JP2002249032A - Hydrogen station - Google Patents

Hydrogen station

Info

Publication number
JP2002249032A
JP2002249032A JP2001050857A JP2001050857A JP2002249032A JP 2002249032 A JP2002249032 A JP 2002249032A JP 2001050857 A JP2001050857 A JP 2001050857A JP 2001050857 A JP2001050857 A JP 2001050857A JP 2002249032 A JP2002249032 A JP 2002249032A
Authority
JP
Japan
Prior art keywords
hydrogen
purifier
purified
purified hydrogen
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001050857A
Other languages
Japanese (ja)
Inventor
Kazuhisa Sato
和久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001050857A priority Critical patent/JP2002249032A/en
Publication of JP2002249032A publication Critical patent/JP2002249032A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To lengthen the service life of a second purifier used for achieving high-purity hydrogen. SOLUTION: This hydrogen station 1 is constituted of a hydro-electrolytic apparatus 4, a first purifier 6 capable of purifying hydrogen produced by the hydro-electrolytic apparatus 4 to obtain first purified hydrogen, a switching device 8 for switching the flowing direction of the first purified hydrogen to make the first purified hydrogen flow to either of storage side or re-purification side, a first storage device 12 for charging the first purified hydrogen, a second purifier 15 for re-purifying the first purified hydrogen to obtain second purified hydrogen, and a second storage device 16 for charging the second purified hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素ステーション,
即ち,水素を製造し,それを貯蔵して,例えば燃料電池
搭載車両に供給する,といった機能を有する水素ステー
ションに関する。
The present invention relates to a hydrogen station,
That is, the present invention relates to a hydrogen station having a function of producing hydrogen, storing the hydrogen, and supplying the produced hydrogen to, for example, a fuel cell vehicle.

【0002】[0002]

【従来の技術】燃料電池搭載車両において水素を携行す
る場合,例えば,高圧で比較的純度の低い水素,即ち低
純度水素を充填された高圧容器を装備するか,低圧で比
較的純度の高い水素,即ち高純度水素を吸蔵した水素吸
蔵材を有する圧力容器を装備する,といった手段が採用
されている。
2. Description of the Related Art When carrying hydrogen in a vehicle equipped with a fuel cell, for example, a high-pressure container filled with high-pressure and relatively low-purity hydrogen, that is, low-purity hydrogen, or a low-pressure and relatively high-purity hydrogen is used. That is, a means of equipping a pressure vessel having a hydrogen storage material storing high-purity hydrogen is adopted.

【0003】そこで,水素ステーションにおいては,例
えば,水素製造用水電解装置に,低純度水素を得る第1
精製・圧縮系統と,高純度水素を得る第2精製・圧縮系
統とを切換装置を介して接続し,1つの水電解装置から
二種類の水素を得る,といったことが試みられている。
[0003] Therefore, in a hydrogen station, for example, a first electrolysis apparatus for producing hydrogen is used to obtain low-purity hydrogen.
Attempts have been made to connect a purifying / compressing system and a second purifying / compressing system for obtaining high-purity hydrogen via a switching device to obtain two types of hydrogen from one water electrolysis device.

【0004】[0004]

【発明が解決しようとする課題】水電解装置により得ら
れた水素は水分を多量に含んでおり,その露点は+40
℃程度である。一方,高純度水素にはその露点が−10
0℃程度であることが要求される。そのため,精製器に
は厳しい精製能が要求されるが,現存の精製器は長期に
亘り前記要求に応ずるだけの耐久性を持たないことか
ら,精製器のメンテナンスを頻繁に行わなければなら
ず,生産性の悪化を招いていた。
The hydrogen obtained by the water electrolyzer contains a large amount of water, and its dew point is +40.
It is about ° C. On the other hand, high-purity hydrogen has a dew point of -10.
It is required to be about 0 ° C. For this reason, refiners are required to have strict refining capacity, but existing refiners do not have the durability to meet the above requirements for a long period of time. This has led to a decline in productivity.

【0005】一方,低純度水素の必要純度は,露点−2
0℃程度であるから,精製器に要求される精製能は緩和
されており,前記のような問題は生じない。
On the other hand, the required purity of low-purity hydrogen is dew point -2.
Since the temperature is about 0 ° C., the purifying ability required for the purifier is relaxed, and the above-mentioned problem does not occur.

【0006】[0006]

【課題を解決するための手段】本発明は,高純度水素を
得るために用いられる精製器の延命を図ることが可能な
前記水素ステーションを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen station capable of extending the life of a purifier used for obtaining high-purity hydrogen.

【0007】前記目的を達成するため本発明によれば,
水素製造装置と,その水素製造装置により製造された水
素を精製して第1精製水素を得る第1精製器と,前記第
1精製水素の流れ方向を貯蔵側および再精製側の一方に
決める切換装置と,前記第1精製水素を充填される第1
貯蔵器と,前記第1精製水素を再精製して第2精製水素
を得る第2精製器と,前記第2精製水素を充填される第
2貯蔵器とを有する水素ステーションが提供される。
[0007] To achieve the above object, according to the present invention,
A hydrogen production apparatus, a first purifier for purifying hydrogen produced by the hydrogen production apparatus to obtain a first purified hydrogen, and a switch for determining a flow direction of the first purified hydrogen to one of a storage side and a repurification side An apparatus and a first charged hydrogen filled with the first purified hydrogen.
A hydrogen station is provided having a reservoir, a second purifier for repurifying the first purified hydrogen to obtain a second purified hydrogen, and a second reservoir filled with the second purified hydrogen.

【0008】前記のように構成すると,第2精製水素,
したがって高純度水素は二段の精製工程を経て得られ,
したがって第2精製器に要求される精製能が緩和されて
いるので,その第2精製器の延命を図ることが可能であ
り,これにより純度を異にする第1,第2精製水素を効
率良く生産することができる。
[0008] With the above configuration, the second purified hydrogen,
Therefore, high-purity hydrogen is obtained through a two-stage purification process,
Therefore, since the refining capacity required for the second purifier is relaxed, it is possible to extend the life of the second purifier, thereby efficiently purifying the first and second purified hydrogen having different purities. Can be produced.

【0009】[0009]

【発明の実施の形態】図1に示すように,水素ステーシ
ョン1は水素の製造・精製・貯蔵を行う主たる設備2
と,精製器用再生設備3とを備えており,先に,主たる
設備2について説明し,次いで再生設備3について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a hydrogen station 1 is a main facility 2 for producing, purifying and storing hydrogen.
And a refining facility 3 for the purifier. The main facility 2 will be described first, and then the regenerating facility 3 will be described.

【0010】A.主たる設備(水素の製造・精製・貯
蔵) この主たる設備2には,水素製造装置としての水電解装
置4が備えられている。水電解装置4の水素供給部に第
1供給管5の入口側が接続され,その第1供給管5に,
水電解装置4側から順次,第1精製器6および圧縮機7
が装置される。第1供給管5の出口側は,切換装置8に
おける三方弁9の第1ポートに接続されている。
A. Main Facility (Production, Purification and Storage of Hydrogen) The main facility 2 is provided with a water electrolysis device 4 as a hydrogen production device. The inlet side of the first supply pipe 5 is connected to the hydrogen supply section of the water electrolysis device 4.
The first purifier 6 and the compressor 7 are sequentially arranged from the water electrolysis device 4 side.
Is installed. The outlet side of the first supply pipe 5 is connected to a first port of a three-way valve 9 in the switching device 8.

【0011】三方弁9の第2ポートに第2供給管10の
入口側が接続され,その第2供給管10に切換装置8に
属する圧力調整用第1減圧弁11が装置される。第2供
給管10の出口側には第1貯蔵器としての高圧容器12
が離脱可能に接続される。また三方弁9の第3ポートに
第3供給管13の入口側が接続され,その第3供給管1
3に,三方弁9側から順次,切換装置8に属し,且つ高
減圧比を持つ第2減圧弁14と,第2精製器15とが装
置される。第3供給管13の出口側には第2貯蔵器とし
ての圧力容器16が離脱可能に接続される。
An inlet side of a second supply pipe 10 is connected to a second port of the three-way valve 9, and a first pressure reducing valve 11 for adjusting pressure belonging to the switching device 8 is connected to the second supply pipe 10. At the outlet side of the second supply pipe 10, a high pressure vessel 12 as a first storage is provided.
Are detachably connected. Further, the third port of the three-way valve 9 is connected to the inlet side of the third supply pipe 13.
3, a second pressure reducing valve 14 belonging to the switching device 8 and having a high pressure reducing ratio and a second purifier 15 are sequentially provided from the three-way valve 9 side. A pressure vessel 16 as a second storage is detachably connected to the outlet side of the third supply pipe 13.

【0012】第1精製器6は,その内部に,加熱により
再生される吸着材としての活性アルミナおよびシリカゲ
ルの少なくとも一方,実施例では活性アルミナ17を備
え,一方,第2精製器15は,その内部に,同様に加熱
により再生される吸着材としてのモレキュラシーブ18
を備えている。圧力容器16は,その内部に水素吸蔵材
MHを有し,その水素吸蔵材MHとしては水素吸蔵合金
〔例えば,MmNi4. 7 Al0.3 (Mm:ミッシュメタ
ル),Ti1.2 CrMn等〕,ナノ構造カーボン等が用
いられる。
The first purifier 6 is internally heated by heating.
Activated alumina and silica gel as regenerated adsorbents
Activated alumina 17 is provided in at least one of the embodiments.
On the other hand, the second purifier 15 is similarly heated inside.
Sieve 18 as adsorbent regenerated by water
It has. The pressure vessel 16 has a hydrogen storage material inside.
MH, and the hydrogen storage material MH is a hydrogen storage alloy
[For example, MmNiFour. 7Al0.3(Mm: Mishmeta
Le), Ti1.2CrMn, etc.], nanostructured carbon, etc.
Can be.

【0013】次に,主たる設備2の稼働について説明す
る。
Next, the operation of the main equipment 2 will be described.

【0014】水電解装置4により水素が製造され,その
水素は水分を多量に含んでいて,純度は露点+40℃程
度である。その水素は,第1精製器6の活性アルミナ1
7により脱水を主とした精製処理を施され,これにより
第1精製水素が得られる。この第1精製水素の純度は露
点−20℃程度である。
Hydrogen is produced by the water electrolysis apparatus 4, and the hydrogen contains a large amount of moisture, and the purity is about + 40 ° C. of dew point. The hydrogen is supplied to the activated alumina 1 of the first purifier 6.
7, a purification treatment mainly involving dehydration is performed, whereby a first purified hydrogen is obtained. The purity of the first purified hydrogen is about -20 ° C.

【0015】第1精製水素は圧縮機7によって数10M
Paに加圧された後切換装置8に導入される。切換装置
8の三方弁9は,第1精製水素の流れ方向を貯蔵側,つ
まり高圧容器12側に決めるように切換えられているの
で,高圧で低純度の第1精製水素は第1減圧弁11によ
り圧力を調整された後高圧容器12に充填される。この
場合,第1精製水素は露点−20℃程度であって圧縮機
7を潤滑するのに十分な水分を含んでいるので,その圧
縮機7の摺動部の摩耗が抑制されてその延命が図られ
る。
The first purified hydrogen is several tens M by the compressor 7.
After being pressurized to Pa, it is introduced into the switching device 8. Since the three-way valve 9 of the switching device 8 is switched so as to determine the flow direction of the first purified hydrogen to the storage side, that is, to the high-pressure vessel 12 side, the first purified hydrogen of high pressure and low purity is supplied to the first pressure reducing valve 11. After the pressure is adjusted by the above, the high-pressure container 12 is filled. In this case, since the first purified hydrogen has a dew point of about −20 ° C. and contains sufficient moisture to lubricate the compressor 7, wear of the sliding portion of the compressor 7 is suppressed, and the life of the compressor 7 is extended. It is planned.

【0016】高圧容器12への水素充填が終了すると,
三方弁9は第1精製水素の流れ方向を再精製側,つまり
第2精製器15側に決めるように切換えられ,また高圧
容器12は第2供給管10から離脱されて,新たな水素
充填用高圧容器12が第2供給管10に接続される。
When the filling of the high-pressure vessel 12 with hydrogen is completed,
The three-way valve 9 is switched so as to determine the flow direction of the first purified hydrogen to the re-purification side, that is, to the second purifier 15 side, and the high-pressure vessel 12 is separated from the second supply pipe 10 to refill the hydrogen. The high-pressure vessel 12 is connected to the second supply pipe 10.

【0017】三方弁9の前記切換えによって高圧の第1
精製水素は第2減圧弁14によって数MPaに減圧さ
れ,次いで第2精製器15のモレキュラシーブ18によ
り脱水を主とした精製処理を施され,これにより第2精
製水素が得られる。この第2精製水素の純度は露点−1
00℃程度であり,減圧下にある高純度の第2精製水素
は圧力容器16の水素吸蔵材MHに吸蔵される。この吸
蔵が終了すると,三方弁9は第1精製水素の流れ方向を
高圧容器12側に決めるように切換えられ,また圧力容
器16は第3供給管13から離脱されて,新たな水素吸
蔵用圧力容器16が第3供給管13に接続される。
The switching of the three-way valve 9 causes the high pressure first
The purified hydrogen is decompressed to a few MPa by the second pressure reducing valve 14, and then subjected to a purification treatment mainly for dehydration by the molecular sieve 18 of the second purifier 15, whereby the second purified hydrogen is obtained. The purity of this second purified hydrogen is dew point -1.
The highly purified second purified hydrogen at about 00 ° C. and under reduced pressure is stored in the hydrogen storage material MH of the pressure vessel 16. When the occlusion is completed, the three-way valve 9 is switched so as to determine the flow direction of the first purified hydrogen to the high-pressure vessel 12, and the pressure vessel 16 is separated from the third supply pipe 13, so that a new hydrogen storage pressure is obtained. The container 16 is connected to the third supply pipe 13.

【0018】前記のように構成すると,第2精製水素,
したがって高純度水素は二段の精製工程を経て得られ,
したがって第2精製器15に要求される精製能が緩和さ
れているので,その第2精製器15の延命を図ることが
可能であり,これにより純度を異にする第1,第2精製
水素を効率良く生産することができる。
With the above configuration, the second purified hydrogen,
Therefore, high-purity hydrogen is obtained through a two-stage purification process,
Therefore, since the refining capacity required for the second purifier 15 is relaxed, it is possible to extend the life of the second purifier 15, whereby the first and second purified hydrogens having different purities can be removed. It can be produced efficiently.

【0019】なお,必要に応じて,主たる設備2から圧
縮機7を省き,低圧で低純度の第1精製水素を貯蔵器に
充填することもある。
If necessary, the compressor 7 may be omitted from the main equipment 2, and the storage tank may be filled with low-pressure, low-purity first purified hydrogen.

【0020】B.精製器用再生設備 この再生設備3は,第1精製器6の活性アルミナ17お
よび第2精製器15のモレキュラシーブ18を加熱し,
また冷却し得る加熱−冷却装置19と,両精製器6,1
5間に再生用水素を循環させる水素循環装置20とより
なり,第2精製器15の再生処理過程で第1精製器6の
再生処理を行うことができるようになっている。
B. Regeneration equipment for refiner This regeneration equipment 3 heats activated alumina 17 of the first refiner 6 and molecular sieve 18 of the second refiner 15,
In addition, a heating-cooling device 19 capable of cooling, and both purifiers 6 and 1
A hydrogen circulating device 20 for circulating the hydrogen for regeneration between the five purifiers 5 enables the regeneration of the first purifier 6 to be performed during the regeneration of the second purifier 15.

【0021】加熱−冷却装置19は次のように構成され
ている。第2精製器15に,そのモレキュラシーブ18
を加熱し得る電気ヒータ21が設けられている。また第
1,第2精製器6,15を装置された冷却水循環路22
を備え,その循環路22を構成すべく,第1,第2精製
器6,15間を接続する第1,第2送水管23,24の
一方,つまり第1送水管23には第1精製器6側から順
次,第1三方弁25,循環ポンプ26,第2三方弁2
7,放熱器28,第3三方弁29および第4三方弁30
が装置される。第1〜第4三方弁25,27,29,3
0において,それらの第1,第2ポートが第1送水管2
3に連通するようになっている。第2,第3三方弁2
7,29の両第3ポート間が第3送水管31により接続
され,その第3送水管31によって放熱器28が迂回さ
れる。
The heating / cooling device 19 is configured as follows. The molecular sieve 18 is placed in the second purifier 15.
Is provided with an electric heater 21 capable of heating the heater. Further, a cooling water circulation path 22 provided with first and second purifiers 6 and 15 is provided.
In order to configure the circulation path 22, one of the first and second water pipes 23 and 24 connecting the first and second purifiers 6 and 15, that is, the first water pipe 23 is provided with a first purification pipe. First three-way valve 25, circulation pump 26, second three-way valve 2
7, radiator 28, third three-way valve 29 and fourth three-way valve 30
Is installed. First to fourth three-way valves 25, 27, 29, 3
0, the first and second ports are connected to the first water pipe 2
3 is connected. 2nd, 3rd three-way valve 2
A third water pipe 31 connects between the third ports 7 and 29, and the radiator 28 is bypassed by the third water pipe 31.

【0022】第2送水管24には第1精製器6側から順
次,第5三方弁32および第6三方弁33が装置され
る。第5,第6三方弁32,33において,それらの第
1,第2ポートが第2送水管24に連通するようになっ
ている。また両三方弁32,33間において,第2送水
管24に貯水器34の供給管35が接続される。その貯
水器34は,冷却水循環路22に冷却水を充填するため
に用いられ,またその冷却水が経時的に減少した場合に
はその減少分を直ちに補充する。第1,第5三方弁2
5,32の両第3ポート間が第4送水管36により接続
され,その第4送水管36によって第1精製器6が迂回
される。さらにまた,第4,第6三方弁30,33の両
第3ポート間が第5送水管37により接続され,その第
5送水管37によって第2精製器15が迂回される。
The second water pipe 24 is provided with a fifth three-way valve 32 and a sixth three-way valve 33 sequentially from the first purifier 6 side. The first and second ports of the fifth and sixth three-way valves 32 and 33 communicate with the second water pipe 24. A supply pipe 35 of a water reservoir 34 is connected to the second water pipe 24 between the three-way valves 32 and 33. The water reservoir 34 is used to fill the cooling water circulation path 22 with cooling water, and when the cooling water decreases with time, the reduced water is immediately replenished. First and fifth three-way valves 2
A fourth water pipe 36 connects between the third ports 5 and 32, and the first purifier 6 is bypassed by the fourth water pipe 36. Furthermore, the third ports of the fourth and sixth three-way valves 30 and 33 are connected by a fifth water pipe 37, and the fifth water pipe 37 bypasses the second purifier 15.

【0023】水素循環装置20は次のように構成され
る。第1,第2精製器6,15を装置された水素循環路
38を備え,その循環路38を構成すべく,第1,第2
精製器6,15間を接続する両導管39,40の一方3
9に第1精製器6側から順次,循環ポンプ41および凝
縮器42が装置される。また一方の導管39において凝
縮器42および第2精製器15間に水素を充填されたバ
ッファ容器43が供給管44を介して接続され,その供
給管44に二方弁45が装置される。このバッファ容器
43は,水素循環路38に再生用水素を充填するために
用いられ,またその再生用水素が経時的に減少した場合
にはその減少分を直ちに補充する。
The hydrogen circulation device 20 is configured as follows. A hydrogen circulation path 38 provided with first and second purifiers 6 and 15 is provided.
One of the two conduits 39, 40 connecting the purifiers 6, 15
9, a circulating pump 41 and a condenser 42 are sequentially installed from the first purifier 6 side. In one conduit 39, a buffer container 43 filled with hydrogen is connected between the condenser 42 and the second purifier 15 via a supply pipe 44, and a two-way valve 45 is provided in the supply pipe 44. The buffer container 43 is used to fill the hydrogen circulation path 38 with hydrogen for regeneration, and when the hydrogen for regeneration decreases with time, the buffer vessel 43 is immediately replenished with the decrease.

【0024】次に再生設備3の稼働について説明する。Next, the operation of the regeneration equipment 3 will be described.

【0025】(1)加熱−冷却装置19の電気ヒータ2
1に通電して,図2に実線a,bで示すように第2精製
器15のモレキュラシーブ18を室温から再生処理温度
である,例えば300℃まで上昇させ,その温度に所定
時間保持する。これによりモレキュラシーブ18に吸着
されていた水分が蒸発する。また水素循環装置20の循
環ポンプ41を作動し,図1に矢印で示すように再生用
水素を循環ポンプ41→凝縮器42→第2精製器15→
第1精製器6→循環ポンプ41の順に循環させ,凝縮器
42を経た乾燥状態の再生用水素にモレキュラシーブ1
8から蒸発した水分(水蒸気)を含ませて第2精製器1
5より排出させる。水分を含む再生用水素は凝縮器42
にて脱水乾燥される。この再生用水素の循環は再生処理
終了まで継続される。
(1) Electric heater 2 of heating / cooling device 19
1, the molecular sieve 18 of the second purifier 15 is raised from room temperature to a regeneration treatment temperature, for example, 300 ° C., as shown by solid lines a and b in FIG. Thereby, the moisture adsorbed on the molecular sieve 18 evaporates. In addition, the circulation pump 41 of the hydrogen circulation device 20 is operated, and the regeneration hydrogen is supplied from the circulation pump 41 → the condenser 42 → the second purifier 15 → as indicated by an arrow in FIG.
The first refiner 6 is circulated in the order of the circulation pump 41, and the molecular sieve 1 is converted into dry hydrogen for regeneration through the condenser 42.
The second purifier 1 containing the water (steam) evaporated from 8
Discharge from 5 The regeneration hydrogen containing water is supplied to the condenser 42.
Is dehydrated and dried. This circulation of the hydrogen for regeneration is continued until the end of the regeneration process.

【0026】(2)第2精製器15の電気ヒータ21へ
の通電を停止し,また加熱−冷却装置19の循環ポンプ
26を作動して,図1に,黒三角鏃の細い矢印wで示す
ように,冷却水を循環ポンプ26→第2三方弁27→第
3送水管31→第3三方弁29→第4三方弁30→第2
精製器15→第6三方弁33→第5三方弁32→第1精
製器6→第1三方弁25→循環ポンプ26の順に循環さ
せる。これにより,図2に実線cで示すようにモレキュ
ラシーブ18の温度が下降し,一方,第2精製器15の
余熱を奪取して温度上昇した冷却水が第1精製器6を流
通することによって,図2に点線dで示すように活性ア
ルミナ17が室温から温度上昇する。 (3)モレキュラシーブ18の温度が50℃程度まで下
降した時点において,活性アルミナ17の温度は,図2
に点線eで示すように再生処理温度である,例えば10
0℃まで上昇する(これはシリカゲルについても同じで
ある)。そこで,第2精製器15の電気ヒータ21に通
電して,図2に実線f,gで示すようにモレキュラシー
ブ18の温度を100℃よりも所定値だけ上昇させてそ
の温度に所定時間保持し,これにより活性アルミナ17
の温度を再生処理温度である100℃に所定時間保持し
て,その活性アルミナ17に吸着されていた水分を蒸発
させる。モレキュラシーブ18の殆どの水分は,前記再
生処理温度300℃保持過程にて除去されているので,
第2精製器15を経た再生用水素は略乾燥状態にあり,
その再生用水素に活性アルミナ17から蒸発した水分
(水蒸気)を含ませて第1精製器6より排出させる。
(2) The power supply to the electric heater 21 of the second purifier 15 is stopped, and the circulation pump 26 of the heating / cooling device 19 is operated. Thus, the cooling water is supplied to the circulation pump 26 → the second three-way valve 27 → the third water pipe 31 → the third three-way valve 29 → the fourth three-way valve 30 → the second
The purifier 15 → the sixth three-way valve 33 → the fifth three-way valve 32 → the first purifier 6 → the first three-way valve 25 → the circulation pump 26 is circulated in this order. As a result, as shown by the solid line c in FIG. 2, the temperature of the molecular sieve 18 decreases, while the cooling water whose temperature has risen by removing the residual heat of the second purifier 15 flows through the first purifier 6. As shown by a dotted line d in FIG. 2, the temperature of the activated alumina 17 increases from room temperature. (3) When the temperature of the molecular sieve 18 drops to about 50 ° C., the temperature of the activated alumina
Is the regeneration processing temperature as shown by the dotted line e, for example, 10
Increase to 0 ° C. (this is the same for silica gel). Therefore, the electric heater 21 of the second purifier 15 is energized to raise the temperature of the molecular sieve 18 by a predetermined value from 100 ° C. as shown by solid lines f and g in FIG. Thereby, activated alumina 17
Is maintained at a regeneration processing temperature of 100 ° C. for a predetermined time to evaporate the moisture adsorbed on the activated alumina 17. Since most of the water in the molecular sieve 18 has been removed in the process of maintaining the regeneration processing temperature at 300 ° C.,
The hydrogen for regeneration that has passed through the second purifier 15 is in a substantially dry state,
The hydrogen for regeneration contains moisture (steam) evaporated from the activated alumina 17 and is discharged from the first purifier 6.

【0027】(4)第2精製器15の電気ヒータ21へ
の通電を停止し,また第2,第3三方弁27,29を切
換えて,図1に白三角鏃の細い矢印xで示すように,冷
却水を,循環ポンプ26→第2三方弁27→放熱器28
→第3三方弁29→第4三方弁30→第2精製器15→
第6三方弁33→第5三方弁32→第1精製器6→第1
三方弁25→循環ポンプ26の順に循環させる。これに
より,図2に実線hおよび点線iで示すようにモレキュ
ラシーブ18および活性アルミナ17の温度が下降す
る。
(4) The energization of the electric heater 21 of the second purifier 15 is stopped, and the second and third three-way valves 27 and 29 are switched, as shown by a thin arrow x of a white triangular arrowhead in FIG. Then, the cooling water is supplied to the circulation pump 26 → the second three-way valve 27 → the radiator 28.
→ 3rd 3-way valve 29 → 4th 3-way valve 30 → 2nd purifier 15 →
Sixth three-way valve 33 → fifth three-way valve 32 → first purifier 6 → first
Circulation is performed in the order of the three-way valve 25 and the circulation pump 26. As a result, the temperatures of the molecular sieve 18 and the activated alumina 17 decrease as shown by the solid line h and the dotted line i in FIG.

【0028】(5)モレキュラシーブ18の温度が50
℃まで下降する直前において,第4,第6三方弁30,
33を切換えて,図1に,黒三角鏃の太い矢印yで示す
ように,冷却水を,循環ポンプ26→第2三方弁27→
放熱器28→第3三方弁29→第4三方弁30→第5送
水管37→第6三方弁33→第5三方弁32→第1精製
器6→第1三方弁25→循環ポンプ26の順に循環させ
る。これにより,図2に点線jで示すように活性アルミ
ナ17の温度が室温まで下降する。その後,循環ポンプ
26の作動を停止する。
(5) The temperature of the molecular sieve 18 is 50
Immediately before the temperature drops to 4 ° C., the fourth and sixth three-way valves 30,
33, the cooling water is supplied from the circulation pump 26 to the second three-way valve 27 as shown by the thick arrow y of the black triangle arrowhead in FIG.
Radiator 28 → third three-way valve 29 → fourth three-way valve 30 → fifth water pipe 37 → sixth three-way valve 33 → fifth three-way valve 32 → first purifier 6 → first three-way valve 25 → circulation pump 26 Circulate in order. As a result, the temperature of the activated alumina 17 drops to room temperature as shown by a dotted line j in FIG. Thereafter, the operation of the circulation pump 26 is stopped.

【0029】(6)前記第4,第6三方弁30,33の
切換え直後において,第2精製器15の電気ヒータ21
に通電して,図2に実線kで示すようにモレキュラシー
ブ18の温度を50℃程度に所定時間保持する。これに
より,モレキュラシーブ18の乾燥が行われる。
(6) Immediately after the switching of the fourth and sixth three-way valves 30 and 33, the electric heater 21 of the second purifier 15
To maintain the temperature of the molecular sieve 18 at about 50 ° C. for a predetermined time, as indicated by the solid line k in FIG. Thereby, the molecular sieve 18 is dried.

【0030】(7) 第2精製器15の電気ヒータ21
への通電を停止し,また第1,第5三方弁25,32を
切換えると共に第4,第6三方弁30,33を切換え,
さらに循環ポンプ26を作動して,図1に,白三角鏃の
太い矢印zで示すように,冷却水を,循環ポンプ26→
第2三方弁27→放熱器28→第3三方弁29→第4三
方弁30→第2精製器15→第6三方弁33→第5三方
弁32→第4送水管36→第1三方弁25→循環ポンプ
26の順に循環させる。これにより,図2に実線mで示
すようにモレキュラシーブ18の温度が室温まで下降す
る。
(7) Electric heater 21 of second purifier 15
Is stopped, the first and fifth three-way valves 25 and 32 are switched, and the fourth and sixth three-way valves 30 and 33 are switched.
Further, the circulation pump 26 is operated, and as shown by the thick arrow z of the white triangle arrowhead in FIG.
Second three-way valve 27 → heat radiator 28 → third three-way valve 29 → fourth three-way valve 30 → second purifier 15 → sixth three-way valve 33 → fifth three-way valve 32 → fourth water pipe 36 → first three-way valve The circulation is performed in the order of 25 → circulation pump 26. Thereby, as shown by the solid line m in FIG. 2, the temperature of the molecular sieve 18 decreases to room temperature.

【0031】上記(1)〜(7)の過程を経て,第1,
第2精製器6,15の再生処理が終了する。
Through the above steps (1) to (7), the first,
The regeneration processing of the second purifiers 6 and 15 ends.

【0032】前記のように1つの再生設備3により第
1,第2精製器6,15の再生処理を行い,しかも第2
精製器15の再生処理過程で第1精製器6の再生処理を
行うので,両精製器6,15の再生処理を別々に行う場
合に比べて再生処理時間を短縮することができる。また
活性アルミナ17の再生処理にモレキュラシーブ18の
再生処理熱の余熱を利用するので再生処理に要する熱エ
ネルギを低減することができる。
As described above, the regeneration processing of the first and second purifiers 6 and 15 is performed by one regeneration facility 3, and
Since the regenerating process of the first purifier 6 is performed in the regenerating process of the refining device 15, the regenerating process time can be reduced as compared with the case where the regenerating processes of the two refining devices 6 and 15 are performed separately. Further, since the residual heat of the regeneration processing heat of the molecular sieve 18 is used for the regeneration processing of the activated alumina 17, the heat energy required for the regeneration processing can be reduced.

【0033】このように前記再生設備3によれば,第
1,第2精製器6,15の再生処理を低コストで,且つ
能率良く行うことが可能である。
As described above, according to the regenerating equipment 3, the regenerating process of the first and second purifiers 6, 15 can be performed efficiently at low cost.

【0034】なお,第1精製器6において,活性アルミ
ナに代えて除湿手段であるボルテックスチューブを用い
ることが可能である。
In the first purifier 6, a vortex tube as a dehumidifying means can be used instead of activated alumina.

【0035】[0035]

【発明の効果】請求項1記載の発明によれば,前記のよ
うに構成することによって高純度水素を得るために用い
られる第2精製器の延命を図ることが可能な水素ステー
ションを提供することができる。
According to the first aspect of the present invention, there is provided a hydrogen station capable of extending the life of a second purifier used for obtaining high-purity hydrogen by having the above-described structure. Can be.

【0036】請求項2記載の発明によれば,前記効果に
加え,圧縮機の延命を図り,また第2精製水素用圧縮機
を不要にして設備コストを低減させた水素ステーション
を提供することができる。
According to the second aspect of the present invention, in addition to the above-mentioned effects, it is possible to provide a hydrogen station which can extend the life of the compressor and reduce the equipment cost by eliminating the need for the second purified hydrogen compressor. it can.

【0037】請求項3,4および7記載の発明によれ
ば,第1,第2精製水素を確実に得ることが可能で,経
済的な水素ステーションを提供することができる。
According to the third, fourth and seventh aspects of the present invention, the first and second purified hydrogen can be reliably obtained, and an economical hydrogen station can be provided.

【0038】請求項5および6記載の発明によれば,第
1,第2精製器の再生処理を低コストで,且つ能率良く
行うことが可能な再生設備を備えた水素ステーションを
提供することができる。
According to the fifth and sixth aspects of the present invention, it is possible to provide a hydrogen station having a regenerating facility capable of efficiently and efficiently regenerating the first and second purifiers at low cost. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素ステーションの概略説明図である。FIG. 1 is a schematic explanatory view of a hydrogen station.

【図2】再生処理におけるモレキュラシーブおよび活性
アルミナの経時的温度変化を示すグラフである。
FIG. 2 is a graph showing temperature changes over time of molecular sieve and activated alumina in a regeneration treatment.

【符号の説明】[Explanation of symbols]

1…………水素ステーション 3…………精製器用再生設備 4…………水電解装置(水素製造装置) 6…………第1精製器 7…………圧縮機 8…………切換装置 12………高圧容器(第1貯蔵器) 14………第2減圧弁 15………第2精製器 16………圧力容器(第2貯蔵器) 17………活性アルミナ 18………モレキュラシーブ 1 ... hydrogen station 3 ... regenerator for purifier 4 ... water electrolyzer (hydrogen production device) 6 ... first purifier 7 ... compressor 8 ... Switching device 12 High pressure vessel (first storage) 14 Second pressure reducing valve 15 Second purifier 16 Pressure vessel (second storage) 17 Active alumina 18 ...... Molecular sieve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/34 B01J 20/34 F H B67D 5/01 B67D 5/01 C01B 3/00 C01B 3/00 B Z 3/56 3/56 A // H01M 8/04 H01M 8/04 N 8/06 8/06 R Fターム(参考) 3D026 CA00 3E083 AA18 4G040 AA25 AA43 AA45 BA03 BB03 FA02 FB02 FC02 FD04 FE01 4G066 AA02B AA04B AA20B AA22B CA38 CA43 DA01 EA09 GA02 GA04 GA08 5H027 AA02 BA11 BA13 BA14 BA16──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B01J 20/34 B01J 20/34 FH B67D 5/01 B67D 5/01 C01B 3/00 C01B 3/00 B Z 3/56 3/56 A // H01M 8/04 H01M 8/04 N 8/06 8/06 RF term (reference) 3D026 CA00 3E083 AA18 4G040 AA25 AA43 AA45 BA03 BB03 FA02 FB02 FC02 FD04 FE01 4G066 AA02B AA04B AA20B AA22B CA38 CA43 DA01 EA09 GA02 GA04 GA08 5H027 AA02 BA11 BA13 BA14 BA16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水素製造装置(4)と,その水素製造装
置(4)により製造された水素を精製して第1精製水素
を得る第1精製器(6)と,前記第1精製水素の流れ方
向を貯蔵側および再精製側の一方に決める切換装置
(8)と,前記第1精製水素を充填される第1貯蔵器
(12)と,前記第1精製水素を再精製して第2精製水
素を得る第2精製器(15)と,前記第2精製水素を充
填される第2貯蔵器(16)とを有することを特徴とす
る水素ステーション。
1. A hydrogen production device (4), a first purifier (6) for purifying hydrogen produced by the hydrogen production device (4) to obtain a first purified hydrogen, A switching device (8) for determining the flow direction to one of the storage side and the re-purification side, a first storage (12) filled with the first purified hydrogen, and a second refiner for re-purifying the first purified hydrogen. A hydrogen station comprising: a second purifier (15) for obtaining purified hydrogen; and a second storage (16) filled with the second purified hydrogen.
【請求項2】 前記第1精製器(6)と前記切換装置
(8)との間に前記第1精製水素を圧縮する圧縮機
(7)を備え,前記切換装置(8)は再精製側へ流れる
高圧の前記第1精製水素を減圧する機能を有し,前記第
1貯蔵器は高圧の前記第1精製水素に対応した高圧容器
(12)であり,前記第2貯蔵器は,減圧下にある前記
第2精製水素を吸蔵する水素吸蔵材(MH)を有する圧
力容器(16)である,請求項1記載の水素ステーショ
ン。
2. A compressor (7) for compressing the first purified hydrogen is provided between the first purifier (6) and the switching device (8), and the switching device (8) is provided on a re-purification side. The first reservoir is a high-pressure container (12) corresponding to the high-pressure first purified hydrogen, and the second reservoir is a high-pressure container (12) corresponding to the high-pressure first purified hydrogen. 2. The hydrogen station according to claim 1, wherein the hydrogen station is a pressure vessel having a hydrogen storage material (MH) for storing the second purified hydrogen. 3.
【請求項3】 前記第1および第2精製器(6,15)
は,それぞれ加熱によって再生される吸着材(17,1
8)を備えている,請求項1または2記載の水素ステー
ション。
3. The first and second purifiers (6, 15).
Are adsorbents (17, 1) regenerated by heating, respectively.
The hydrogen station according to claim 1 or 2, further comprising (8).
【請求項4】 前記第1精製器(6)の前記吸着材は活
性アルミナおよびシリカゲルの少なくとも一方(17)
であり,前記第2精製器(15)の前記吸着材はモレキ
ュラシーブ(18)である,請求項3記載の水素ステー
ション。
4. The adsorbent of the first purifier (6) is at least one of activated alumina and silica gel (17).
The hydrogen station according to claim 3, wherein the adsorbent of the second purifier (15) is a molecular sieve (18).
【請求項5】 前記第2精製器(15)の再生処理過程
で前記第1精製器(6)の再生処理を行うことが可能な
再生設備(3)を有する,請求項4記載の水素ステーシ
ョン。
5. The hydrogen station according to claim 4, further comprising a regeneration facility (3) capable of performing a regeneration process of the first refiner (6) during a regeneration process of the second refiner (15). .
【請求項6】 前記再生設備(3)において,前記モレ
キュラシーブ(18)の再生処理温度は,前記活性アル
ミナおよびシリカゲル(17)の再生処理温度よりも高
く設定され,その活性アルミナおよびシリカゲル(1
7)の再生処理に前記モレキュラシーブ(18)の再生
処理熱の余熱が利用される,請求項5記載の水素ステー
ション。
6. In the regeneration equipment (3), a regeneration treatment temperature of the molecular sieve (18) is set higher than a regeneration treatment temperature of the activated alumina and silica gel (17).
The hydrogen station according to claim 5, wherein the regenerative processing of (7) uses residual heat of the regenerative processing heat of the molecular sieve (18).
【請求項7】 前記第1精製器(6)は除湿手段である
ボルテックスチューブを備え,前記第2精製器(15)
は吸着材としてモレキュラシーブ(18)を備えてい
る,請求項1または2記載の水素ステーション。
7. The first purifier (6) includes a vortex tube as a dehumidifying means, and the second purifier (15).
The hydrogen station according to claim 1 or 2, wherein the hydrogen station comprises a molecular sieve (18) as an adsorbent.
JP2001050857A 2001-02-26 2001-02-26 Hydrogen station Pending JP2002249032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050857A JP2002249032A (en) 2001-02-26 2001-02-26 Hydrogen station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050857A JP2002249032A (en) 2001-02-26 2001-02-26 Hydrogen station

Publications (1)

Publication Number Publication Date
JP2002249032A true JP2002249032A (en) 2002-09-03

Family

ID=18911752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050857A Pending JP2002249032A (en) 2001-02-26 2001-02-26 Hydrogen station

Country Status (1)

Country Link
JP (1) JP2002249032A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107146A (en) * 2002-09-19 2004-04-08 Honda Motor Co Ltd System for producing high-pressure hydrogen
JP2006176340A (en) * 2004-12-20 2006-07-06 Jipangu Energy:Kk Station system for supplying hydrogen gas
CN1316661C (en) * 2003-08-04 2007-05-16 天津海蓝德能源技术发展有限公司 Composite hydrogen storage device
US7534510B2 (en) 2004-09-03 2009-05-19 The Gillette Company Fuel compositions
JP2014120386A (en) * 2012-12-18 2014-06-30 Toyota Motor Corp Cooling system for fuel cell
JP2016183684A (en) * 2015-03-25 2016-10-20 Jxエネルギー株式会社 Hydrogen station
CN112849097A (en) * 2021-04-23 2021-05-28 河南氢枫能源技术有限公司 Hydrogenation system and blowing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107146A (en) * 2002-09-19 2004-04-08 Honda Motor Co Ltd System for producing high-pressure hydrogen
CN1316661C (en) * 2003-08-04 2007-05-16 天津海蓝德能源技术发展有限公司 Composite hydrogen storage device
US7534510B2 (en) 2004-09-03 2009-05-19 The Gillette Company Fuel compositions
US7989117B2 (en) 2004-09-03 2011-08-02 The Gillette Company Fuel compositions
JP2006176340A (en) * 2004-12-20 2006-07-06 Jipangu Energy:Kk Station system for supplying hydrogen gas
JP2014120386A (en) * 2012-12-18 2014-06-30 Toyota Motor Corp Cooling system for fuel cell
JP2016183684A (en) * 2015-03-25 2016-10-20 Jxエネルギー株式会社 Hydrogen station
CN112849097A (en) * 2021-04-23 2021-05-28 河南氢枫能源技术有限公司 Hydrogenation system and blowing method
CN112849097B (en) * 2021-04-23 2021-07-27 河南氢枫能源技术有限公司 Hydrogenation system and blowing method

Similar Documents

Publication Publication Date Title
JP6386038B2 (en) Method and station for filling a gas tank
JP6328755B2 (en) Station and method for filling a gas tank
JP5861780B2 (en) Water electrolysis system
CN112941287A (en) Cold rolling annealing furnace waste hydrogen recycling system and cold rolling annealing furnace hydrogen supply system
JP2002249032A (en) Hydrogen station
CN101091097A (en) Integrated process and apparatus for the compression, cooling, and purification of air
JP2001026401A (en) Hydrogen supply system-for equipment using hydrogen as fuel
JP2013227634A (en) Gas production system and method for operating gas production system
JP6823615B2 (en) Hydrogen gas production method and hydrogen gas production equipment
CN115976575B (en) Small hydrogen production system with drying and purifying functions
JP5457854B2 (en) Production method of high purity hydrogen
JP2015064192A (en) Steam generation device and steam generation method
CN215668108U (en) Cold rolling annealing furnace waste hydrogen recycling system and cold rolling annealing furnace hydrogen supply system
JP4112894B2 (en) Hydrotreating equipment and hydrotreating method
JP2005063703A (en) Hydrogen supplying method for fuel cell using hydrogen occluded alloy, and hydrogen supplying device
JP2014185388A (en) Gas production method
JP2020182894A (en) Dehumidifier system
CN218871725U (en) Compressed air device system containing vortex tube
KR100905616B1 (en) A method for regenerating the air purification unit using a liquid air of tank
JP4107631B2 (en) Concentrated ozone production equipment
JP3759222B2 (en) Steam supply device
KR20230090291A (en) High-Purity Hydrogen Production System Using Water Electrolytic Waste Heat
JPH11319458A (en) Pretreating device in air separation device
CN116899381A (en) Compressed air aftertreatment system and activation method thereof
RU2157722C2 (en) Method of cleaning and drying gas and device for realization of this method