JPS61174102A - Refining method of hydrogen - Google Patents

Refining method of hydrogen

Info

Publication number
JPS61174102A
JPS61174102A JP1354185A JP1354185A JPS61174102A JP S61174102 A JPS61174102 A JP S61174102A JP 1354185 A JP1354185 A JP 1354185A JP 1354185 A JP1354185 A JP 1354185A JP S61174102 A JPS61174102 A JP S61174102A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
alloy
heat medium
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1354185A
Other languages
Japanese (ja)
Inventor
Morikazu Kanamaru
金丸 守一
Hiroshi Koshiba
小芝 浩
Koichi Hirata
耕一 平田
Tadami Eito
栄藤 忠已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryowa Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Ryowa Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryowa Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Ryowa Engineering Co Ltd
Priority to JP1354185A priority Critical patent/JPS61174102A/en
Publication of JPS61174102A publication Critical patent/JPS61174102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To refine efficiently hydrogen with a device made into simple construction by cooling a hydrogen occluding alloy by making use of a heat medium in the stage of occluding and utilizing the vapor of the heat medium in this stage for heating of the alloy in the stage of devolatizing. CONSTITUTION:Pipes 24 into which the hydrogen occluding alloys 3 are packed are fixed into vessels 1, 2. Raw material H2 is supplied into the vessel 1. The heat medium such as ethanol is circulated through a tank 12, a pump 13 and a heat medium pipe 5 in the stage of starting releasing in the vessel 2 with which the occluding is already finished, then the temp. rise of the alloy 3 in the vessel 1 is prevented. The vapor of the heat medium enters the vessel 2 through the heat medium pipe and is condensed by the outside wall of the pipe 24 to heat the alloy 3 so as to assist the release of H2. The devolatizing of the occluding material in the vessel 2 is finished when the H2 is filled in the occluding material in the vessel 1 and therefore the valve is changed over.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素吸蔵合金を用いた水素の精製法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a hydrogen purification method using a hydrogen storage alloy.

(従来の技術) 従来、水素吸蔵合金のもつ水素との選択的反応性を利用
し、不純物含有水素を該合金と接触させ水素を吸蔵させ
た後、この合金から水素を放出させるととKよって高純
度の水素を得ることが考えられている。この方法によれ
ば、水素吸厳時はその反応による熱を冷媒によって冷却
除去せねばならず、又逆に水素脱蔵時には熱源  □に
より加熱せねばならない。従って、夫々冷媒と熱源が必
要であった。これは冷媒、熱源のコストを要するとと\
なシ水素精製費のアップになると共に冷媒、熱源の不足
している地域では大きな制約条件となる。
(Prior art) Conventionally, by utilizing the selective reactivity with hydrogen that a hydrogen storage alloy has, impurity-containing hydrogen is brought into contact with the alloy to absorb hydrogen, and then hydrogen is released from the alloy. The idea is to obtain high-purity hydrogen. According to this method, when hydrogen is absorbed, the heat generated by the reaction must be cooled and removed by a refrigerant, and conversely, when hydrogen is desorbed, it must be heated by a heat source □. Therefore, a refrigerant and a heat source were required, respectively. This requires the cost of refrigerant and heat source.
This will increase the cost of hydrogen refining and become a major constraint in areas where refrigerants and heat sources are in short supply.

また、吸蔵時の冷却、脱厳時の加熱の熱量を相互に利用
する熱量自己充足型の考えはある。
There is also the idea of self-sufficiency in heat capacity, which mutually utilizes the heat capacity for cooling during occlusion and heating during desorption.

これは、熱貯蔵容器を介して熱の授受を行い、熱媒とし
て水、エチレングリコール等の沸点100℃(常圧)以
上の液体の顕熱を利用するものである。この方式では、
熱貯菫容器設置のためのコストアップ、および液体の顕
熱による熱の授受では、循環液量当〕の熱交換の能力が
小であること、および可能な熱伝達係数が小であること
のため、所要伝熱面積が増大し吸蔵容器が複雑になる等
の不利な点がある。
This transfers heat through a heat storage container and uses the sensible heat of a liquid with a boiling point of 100° C. (normal pressure) or higher, such as water or ethylene glycol, as a heat medium. In this method,
This increases the cost of installing a heat storage container, and in transferring heat by sensible heat of the liquid, the heat exchange capacity per volume of circulating liquid is small and the possible heat transfer coefficient is small. Therefore, there are disadvantages such as an increase in the required heat transfer area and a complicated storage container.

(発明が解決しようとする問題点) 本発明は、上記欠点を解消し、熱媒体蒸気の直接利用に
よる熱量自己充足型の水素の精製法を提供するものであ
る。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned drawbacks and provides a self-sufficient method for refining hydrogen by directly utilizing heat medium vapor.

(問題点を解決するための手段) 本発明は、水素吸蔵合金による水素の精製法において、
水素吸蔵時の前記合金を熱媒体の蒸発潜熱を利用して間
接冷却し、かつその時得られる熱媒体の蒸気により水素
脱蔵時の前記合金を間接加熱することを特徴とする水素
の精製法に関する。
(Means for Solving the Problems) The present invention provides a method for purifying hydrogen using a hydrogen storage alloy.
Relating to a hydrogen purification method characterized by indirectly cooling the alloy during hydrogen storage using the latent heat of vaporization of a heating medium, and indirectly heating the alloy during hydrogen devolatilization using the vapor of the heating medium obtained at that time. .

(作用) 本発明は、馬吸蔵時および脱蔵時の操作条件および熱源
を適切に選定することによって吸蔵時の発熱による熱量
を脱蔵時の吸熱に対する温度補償用に使用するものであ
る。例えば、第1図に示す各種水素吸蔵合金の温度−F
(i圧力特性においてLaNi@を考える。この合金は
111.6℃(1000/T −2,6) においてS
 3 atmの水素分圧と平衡を保つ。従って、この温
度以下に維持しつN55 atm以上の水素分圧下にお
けば、馬は合金の飽和状態にまで吸蔵される。従って、
100℃に維持し55 atm以上の水素分圧下で吸蔵
させるものとする。この時、吸蔵材の温度は上昇するの
で伝熱壁を通して100℃以下の冷媒によって吸蔵材を
冷却せねばならない。又この合金は30℃(1000/
T■五3)において1、7 atmの水素分圧と平衡を
保つ。従って、この温度以上に維持しつ\t 7 at
m以下の水素分圧下に保てば為は合金よシ放出される。
(Function) The present invention uses the amount of heat generated during storage to compensate for the heat absorbed during devolatilization by appropriately selecting operating conditions and heat sources during occlusion and devolatilization. For example, the temperature -F of various hydrogen storage alloys shown in Figure 1
(Consider LaNi@ in terms of i pressure characteristics. This alloy has S
Maintain equilibrium with the hydrogen partial pressure of 3 atm. Therefore, if the temperature is maintained below this temperature and the partial pressure of hydrogen is above N55 atm, the metal will be occluded to the saturation state of the alloy. Therefore,
The temperature is maintained at 100°C and the hydrogen partial pressure is stored at 55 atm or higher. At this time, the temperature of the storage material increases, so it is necessary to cool the storage material with a refrigerant of 100° C. or lower through the heat transfer wall. Also, this alloy has a temperature of 30℃ (1000/
Maintain equilibrium with the hydrogen partial pressure of 1.7 atm at T■53). Therefore, while maintaining the temperature above this temperature,
If the hydrogen partial pressure is kept below m, hydrogen will be released from the alloy.

吸蔵材を50℃に維持し1.7 atm以下の迅分圧下
で放出させるものとする。この時は、50℃以上の熱源
によ〕吸蔵材を加熱、その温度を維持せねばならない。
The storage material shall be maintained at 50°C and released under a rapid partial pressure of 1.7 atm or less. At this time, the storage material must be heated with a heat source of 50°C or higher and the temperature must be maintained.

この設定によれば適切な熱源を使用するととくよシ吸蔵
時に除去した熱量を脱蔵時の供給熱量として使用できる
。なお、第1図中のMmとは、ミッシユメタルを指し、
希土類係の合金で、例えばLa30%−〇050%−P
r5%−M15%等の組成のものがある。
According to this setting, if an appropriate heat source is used, the amount of heat removed during occlusion can be used as the amount of heat supplied during devolatilization. In addition, Mm in Figure 1 refers to missing metal.
Rare earth alloy, for example La30%-〇050%-P
There are compositions such as r5%-M15%.

第2図は本発明方法の一実施態様例を説明するための図
であシ、第3図は第2図中の容器1又は2の概念図であ
る。
FIG. 2 is a diagram for explaining one embodiment of the method of the present invention, and FIG. 3 is a conceptual diagram of the container 1 or 2 in FIG. 2.

第2,3図の構成の水素精製装置において、容器1、容
器2内に吸蔵材3としてここではI、aNilBを充填
したパイプ24が管板4により熱交換器の如く固定され
ている。
In the hydrogen purification apparatus having the structure shown in FIGS. 2 and 3, a container 1 and a pipe 24 filled with an occlusion material 3, here I, aNilB, are fixed by a tube plate 4 like a heat exchanger.

原料H!は原料供給ライン18よシ約90%の純度(残
シは、メタン、エタン、N2等の不純物)、圧力的57
 atm程度で供給され、容器1内のパイプ24内の吸
蔵材3!/cよシ烏は吸蔵され、残シは原料戻しライン
19に戻される。又容器2は容器1と同じ仕様のもので
あシ、既KHilの吸蔵を終ったものとする。切換パル
プ7.9を閉じ、パージパルプ10を開放して容器2内
の原料ガスをパージし、その後同パージパルプ10を閉
じ、切換バルブ22を開として吸蔵馬の放出を開始する
。高純度馬は精製島田ロライン20より取り出される。
Raw material H! The purity of the raw material supply line 18 is about 90% (the remainder is impurities such as methane, ethane, N2, etc.), and the pressure is 57%.
The storage material 3 in the pipe 24 in the container 1 is supplied at about ATM level! The /c grains are occluded and the remaining grains are returned to the raw material return line 19. It is also assumed that container 2 has the same specifications as container 1, and has already stored KHil. The switching pulp 7.9 is closed and the purge pulp 10 is opened to purge the raw material gas in the container 2, and then the purge pulp 10 is closed and the switching valve 22 is opened to start discharging the stored horse. High purity horse is extracted from refined Shimada Loline 20.

適当な熱媒体をタンク12、ポンプ13、熱媒管5を経
由循環させておく。
A suitable heat medium is circulated through the tank 12, pump 13, and heat medium pipe 5.

熱媒体としては、メタノール、エタノール、1−プロパ
ツール、n′−ブタノール、1−ブタノール、アセトン
、メチルエチルケトン、エチレングリコール、アルキル
ベ°ンゼン、アルキルナフタリン、ジフェニル、ジフェ
ニルエーテル、アルキルジフェニル、軽油等が使用でき
る。ここでは−例としてエタノール〔沸点7&5℃(大
気圧)、分子量46〕を使用する。容器1、容器2内の
パイプ240表面積は吸蔵材3の温度がそれぞれ100
℃以下(エタノールの沸点7a5℃に基づき、若干の余
裕をもって100℃以下とする)、50℃以上(水素の
30℃、1、7 atmでの放出に基づき、若干の余裕
をもって50℃以上とする)になるよう設計されている
。従って、容器1では吸蔵材3の温度は次第に上昇し、
7a5℃を超えて更に高温になろうとする(吸蔵可能限
界111℃)が、熱媒管5内のエタノール液が沸とうを
始め、吸蔵材3の温度上昇をくいとめるとともに1その
蒸気は熱媒管5経由で容器2に入シ、そのパイプ24外
壁で凝縮し、吸蔵材3を加熱し、水素吸蔵合金からの烏
放出を助ける。容器1の吸蔵材3が馬で満たされた時、
容器2の吸蔵材3は脱蔵を終つているので、バルブの切
換えを行う。切換バルブ6.8,17,15,22は開
の状態から閉に、切換パルプ7.9,16,14は閉の
状態から開にする。
As the heat medium, methanol, ethanol, 1-propertool, n'-butanol, 1-butanol, acetone, methyl ethyl ketone, ethylene glycol, alkylbenzene, alkylnaphthalene, diphenyl, diphenyl ether, alkyldiphenyl, light oil, etc. can be used. Ethanol (boiling point 7&5° C. (atmospheric pressure), molecular weight 46) is used here as an example. The surface areas of the pipes 240 in the containers 1 and 2 are such that the temperature of the storage material 3 is 100%.
℃ or less (based on the boiling point of ethanol 7a5℃, with a slight margin of 100℃ or less), 50℃ or higher (based on the release of hydrogen at 30℃, 1,7 atm, 50℃ or higher with a slight margin) ) is designed to be. Therefore, the temperature of the storage material 3 in the container 1 gradually increases,
7a The temperature is about to rise even higher than 5℃ (storage limit of 111℃), but the ethanol liquid in the heat medium pipe 5 begins to boil, preventing the temperature rise of the storage material 3, and 1 the vapor is released into the heat medium pipe. Hydrogen gas enters the container 2 via the hydrogen storage alloy 5, condenses on the outer wall of the pipe 24, heats the storage material 3, and helps release hydrogen from the hydrogen storage alloy. When the storage material 3 of container 1 is filled with horses,
Since the storage material 3 of the container 2 has finished devolatilization, the valve is switched. The switching valves 6.8, 17, 15, 22 are changed from open to closed, and the switching pulps 7.9, 16, 14 are changed from closed to open.

容器2にて馬吸蔵開始、容器1側では切換パルプ6.8
の閉鎖と同時にパージバルブ11を開とし、原料ガスの
器内滞留分をパージライン21経由でパージし、適当な
時期にパージバルブ11を閉とし、切換パルプ23を開
として精製馬を精製馬用ロライン20よシ取シ出す。か
くの如く切)換え操作により継続して馬を精製できる。
Horse storage started in container 2, switching pulp 6.8 on container 1 side
At the same time as the purge valve 11 is closed, the purge valve 11 is opened to purge the remaining raw material gas in the vessel via the purge line 21, and at an appropriate time, the purge valve 11 is closed, the switching pulp 23 is opened, and the purified horse is transferred to the purified horse loline 20. Take it out. You can continue to refine horses by switching operations like this.

(発明の効果) 個々の容器で吸′M、15分、脱i1.15分のサイク
ルとして交互に作動させるととくよ〕、1時間当1) 
6 X 22.4 X 60/30X 2−557.6
 Mm”の精製馬が得られる(すなわち、有効馬吸蔵容
量約1.2 wt%で、吸蔵材3の充填量を各容器共1
.0トンとすると、1サイクル当fi1000XQ、 
012−12kg−6kll−molO島精製量となる
)。
(Effects of the invention) Each container is operated alternately in a cycle of 15 minutes of suction and 1.15 minutes of de-I, 1 hourly.
6 X 22.4 X 60/30X 2-557.6
Mm'' purified horse is obtained (that is, the effective horse storage capacity is about 1.2 wt%, and the filling amount of the storage material 3 is 1 for each container.
.. If it is 0 tons, fi1000XQ per cycle,
012-12kg-6kll-molO island purified amount).

従来法の如く冷媒、熱源を別個に供給する場合は、1回
の切シ換え毎に、1000XQ、012−12 kg−
6kg −mol 、反応熱7.2X10”X604 
!h 2 X 1G”kaal  であるため、吸菫時
は冷却水4五2 X 10”/10謬4320kg(1
0℃上昇として)で、脱蔵時熱量44200 kcal
  を要するととKなシ、1時間当シ冷却水4520×
4=17,280kg、熱量44200X4=17 Z
 8 G G kcal  となる。従って、本発明方
法による効果は大である。
When the refrigerant and heat source are supplied separately as in the conventional method, 1000XQ, 012-12 kg-
6kg-mol, reaction heat 7.2X10"X604
! h 2
(as an increase of 0℃), the amount of heat during devolatilization is 44,200 kcal
It takes 4520x cooling water for 1 hour.
4=17,280kg, heat amount 44200X4=17 Z
8 G G kcal. Therefore, the effect of the method of the present invention is significant.

又、熱媒の顕熱のみが対象になる従来の自己充足型にお
いては、例えば水を熱媒体に使う場合、出入口温度差を
20℃としても水1kg当シ20 kcal  の熱を
移動しうるに過ぎない。一方、本発明方法においては、
熱媒体の潜熱を利用できるように選定するものである。
Furthermore, in conventional self-contained systems where only the sensible heat of the heating medium is used, for example, when water is used as the heating medium, even if the temperature difference between the entrance and exit is 20°C, 20 kcal of heat can be transferred per 1 kg of water. Not too much. On the other hand, in the method of the present invention,
It is selected so that the latent heat of the heat medium can be utilized.

例えば、上記例の場合、エタノールを使用するが、この
ときはエタノールの潜熱は9.5 X 10” kaa
l/mol  であるから、エタノール1ゆ当り?、 
3 X I Q”/46−2012 kaal の熱を
移動しうる(上記の従来の自己充足型の約10倍)。こ
れはポンプ13のコストおよび動力に影響する。
For example, in the above example, ethanol is used, and in this case, the latent heat of ethanol is 9.5 x 10” kaa
Since it is l/mol, is 1 yut of ethanol? ,
3 X I Q"/46-2012 kaal (approximately 10 times more than the conventional self-contained type described above). This affects the cost and power of the pump 13.

又、吸蔵材3との熱交換に際し、吸蔵材(金属粉末)−
バイブ壁−熱媒体の構成に訃いて、周知の通シ、熱媒体
側が相変化のない対流伝熱のみの時に比し、沸騰、凝縮
の相変化のある本発明方法の方が格段に伝熱性能が良い
ことは明かである。この伝熱性能は吸蔵器の構造設計、
製作において重要な要素となシ、特に吸蔵能力が高い金
属を使う場合は、吸蔵器構造決定の主要素となる。コス
トが安く、簡単な構造の吸蔵器を造るには、この伝熱性
能の良いことが大きなメリットとなる。
Also, during heat exchange with the storage material 3, the storage material (metal powder) -
Due to the configuration of the vibrator wall and heat medium, the heat transfer rate of the method of the present invention, which involves phase changes of boiling and condensation, is significantly better than the well-known convection heat transfer method with no phase change on the heat medium side. It is clear that the performance is good. This heat transfer performance is determined by the structural design of the storage device.
This is an important factor in manufacturing, especially when metals with high storage capacity are used, and are the main factor in determining the structure of the storage device. This good heat transfer performance is a major advantage in producing a low-cost storage device with a simple structure.

(その他) なお、吸蔵材として次のものを使用する場合、馬原料ガ
ス圧、使用熱媒体は次の通シとすることが好ましい。
(Others) When using the following as the storage material, it is preferable that the raw material gas pressure and the heat medium used be as follows.

吸蔵材 原料ガス圧     熱媒体Storage material Raw material gas pressure Heat medium

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用される水素吸蔵合金の温度−平衡
圧力線図、第2図は本発明方法の一実施態様例を示す図
、第3図は第2図中の一部の構成を説明する概念図であ
る。 復代理人  内 1)  明 復代理人  萩 原 亮 −
Figure 1 is a temperature-equilibrium pressure diagram of the hydrogen storage alloy used in the present invention, Figure 2 is a diagram showing an embodiment of the method of the present invention, and Figure 3 is a partial configuration of Figure 2. FIG. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金による水素の精製法において、水素吸蔵時
の前記合金を熱媒体の蒸発潜熱を利用して間接冷却し、
かつその時得られる熱媒体の蒸気により水素脱蔵時の前
記合金を間接加熱することを特徴とする水素の精製法。
In a hydrogen purification method using a hydrogen storage alloy, the alloy during hydrogen storage is indirectly cooled using the latent heat of vaporization of a heating medium,
A method for refining hydrogen, characterized in that the alloy during hydrogen devolatilization is indirectly heated by the vapor of the heat medium obtained at that time.
JP1354185A 1985-01-29 1985-01-29 Refining method of hydrogen Pending JPS61174102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1354185A JPS61174102A (en) 1985-01-29 1985-01-29 Refining method of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1354185A JPS61174102A (en) 1985-01-29 1985-01-29 Refining method of hydrogen

Publications (1)

Publication Number Publication Date
JPS61174102A true JPS61174102A (en) 1986-08-05

Family

ID=11836009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1354185A Pending JPS61174102A (en) 1985-01-29 1985-01-29 Refining method of hydrogen

Country Status (1)

Country Link
JP (1) JPS61174102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123001A (en) * 1985-11-25 1987-06-04 Nippon Sanso Kk Method for purifying hydrogen
JP2010248037A (en) * 2009-04-16 2010-11-04 Kobe Steel Ltd Hydrogen purification method and reaction vessel for hydrogen-storage alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123001A (en) * 1985-11-25 1987-06-04 Nippon Sanso Kk Method for purifying hydrogen
JP2010248037A (en) * 2009-04-16 2010-11-04 Kobe Steel Ltd Hydrogen purification method and reaction vessel for hydrogen-storage alloy

Similar Documents

Publication Publication Date Title
EP0015106B1 (en) Absorption-desorption system
JP4891488B2 (en) Sorption cooler
JP2648959B2 (en) Hydrogen compressor
US2040059A (en) Method and apparatus for dispensing gas material
JPS61153342A (en) Heat-insulating temperature elevating and heat-insulating cooling method by adsorption principle and device thereof
KR20170089344A (en) Solid state hydrogen storage device and solid state hydrogen storage system
JPS61174102A (en) Refining method of hydrogen
JP4889650B2 (en) Generation of cryogenic cooling in thermochemical equipment.
US3760597A (en) Short term storage of natural gas
JP2015105809A (en) Heat storage system, and heat storage and heat output method
JPS62123001A (en) Method for purifying hydrogen
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JPH1054623A (en) Method of managing adsorption and thermochemistry reaction of solid/liquid
JPS634111B2 (en)
JPS6114101A (en) Hydrogen purification apparatus
JP6061462B2 (en) Chemical heat storage device
JPS601542B2 (en) Absorption type thermal storage heating and cooling equipment
JPH0214600B2 (en)
JPS6048467A (en) Method of driving heat pump device
JPH1081501A (en) Hydrogen occlusion and discharge, and device therefor
JPS6037395B2 (en) Portable heating or cooling device
JPS6321839Y2 (en)
JP2022109819A (en) Chemical heat storage device and heat storage method for chemical heat storage material
JP2002013696A (en) Method for solidifying and refining carbon dioxide and method of filling pressure vessel with carbon dioxide gas
JPS6096801A (en) Steam generator