concentration tower to a pressure lower than the atmospheric pressure. It is a method of recovering rare gas. Here, it is advantageous to increase the ratio of xenon / krypton in the liquefied oxygen taken out from the air liquefaction / separation device to at least twice the abundance ratio in the atmosphere without concentrating hydrocarbons,
It is also advantageous that the rare gas to be recovered is mainly xenon. The liquefied oxygen in each step may be partially gasified by heat intrusion.

【0008】[0008]

【発明の実施の形態】以下、本発明を示す図面により説
明する。図1は、本発明の一実施例を示すフローシート
である。このフローシートは本発明の特徴部分の説明用
であるため、本発明に直接関係ない部分は省略された
り、大幅に簡略化されている。空気液化分離装置1は、
上塔1aと下塔1bを有し、上塔下部にはリボイラーコン
デンサー2が備えられている。下塔1bから空気3が供
給され、深冷分離されて、上塔1aから製品となる窒素ガ
スN2、酸素ガスO2、アルゴンがそれぞれ取出される。レ
アガスを含む酸素ガスの沸点以上を有する成分は、凝縮
されて液化酸素相4に溜まり、管5を通って第一濃縮塔
6に供給される。また、空気液化分離装置1は、レアガ
スの回収率を高めるため、リボイラーコンデンサー2よ
り上部にトレイを有してもよいが、炭化水素濃度が増加
する問題が生じるので、実質的にないことが好ましい。
なお、管5と第一濃縮塔6の間にタンクを設けてもよ
く、これにより空気液化分離装置の変動の応じて取出し
量を調整することが可能となり、空気液化分離装置の運
転の安定化に寄与する。また、空気液化分離装置が複数
ある場合は、複数の空気液化分離装置とタンクを接続し
て、レアガス回収設備及び空気液化分離装置の運転を安
定化することがよい。また、管5と第一濃縮塔6の間に
は、切替可能な炭化水素吸着器や、熱交換器を設けても
よい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a flow sheet showing one embodiment of the present invention. Since this flow sheet is for explaining the characteristic parts of the present invention, parts not directly related to the present invention are omitted or greatly simplified. The air liquefaction separation device 1
It has an upper tower 1a and a lower tower 1b, and a reboiler condenser 2 is provided below the upper tower. Air 3 is supplied from the lower tower 1b, separated by cryogenic cooling, and nitrogen gas N 2 , oxygen gas O 2 , and argon, which are products, are respectively removed from the upper tower 1a. The component having a boiling point or higher of the oxygen gas including the rare gas is condensed and accumulated in the liquefied oxygen phase 4, and is supplied to the first concentration tower 6 through the pipe 5. Further, the air liquefaction / separation apparatus 1 may have a tray above the reboiler condenser 2 in order to increase the recovery rate of the rare gas, but it is preferable that the air liquefaction / separation apparatus 1 be substantially free from the problem that the hydrocarbon concentration increases. .
In addition, a tank may be provided between the pipe 5 and the first enrichment tower 6, which makes it possible to adjust the extraction amount in accordance with the fluctuation of the air liquefaction / separation apparatus, and to stabilize the operation of the air liquefaction / separation apparatus. To contribute. When there are a plurality of air liquefaction / separation devices, it is preferable to connect the plurality of air liquefaction / separation devices and the tank to stabilize the operation of the rare gas recovery equipment and the air liquefaction / separation device. Further, a switchable hydrocarbon adsorber or a heat exchanger may be provided between the pipe 5 and the first concentration tower 6.

【0009】管5から供給された液化酸素4は第一濃縮
塔6で分離され、塔頂部から不純物を含まない酸素8
が、塔底部からレアガスが濃縮された濃縮液化酸素9が
取り出される。塔頂部から取出される不純物を含まない
酸素8は、凝縮器10で液化され、少なくとも一部は第
一濃縮塔6に還流される。なお、必要により一部は空気
液化分離装置1のリボイラーコンデンサー2付近の液化
酸素相4に戻して、炭化水素濃度を減少させてもよい
が、トレイを設けない場合は、液化酸素相4中の炭化水
素濃度が低いので、これを必要としない利点がある。
[0009] The liquefied oxygen 4 supplied from the pipe 5 is separated in the first condensing column 6 and oxygen-free oxygen 8 is supplied from the top of the column.
However, concentrated liquefied oxygen 9 in which the rare gas is concentrated is taken out from the bottom of the column. The impurity-free oxygen 8 taken out from the top of the column is liquefied in the condenser 10, and at least a part thereof is returned to the first concentration column 6. In addition, if necessary, a part may be returned to the liquefied oxygen phase 4 near the reboiler condenser 2 of the air liquefaction / separation apparatus 1 to reduce the hydrocarbon concentration. There is an advantage that this is not required because the hydrocarbon concentration is low.

【0010】一方、第一濃縮塔6の塔底から取出された
レアガスが濃縮された濃縮液化酸素9は、その少なくと
も一部がリボイラー11を経由して第一濃縮塔6の下部
に戻される。ここで、リボイラー11の熱源として窒素
ガス又は乾燥空気が使用されるが窒素ガスが好ましい。
以下、窒素ガスをリボイラー11の熱源として使用する
場合について説明するが、これに準じて乾燥空気にも適
用できる。この窒素ガスの温度は、リボイラー11を通
る濃縮液化酸素9への伝熱効率を高める必要があるた
め、その温度より数℃以上高い必要がある。例えば、酸
素の沸点が−183℃(大気圧)である場合、窒素ガス
の温度は例えば、−181℃以上が必要である。ここ
で、窒素を媒体(冷熱源)とした凝縮器10とリボイラ
ー11との熱バランス上、リボイラー11の熱源として
使用される窒素ガスは、濃縮液化酸素の蒸発潜熱により
液化窒素となることが好ましい。すなわち、この窒素ガ
スの温度は濃縮液化酸素9の沸点より高く、窒素ガスの
圧力は濃縮液化酸素9の沸点で液化する圧力が望まし
い。そのため、沸点が−196℃(大気圧)である窒素
ガスを、−183℃で液化するためには3kg/cm2・G以上
の圧力が必要となる。なお、第一濃縮塔の運転圧力を大
気圧以上とすれば、この必要圧力は更に上昇する。
On the other hand, at least a part of the concentrated liquefied oxygen 9 from which the rare gas extracted from the bottom of the first concentration tower 6 is concentrated is returned to the lower part of the first concentration tower 6 via the reboiler 11. Here, nitrogen gas or dry air is used as a heat source of the reboiler 11, but nitrogen gas is preferable.
Hereinafter, a case where nitrogen gas is used as a heat source of the reboiler 11 will be described, but the present invention can be applied to dry air accordingly. The temperature of this nitrogen gas needs to be higher than the temperature by several degrees or more because it is necessary to increase the efficiency of heat transfer to the concentrated liquefied oxygen 9 passing through the reboiler 11. For example, when the boiling point of oxygen is −183 ° C. (atmospheric pressure), the temperature of the nitrogen gas needs to be −181 ° C. or higher, for example. Here, due to the heat balance between the condenser 10 and the reboiler 11 using nitrogen as a medium (cooling heat source), it is preferable that the nitrogen gas used as the heat source of the reboiler 11 becomes liquefied nitrogen by the latent heat of vaporization of the concentrated liquefied oxygen. . That is, the temperature of the nitrogen gas is higher than the boiling point of the concentrated liquefied oxygen 9, and the pressure of the nitrogen gas is desirably a pressure at which the liquid is liquefied at the boiling point of the concentrated liquefied oxygen 9. Therefore, in order to liquefy nitrogen gas having a boiling point of -196 ° C (atmospheric pressure) at -183 ° C, a pressure of 3 kg / cm 2 · G or more is required. If the operating pressure of the first concentrating tower is equal to or higher than the atmospheric pressure, the required pressure further increases.

【0011】従来、第一濃縮塔6は大気圧以上で運転さ
れるため、リボイラー熱源として使用される窒素ガスは
高い圧力を必要としたが、第一濃縮塔6の運転圧力を減
圧にすることがエネルギー的により有利であることが見
出された。第一濃縮塔6の運転圧力を減圧にするために
は、真空装置12で減圧にする必要があるが、真空装置
12の運転エネルギーと、窒素ガスを昇圧するための運
転エネルギーとを比較すると、常圧〜300Torr位まで
の減圧であれば、第一濃縮塔6の運転圧力を減圧にする
ことが省エネ上有利であることが見出された。例えば、
第一濃縮塔6の運転圧力を500Torr位とすれば、濃縮
液化酸素9の沸点は−187℃位まで低くなり、リボイ
ラー11の熱源として供給する窒素ガスの温度は‐18
5℃程度でよく、この温度であれば2〜3kg/cm2・G程度
で液化する。このような観点から、第一濃縮塔6の運転
圧力は、常圧以下、好ましくはそれより10%以上低い
約700Torr以下、より好ましくは600〜400Torr
とすることが有利であることが見出された。また、リボ
イラー11の熱源として供給する窒素ガスは、2〜4kg
/cm2・G程度で、リボイラー11で液化させることができ
る。そして、ここで液化された液化窒素は凝縮器10の
寒冷源とすることが有利である。なお、真空装置には、
真空ポンプやエゼクターを使用してもよい。また、第一
濃縮塔の液体酸素をポンプにより他の設備に利用すると
き等においては、塔内圧を減圧にするとキャビテーショ
ン防止のため第一濃縮塔の高さを高くする必要があるた
め、大気圧ないしはできるだけ大気圧に近い減圧に維持
することが好ましい場合もある。
Conventionally, since the first enrichment tower 6 is operated at a pressure higher than the atmospheric pressure, nitrogen gas used as a reboiler heat source has required a high pressure. Has been found to be more energetically favorable. In order to reduce the operating pressure of the first concentrating tower 6, it is necessary to reduce the pressure with the vacuum device 12, but when comparing the operating energy of the vacuum device 12 with the operating energy for increasing the pressure of the nitrogen gas, It has been found that reducing the operating pressure of the first enrichment tower 6 to a reduced pressure from normal pressure to about 300 Torr is advantageous in terms of energy saving. For example,
If the operating pressure of the first concentrating tower 6 is about 500 Torr, the boiling point of the concentrated liquefied oxygen 9 will be lowered to about -187 ° C., and the temperature of the nitrogen gas supplied as the heat source of the reboiler 11 will be -18.
The temperature may be about 5 ° C., and at this temperature, the liquid is liquefied at about 2-3 kg / cm 2 · G. From such a viewpoint, the operating pressure of the first concentration tower 6 is equal to or lower than normal pressure, preferably lower than or equal to about 700 Torr, and more preferably lower than or equal to about 700 Torr, more preferably 600 to 400 Torr.
Has been found to be advantageous. The nitrogen gas supplied as a heat source for the reboiler 11 is 2 to 4 kg.
It can be liquefied by the reboiler 11 at about / cm 2 · G. It is advantageous that the liquefied nitrogen liquefied here is used as a cold source for the condenser 10. In addition, in the vacuum device,
A vacuum pump or an ejector may be used. Further, when the liquid oxygen of the first concentration tower is used for other equipment by a pump, if the pressure in the tower is reduced, it is necessary to increase the height of the first concentration tower to prevent cavitation. In some cases, it is preferable to maintain the pressure as low as possible at atmospheric pressure.

【0012】一方、第一濃縮塔6から取出される濃縮液
化酸素9は、レアガスのみならず炭化水素も濃縮されて
いるので、脱炭化水素処理されたのち、第二濃縮塔に送
られることが好ましい。少なくとも一部は、脱炭化水素
処理装置13に送られ、脱炭化水素処理されたのち、第
二濃縮塔14に送られる。脱炭化水素処理装置13の構
成は公知の構成とすることができる。その一例を説明す
ると、濃縮液化酸素9は、必要によりタンクに貯蔵され
たのち、熱交換器で加熱気化したのち、触媒反応器に送
り、メタンを主とする炭化水素を水と炭酸ガスに酸化す
る。触媒反応器から取出されたガスは、吸着器に送り、
水と炭酸ガスを吸着し、熱交換器で冷却して液化酸素と
したのち、第二濃縮塔14に供給される。第二濃縮塔1
4の塔頂からは酸素ガス15が取出され、塔底からはレ
アガスが95%前後に濃縮されたレアガス液16が取出
される。このレアガス液16は、更に必要により精留塔
に送られ、クリプトンとキセノンとに分離される。
On the other hand, the concentrated liquefied oxygen 9 taken out from the first enrichment tower 6 contains not only rare gases but also hydrocarbons. Therefore, after being dehydrocarbonated, it is sent to the second enrichment tower. preferable. At least a portion is sent to the dehydrocarbon treatment device 13, and after being subjected to the dehydrocarbon treatment, is sent to the second concentration column 14. The configuration of the dehydrocarbonation device 13 can be a known configuration. As an example, the concentrated liquefied oxygen 9 is stored in a tank if necessary, then heated and vaporized in a heat exchanger, and then sent to a catalytic reactor to oxidize hydrocarbons, mainly methane, into water and carbon dioxide. I do. The gas removed from the catalytic reactor is sent to the adsorber,
After adsorbing water and carbon dioxide gas, it is cooled by a heat exchanger to be liquefied oxygen, and then supplied to the second concentration tower 14. Second concentration tower 1
An oxygen gas 15 is taken out from the top of column 4 and a rare gas liquid 16 in which rare gas is concentrated to about 95% is taken out from the bottom of the column. The rare gas liquid 16 is further sent to a rectification column if necessary, and separated into krypton and xenon.

【0013】ところで、空気液化分離装置1では、液化
酸素相4中の炭化水素濃度が上がり過ぎないように運転
するが、そのためにはキセノンより沸点の低い炭化水素
の一部をここから取出される酸素に同伴させてしまうこ
とが有利である。メタンを主とする炭化水素は、キセノ
ンより沸点が低いが、クリプトンも低いので、当然にク
リプトンの回収率も低下する。そこで、空気液化分離装
置1での運転条件は、キセノン/クリプトンの大気中の
存在比の2倍以上、好ましくは5倍以上なる条件で運転
することがよい。
The air liquefaction / separation apparatus 1 is operated so that the hydrocarbon concentration in the liquefied oxygen phase 4 is not excessively increased. For this purpose, a part of the hydrocarbon having a boiling point lower than that of xenon is extracted therefrom. Advantageously, it is entrained by oxygen. Although hydrocarbons mainly composed of methane have a lower boiling point than xenon, they also have low krypton, so that the recovery of krypton naturally decreases. Therefore, it is preferable to operate the air liquefaction / separation apparatus 1 under conditions where the abundance ratio of xenon / krypton in the atmosphere is twice or more, preferably five times or more.

【0014】ところで、図1のフローシートで説明した
本発明方法の運転条件等は、公知の条件が採用できる
他、プロセスの一部を省略又は追加することも、公知の
方法を参照して変形可能である。また、脱炭化水素処理
装置13の出口での炭化水素の含有量は、0.05pp
m以下とするとすることがよい。
By the way, the operating conditions of the method of the present invention described with reference to the flow sheet of FIG. 1 can employ known conditions, and a part of the process can be omitted or added, or modified by referring to the known method. It is possible. The hydrocarbon content at the outlet of the dehydrocarbon treatment device 13 is 0.05 pp.
m or less.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいて更に詳細に
説明する。まず、空気液化分離装置1に空気3を150
000Nm3/hr導入し、クリプトン10〜50ppm及び
キセノン5〜50ppm、そして炭化水素(主としてメ
タン)5〜50ppmに濃縮された液化酸素相4を管5
から450Nm3/hrで第一濃縮塔6の中段に導入する。第
一濃縮塔6の底部には、−182℃、3kg/cm2・Gの窒素
ガスを加熱源とするリボイラー11が設けられており、頂
部には液化窒素を寒冷源とする凝縮器10が設けられて
いる。凝縮器10の冷源とする液化窒素の少なくとも一部
としては、リボイラー11で凝縮した液化窒素が使用され
た。第一濃縮塔6内では塔頂からの下降液と上昇ガスと
が気液接触を行い精留が行われる。この第一濃縮塔6の
塔底部にはクリプトン及びキセノンを10〜100倍に
濃縮した濃縮液化酸素が得られ、塔頂からは不純物を大
幅に減少させ、炭化水素濃度が約5ppmの酸素ガス8が取
出され、この際、酸素ガス8の一部は真空装置12によっ
て引かれ、第一濃縮塔6内の圧力を550Torrに保持し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. First, 150 liters of air 3 is supplied to the air liquefaction separation device 1.
Liquefied oxygen phase 4 concentrated at 10 000 Nm 3 / hr and concentrated to 10 to 50 ppm of krypton and 5 to 50 ppm of xenon, and 5 to 50 ppm of hydrocarbon (mainly methane).
To 450 Nm 3 / hr into the middle stage of the first concentration column 6. At the bottom of the first concentration tower 6, a reboiler 11 using -182 ° C. and a nitrogen gas of 3 kg / cm 2 · G as a heating source is provided, and a condenser 10 using liquefied nitrogen as a cold source is provided at the top. Is provided. Liquefied nitrogen condensed by the reboiler 11 was used as at least a part of the liquefied nitrogen used as a cold source of the condenser 10. In the first concentration tower 6, the descending liquid and the rising gas from the top make gas-liquid contact, and rectification is performed. Condensed liquefied oxygen obtained by concentrating krypton and xenon 10- to 100-fold is obtained at the bottom of the first concentrating column 6, and impurities are greatly reduced from the top of the column, and oxygen gas 8 having a hydrocarbon concentration of about 5 ppm is obtained. At this time, a part of the oxygen gas 8 was drawn by the vacuum device 12 to maintain the pressure in the first concentration column 6 at 550 Torr.

【0016】上記濃縮液化酸素9には、クリプトン及び
キセノンに加えて、炭化水素(メタン)も濃縮されるの
で、脱炭化水素処理装置13で脱炭化水素処理をした。
前記脱炭化水素処理装置13では、濃縮液化酸素は、加
温器、熱交換器等で加熱気化されて、触媒反応器へ導入
される。ここには、白金又はパラジウムの様な貴金属触
媒が所定量充填されていて、微量含まれるメタンと多量
に含まれる酸素とを反応させて二酸化炭素及び水にす
る。ここで、二酸化炭素濃度が0.05ppm以下とさ
れる。反応器出口温度は、通常350〜400℃であ
る。また、空間速度は500〜6000hr-1の範囲で
ある。触媒反応器を導出したガスは、切換え可能とされ
た吸着器に導入され、触媒反応工程で生成した二酸化炭
素と水が吸着除去される。
Since the concentrated liquefied oxygen 9 also concentrates hydrocarbons (methane) in addition to krypton and xenon, the hydrocarbons are dehydrocarbonated by the dehydrocarbon treatment device 13.
In the dehydrocarbon treatment device 13, the concentrated liquefied oxygen is heated and vaporized by a heater, a heat exchanger, and the like, and is introduced into a catalytic reactor. Here, a predetermined amount of a noble metal catalyst such as platinum or palladium is charged, and a small amount of methane and a large amount of oxygen are reacted to form carbon dioxide and water. Here, the carbon dioxide concentration is set to 0.05 ppm or less. The reactor outlet temperature is usually 350 to 400 ° C. The space velocity is in the range of 500 to 6000 hr -1 . The gas led out of the catalytic reactor is introduced into a switchable adsorber, and carbon dioxide and water generated in the catalytic reaction step are adsorbed and removed.

【0017】上記の脱炭化水素処理装置13から導出し
たガスは、更に冷却又は液化して第二濃縮塔14の中段
に約50Nm3/hrで導入される。この第二濃縮塔11は、
シーブトレイ又はパッキントレイを使用し、段塔の濃縮
部、回収部の合計実段数で10段以上、好ましくは20
〜40段の精留段を設けることがよい。そして、この塔
頂部にはクリプトンを極微量含む酸素ガス15が取出さ
れる。また、塔底部からは、クリプトン及びキセノン9
0〜95%と、酸素5〜10%からなる液化レアガスが
約60L/hrで取出される。
The gas derived from the dehydrocarbon treatment unit 13 is further cooled or liquefied and introduced into the middle stage of the second concentration column 14 at about 50 Nm 3 / hr. This second concentration tower 11
Using a sieve tray or packing tray, the total actual number of stages of the enrichment section and recovery section of the column tower is 10 or more, preferably 20
Preferably, up to 40 rectification stages are provided. An oxygen gas 15 containing a very small amount of krypton is taken out from the top of the tower. From the bottom of the tower, krypton and xenon 9
A liquefied rare gas consisting of 0 to 95% and 5 to 10% of oxygen is taken out at about 60 L / hr.

【0018】なお、クリプトン及びキセノンの回収量を
一定とした場合、本実施例では、第一濃縮塔6の運転圧
力を550Torr、リボイラー11の窒素ガス圧力3kg/c
m2・Gとすることにより、第一濃縮塔6の運転圧力0.
5kg/cm2・G、リボイラー11の窒素ガス圧力5kg/cm2
・Gとしたときに比べて、所要電気エネルギーは10%
以上減少する。
When the amount of krypton and xenon recovered is constant, in the present embodiment, the operating pressure of the first concentration tower 6 is 550 Torr, and the nitrogen gas pressure of the reboiler 11 is 3 kg / c.
With m 2 · G, the operating pressure 0 of the first rectifying column 6.
5 kg / cm 2 · G, nitrogen gas pressure of reboiler 11 5 kg / cm 2
・ Required electric energy is 10% compared to G
Or more.

【0019】[0019]

【発明の効果】空気液化分離装置から導出した液化酸素
中のレアガスを効率よく精製することができ、また、こ
れらのガスの製造コスト、エネルギ消費量を大幅に低減
することが可能である。また、空気液化分離装置、第一
濃縮塔が簡素化され、その製作が簡易となったり、運転
エネルギー効率が向上する。特に、需要の急増している
キセノンを効率的に生産できる。
As described above, rare gases in liquefied oxygen derived from an air liquefaction / separation apparatus can be efficiently purified, and the production cost and energy consumption of these gases can be greatly reduced. In addition, the air liquefaction separation device and the first concentration tower are simplified, so that their production is simplified and the operating energy efficiency is improved. In particular, xenon, whose demand is rapidly increasing, can be efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示すフローシートFIG. 1 is a flow sheet showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…空気液化分離装置 2…リボイラーコンデンサー 3…空気 4…液化酸素相 6…第一濃縮塔 8…酸素ガス 9…濃縮液化酸素 10…凝縮器 11…リボイラー 12…真空装置 13…脱炭化水素処理装置 14…第二濃縮塔 16…レアガス液 DESCRIPTION OF SYMBOLS 1 ... Air liquefaction separation apparatus 2 ... Reboiler condenser 3 ... Air 4 ... Liquefied oxygen phase 6 ... First concentration tower 8 ... Oxygen gas 9 ... Condensed liquefied oxygen 10 ... Condenser 11 ... Reboiler 12 ... Vacuum apparatus 13 ... Dehydrocarbon treatment Apparatus 14: Second concentration tower 16: Rare gas liquid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気液化分離装置の上塔下部から取出さ
れるクリプトン及びキセノンからなるレアガスを含む液
化酸素からレアガスを回収する方法において、前記液化
酸素を第一濃縮塔に導入して、塔底からはレアガスが濃
縮された濃縮液化酸素を取出し、この少なくとも一部を
リボイラーを経由させて第一濃縮塔に戻し、塔頂からは
酸素ガスを取出し、この少なくとも一部を凝縮器を経由
させて第一濃縮塔に戻す工程と、前記濃縮液化酸素の一
部を脱炭化水素処理する工程と、脱炭化水素処理された
濃縮液化酸素を第二濃縮塔に導入して塔頂から酸素ガス
を取出し、塔底からレアガス液を取出す工程とを備え、
且つ前記リボイラーの熱源を窒素ガス又は乾燥空気と
し、第一濃縮塔の塔内圧を大気圧以下とすることを特徴
とするレアガスの回収方法。
1. A method for recovering rare gas from liquefied oxygen containing a rare gas consisting of krypton and xenon taken out from the upper and lower parts of an air liquefaction / separation apparatus, wherein the liquefied oxygen is introduced into a first concentration tower, Take out concentrated liquefied oxygen from which rare gas is concentrated, return at least a part of this to the first concentration tower via a reboiler, take out oxygen gas from the top, and pass at least a part of this through a condenser. Returning to the first enrichment tower, dehydrocarbonizing a part of the enriched liquefied oxygen, introducing the dehydrocarbonated enriched liquefied oxygen to the second enrichment tower and removing oxygen gas from the top of the tower Removing the rare gas liquid from the bottom of the tower,
And a method for recovering a rare gas, wherein the heat source of the reboiler is nitrogen gas or dry air, and the internal pressure of the first concentration tower is set to an atmospheric pressure or less.
【請求項2】 空気液化分離装置の上塔下部には、メイ
ンコンデンサーより上部にレアガスの分離効率を高める
ためのトレイを実質的に設けず、液化酸素中のキセノン
/クリプトン比を高める請求項1記載のレアガスの回収
方法。
2. The xenon / krypton ratio in the liquefied oxygen is substantially eliminated from a lower portion of the upper tower of the air liquefaction / separation device, wherein a tray for increasing the efficiency of separating rare gas is provided above the main condenser. The method for recovering rare gas described in the above.
【請求項3】 回収されるレアガスがキセノンである請
求項1又は2記載の回収方法。
3. The method according to claim 1, wherein the rare gas to be recovered is xenon.
JP2000305852A 2000-10-05 2000-10-05 Method of recovering rare gas Withdrawn JP2002115965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305852A JP2002115965A (en) 2000-10-05 2000-10-05 Method of recovering rare gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305852A JP2002115965A (en) 2000-10-05 2000-10-05 Method of recovering rare gas

Publications (1)

Publication Number Publication Date
JP2002115965A true JP2002115965A (en) 2002-04-19

Family

ID=18786641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305852A Withdrawn JP2002115965A (en) 2000-10-05 2000-10-05 Method of recovering rare gas

Country Status (1)

Country Link
JP (1) JP2002115965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185659A (en) * 2002-12-12 2010-08-26 Air Products & Chemicals Inc Method and apparatus for recovering krypton and/or xenon
JP2011185512A (en) * 2010-03-08 2011-09-22 Jfe Steel Corp Cold standby method for air separator
WO2013026525A1 (en) 2011-08-25 2013-02-28 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of a fluid mixture
CN109772108A (en) * 2019-03-25 2019-05-21 天津中科拓新科技有限公司 A kind of recovery method and device of electronic gas tail gas
CN114073863A (en) * 2021-11-23 2022-02-22 江苏永诚装备科技有限公司 Multiple dealkylation device of light hydrocarbon recovery device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185659A (en) * 2002-12-12 2010-08-26 Air Products & Chemicals Inc Method and apparatus for recovering krypton and/or xenon
JP2011185512A (en) * 2010-03-08 2011-09-22 Jfe Steel Corp Cold standby method for air separator
WO2013026525A1 (en) 2011-08-25 2013-02-28 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of a fluid mixture
CN103748427A (en) * 2011-08-25 2014-04-23 林德股份公司 Method and apparatus for the low-temperature fractionation of a fluid mixture
CN103748427B (en) * 2011-08-25 2015-12-23 林德股份公司 For the method and apparatus of low-temperature fractionation fluid mixture
RU2601777C2 (en) * 2011-08-25 2016-11-10 Линде Акциенгезелльшафт Method and apparatus for low-temperature fractionation of fluid mixture
US9527002B2 (en) 2011-08-25 2016-12-27 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of a fluid mixture
CN109772108A (en) * 2019-03-25 2019-05-21 天津中科拓新科技有限公司 A kind of recovery method and device of electronic gas tail gas
CN109772108B (en) * 2019-03-25 2024-05-07 天津中科拓新科技有限公司 Method and device for recycling electronic gas tail gas
CN114073863A (en) * 2021-11-23 2022-02-22 江苏永诚装备科技有限公司 Multiple dealkylation device of light hydrocarbon recovery device

Similar Documents

Publication Publication Date Title
TW453974B (en) Method and apparatus for purification of argon
US20080176174A1 (en) Purification of carbon dioxide
CN107850388A (en) It is used for the method and apparatus for increasing argon recovery in the cryogenic air separation unit integrated with pressure swing adsorption system
US5783162A (en) Argon purification process
CN107850387A (en) It is used for the method and apparatus of argon recovery in the cryogenic air separation unit integrated with pressure swing adsorption system
JP2000088455A (en) Method and apparatus for recovering and refining argon
WO2004085941A1 (en) Air separator
JP2579261B2 (en) Method and apparatus for producing crude neon
JP3306517B2 (en) Air liquefaction separation apparatus and method
JP2002115965A (en) Method of recovering rare gas
JPH11118351A (en) Manufacturing device for nitrogen and oxygen having ultra-high purity
JP3097064B2 (en) Ultra-pure liquid oxygen production method
JPH11228116A (en) Recovering and purifying method of argon and device therefor
CN116332139A (en) Argon recovery device integrating high-purity nitrogen and enhancing efficiency and application method thereof
JP3424101B2 (en) High purity argon separation equipment
JP3364724B2 (en) Method and apparatus for separating high purity argon
US5787730A (en) Thermal swing helium purifier and process
US8978413B2 (en) Rare gases recovery process for triple column oxygen plant
JP3256811B2 (en) Method for purifying krypton and xenon
JP2002115964A (en) Method of recovering rare gas
JPH07127971A (en) Argon separator
JP2955864B2 (en) Method for producing high-purity oxygen
JP3082092B2 (en) Oxygen purification method and apparatus
JP3254523B2 (en) Method and apparatus for purifying nitrogen
JP2003262463A (en) Method and apparatus for manufacturing extra-high purity oxygen

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108