JP2019189511A - Hydrogen storage system and hydrogen storage method - Google Patents

Hydrogen storage system and hydrogen storage method Download PDF

Info

Publication number
JP2019189511A
JP2019189511A JP2018087743A JP2018087743A JP2019189511A JP 2019189511 A JP2019189511 A JP 2019189511A JP 2018087743 A JP2018087743 A JP 2018087743A JP 2018087743 A JP2018087743 A JP 2018087743A JP 2019189511 A JP2019189511 A JP 2019189511A
Authority
JP
Japan
Prior art keywords
hydrogen
tank
hydrogen storage
storage alloy
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087743A
Other languages
Japanese (ja)
Other versions
JP7083126B2 (en
Inventor
沼田 茂生
Shigeo Numata
茂生 沼田
英介 下田
Eisuke Shimoda
英介 下田
野津 剛
Tsuyoshi Nozu
剛 野津
前田哲彦
Tetsuhiko Maeda
哲彦 前田
成輝 遠藤
Naruki ENDO
成輝 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2018087743A priority Critical patent/JP7083126B2/en
Publication of JP2019189511A publication Critical patent/JP2019189511A/en
Application granted granted Critical
Publication of JP7083126B2 publication Critical patent/JP7083126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a hydrogen storage system that can rapidly fill the transported hydrogen.SOLUTION: The hydrogen storage tank 50 includes a first tank 101 in which a first hydrogen storage alloy A is enclosed, and a second tank 102 in which a second hydrogen storage alloy B having different characteristics from the first hydrogen storage alloy A is enclosed, and in which heat exchange is performed between the first tank 101 and the second tank 102 using a refrigerant 111.SELECTED DRAWING: Figure 2

Description

本発明は、水素貯蔵システム及び水素貯蔵方法に関する。   The present invention relates to a hydrogen storage system and a hydrogen storage method.

2014年4月に閣議決定されたエネルギー基本計画において、水素を日常の生活や産業活動で利活用する「水素社会」の実現に向け取り組みを加速することが定められ、国や東京都では2020年東京五輪での水素の積極活用、その後の水素社会普及に向けた動きが活発化している。2012年7月の再生可能エネルギーの固定価格買取制度(FIT)の導入は、非住宅用の太陽光発電市場(公共・産業分野)を大きく変えることとなった。JPEA PV OUTLOOK 2030によると、国内総出荷に占める非住宅用の割合は、2012年度で(国内総出荷量3.8GWに対し)50%、2013年度で(同8.4GWに対し)73%、2014年度上半期で(上期国内総出荷量4.3GWに対し)77%と大幅に伸張している。   The Basic Energy Plan, approved by the Cabinet in April 2014, stipulates that efforts to accelerate the realization of a “hydrogen society” that uses hydrogen in daily life and industrial activities will be promoted. The active use of hydrogen at the Tokyo Olympics and the subsequent movement toward the spread of the hydrogen society are becoming more active. The introduction of the renewable energy feed-in tariff (FIT) in July 2012 markedly changed the non-residential photovoltaic power generation market (public and industrial fields). According to JPEA PV OUTLOOK 2030, the ratio of non-residentials to total domestic shipments was 50% in FY2012 (relative to the total domestic shipment amount of 3.8GW), 73% in FY2013 (relative to 8.4GW) In the first half of fiscal 2014, it has grown significantly to 77% (compared to 4.3GW of domestic shipments in the first half).

太陽光発電の大量の設備認定量に伴い、それらが全て稼動した場合、電力需要の小さい軽負荷期に太陽光発電の供給電力量が需要電力量を上回る懸念が出てきたため、指定電気事業者において「無制限・無補償の出力抑制」を条件として系統接続を行うこととなった。今後、更なる太陽光発電の系統接続量の増加に伴い、電力需給調整を目的とした出力抑制実施は現実のものとなりつつある。   When all of them are in operation due to a large amount of certified solar power generation facilities, there is a concern that the amount of power supplied by solar power generation will exceed the amount of power demand during light load periods when power demand is low. Therefore, system connection was made on the condition of "unlimited and uncompensated output suppression". In the future, with the further increase in the amount of solar power system connections, the implementation of output suppression for the purpose of power supply and demand adjustment is becoming a reality.

一方で、わが国では、公共建物の他、住宅やオフィスビル、病院などの建築物において、年間の消費エネルギー量を大幅に削減する建築物(ネット・ゼロ・エネルギー・ビル、以下ZEBと記す)を目指す取組みを進めている。2014年のエネルギー基本計画において、2020年頃までに新築公共建築等で、2030年までに新築建築物の平均でZEBを実現することを目指すことが明記されている。   On the other hand, in Japan, in addition to public buildings, buildings such as houses, office buildings, hospitals, etc. that significantly reduce the annual energy consumption (net zero energy building, hereinafter referred to as ZEB) We are proceeding with our efforts. The 2014 Basic Energy Plan clearly states that new public buildings, etc. will aim to achieve ZEB on average for new buildings by 2030.

このような社会背景から、出力抑制に伴う余剰電力の発生量、頻度ともに増加が予想され、再生可能エネルギーの余剰電力を利用して一旦、CO2フリー水素を製造し、例えば電力需要が増加した際に必要に応じて貯蔵しておいた水素を再度、電力に変換して街区で活用する技術が注目されている。水素の貯蔵には、例えば特許文献1に記載されているように、水素吸蔵合金を使用することが考えられる。   From such a social background, the amount and frequency of surplus power generated due to output suppression are expected to increase, and once CO2 free hydrogen is produced using surplus power of renewable energy, for example, when the demand for power increases Attention has been focused on technology for converting hydrogen stored in the area into electricity and using it in the city block as needed. For storing hydrogen, for example, as described in Patent Document 1, it is conceivable to use a hydrogen storage alloy.

このような電力管理システムでは、例えば半径数10km程度の広域範囲を地産地消エリアとして、オフサイト立地のメガソーラー等の再生可能エネルギー発電所にて、余剰電力を効率よく活用してCO2フリー水素を製造し、高圧水素ガスとする。この高圧水素ガスを高圧水素輸送車両にて収集した後、当該エリア内の中核となる街区に輸送・利用することで、街区内で建物のZEB化に必要な創エネ相当量を賄う。また街区内のオンサイトに設置される太陽光発電などの再生可能エネルギーの余剰電力を効率的に利用して水素製造が可能である。   In such a power management system, for example, a wide area with a radius of several tens of kilometers is used as a local production for local consumption area, and a surplus power is efficiently utilized at a renewable energy power plant such as a mega-solar site located off-site. To produce high-pressure hydrogen gas. The high-pressure hydrogen gas is collected by a high-pressure hydrogen transport vehicle, and then transported to and used in a central block in the area, thereby providing a considerable amount of energy creation required for building ZEB in the block. Moreover, hydrogen production is possible by efficiently using surplus power of renewable energy such as solar power generation installed on-site in the block.

特開2002−060201号公報JP 2002-060201 A

外部調達されるCO2フリー水素は高圧ガスとして街区へ輸送される。現在は「カードル」と呼ばれるボンベを束ねた形状の輸送容器に高圧水素ガスを充填して輸送、或いはより大量に輸送する場合は、約20MPaの高圧力に耐えることができる大型ボンベを束ねた「トレーラー」に水素ガスを加圧充填して輸送することが一般的である。このような高圧水素輸送車両等から街区或いは敷地内に設置した水素吸蔵合金タンクへ移送・貯蔵することにより、大量水素貯蔵が可能になる。   Externally procured CO2-free hydrogen is transported to the city block as high-pressure gas. At present, when a high-pressure hydrogen gas is filled in a transport container with a bundle of cylinders called “Kardle”, or when transported in large quantities, a large cylinder that can withstand a high pressure of about 20 MPa is bundled. In general, hydrogen gas is charged in a trailer for transportation. A large amount of hydrogen can be stored by transferring and storing from such a high-pressure hydrogen transport vehicle or the like to a hydrogen storage alloy tank installed in a city block or site.

しかしながら、水素は用途地域毎に最大貯蔵量の制限が定められている。高圧水素輸送車両等の建物近傍での停車時間が長くなると最大貯蔵量の制限に抵触するケースが発生するため、水素輸送車両の停車時間を可能な限り短時間に限定する必要がある。そのため、水素吸蔵合金タンクへの移送に急速充填が求められる。   However, the maximum storage amount of hydrogen is set for each application area. When the stop time in the vicinity of a building such as a high-pressure hydrogen transport vehicle becomes long, there is a case where the maximum storage amount is violated. Therefore, it is necessary to limit the stop time of the hydrogen transport vehicle as short as possible. Therefore, rapid filling is required for transfer to the hydrogen storage alloy tank.

上述の課題を鑑み、本発明は、輸送された水素を急速充填することができる水素貯蔵システム及び水素貯蔵方法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a hydrogen storage system and a hydrogen storage method capable of rapidly filling transported hydrogen.

本発明の一態様に係る水素貯蔵システムは、第1水素吸蔵合金が封入された第1タンクと、前記第1水素吸蔵合金とは特性の異なる第2水素吸蔵合金が封入された第2タンクとを有し、前記第1タンクと前記第2タンクとの間で冷媒を用いて熱交換を行うことを特徴とする。   A hydrogen storage system according to an aspect of the present invention includes a first tank in which a first hydrogen storage alloy is sealed, and a second tank in which a second hydrogen storage alloy having different characteristics from the first hydrogen storage alloy is sealed. And heat exchange is performed between the first tank and the second tank using a refrigerant.

本発明の一態様に係る水素貯蔵方法は、第1水素吸蔵合金が封入された第1タンクと、前記第1水素吸蔵合金とは特性の異なる第2水素吸蔵合金が封入された第2タンクとを用意し、移送されてきた水素を前記第1タンクに貯蔵する手順と、前記第1タンクと前記第2タンクとの間で冷媒を用いて熱交換を行い、前記第1タンクに貯蔵した水素を前記第2タンクに移し替える手順とを含むことを特徴とする。   A hydrogen storage method according to an aspect of the present invention includes a first tank in which a first hydrogen storage alloy is sealed, and a second tank in which a second hydrogen storage alloy having different characteristics from the first hydrogen storage alloy is sealed. The procedure for storing the transferred hydrogen in the first tank, and the hydrogen stored in the first tank by exchanging heat between the first tank and the second tank using a refrigerant. And a procedure for transferring to the second tank.

本発明によれば、特性の異なる水素吸蔵合金が封入された第1タンクと第2タンクとの2種類の水素吸蔵合金タンクを備えており、水素輸送車両から輸送されてきた水素を第1タンクに充填した後、第1タンクと第2タンクとの間で冷媒を用いて熱交換を行うことで、第1タンクから第2タンクに水素を移し替える。これにより、移送されてきた水素をタンクに短時間に充填できる。   According to the present invention, there are provided two types of hydrogen storage alloy tanks, a first tank and a second tank, in which hydrogen storage alloys having different characteristics are sealed, and the hydrogen transported from the hydrogen transport vehicle is supplied to the first tank. Then, hydrogen is transferred from the first tank to the second tank by performing heat exchange between the first tank and the second tank using a refrigerant. Thereby, the transferred hydrogen can be filled in the tank in a short time.

本発明の実施形態に係る電力管理システムの設備構成を示す図である。It is a figure which shows the installation structure of the power management system which concerns on embodiment of this invention. 本発明の実施形態に係る水素貯蔵タンクの構成を示す図である。It is a figure which shows the structure of the hydrogen storage tank which concerns on embodiment of this invention. 温度の異なるPCT線図を模式的に示した図である。It is the figure which showed typically the PCT diagram from which temperature differs. 本発明の実施形態で選定される水素吸蔵合金のPCT特性を示す図である。It is a figure which shows the PCT characteristic of the hydrogen storage alloy selected by embodiment of this invention. 本発明の実施形態に係る水素貯蔵システムの運用手順の説明図である。It is explanatory drawing of the operation | movement procedure of the hydrogen storage system which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を参照しながら説明する。図1は、本発明の実施形態に係る電力管理システム1(水素貯蔵システム)の設備構成を示す図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an equipment configuration of a power management system 1 (hydrogen storage system) according to an embodiment of the present invention.

図1において、再生可能エネルギー電源10は、再生可能エネルギーを建物70に供給する再生可能エネルギー電源であり、再生可能エネルギーのうちの余剰電力を蓄電池20、直流電源30に対して出力する。なお、再生可能エネルギー電源10としては、太陽光発電の他、風力発電等を用いても良い。   In FIG. 1, a renewable energy power source 10 is a renewable energy power source that supplies renewable energy to a building 70, and outputs surplus power of the renewable energy to the storage battery 20 and the DC power source 30. As the renewable energy power source 10, wind power generation or the like may be used in addition to solar power generation.

水素製造装置40は、再生可能エネルギー電源10が出力する余剰電力のうち、蓄電池20の充電電力に対応する蓄電池放電電力と水素製造電力とを直流電源30で受電し、その受電した電力を用いて水素を製造する。   The hydrogen production apparatus 40 receives the storage battery discharge power corresponding to the charge power of the storage battery 20 and the hydrogen production power among the surplus power output from the renewable energy power supply 10 by the DC power supply 30, and uses the received power. Produce hydrogen.

水素貯蔵タンク50は、水素製造装置40によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵する。また、水素貯蔵タンク50は、水素輸送車両80で輸送された水素を、水素吸蔵合金に吸蔵させることで貯蔵する。なお、水素貯蔵タンク50については、後に詳述する。   The hydrogen storage tank 50 stores the hydrogen produced by the hydrogen production apparatus 40 by causing the hydrogen storage alloy to store the hydrogen. The hydrogen storage tank 50 stores the hydrogen transported by the hydrogen transport vehicle 80 by causing the hydrogen storage alloy to store the hydrogen. The hydrogen storage tank 50 will be described in detail later.

燃料電池60は、水素貯蔵タンク50が放出する水素を利用して発電し、発電した電力を建物70に供給する。   The fuel cell 60 generates power using the hydrogen released from the hydrogen storage tank 50 and supplies the generated power to the building 70.

建物70には、照明機器、空調機器、各種電気・電子機器等が設置されている。これらは、電力を消費する需要家負荷となる。   The building 70 is provided with lighting equipment, air conditioning equipment, various electric / electronic equipment, and the like. These become consumer loads that consume power.

このように、本発明の実施形態に係る電力管理システム1では、水素貯蔵タンク50に、水素製造装置40によって製造された水素が貯蔵されるとともに、水素輸送車両80で輸送された水素が貯蔵される。水素輸送車両80から街区或いは敷地内に設置した水素貯蔵タンク50へ移送・貯蔵することにより、大量水素貯蔵が可能になる。この際、建物70の近傍での水素輸送車両80の停車時間が短くなるように、水素貯蔵タンク50への急速充填が要望される。   As described above, in the power management system 1 according to the embodiment of the present invention, the hydrogen produced by the hydrogen production apparatus 40 is stored in the hydrogen storage tank 50 and the hydrogen transported by the hydrogen transport vehicle 80 is stored. The A large amount of hydrogen can be stored by transferring and storing the hydrogen transport vehicle 80 to the hydrogen storage tank 50 installed in the city block or site. At this time, rapid filling of the hydrogen storage tank 50 is desired so that the stop time of the hydrogen transport vehicle 80 in the vicinity of the building 70 is shortened.

図2は、本発明の実施形態に係る水素貯蔵タンク50の構成を示す図である。図2において、水素貯蔵タンク50は、PCT特性の異なる2種類の水素吸蔵合金が封入された第1タンク101及び第2タンク102の2つの水素吸蔵合金タンクを備えている。   FIG. 2 is a diagram showing a configuration of the hydrogen storage tank 50 according to the embodiment of the present invention. In FIG. 2, the hydrogen storage tank 50 includes two hydrogen storage alloy tanks, a first tank 101 and a second tank 102 in which two types of hydrogen storage alloys having different PCT characteristics are enclosed.

第1タンク101は、水素輸送車両80から輸送されてきた水素を急速に充填させるためのタンクである。第1タンク101には、水素吸蔵合金Aが封入されている。第1タンク101内の水素は、第1タンク101と第2タンク102との間で冷媒111を用いて熱交換を行うことで、漸次、第2タンク102に移し替えられる。   The first tank 101 is a tank for rapidly filling hydrogen transported from the hydrogen transport vehicle 80. The first tank 101 is filled with a hydrogen storage alloy A. The hydrogen in the first tank 101 is gradually transferred to the second tank 102 by performing heat exchange between the first tank 101 and the second tank 102 using the refrigerant 111.

第2タンク102は、水素製造装置40で製造された水素や、第1タンク101から移し替えられた水素を貯蔵し、燃料電池60に送るためのタンクである。第2タンク102には、水素吸蔵合金Bが封入されている。   The second tank 102 is a tank for storing the hydrogen produced by the hydrogen production apparatus 40 or the hydrogen transferred from the first tank 101 and sending it to the fuel cell 60. A hydrogen storage alloy B is sealed in the second tank 102.

ここで、水素吸蔵合金タンクは、水素吸蔵合金をタンクに封入し、水素を水素吸蔵合金に吸蔵/放出することで、水素をコンパクトかつ安全に貯蔵するものである。水素吸蔵合金の特性は、PCT(Pressure Composition Temparature)線図により表される。   Here, the hydrogen storage alloy tank stores hydrogen in a compact and safe manner by enclosing the hydrogen storage alloy in the tank and storing / releasing hydrogen in the hydrogen storage alloy. The characteristics of the hydrogen storage alloy are represented by a PCT (Pressure Composition Temparature) diagram.

図3は、温度の異なるPCT線図を模式的に示した図である。図3において、X軸は水素貯蔵量を示し、Y軸は水素ガス圧力を示す。特性C1は温度T度のときの特性を示し、特性C2は、それより低い温度(T−α)度のときの特性を示す。図3に示すように、水素吸蔵合金のPCT線図には、略一定の水素圧力となるような領域がある。このような領域はプラトー領域と呼ばれている。   FIG. 3 is a diagram schematically showing PCT diagrams at different temperatures. In FIG. 3, the X axis indicates the hydrogen storage amount, and the Y axis indicates the hydrogen gas pressure. A characteristic C1 indicates a characteristic at a temperature T degree, and a characteristic C2 indicates a characteristic at a lower temperature (T-α) degree. As shown in FIG. 3, the PCT diagram of the hydrogen storage alloy has a region where the hydrogen pressure is substantially constant. Such a region is called a plateau region.

図3において、例えば、温度T度のときの特性C1の点Q1の状態から、温度(T−α)度に冷却すると、特性C2の点Q2の状態に移り、水素吸蔵が開始される。これとは反対に、温度(T−α)度の特性C2の点Q2の状態から、温度T度の特性C1の点Q1の状態に加熱すると、水素の放出が開始される。このように、水素吸蔵合金タンクでは、基本的に、冷却により水素吸蔵が開始され、加熱により水素放出が開始される。   In FIG. 3, for example, when the temperature is cooled to the temperature (T−α) degree from the state of the point Q1 of the characteristic C1 at the temperature T degree, the state shifts to the state of the point Q2 of the characteristic C2 and hydrogen storage is started. On the contrary, when heating is performed from the state of the point Q2 of the characteristic C2 of the temperature (T-α) degree to the state of the point Q1 of the characteristic C1 of the temperature T degree, hydrogen release is started. Thus, in the hydrogen storage alloy tank, hydrogen storage is basically started by cooling and hydrogen release is started by heating.

図4は、本発明の実施形態で選定される水素吸蔵合金A及び水素吸蔵合金BのPCT特性を示す図である。本実施形態では、第1タンク101に封入される水素吸蔵合金A(第1水素吸蔵合金)と、第2タンク102に封入される水素吸蔵合金B(第2水素吸蔵合金)とでは、PCT特性が異なっている。図4において、特性C101は水素吸蔵合金Aの水素放出時の特性を示し、特性C102は水素吸蔵合金Bの水素吸蔵時の特性を示す。水素吸蔵合金Aと水素吸蔵合金Bとしては、以下のような特性のものが選定される。   FIG. 4 is a diagram showing PCT characteristics of the hydrogen storage alloy A and the hydrogen storage alloy B selected in the embodiment of the present invention. In the present embodiment, the PCT characteristics of the hydrogen storage alloy A (first hydrogen storage alloy) sealed in the first tank 101 and the hydrogen storage alloy B (second hydrogen storage alloy) sealed in the second tank 102 are as follows. Is different. In FIG. 4, the characteristic C101 indicates the characteristic of the hydrogen storage alloy A when hydrogen is released, and the characteristic C102 indicates the characteristic of the hydrogen storage alloy B when hydrogen is stored. As the hydrogen storage alloy A and the hydrogen storage alloy B, those having the following characteristics are selected.

(1)水素吸蔵合金Aは、水素吸蔵合金Bと比較して水素吸蔵容量が大きい。
(2)同一温度において、プラトー領域の水素吸蔵合金Aの水素放出開始時の水素ガス圧力の方が、水素吸蔵合金Bの水素吸蔵開始時の水素ガス圧力より高い。
(3)水素吸蔵合金Bのプラトー領域は平坦であることが好適である。
(1) The hydrogen storage alloy A has a larger hydrogen storage capacity than the hydrogen storage alloy B.
(2) At the same temperature, the hydrogen gas pressure at the start of hydrogen release of the hydrogen storage alloy A in the plateau region is higher than the hydrogen gas pressure at the start of hydrogen storage of the hydrogen storage alloy B.
(3) It is preferable that the plateau region of the hydrogen storage alloy B is flat.

図4において、Pempで示す水素ガス圧力は、水素吸蔵合金Bに関するPCT線図上の利用領域の下限圧力である。よって、水素ガス圧力Pempのときには、第2タンク102の利用可能な水素が「空」でことを意味する。また、Pfullで示す水素ガス圧力は、水素吸蔵合金Bに関するPCT線図上の利用領域の上限圧力である。よって、水素ガス圧力Pfullのときには、第2タンク102の水素貯蔵量が「満タン」であることを意味する。水素ガス圧力Pempになるときの水素貯蔵量と水素ガス圧力Pfullになるときの水素貯蔵量との間の貯蔵量が第2タンク102で利用可能な水素の有効貯蔵量となる。   In FIG. 4, the hydrogen gas pressure indicated by Pemp is the lower limit pressure in the use region on the PCT diagram for the hydrogen storage alloy B. Therefore, at the hydrogen gas pressure Pemp, it means that the available hydrogen in the second tank 102 is “empty”. Further, the hydrogen gas pressure indicated by Pfull is the upper limit pressure of the use region on the PCT diagram regarding the hydrogen storage alloy B. Therefore, when the hydrogen gas pressure is Pfull, it means that the hydrogen storage amount of the second tank 102 is “full tank”. The storage amount between the hydrogen storage amount at the hydrogen gas pressure Pemp and the hydrogen storage amount at the hydrogen gas pressure Pfull is the effective hydrogen storage amount that can be used in the second tank 102.

水素吸蔵合金A及び水素吸蔵合金Bについて、以上のような特性のものを選定することで、後に説明するように、第1タンク101に、水素輸送車両80から輸送されてきた水素を短時間に充填できる。また、第1タンク101に貯蔵されていた水素を第2タンク102に容易に移し替えることができる。   By selecting the hydrogen storage alloy A and the hydrogen storage alloy B having the above characteristics, the hydrogen transported from the hydrogen transport vehicle 80 to the first tank 101 in a short time, as will be described later. Can be filled. Further, the hydrogen stored in the first tank 101 can be easily transferred to the second tank 102.

図5は、本発明の実施形態に係る電力管理システム1の運用手順の説明図である。
(手順S1)水素輸送車両80から輸送されてきた水素を第1タンク101に移送する。第1タンク101への水素の移送は、熱供給系110を利用して冷熱し、急速充填に伴う水素吸蔵合金Aの温度上昇を抑えることで、短時間で水素輸送車両80から第1タンク101に水素を移送することができる。第1タンク101への水素の移送が終了したら、水素輸送車両80は立ち去る。
FIG. 5 is an explanatory diagram of an operation procedure of the power management system 1 according to the embodiment of the present invention.
(Procedure S1) The hydrogen transported from the hydrogen transport vehicle 80 is transported to the first tank 101. The transfer of hydrogen to the first tank 101 is performed by using the heat supply system 110 to cool and suppress the temperature rise of the hydrogen storage alloy A accompanying rapid filling, so that the first tank 101 can be transferred from the hydrogen transport vehicle 80 in a short time. Hydrogen can be transferred to the tank. When the transfer of hydrogen to the first tank 101 is completed, the hydrogen transport vehicle 80 leaves.

(手順S2)第1タンク101から第2タンク102に、逐次、水素を移し替える。
(a)その際、第1タンク101と第2タンク102との間で、冷媒111を循環させることにより、第2タンク102を冷却し、第1タンク101を加熱する。
(b)第2タンク102は、冷却されることで水素吸蔵を開始し、第1タンク101は加熱することにより水素放出を開始する。この操作を継続すると、第1タンク101と第2タンク102との間で熱交換が行われ、第1タンク101と第2タンク102の温度は略等温になる。
(c)図4のPCT線図に示す通り、水素吸蔵合金Aの水素放出開始時の水素ガス圧力の方が水素吸蔵合金Bの水素吸蔵開始時の水素ガス圧力より高いため、水素は第1タンク101から第2タンク102に移る。
(d)第2タンク102では、図4のPCT線図における第2タンク102の水素吸蔵合金Bは、点Q102の状態から特性C102に沿った経路で水素貯蔵量が増加していく。
(e)同様に、第1タンク101の水素吸蔵合金Aは、点Q101の状態から特性C101に沿った経路で水素放出していく。
(f)双方の点Q101及びQ102が圧力Pfullに達するまで、第1タンク101の水素吸蔵合金Aは水素放出を行い、第2タンク102の水素吸蔵合金Bは水素吸蔵を行い、第1タンク101から第2タンク102への水素の移送が行われる。
(Procedure S2) Hydrogen is sequentially transferred from the first tank 101 to the second tank 102.
(A) At that time, the coolant 111 is circulated between the first tank 101 and the second tank 102, thereby cooling the second tank 102 and heating the first tank 101.
(B) The second tank 102 starts to store hydrogen when cooled, and the first tank 101 starts releasing hydrogen when heated. If this operation is continued, heat exchange is performed between the first tank 101 and the second tank 102, and the temperatures of the first tank 101 and the second tank 102 become substantially isothermal.
(C) As shown in the PCT diagram of FIG. 4, the hydrogen gas pressure at the start of hydrogen release of the hydrogen storage alloy A is higher than the hydrogen gas pressure at the start of hydrogen storage of the hydrogen storage alloy B. Move from the tank 101 to the second tank 102.
(D) In the second tank 102, the hydrogen storage amount of the hydrogen storage alloy B of the second tank 102 in the PCT diagram of FIG. 4 increases from the state of the point Q102 through a path along the characteristic C102.
(E) Similarly, the hydrogen storage alloy A in the first tank 101 discharges hydrogen from the state of the point Q101 through a path along the characteristic C101.
(F) Until both points Q101 and Q102 reach the pressure Pfull, the hydrogen storage alloy A in the first tank 101 releases hydrogen, the hydrogen storage alloy B in the second tank 102 performs hydrogen storage, and the first tank 101 The hydrogen is transferred from the fuel to the second tank 102.

(手順S3)第2タンク102に移し替えられた水素を燃料電池60に供給する。燃料電池60は、送られてきた水素を用いて発電を行うことができる。   (Procedure S3) The hydrogen transferred to the second tank 102 is supplied to the fuel cell 60. The fuel cell 60 can generate power using the sent hydrogen.

(手順S4)第2タンク102の水素貯蔵量が一定値を以上か否かを判定する。第2タンク102の水素貯蔵量が一定値を以上なら(手順S4:Yes)、手順S3に戻り、第2タンク102から燃料電池60への水素の供給を継続する。第2タンク102の水素貯蔵量が一定値を下回ったら(手順S4:No)、手順S5に進む。   (Procedure S4) It is determined whether or not the amount of hydrogen stored in the second tank 102 exceeds a certain value. If the hydrogen storage amount of the second tank 102 exceeds a certain value (step S4: Yes), the process returns to step S3, and the supply of hydrogen from the second tank 102 to the fuel cell 60 is continued. If the hydrogen storage amount of the second tank 102 falls below a certain value (procedure S4: No), the process proceeds to procedure S5.

(手順S5)第1タンク101の水素貯蔵量が一定値以上か否かを判定する。第1タンク101の水素貯蔵量が一定値以上なら(手順S5:Yes)、手順S2に戻り、第1タンク101から第2タンク102への水素の移し替えを行う。第1タンク101の水素貯蔵量が一定値を下回ったら(手順S5:No)、手順S1に戻り、再度、外部調達水素の急速充填を行う。   (Procedure S5) It is determined whether or not the hydrogen storage amount of the first tank 101 is equal to or greater than a certain value. If the hydrogen storage amount of the first tank 101 is equal to or greater than a certain value (procedure S5: Yes), the process returns to the procedure S2, and the transfer of hydrogen from the first tank 101 to the second tank 102 is performed. When the amount of hydrogen stored in the first tank 101 falls below a certain value (procedure S5: No), the procedure returns to procedure S1, and the externally procured hydrogen is rapidly charged again.

上述のように、本発明の実施形態に係る電力管理システム1では、水素貯蔵タンク50は、PCT特性の異なる水素吸蔵合金が封入された第1タンク101と第2タンク102との2種類の水素吸蔵合金タンクを備えている。これにより、水素輸送車両80から輸送されてきた水素を短時間に充填できる。その結果、建物附帯での高圧ガス保管に係る制約を受けることを回避でき、外部調達されたCO2フリー水素によって街区内で建物のZEB化に必要なエネルギー相当量を賄うことができる。   As described above, in the power management system 1 according to the embodiment of the present invention, the hydrogen storage tank 50 includes two types of hydrogen, the first tank 101 and the second tank 102 in which hydrogen storage alloys having different PCT characteristics are enclosed. It has a storage alloy tank. Thereby, the hydrogen transported from the hydrogen transport vehicle 80 can be filled in a short time. As a result, it is possible to avoid restrictions on high-pressure gas storage in the building incidental, and CO2 free hydrogen procured outside can cover the energy equivalent amount necessary for ZEB conversion of the building in the block.

また、本発明の実施形態に係る電力管理システム1では、第1タンク101と第2タンク102との間で、冷媒111を循環させることで、第1タンク101に貯蔵されていた水素は、第2タンク102に容易に移し替えることができる。また、外部調達されたCO2フリー水素を第1タンク101に受け入れている最中でも、第2タンク102の水素を放出させることで、燃料電池60での発電を中断することなく継続できる。その際も第1タンク101と第2タンク102との間で冷媒111を循環させることで熱交換するので、専用熱源を必要とせず、省エネルギー化が図れる。   Further, in the power management system 1 according to the embodiment of the present invention, the refrigerant 111 is circulated between the first tank 101 and the second tank 102 so that the hydrogen stored in the first tank 101 is the first. It can be easily transferred to the two tanks 102. In addition, while the externally procured CO2 free hydrogen is being received in the first tank 101, the power generation in the fuel cell 60 can be continued without interruption by releasing the hydrogen from the second tank 102. Also in this case, heat exchange is performed by circulating the refrigerant 111 between the first tank 101 and the second tank 102, so that no dedicated heat source is required and energy saving can be achieved.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within the scope not departing from the gist of the present invention.

10:再生可能エネルギー電源、50:水素貯蔵タンク、80:水素輸送車両、101:第1タンク、102:第2タンク、111:冷媒 10: Renewable energy power source, 50: Hydrogen storage tank, 80: Hydrogen transport vehicle, 101: First tank, 102: Second tank, 111: Refrigerant

Claims (4)

第1水素吸蔵合金が封入された第1タンクと、
前記第1水素吸蔵合金とは特性の異なる第2水素吸蔵合金が封入された第2タンクとを有し、
前記第1タンクと前記第2タンクとの間で冷媒を用いて熱交換を行うようにした水素貯蔵システム。
A first tank filled with a first hydrogen storage alloy;
A second tank filled with a second hydrogen storage alloy having different characteristics from the first hydrogen storage alloy;
A hydrogen storage system configured to perform heat exchange between the first tank and the second tank using a refrigerant.
前記第1水素吸蔵合金は、前記第2水素吸蔵合金より水素吸蔵容量が大きいものを用いるようにした請求項1に記載の水素貯蔵システム。   2. The hydrogen storage system according to claim 1, wherein the first hydrogen storage alloy has a larger hydrogen storage capacity than the second hydrogen storage alloy. 前記第1水素吸蔵合金の水素放出開始時の水素ガス圧力は、前記第2水素吸蔵合金の水素吸蔵開始時の水素ガス圧力より高いものを用いるようにした請求項1又は2に記載の水素貯蔵システム。   The hydrogen storage according to claim 1 or 2, wherein a hydrogen gas pressure at the start of hydrogen release of the first hydrogen storage alloy is higher than a hydrogen gas pressure at the start of hydrogen storage of the second hydrogen storage alloy. system. 第1水素吸蔵合金が封入された第1タンクと、前記第1水素吸蔵合金とは特性の異なる第2水素吸蔵合金が封入された第2タンクとを用意し、
移送されてきた水素を前記第1タンクに貯蔵する手順と、
前記第1タンクと前記第2タンクとの間で冷媒を用いて熱交換を行い、前記第1タンクに貯蔵した水素を前記第2タンクに移し替える手順と
を含むようにした水素貯蔵方法。
Preparing a first tank enclosing a first hydrogen storage alloy and a second tank enclosing a second hydrogen storage alloy having different characteristics from the first hydrogen storage alloy;
A procedure for storing the transferred hydrogen in the first tank;
A method of performing heat exchange between the first tank and the second tank using a refrigerant and transferring the hydrogen stored in the first tank to the second tank.
JP2018087743A 2018-04-27 2018-04-27 Hydrogen supply system and hydrogen supply method Active JP7083126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087743A JP7083126B2 (en) 2018-04-27 2018-04-27 Hydrogen supply system and hydrogen supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087743A JP7083126B2 (en) 2018-04-27 2018-04-27 Hydrogen supply system and hydrogen supply method

Publications (2)

Publication Number Publication Date
JP2019189511A true JP2019189511A (en) 2019-10-31
JP7083126B2 JP7083126B2 (en) 2022-06-10

Family

ID=68389210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087743A Active JP7083126B2 (en) 2018-04-27 2018-04-27 Hydrogen supply system and hydrogen supply method

Country Status (1)

Country Link
JP (1) JP7083126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373140B2 (en) 2020-01-21 2023-11-02 清水建設株式会社 Power generation system and power generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978907A (en) * 1982-10-22 1984-05-08 Daido Steel Co Ltd Refining method of gaseous hydrogen
JPH05180395A (en) * 1991-12-27 1993-07-20 Sanyo Electric Co Ltd Transport of hydrogen
JP2010144805A (en) * 2008-12-17 2010-07-01 Toyota Motor Corp Hydrogen storage system
JP2011099511A (en) * 2009-11-05 2011-05-19 Takasago Thermal Eng Co Ltd Hydrogen storage alloy tank system
US20170214067A1 (en) * 2016-01-26 2017-07-27 Hyundai Motor Company Solid state hydrogen storage device and solid state hydrogen storage system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978907A (en) * 1982-10-22 1984-05-08 Daido Steel Co Ltd Refining method of gaseous hydrogen
JPH05180395A (en) * 1991-12-27 1993-07-20 Sanyo Electric Co Ltd Transport of hydrogen
JP2010144805A (en) * 2008-12-17 2010-07-01 Toyota Motor Corp Hydrogen storage system
JP2011099511A (en) * 2009-11-05 2011-05-19 Takasago Thermal Eng Co Ltd Hydrogen storage alloy tank system
US20170214067A1 (en) * 2016-01-26 2017-07-27 Hyundai Motor Company Solid state hydrogen storage device and solid state hydrogen storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373140B2 (en) 2020-01-21 2023-11-02 清水建設株式会社 Power generation system and power generation method

Also Published As

Publication number Publication date
JP7083126B2 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
AU2009266152B2 (en) Photovoltaic system
JP3583857B2 (en) Hydrogen storage utilization equipment
EP3063815B1 (en) Power generation system
Nguyen et al. Metal hydride thermal management using phase change material in the context of a standalone solar-hydrogen system
Khayrullina et al. Novel kW scale hydrogen energy storage system utilizing fuel cell exhaust air for hydrogen desorption process from metal hydride reactor
JP2009071959A (en) Power supply system
CN113644864B (en) Lunar base energy supply system and method based on compressed carbon dioxide energy storage
KR101531291B1 (en) high-brid cogeneration system
WO2020121441A1 (en) Hydrogen energy control system and control method for hydrogen energy control system
JP2017147889A (en) Power supply system
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
WO2017017734A1 (en) Power supply system and method for controlling same
US20160372775A1 (en) Method for Temporarily Storing the Electric Energy of an Energy Supply System and Regenerative Energy Storage Device
JP7083126B2 (en) Hydrogen supply system and hydrogen supply method
JP5866079B1 (en) Power supply system
JP2019133803A (en) Power supply system and hydrogen utilization system
JPWO2018225602A1 (en) Heat storage system and method of operating heat storage system
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
JP6058746B1 (en) Container assembly for hydrogen system
WO2020063224A1 (en) Solid heat-storing electric boiler heating and refrigerating system coupled with dynamic energy storage
Ceran et al. Performance Analysis of a Hybrid Generation System of Wind Turbines, Photovoltaic Modules, and a Fuel Cell
CN209545170U (en) One kind storing up the self-powered storehouse formula energy-storage system of complementary micro-capacitance sensor based on light
WO2018163416A1 (en) Hydrogen energy utilization system and method for operating same
JP2020170691A (en) Hydrogen utilization system and hydrogen utilization method
Segawa et al. Pilot-scale hydrogen energy utilization system demonstration: A case study of a commercial building with supply and utilization of off-site green hydrogen

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7083126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150