JPS62123001A - Method for purifying hydrogen - Google Patents

Method for purifying hydrogen

Info

Publication number
JPS62123001A
JPS62123001A JP60264628A JP26462885A JPS62123001A JP S62123001 A JPS62123001 A JP S62123001A JP 60264628 A JP60264628 A JP 60264628A JP 26462885 A JP26462885 A JP 26462885A JP S62123001 A JPS62123001 A JP S62123001A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
heating medium
cylinder
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60264628A
Other languages
Japanese (ja)
Inventor
Minoru Imafuku
今福 実
Satoshi Hanesaka
智 羽坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP60264628A priority Critical patent/JPS62123001A/en
Publication of JPS62123001A publication Critical patent/JPS62123001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate cooling and heating from the outside of system, to reduce purification cost and to simplify and miniaturize a device, by using heat generation in a purifying column in a hydrogen occlusion process for heat absorption in a purifying column in a hydrogen release process by transfer of a heating medium. CONSTITUTION:A hydrogen in a raw material gas is occluded in a hydrogen occlusion alloy 4 by a first purifying column 3 in a hydrogen occlusion process. Since hydrogen occlusion rate is dropped when temperature is raised by heat generation in the opera tion, a heating medium in a heat exchange pipe 5 for the heating medium is heated and evaporated by the heat generation to prevent rise in temperature. Introduction of the raw material gas 1 is stopped when the hydrogen occlusion alloy 4 is saturated and an impure gas is exhausted from a pipe 7. On the other hand, a second purifying column 11 is in a hydrogen release process and purified hydrogen released from the hydrogen occlusion alloy 4 is sent from a pipe 13. Since the release reaction is an endothermic reaction, the heating medium vaporized in the previous process is sent to a heat exchange pipe 14 for a heat medium of the second column 11 to prevent reduction in hydrogen release rate. When these processes are finished, the first column 3 is changed to the hydrogen release process and the second column 11 to the hydrogen occlusion process, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水素吸蔵合金を利用して水素含有ガスから
水素ガスをf#襄する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for f# purifying hydrogen gas from a hydrogen-containing gas using a hydrogen storage alloy.

〔従来技術とその問題点〕[Prior art and its problems]

水素1挾蔵合金を使用して水素をイS裂する方法は、あ
る槌の合金が水素をよく吸蔵する性質を利用したもので
ある。容器内に水素吸蔵合金を充填し、この8器に不純
ガスを富む水素ガスを導入すると、水素ガスのみが発熱
を伴って合金に吸収され、不純ガスが13iIる。この
不純ガスを′容器外に放出したのち、合金を加熱すれば
、吸斌水索ガスが合金から放出され、高純水素が得られ
る。そしてこのプロセスにおいて水素を吸、成する時は
発熱を伴うため冷却水などで冷却し、温変上昇を防止す
る必要があり、逆に放出する時は吸熱するため温水など
で加熱し、温1にを一定に保つ必要がある。
The method of splitting hydrogen using a hydrogen storage alloy takes advantage of the property of certain metal alloys to absorb hydrogen well. When a hydrogen storage alloy is filled in a container and hydrogen gas rich in impure gas is introduced into the container, only the hydrogen gas is absorbed by the alloy with heat generation, and the impure gas becomes 13iI. After releasing this impure gas to the outside of the container, if the alloy is heated, water-absorbing gas is released from the alloy, and high purity hydrogen can be obtained. In this process, when hydrogen is absorbed and formed, it generates heat, so it must be cooled with cooling water to prevent temperature fluctuations.On the other hand, when hydrogen is released, it absorbs heat, so it must be heated with hot water, etc. It is necessary to keep it constant.

そして、このプロセスな連続的に運転して間開水素を工
業的1c>1造するには、水素吸蔵合金を充填した2筒
以上の精製筒を設置筺し、加熱源および冷却源として温
水および冷却水を用意し、梢HRを水素吸蔵工程と水素
放出工程とに交互に切換え、水素吸蔵工程にある精製筒
に冷却水を、水素放出工程にある精製筒に温水をそれぞ
れ切替えて供給するようにしている。
In order to operate this process continuously to produce interstitial hydrogen on an industrial scale (1c>1), two or more refining cylinders filled with hydrogen storage alloy must be installed, and hot water and hot water can be used as heating and cooling sources. Prepare cooling water, switch the treetop HR alternately between the hydrogen absorption process and the hydrogen release process, and switch and supply cooling water to the purification cylinder in the hydrogen storage process and hot water to the purification cylinder in the hydrogen release process. I have to.

しかし、このような方法では、加熱、冷却に温水および
冷却水を使用しかつこれらの顕熱な熱源としているため
、装置が大型化し、消費エネルギーが高む欠点があった
However, in this method, hot water and cooling water are used for heating and cooling, and these are used as sensible heat sources, which has the drawback of increasing the size of the device and increasing energy consumption.

(rl、i−1消点を解決するための手段〕そこで、こ
の発明にあっては、水素吸蔵工程にある精製筒に1゛友
化熱媒を導入し、このfi裂筒で発生する熱を熱媒の気
化潜熱として吸収させて熱媒を気化させ、この気化熱媒
を水素放出工程にある精製筒に導入し、この精製筒内の
合金を加熱し、熱媒を凝縮液化させ、この液化熱媒を再
び水素吸蔵工程にある精製筒に送るようにすることによ
り、外部からの加熱、冷却を不要とし、ニネルギーコス
トの低減、装置の簡略化、小型化が計れるようにした。
(Means for solving the rl, i-1 vanishing point) Therefore, in this invention, a 1゛amylated heat medium is introduced into the refining cylinder in the hydrogen storage process, and the heat generated in the fi-fi fission cylinder is is absorbed as the latent heat of vaporization of the heating medium to vaporize the heating medium, and this vaporized heating medium is introduced into the refining cylinder in the hydrogen release process, the alloy in this refining cylinder is heated, the heating medium is condensed and liquefied, and this By sending the liquefied heat medium back to the refining column in the hydrogen storage process, external heating and cooling are no longer necessary, reducing energy costs and simplifying and downsizing the equipment.

以下、図面を参照してこの発明の#I製法を詳しく説明
する。
Hereinafter, the #I manufacturing method of the present invention will be explained in detail with reference to the drawings.

第1図は、この発明の水素精製法を実施するに好適な精
製装置4の一例を示すものである。
FIG. 1 shows an example of a purification apparatus 4 suitable for carrying out the hydrogen purification method of the present invention.

原料ガスとして、不純ガスを含む水素ガスが2〜305
程度に加圧されて、管1から弁2を経て水素吸蔵工程に
ある第1ftN!l!!!筒3に導入される。
Hydrogen gas containing impurity gas is used as raw material gas.
The first ftN is pressurized to a certain degree and is in the hydrogen storage process from pipe 1 through valve 2! l! ! ! It is introduced into the tube 3.

第1棺製筒3は、その内部にL a N i系合金、F
eTi系合金などの室温付近での平衡水素圧の高い水素
吸蔵合金4が充填されているとともに熱媒用熱交換パイ
プ5が内蔵され、熱交換が行えるようになっている。第
1祠製筒3に導入された原料ガス中の水素は、選択的に
水素吸蔵合金4に吸蔵され、不純ガスが筒内の空間に残
る。この水素吸蔵合金4への水素の吸蔵は発熱反応であ
るので、この水素吸蔵工程では水素吸蔵合金4および第
1#1=IJ筒3の温度が上昇する。この温度が上昇す
ると水素平衡圧力が上昇して水素吸ML運度が低下する
ため、冷却する必要がある。このために、熱媒用熱変換
パイプ5内には液状の熱媒、例えば、CCb Fy C
Ce 2 Fz e CCg F37.Cどが封入され
テオリ、発生した熱はこの熱媒を加熱、蒸発させること
により、温度上昇を防止する。この際、熱媒の気化潜熱
を利用できるため、冷却効果が高(、熱媒管も少量でよ
い。
The first coffin tube 3 contains L a Ni alloy, F
It is filled with a hydrogen storage alloy 4 having a high equilibrium hydrogen pressure near room temperature, such as an eTi-based alloy, and has a built-in heat exchange pipe 5 for heat medium, so that heat exchange can be performed. Hydrogen in the raw material gas introduced into the first mill making cylinder 3 is selectively occluded in the hydrogen storage alloy 4, and impure gas remains in the space inside the cylinder. Since hydrogen storage into the hydrogen storage alloy 4 is an exothermic reaction, the temperature of the hydrogen storage alloy 4 and the first #1 IJ cylinder 3 rises in this hydrogen storage step. When this temperature increases, the hydrogen equilibrium pressure increases and the hydrogen absorption ML capacity decreases, so it is necessary to cool it. For this purpose, a liquid heat medium, such as CCb Fy C
Ce 2 Fz e CCg F37. The generated heat heats and evaporates the heating medium, thereby preventing a rise in temperature. At this time, since the latent heat of vaporization of the heating medium can be used, the cooling effect is high (and the number of heating medium tubes may be small).

かくして、水素の吸蔵が進行し、水素吸蔵合金が飽和し
たならば原料ガスの導入を停止し、弁6を開けて、不純
ガスを導出し、管7から系外に排出する。気化した熱媒
は、熱媒弁8、熱媒管9および熱媒弁10を経て、第2
精製筒11に送られる。
In this way, when hydrogen storage progresses and the hydrogen storage alloy becomes saturated, the introduction of the raw material gas is stopped, the valve 6 is opened, and the impure gas is led out and discharged from the pipe 7 to the outside of the system. The vaporized heat medium passes through a heat medium valve 8, a heat medium pipe 9, and a heat medium valve 10, and then enters the second heat medium.
It is sent to the refining column 11.

一方、第1檜製簡3と同、様な構造の第2精製簡11は
、この時水素放出工程にある。すなわち、前工程におい
て上述のように、充填された水素吸蔵合金4が水素を吸
蔵し、不純ガスが排出された状態の第2梢製筒11ρ)
らは、水素吸蔵合金4から放出された積装水素が升12
、’[,713を通って導出される。この水素吸蔵合金
4からの水素成田は、吸熱反応であるため、第2祠製筒
llの諷反が低下すると、水素放出速度、水素放出圧力
が低下するため、mytAする必女がある。そこで、こ
の加熱源としてiIJ記したように第1梢製筒3で気化
した熱媒な、第2梢製簡11の熱媒用熱交換パイプ14
に送り込み、筒ll内をこれで加熱する0筒11内を加
熱した熱媒は冷却されて液化する。
On the other hand, the second refined slate 11, which has a similar structure to the first cypress slate 3, is in the hydrogen release process at this time. That is, as described above in the previous process, the filled hydrogen storage alloy 4 stores hydrogen and the second treetop cylinder 11ρ) is in a state where impurity gas is discharged.
In these cases, the loaded hydrogen released from the hydrogen storage alloy 4 is 12 square meters.
,'[,713. Hydrogen generation from this hydrogen storage alloy 4 is an endothermic reaction, so when the repulsion of the second cylindrical cylinder 11 decreases, the hydrogen release rate and hydrogen release pressure decrease, so it is inevitable that mytA will occur. Therefore, as this heating source, the heat exchange pipe 14 for the heat medium of the second treetop slate 11, which is the heat medium vaporized in the first treetop tube 3, as described in iIJ.
The heating medium that heated the inside of the cylinder 11 is cooled and liquefied.

かくして、第1精製筒3では水素吸蔵工程が、第2N製
筒11では水素放出工程が行わ几、これら工程が終了す
ると、第11fI製筒3は水素放出工程に、第2精製筒
11は水素吸蔵工程にそnぞn切換えられ原料ガスは管
1から弁15を経て第2稍製筒11に導入され、不純ガ
スは一7P16より排出される。また精製水素ガスは第
1祠製筒3から弁17、管13を経て導出される。この
とき、前工程において第2精製筒11で液化された仮化
熱妹は、第2梢製筒11が水素吸蔵工程に入ることによ
りその発熱で加熱され、気化する。気化した熱媒は、熱
媒弁10.熱媒管9、熱媒弁8を通って第1精製筒3に
導入され、ここで水素放出工程にある第1精製筒3を加
熱し、自からは液化する。
In this way, the first refining cylinder 3 performs the hydrogen storage process, and the second N cylinder 11 performs the hydrogen release process. When these processes are completed, the 11fI cylinder 3 performs the hydrogen desorption process, and the second refining cylinder 11 performs the hydrogen desorption process. The process is switched to the occlusion process, and the raw material gas is introduced from the pipe 1 through the valve 15 into the second production cylinder 11, and the impure gas is discharged from the pipe 17P16. Further, purified hydrogen gas is led out from the first grist cylinder 3 via a valve 17 and a pipe 13. At this time, the hypothermia that was liquefied in the second refining cylinder 11 in the previous step is heated by the heat produced by the second top-forming cylinder 11 entering the hydrogen storage process, and is vaporized. The vaporized heat medium is transferred to the heat medium valve 10. It is introduced into the first refining cylinder 3 through the heat medium pipe 9 and the heat medium valve 8, where it heats the first refining cylinder 3 which is in the hydrogen release process, and liquefies itself.

以上、第1精製筒3と第2精製筒11とを文互に水素吸
蔵工程と水素放出工程を切換えることにより連続的に水
素を−i’J IJすることができる。第1梢製筒3と
第2′#tff筒11との間の熱媒の移動は、精製局間
の温度差による蒸気圧の違いから自然に行われる。また
、ここで使われる熱媒は、その沸点が水素吸蔵時の吸蔵
温度と水素放出時の放出温度の間(あり、かつその中間
程度のfQ度であることが、熱媒の移動を良好に行うう
えでも望ましい。
As described above, hydrogen can be continuously -i'J IJ by alternately switching the hydrogen storage process and the hydrogen release process in the first purification cylinder 3 and the second purification cylinder 11. The transfer of the heat medium between the first top-forming cylinder 3 and the second #tff cylinder 11 occurs naturally due to the difference in vapor pressure due to the temperature difference between the refining stations. In addition, the heating medium used here has a boiling point between the storage temperature during hydrogen storage and the release temperature during hydrogen release, and has an fQ degree in between, which facilitates the movement of the heating medium. It is also desirable to do so.

〔作 用〕[For production]

このような水素精製方法にあっては、水素吸蔵工程にあ
る精製筒の発熱が熱媒の#動によって水素放出工程にあ
る精製筒の吸熱に利用され、系外からの加熱および冷却
が不要となり、精製費用を太き(低減することが可能と
なる。また、熱媒の気化および液化潜熱を利用するため
、熱容址を太き(取ることができて、伝熱効果が制まり
、水素の吸蔵、放出時間の短縮化が計れる。さらに、熱
媒系状が1つで済むため、装置の簡略化が計れ、設備費
も安、く、運転が容易で故障の恐れも少ない。
In this type of hydrogen purification method, the heat generated by the refining column during the hydrogen storage process is used to absorb heat from the refining column during the hydrogen release process through the action of a heating medium, eliminating the need for heating and cooling from outside the system. In addition, since the latent heat of vaporization and liquefaction of the heating medium is utilized, the heat capacity can be increased, which suppresses the heat transfer effect and reduces the hydrogen In addition, since only one heating medium system is required, equipment can be simplified, equipment costs are low, and operation is easy and there is little risk of failure.

第2図は、この発明の水素梢製法を実施するための装置
の他の例を示すもので、第1図に示したもl/)と同一
構成部分には同一符号を付してその説明を省略する。こ
の例のものは、装置が大型化し、多;にの熱媒が必要な
時IC,J l、ている。
FIG. 2 shows another example of the apparatus for carrying out the hydrogen production method of the present invention, and the same components as those shown in FIG. omitted. In this example, IC, Jl, etc. are used when the equipment becomes large and many heating mediums are required.

第1晴製筒3が水素吸蔵工程で、第2侑裏筒11が水素
放出工程の時、熱媒は熱媒タンク18からポンプ19で
送出され、管20%弁21を経て第1精製筒3の熱媒用
熱交換パイプ5に送られる。
When the first clearing cylinder 3 is in the hydrogen storage process and the second yuri cylinder 11 is in the hydrogen releasing process, the heat medium is sent out from the heat medium tank 18 by the pump 19, passes through the pipe 20% valve 21, and is transferred to the first purification cylinder. 3 is sent to the heat exchange pipe 5 for heat medium.

第1梢製藺3を冷却し、自からは気化した熱媒は弁8、
熱媒管9、弁10を介して第2楕製筒11の熱媒用熱交
換パイプ14に移動し、ここで第2檀製筒11を加熱し
、自からは液化し、熱媒用熱又換バイブ14から弁22
を経て、熱媒タンク18に回収される。ついで、第1精
製間3が水素放出工程に、第21製筒11が水素吸蔵工
程になると、熱媒は、ポンプ19から青20、弁23を
経て、第1#製筒11に送られ、さらに第1梢製脩3に
移動し、第1梢製筒3から升24を経て熱媒夕/り18
に民る。
The first Kozue-made strawberry 3 is cooled, and the vaporized heat medium is released from the valve 8;
It moves to the heat exchange pipe 14 for the heat medium of the second oval cylinder 11 via the heat medium pipe 9 and the valve 10, heats the second wooden cylinder 11 here, and liquefies itself, and the heat for the heat medium is transferred. Replacement vibrator 14 to valve 22
The heat medium is then collected in the heat medium tank 18. Next, when the first refining chamber 3 enters the hydrogen release process and the 21st cylinder 11 enters the hydrogen storage process, the heat medium is sent from the pump 19 to the #1 cylinder 11 via the blue 20 and valve 23. Further, it moves to the first tree-making cylinder 3, passes through the first tree-making cylinder 3 to the square 24, and then passes through the heating medium tube 18.
people.

この同では、熱媒?:梢精製外に貯留することになり、
精製筒内の熱媒用熱交換パイプの占める体積を少な(し
、精製筒内の水素吸斌合金菫を多(することができる。
In this case, is it a heating medium? : It will be stored outside the treetop refinery,
It is possible to reduce the volume occupied by the heat exchange pipe for the heat medium in the refining cylinder and increase the amount of hydrogen absorbing alloy violet in the refining cylinder.

また、熱媒供給層をポンプ19で任意に調整できるため
、水素の吸蔵、放出速度を1ijil ’61Jするこ
とができる。
Furthermore, since the heat medium supply layer can be arbitrarily adjusted by the pump 19, the hydrogen storage and release rate can be reduced to 1ijil '61J.

なお、裂1置のすべての升噴を自動弁として無人運転を
行うことができる。また、精製筒内の熱媒用鵠交樽パイ
プには、二[’if型、多¥11費、グレートフィン型
などあらゆるタイプを使用することができる。また、熱
媒は水素吸硫合金の種類や吸蔵圧力、放出圧力などによ
り、C’、Hs Ce* Cr4 C1h tCCls
 F、 CC112F2. CHFz Ce、 C3C
ds F3v N)bなど種々のものが使え、圧力を加
えて沸点を変化させて使用することもでざる。さらに、
熱媒管9に間車な加熱ly (己水ヒータ、v6気ヒー
タなど)を虐げて水素放出速度を晶めたり、チラーなど
冷却源を設けて水素放出速度を下げることも可能である
In addition, unmanned operation can be performed by using automatic valves for all the injection valves in the first station. In addition, any type can be used for the heating medium barrel pipe in the refining cylinder, such as the two-if type, the multi-¥11 type, and the great fin type. Also, depending on the type of hydrogen-sulfur absorbing alloy, storage pressure, release pressure, etc., the heating medium may be C', Hs Ce* Cr4 C1h tCCls
F, CC112F2. CHFz Ce, C3C
Various types such as ds F3v N)b can be used, and it is also possible to change the boiling point by applying pressure. moreover,
It is also possible to reduce the hydrogen release rate by suppressing the heating ly (self-water heater, V6 air heater, etc.) in the heat medium pipe 9, or by providing a cooling source such as a chiller to lower the hydrogen release rate.

〔実施例〕〔Example〕

i′31図に示した装置を用い、水ぶ吸蔵合金としテL
 aN is k、熱媒トシてCCe5FCフロアR−
11、沸点26.7°C,1^tm)を用いて本発明の
水素U製法を実施した。水素吸ば圧カ8atm−水素放
出圧力f、 5 a t mとした。水素を8atmで
吸蔵させると55°Cの熱が発生する。一方、1.5a
tmで水素を放出すると吸熱して15°Cまで冷却され
る。そこで、熱媒を吸蔵工程にある精W箇に封入すれば
吸熱し、気化する。気化した熱媒は放出工程にある精製
筒に移動し、ここで冷却され液化される。
i'31 Using the equipment shown in Figure 31, the water storage alloy is
aN is k, heat medium toshite CCe5FC floor R-
11, boiling point 26.7°C, 1^tm) was used to carry out the hydrogen U production method of the present invention. The hydrogen suction pressure was 8 atm - the hydrogen discharge pressure was f, 5 atm. When hydrogen is absorbed at 8 atm, heat of 55°C is generated. On the other hand, 1.5a
When hydrogen is released at tm, it absorbs heat and is cooled to 15°C. Therefore, if a heating medium is sealed in the W part in the storage process, it will absorb heat and vaporize. The vaporized heat medium moves to the refining column in the discharge process, where it is cooled and liquefied.

この実施例では、水素吸蔵時の発熱を水素放出時の吸熱
に利用でき、外部からの熱は全(必要としない。これに
対し、従来のものでは水素吸蔵工程および水素放出工程
にそれぞれ約2907/Nrrjl−bの熱が必要とな
り、水素吸蔵時の加熱のみを電気ヒータで行ったとする
と約Q、3kwhの電力を消費することになる。
In this embodiment, the heat generated during hydrogen storage can be used for the heat absorption during hydrogen release, and all heat from the outside is not required.In contrast, in the conventional system, approximately 2,907 liters of heat is required for the hydrogen storage process and the hydrogen release process. /Nrrjl-b is required, and if only heating during hydrogen storage is performed using an electric heater, approximately Q, 3kwh of power will be consumed.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ5に、この発明の7に素棺製法は、水素
吸蔵工程にあるPR製尚に数比熱媒を導入し、この精製
筒で発生する熱で熱媒を気化させ、この気化熱媒を水素
放出工程にある精製筒に導入し、この精製筒を力U熱し
、熱媒を籠化し、次いでこの精製筒を水素吸蔵工程に切
替えて同様の工程を繰り返えすため、 ■ 加熱、冷却が不要となり、エネルギー費用が不要と
なる。
As explained above, in 7 of the present invention, the uncoated coffin manufacturing method introduces a specific heating medium into the PR manufacturing process in the hydrogen storage process, vaporizes the heating medium with the heat generated in this refining cylinder, and generates heat from this vaporization. In order to introduce the medium into the refining cylinder in the hydrogen release process, heat the refining cylinder to form a cage for the heating medium, and then switch the refining cylinder to the hydrogen storage process and repeat the same process. No cooling is required and energy costs are eliminated.

@ 熱媒の気化潜熱および液化潜熱を利用するため熱容
量が太き(、伝熱効果が向上し、吸蔵、放出時間が短縮
される。
@ Since it utilizes the latent heat of vaporization and latent heat of liquefaction of the heating medium, it has a large heat capacity (improves the heat transfer effect and shortens the storage and release times.

θ 熱媒系統が1系統で過むため、装置全体が簡略化で
き、設備費も安価で、パ框転も容盪でかつメンテナンス
も容易である。
θ Since only one heating medium system is required, the entire device can be simplified, the equipment cost is low, the pump rotation is simple, and maintenance is easy.

などの利点を有するものである。It has the following advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、いずれもこの発明の水素精製法
に用いられる装置の例を示す概略構成図である。
FIG. 1 and FIG. 2 are both schematic configuration diagrams showing an example of an apparatus used in the hydrogen purification method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金が充填され、かつ熱交換パイプの内蔵され
た精製筒を複数基設け、これら精製筒を交互に水素吸蔵
工程と水素放出工程とに切換えて水素含有ガスから水素
を精製する方法において、前記各精製筒の熱交換パイプ
相互に、水素吸蔵工程にある精製筒に液化熱媒を導入し
、この精製筒で発生する熱を熱媒の気化潜熱として吸収
させて熱媒を気化させ、この気化熱媒を水素放出工程に
ある精製筒に導入し、この精製筒を加熱し、熱媒を凝縮
液化させ、この液化熱媒を水素吸蔵工程にある精製筒に
送るようにしたことを特徴とする水素精製法。
In a method of purifying hydrogen from a hydrogen-containing gas by providing a plurality of purification cylinders filled with a hydrogen storage alloy and having built-in heat exchange pipes, and switching these purification cylinders alternately to a hydrogen storage process and a hydrogen release process, A liquefied heating medium is introduced into the refining cylinder in the hydrogen storage process between the heat exchange pipes of each refining cylinder, and the heat generated in this refining cylinder is absorbed as latent heat of vaporization of the heating medium to vaporize the heating medium. The method is characterized in that a vaporized heat medium is introduced into a refining cylinder in a hydrogen release process, the refining cylinder is heated, the heat medium is condensed and liquefied, and this liquefied heat medium is sent to a refining cylinder in a hydrogen storage process. hydrogen purification method.
JP60264628A 1985-11-25 1985-11-25 Method for purifying hydrogen Pending JPS62123001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264628A JPS62123001A (en) 1985-11-25 1985-11-25 Method for purifying hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264628A JPS62123001A (en) 1985-11-25 1985-11-25 Method for purifying hydrogen

Publications (1)

Publication Number Publication Date
JPS62123001A true JPS62123001A (en) 1987-06-04

Family

ID=17405980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264628A Pending JPS62123001A (en) 1985-11-25 1985-11-25 Method for purifying hydrogen

Country Status (1)

Country Link
JP (1) JPS62123001A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971605A (en) * 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5268022A (en) * 1991-03-07 1993-12-07 The Boc Group Plc Gas separation method and apparatus
US5861050A (en) * 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister
US5917140A (en) * 1996-05-21 1999-06-29 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing vessel with enhanced heat transfer means

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128778A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Heat exchanger
JPS5953203A (en) * 1982-08-25 1984-03-27 メツツエラー、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Pneumatic tire for two-wheel barrow
JPS61174102A (en) * 1985-01-29 1986-08-05 Mitsubishi Heavy Ind Ltd Refining method of hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128778A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Heat exchanger
JPS5953203A (en) * 1982-08-25 1984-03-27 メツツエラー、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Pneumatic tire for two-wheel barrow
JPS61174102A (en) * 1985-01-29 1986-08-05 Mitsubishi Heavy Ind Ltd Refining method of hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971605A (en) * 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5268022A (en) * 1991-03-07 1993-12-07 The Boc Group Plc Gas separation method and apparatus
US5917140A (en) * 1996-05-21 1999-06-29 Advanced Technology Materials, Inc. Sorbent-based fluid storage and dispensing vessel with enhanced heat transfer means
US5861050A (en) * 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister

Similar Documents

Publication Publication Date Title
US4754805A (en) Method for transforming the temperature of heat and heat transformer
JP2648959B2 (en) Hydrogen compressor
JPS6362254B2 (en)
JPH0881203A (en) Purification of high-purity hydrogen bromide and apparatus therefor
JPS62123001A (en) Method for purifying hydrogen
JPS6156009B2 (en)
WO2024001314A1 (en) Purification method for circulating hydrogen for polycrystalline silicon
EP1550830A1 (en) Heat pump system
JPS6114101A (en) Hydrogen purification apparatus
JP2015105809A (en) Heat storage system, and heat storage and heat output method
JP2002160901A (en) Device for activating hydrogen storage alloy
CN113574331A (en) Adsorption refrigerator or adsorption heat pump with refrigerant distribution in liquid phase and method for operating an adsorption refrigerator or adsorption heat pump
JP2002249032A (en) Hydrogen station
JPS5978907A (en) Refining method of gaseous hydrogen
JPS63140200A (en) Storage device for hydrogen absorbing alloy
JP2607677B2 (en) Generator hydrogen purity maintenance device by metal hydride
JPS5983897A (en) Hydrogen-gas purifying and storing apparatus
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JPH0278868A (en) Method and apparatus for energy conversion utilizing hydrogen occluding metal
JPS6329724Y2 (en)
JPS58190803A (en) Apparatus for purifying gaseous hydrogen
JPS6125650B2 (en)
JPH05114411A (en) Fuel cell power generation system
JPS61174102A (en) Refining method of hydrogen
CN112661119A (en) Ozone generator capable of using self waste heat to vaporize liquid oxygen