JPS5978907A - Refining method of gaseous hydrogen - Google Patents

Refining method of gaseous hydrogen

Info

Publication number
JPS5978907A
JPS5978907A JP57186471A JP18647182A JPS5978907A JP S5978907 A JPS5978907 A JP S5978907A JP 57186471 A JP57186471 A JP 57186471A JP 18647182 A JP18647182 A JP 18647182A JP S5978907 A JPS5978907 A JP S5978907A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
alloy
storage tank
gaseous hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57186471A
Other languages
Japanese (ja)
Other versions
JPH0261403B2 (en
Inventor
Tsuyoshi Kato
剛志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP57186471A priority Critical patent/JPS5978907A/en
Publication of JPS5978907A publication Critical patent/JPS5978907A/en
Publication of JPH0261403B2 publication Critical patent/JPH0261403B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To refine inexpensively gaseous hydrogen to high purity with a simple installation by joining at least a set of gaseous hydrogen storage tanks contg. a hydrogen occluding alloy in series, connecting heat-exchangeably the same to each other and occluding and releasing successively gaseous hydrogen. CONSTITUTION:A gaseous hydrogen storage tank 4 in a front stage contg. a hydrogen occluding alloy 5 such as a Ti-Mn alloy or the like having a high equil. hydrogen pressure and a gaseous hydrogen storage tank 7 in a rear stage contg. a hydrogen occluding alloy 8 such as an Mn-Ni alloy having the equil. hydrogen pressure lower than said pressure are joined in series by means of a connecting pipe 10, and both storage tanks 4, 7 are connected heat exchangeably to each other by means of a heat exchanging pipe 19 through a circulation pump 18. The high pressure gaseous hydrogen in a bomb 1 is introduced through a gaseous hydrogen supply pipe 3 into the tank 4 where the gaseous hydrogen is occluded in the alloy in the above-mentioned constitution; at the same time, the hydrogen occluded in the tank 7 is released from a refined gas supply pipe 14. The release in the tank 4 and the occlusion in the tank 7 are accomplished in the succeeding stage. The heat generated by the occlusion is utilized by a heat exchange for the absorption of the heat required for the release.

Description

【発明の詳細な説明】 本発明は、チタン−マンガン系合金専の水素吸蔵合金を
用いて水素ガスを高純度に精製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying hydrogen gas to a high purity using a hydrogen storage alloy exclusively for titanium-manganese alloys.

半導体工業用或いはフロート法板ガラス製造用の算囲気
ガス、或いは金属熱処理用?r囲気ガスには例えばタタ
、タタタタ%の高純度水素ガスが必要とされる場合があ
る。
Is it ambient air gas for the semiconductor industry, float process plate glass manufacturing, or metal heat treatment? The ambient gas may require, for example, 1,000% high purity hydrogen gas.

ところで従来から水素ガスの精製方法としては吸着法や
拡散法があるが、いずれも設備装置が高価である欠点が
あり、さらに吸着法では液体窒素のような超低温源を要
するためランニングコストが高くなる等の欠点があった
By the way, adsorption and diffusion methods have traditionally been used to purify hydrogen gas, but both have the disadvantage of expensive equipment, and the adsorption method requires an ultra-low temperature source such as liquid nitrogen, which increases running costs. There were drawbacks such as.

一方、Ti−Mn系台金等の水素吸蔵合金9ノ、不純物
を含む水素ガス中で水素のみを吸蔵し水素のみを放出す
るのでその原理を利用した水素ガスの精製方法がすでに
特開昭31.−ざざに03号公報によって開示されてい
る。それは水素吸蔵合金を収容した一組の容器を並列に
継いで精製しようとする水素ガスを一方の容器に吸蔵さ
せると同時に、他方の容器からは合金に吸蔵されている
水素な精製水素として放出し、さらに同容器を熱交換器
により相互に熱交換可能に連結することで一方の容器の
水素吸蔵時の発生熱を他方の容器の水素放出時に必要な
熱として使用せしめ加熱・冷却源を必要とせず精製水素
ガスを連続的に低コストで得ようとするものであるが、
これにおける水素吸蔵合金を収容した一組の容器は並列
に継ぐものであり、精製しよう2する水素ガスが一組の
容器のいずれか一方を一度通るだけであったので、使用
目的によっては充分な精製純度が得られない欠点があっ
た。
On the other hand, hydrogen storage alloys such as Ti-Mn base metals absorb only hydrogen in hydrogen gas containing impurities and release only hydrogen, so a method for purifying hydrogen gas using this principle has already been proposed in JP-A-31 .. -Disclosed by Zazani No. 03. In this method, a set of containers containing a hydrogen storage alloy are connected in parallel, and the hydrogen gas to be purified is stored in one container, and at the same time, the hydrogen gas stored in the alloy is released from the other container as purified hydrogen. Furthermore, by connecting the same containers to each other through a heat exchanger so that they can exchange heat with each other, the heat generated during hydrogen storage in one container can be used as the heat required for releasing hydrogen in the other container, thereby eliminating the need for a heating/cooling source. The aim is to obtain purified hydrogen gas continuously at low cost.
In this case, a set of containers containing hydrogen storage alloys were connected in parallel, and the hydrogen gas to be purified only passed through one of the sets of containers once, so depending on the purpose of use, there was sufficient There was a drawback that purification purity could not be obtained.

そこで本発明は一組の容器(水素ガス貯槽)を連結管に
よって前後段に直列状に継ぐと共に、その両水累ガス貯
槽を相互に熱交換可能に連結し、前段の水素ガス貯槽に
精製しようとする水素ガスを吸蔵させると同時に後段の
水素ガス貯槽から水素ガスを精製ガスとして放出する工
程と、前段の水素ガス貯槽にいったん吸蔵した水素ガス
を前記連結管を通して後段の水素ガス貯槽に移し替えて
再吸蔵させる工程とを有してなる水素ガス精製方法であ
り、水素プfスを水素ガス貯槽に少なくとも1度通すこ
とができ小型設備でも高い精製能力が得られるようにし
たものである。
Therefore, in the present invention, a set of containers (hydrogen gas storage tanks) are connected in series to the front and rear stages through connecting pipes, and both of the water gas storage tanks are connected to be able to exchange heat with each other, thereby purifying the hydrogen gas storage tank into the hydrogen gas storage tank at the front stage. A process of storing hydrogen gas and simultaneously releasing hydrogen gas as purified gas from a subsequent hydrogen gas storage tank, and transferring the hydrogen gas once stored in the previous hydrogen gas storage tank to the subsequent hydrogen gas storage tank through the connecting pipe. This is a hydrogen gas purification method comprising a step of re-occlusion in a hydrogen gas storage tank, in which the hydrogen gas can be passed through a hydrogen gas storage tank at least once, and high purification capacity can be obtained even with small equipment.

以下に本発明を実施例図に従い具体的に説明する。図に
おいて、1は市販の純度タタ、タデ%程の圧縮水素を充
填したガスボンベで、その開口部にバルブ2を設けた水
素供給管3が連結される0円筒状の水素ガス貯槽4の内
部には塊状のTi −Mn系水素吸蔵合金5が入ってお
り、また内部中心にはフィルターチューブ6が配設され
ている。該フィルターチューブ6はステンレス鋼の粉末
を焼結して製造された多孔質の焼結合金で、その一端t
こ水素供給管3が連結される。7けこれと同様の水素ガ
ス貯槽であるが、内部にTi−Mn系よりも平衡水素圧
力が低い一−NI系またはFe−Ti系の水素吸蔵合金
8が入っている。9はそのフィルターチューブである。
The present invention will be specifically explained below with reference to the drawings. In the figure, 1 is a commercially available gas cylinder filled with compressed hydrogen of about 50% purity, and inside a cylindrical hydrogen gas storage tank 4 to which a hydrogen supply pipe 3 with a valve 2 at its opening is connected. contains a bulk Ti-Mn hydrogen storage alloy 5, and a filter tube 6 is disposed at the center of the interior. The filter tube 6 is a porous sintered alloy manufactured by sintering stainless steel powder, and one end thereof is
This hydrogen supply pipe 3 is connected. This is a hydrogen gas storage tank similar to that shown in Figure 7, but it contains a -NI or Fe-Ti hydrogen storage alloy 8, which has a lower equilibrium hydrogen pressure than the Ti-Mn system. 9 is the filter tube.

10は水素ガス貯槽4.1を継ぐ連結管で、フィルター
チューブ6.9の端部な互いに連結しており、該連結管
10の途中にはバルブUが介設されている。そして該バ
ルブHの一次側に連結管10を分岐させて排出管νが継
がれこれに大剣に開放された排気用のバルブ13が設け
られている。14は水素ガス貯ム117のフイノ1.タ
ーデユープ9の他端に連結された精製ガス供給管でバル
ブ15が介設されている。そしてバルブ15の一次側に
は分岐した排出管16が継がれこれに前記バルブ13と
同様大気に開放された排気用のバルブ17が設けられて
いる。また循環用ポンプ18が設けられた熱交換パイプ
19 &t’ 、両水素ガス貯槽4.γ内にコイル状に
配設され、熱媒体を該循環用ポンプ18の作動によって
流!11させることにより両水素ガス貯槽4.7を相互
に熱交換可能に構成している。
A connecting pipe 10 connects the hydrogen gas storage tank 4.1 to the ends of the filter tubes 6.9, and a valve U is interposed in the middle of the connecting pipe 10. The connecting pipe 10 is branched to the primary side of the valve H, and an exhaust pipe ν is connected thereto, and an exhaust valve 13 with a large opening is provided to this. 14 is the fin 1. of the hydrogen gas storage 117. A valve 15 is interposed in the purified gas supply pipe connected to the other end of the turbine 9. A branched exhaust pipe 16 is connected to the primary side of the valve 15, and, like the valve 13, an exhaust valve 17 that is open to the atmosphere is provided. Also, a heat exchange pipe 19 &t' equipped with a circulation pump 18, and both hydrogen gas storage tanks 4. It is arranged in a coil shape in γ, and the heat medium is caused to flow by the operation of the circulation pump 18! 11, both hydrogen gas storage tanks 4.7 are configured to be able to exchange heat with each other.

さてボンベ中の水素ガスを精製するに際しては、先ず予
め水素供給管3内、水素ガス貯槽4.7内、連#管10
内、精製ガス供給管14内をできるだけ純粋な水素ガス
をこ置換しておく、そしてバルブ11を閉じバルブ2.
15を開く、そのと哲バルブ13.17は勿論閉状態と
する。それでボンベl内の高圧水素ガスは水素供給管3
を通って水素ガス貯槽4内に導びかれその水素吸蔵合金
6に吸蔵される。即ち水素ガス貯槽4にはボンベ1の3
09!(正置上の高圧が加わって合金5と反応し水素化
物を生成させる。これは発熱反応であるが、その際の発
生熱は熱交拗バイブ19中の媒体に吸収され循環によっ
て水素ガス貯槽7に移動する。水素ガス貯槽7内にはす
でに水素ガスを充分に吸蔵している水素吸蔵合金8が入
れられていて、いまバルブ15が開かれて槽内が低圧と
なりかつ熱交換バイブ19によって水素ガス貯槽7から
移動して来た熱エネルギーによって加熱されることで水
素化物を分解し精製ガス供給管14に水素ガスを放出さ
せる。水素吸蔵合金5が水素ガスによって飽和し水素吸
蔵合金8が吸蔵していた水素ガスが概ね放出した後に、
バルブ2.15を閉じる。そしてバルブ13を開けて水
素ガス貯槽4内に水素吸蔵合金5に吸蔵されることなく
残った不純なガスを大気中に排棄する。しかる後パルプ
連を閉じバルブUを開けて水素吸蔵合金6に吸蔵された
水素ガスを連結管10を通して移し替え水素吸蔵合金8
に再吸蔵させる。そのとき、前段の水素ガス貯槽4の水
素吸蔵合金5の平衡水素圧力は約30気圧のTi −M
n系であり、後段の水素ガス貯槽7の水素吸蔵合金8の
平衡水素圧力はそA]より低い10剣圧程のものである
ので、水素吸蔵合金5から放出された水素ガスは水素吸
蔵合金8に良く吸収される。またその際の水素吸蔵合金
8からの発生熱は、熱交換バイブ19中の熱媒体に吸収
され水素@虱合金5に移動されるので、水素吸蔵合金5
の水素ガス放出作用と水素吸蔵合金8の水素ガスリ蔵作
用は夫々助長される8、そして水素吸蔵合金8が水素ガ
スによって飽和状態に達したらバルブ11を閉じバルブ
17を開けることによって水素ガス貯槽7内に水素吸蔵
合金8に吸蔵されることなく残った不純なガスを大気中
に排棄する。しかる後バルブ17を閉じバルブ15を開
けて水素吸蔵合金8に吸蔵されていた純粋な水素ガスを
精製ガス供給管14に放出させると同時に、バルブ2を
開はボンベlの水素ガスをまた水素ガス貯槽4に導びき
水素吸蔵合金5に吸蔵させる。以下同様にして、前段の
水素ガス貯槽4にいったん吸蔵した水素ガスを後段の水
素ガス貯槽7に移し替えて再吸蔵させる工程と、前段の
水素ガス貯槽4に精製しようとする水素ガスを吸蔵させ
ると同時に後段の水素ガス貯槽から水素ガスを精製ガス
として放出する工程とを交互に行なわしめ、その間前後
段の水素ガス貯槽を相互に熱交換させることでその吸蔵
作用、放出作用をrcさしめるものである。ちなみに水
素供給管3から市販の純度ヂタ、タタ%の水素ガスを供
給して精製したところ精製ガス供給管14にはタタ、タ
デタタタ%の水素ガスカ;得られた。なお必要に応じ水
素ガス貯槽をさらに多段tこ直列に連結することでさら
に高純度の精製が行い得る。その場合においても前後段
の水素ガス貯槽を熱交換可能に連結し、水素ガスの吸蔵
と放出とを同時に行うようにすれば、他の熱源または冷
却源は必要としない、そしてガス圧力の低下に対しては
適所に増圧用のポンプを介在させる。
Now, when refining the hydrogen gas in the cylinder, first, the inside of the hydrogen supply pipe 3, the inside of the hydrogen gas storage tank 4.7, and the serial #10
Inside, the purified gas supply pipe 14 is replaced with hydrogen gas as pure as possible, and then valve 11 is closed and valve 2.
15 is opened, and valves 13 and 17 are of course closed. Therefore, the high pressure hydrogen gas in the cylinder 1 is transferred to the hydrogen supply pipe 3.
The hydrogen gas is guided through the hydrogen gas storage tank 4 and stored in the hydrogen storage alloy 6. That is, the hydrogen gas storage tank 4 contains cylinders 1 and 3.
09! (The high pressure above the station is applied and it reacts with the alloy 5 to produce hydride. This is an exothermic reaction, and the heat generated at that time is absorbed by the medium in the heat exchanger vibe 19 and circulated into the hydrogen gas storage tank.) 7. The hydrogen storage alloy 8 which has already stored enough hydrogen gas is placed in the hydrogen gas storage tank 7, and the valve 15 is now opened to reduce the pressure inside the tank, and the heat exchange vibrator 19 When heated by the thermal energy transferred from the hydrogen gas storage tank 7, the hydride is decomposed and hydrogen gas is released into the purified gas supply pipe 14.The hydrogen storage alloy 5 is saturated with hydrogen gas, and the hydrogen storage alloy 8 is heated. After most of the stored hydrogen gas is released,
Close valve 2.15. Then, the valve 13 is opened to discharge the impure gas remaining in the hydrogen gas storage tank 4 without being stored in the hydrogen storage alloy 5 into the atmosphere. After that, the pulp train is closed and the valve U is opened to transfer the hydrogen gas stored in the hydrogen storage alloy 6 through the connecting pipe 10 to the hydrogen storage alloy 8.
to be reabsorbed. At that time, the equilibrium hydrogen pressure of the hydrogen storage alloy 5 in the hydrogen gas storage tank 4 in the previous stage is about 30 atmospheres of Ti-M
n series, and the equilibrium hydrogen pressure of the hydrogen storage alloy 8 in the hydrogen gas storage tank 7 in the latter stage is about 10 sword pressures lower than that of the hydrogen storage alloy 5, so the hydrogen gas released from the hydrogen storage alloy 5 is 8 is well absorbed. In addition, the heat generated from the hydrogen storage alloy 8 at that time is absorbed by the heat medium in the heat exchanger vibe 19 and transferred to the hydrogen @ louse alloy 5, so the hydrogen storage alloy 8
The hydrogen gas release action of the hydrogen storage alloy 8 and the hydrogen gas storage action of the hydrogen storage alloy 8 are respectively promoted 8, and when the hydrogen storage alloy 8 reaches a saturated state with hydrogen gas, the hydrogen gas storage tank 7 is closed by closing the valve 11 and opening the valve 17. Impure gas remaining without being stored in the hydrogen storage alloy 8 is discharged into the atmosphere. Thereafter, the valve 17 is closed and the valve 15 is opened to release the pure hydrogen gas stored in the hydrogen storage alloy 8 into the purified gas supply pipe 14. At the same time, the valve 2 is opened to release the hydrogen gas in the cylinder l again into hydrogen gas. The hydrogen is introduced into a storage tank 4 and stored in a hydrogen storage alloy 5. Thereafter, in the same manner, the hydrogen gas once stored in the hydrogen gas storage tank 4 in the previous stage is transferred to the hydrogen gas storage tank 7 in the latter stage to be re-occluded, and the hydrogen gas to be purified is stored in the hydrogen gas storage tank 4 in the previous stage. At the same time, the process of releasing hydrogen gas as purified gas from the hydrogen gas storage tank in the latter stage is performed alternately, and during this period, the hydrogen gas storage tanks in the front and rear stages exchange heat with each other to achieve rc storage and release actions. It is. Incidentally, when a commercially available hydrogen gas having a purity of 1.5% was supplied from the hydrogen supply pipe 3 and purified, hydrogen gas of a purity of 1.5% was obtained in the purified gas supply pipe 14. If necessary, further purification can be achieved by connecting multiple stages of hydrogen gas storage tanks in series. Even in that case, if the hydrogen gas storage tanks in the front and rear stages are connected for heat exchange so that hydrogen gas can be stored and released at the same time, no other heat source or cooling source is required, and the drop in gas pressure can be avoided. For this purpose, a pressure boosting pump is placed in place.

以上実施例について説明したようをこ本発明の水素ガス
精製方法によれば、−組の水素ガス貯槽による簡単な設
備で水素ガスが高純度に精製でき、しかも熱交換によっ
て熱源を要さずして稼動できるのでランニングコストは
安価であるなど有益である。
As explained in the embodiments above, according to the hydrogen gas purification method of the present invention, hydrogen gas can be purified to a high purity with simple equipment using two sets of hydrogen gas storage tanks, and furthermore, no heat source is required due to heat exchange. Since the system can be operated at low running costs, it is advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示したM製装置の概略図である
。 2・・・・バルブ、3・・・・水素供給管、4・・・・
水素カス貯槽、5・・・・水素吸蔵合金、7・・・・水
素ガス貯槽、8・・・・水素吸蔵合金、10・・・・連
結管、11・・・・バルブ、12・・・・排出!、 1
1・・・・ハルフケ14・・・・精製ガス供給管、15
・・・・バルブ、16・・・・排出管。 17・・・・バルブ、】8−・・循環用ポンプ、19・
・・・熱交換パイプ。 特許出願人 大同特殊鋼株式会社
The drawing is a schematic diagram of an apparatus manufactured by M, showing an embodiment of the present invention. 2...Valve, 3...Hydrogen supply pipe, 4...
Hydrogen scum storage tank, 5...Hydrogen storage alloy, 7...Hydrogen gas storage tank, 8...Hydrogen storage alloy, 10...Connecting pipe, 11...Valve, 12...・Emission! , 1
1...Halfke 14...Purified gas supply pipe, 15
... Valve, 16... Discharge pipe. 17... Valve, ]8-... Circulation pump, 19.
...Heat exchange pipe. Patent applicant: Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1、水素吸蔵合金を収容した少なくとも一組の水素ガス
貯槽を連結管によって前後段に直列状に継ぐと共に、そ
の両水素ガス貯槽を相互に熱交換可能に連結し、前段の
水素ガス貯槽に精製しようとする水素ガスを吸蔵させる
と同時に後段の水素ガス貯槽から水素ガスを精製ガスと
して放出する工程と、前段の水素ガス貯槽にいったん吸
蔵した水素ガスを前記連結管を通して後段の水素ガス貯
槽に移し替えて再吸蔵させる工程とを有してなることを
特徴とする水素ガス精製方法。 2、前段の水素ガス貯槽に後段の水素ガス貯槽よりも高
い平衡水素圧力の水素吸蔵合金を収容してなる特許請求
の範囲第1項に記載の水素ガス精製方法。
[Scope of Claims] 1. At least one set of hydrogen gas storage tanks containing a hydrogen storage alloy are connected in series in the front and rear stages by connecting pipes, and both hydrogen gas storage tanks are connected to each other so as to be able to exchange heat, and A step in which the hydrogen gas to be purified is stored in the hydrogen gas storage tank in the previous stage and at the same time, the hydrogen gas is released as purified gas from the hydrogen gas storage tank in the latter stage, and the hydrogen gas once stored in the hydrogen gas storage tank in the former stage is passed through the connecting pipe to the latter stage. A hydrogen gas purification method comprising the step of transferring the hydrogen gas to a hydrogen gas storage tank and re-occluding it. 2. The hydrogen gas purification method according to claim 1, wherein the hydrogen gas storage tank at the front stage contains a hydrogen storage alloy having a higher equilibrium hydrogen pressure than the hydrogen gas storage tank at the rear stage.
JP57186471A 1982-10-22 1982-10-22 Refining method of gaseous hydrogen Granted JPS5978907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186471A JPS5978907A (en) 1982-10-22 1982-10-22 Refining method of gaseous hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186471A JPS5978907A (en) 1982-10-22 1982-10-22 Refining method of gaseous hydrogen

Publications (2)

Publication Number Publication Date
JPS5978907A true JPS5978907A (en) 1984-05-08
JPH0261403B2 JPH0261403B2 (en) 1990-12-20

Family

ID=16189050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186471A Granted JPS5978907A (en) 1982-10-22 1982-10-22 Refining method of gaseous hydrogen

Country Status (1)

Country Link
JP (1) JPS5978907A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086007A (en) * 1983-10-18 1985-05-15 Sekisui Chem Co Ltd Hydrogen gas purification
JPS6086005A (en) * 1983-10-18 1985-05-15 Sekisui Chem Co Ltd Hydrogen gas purification
JPS6114101A (en) * 1984-06-29 1986-01-22 Nippon Sanso Kk Hydrogen purification apparatus
JP2010248037A (en) * 2009-04-16 2010-11-04 Kobe Steel Ltd Hydrogen purification method and reaction vessel for hydrogen-storage alloy
JP2019189511A (en) * 2018-04-27 2019-10-31 清水建設株式会社 Hydrogen storage system and hydrogen storage method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149104A (en) * 1979-05-11 1980-11-20 Seijiro Suda Hydrogen purifying method
JPS5792501A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Apparatus for storage and refining of hydrogen gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149104A (en) * 1979-05-11 1980-11-20 Seijiro Suda Hydrogen purifying method
JPS5792501A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Apparatus for storage and refining of hydrogen gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086007A (en) * 1983-10-18 1985-05-15 Sekisui Chem Co Ltd Hydrogen gas purification
JPS6086005A (en) * 1983-10-18 1985-05-15 Sekisui Chem Co Ltd Hydrogen gas purification
JPS6114101A (en) * 1984-06-29 1986-01-22 Nippon Sanso Kk Hydrogen purification apparatus
JP2010248037A (en) * 2009-04-16 2010-11-04 Kobe Steel Ltd Hydrogen purification method and reaction vessel for hydrogen-storage alloy
JP2019189511A (en) * 2018-04-27 2019-10-31 清水建設株式会社 Hydrogen storage system and hydrogen storage method

Also Published As

Publication number Publication date
JPH0261403B2 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
US4343770A (en) Self-regenerating system of removing oxygen and water impurities from hydrogen gas
US4444727A (en) Hydrogen gas purification apparatus
US5080875A (en) Process and apparatus for the purification of hydrogen gas
US4928496A (en) Hydrogen heat pump
CA1125478A (en) Self-regenerating method and system of removing oxygen and water impurities from hydrogen gas
US4185979A (en) Apparatus and method for transferring heat to and from a bed of metal hydrides
US4108605A (en) Hydrogen purification and storage system
JPS5978907A (en) Refining method of gaseous hydrogen
US5122338A (en) Hydrogen heat pump alloy combination
JPS6156009B2 (en)
JPS62241801A (en) Occlusion and release of hydrogen and apparatus therefor
JPS557565A (en) Helium or hydrogen gas purification apparatus
JPS5983897A (en) Hydrogen-gas purifying and storing apparatus
JPS63140200A (en) Storage device for hydrogen absorbing alloy
EP0921097A1 (en) Method and apparatus for the purification of hydrogen
JPH048362B2 (en)
JPS6244973Y2 (en)
JPS5953203B2 (en) Hydrogen gas storage and purification equipment
JPS5983907A (en) Method for purifying hydrogen gas using metallic hydride
JP3181687B2 (en) Hydrogen recovery / purification apparatus and operation method thereof
CN219223355U (en) System for combined recovery and cyclic utilization of industrial height Wen Yuqing and waste heat
JP3181686B2 (en) Hydrogen recovery and purification equipment
JPH08337402A (en) Device for removing impurity from gaseous hydrogen and its operating method
CN218357391U (en) A apparatus for producing for doxofylline injection
JP2607677B2 (en) Generator hydrogen purity maintenance device by metal hydride