JP4112894B2 - Hydrotreating equipment and hydrotreating method - Google Patents

Hydrotreating equipment and hydrotreating method Download PDF

Info

Publication number
JP4112894B2
JP4112894B2 JP2002132829A JP2002132829A JP4112894B2 JP 4112894 B2 JP4112894 B2 JP 4112894B2 JP 2002132829 A JP2002132829 A JP 2002132829A JP 2002132829 A JP2002132829 A JP 2002132829A JP 4112894 B2 JP4112894 B2 JP 4112894B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
absorption
tank
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132829A
Other languages
Japanese (ja)
Other versions
JP2003327969A (en
Inventor
政秀 高野
庄次 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002132829A priority Critical patent/JP4112894B2/en
Publication of JP2003327969A publication Critical patent/JP2003327969A/en
Application granted granted Critical
Publication of JP4112894B2 publication Critical patent/JP4112894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、原料油に水素を混入させて不純物を除去する水素化処理設備及び水素化処理方法に関する。
【0002】
【従来の技術】
原料油に水素を混入させて不純物を除去する水素化処理設備及び水素化処理方法として、例えば、重油から硫黄成分を除去する重油直接脱硫設備及び重油直接脱硫方法が知られている。
この重油直接脱硫設備及び方法の一例を、図5を参照しながら説明する。
この重油直接脱硫設備4において原料油である重油は、昇圧ポンプP1で昇圧された後に水素が混入され、加熱器11で加熱されて、反応塔12に送られる。
反応塔12では、重油中の硫黄分が水素と反応して硫化水素に変換される。そして、反応塔12から取り出された重油は気液分離槽13に送られ、液体と気体とに分離される。分離された気体は、ナフサ吸収槽14に送られ、分離された液体は、気液分離槽13の底部から蒸留塔等に送られる。
【0003】
ナフサ吸収槽14に送られる気体には、硫化水素及びメタンガスを主体とした炭化水素ガス(これには、ブタン,プロパン,エタン等が含まれる。なお、メタンガスを主体とした前記の炭化水素ガスを、以下、「メタンガス等」と記載する)のほか、硫黄成分の除去に利用されずに残った余剰の水素が含まれている。ナフサ吸収槽14では、吸収媒体であるナフサによって、主としてメタンガス等が前記気体から取り除かれ、ナフサ吸収槽14から取り出される気体の水素純度が高められる。
【0004】
ナフサ吸収槽14から取り出された気体は、さらにアミン接触槽15へ送られる。そして、このアミン接触槽15で、気体中の硫化水素がアミン水溶液によって取り除かれる。また、残余の気体(少量のメタンガス等を含む水素)が、水素循環系に設けられた圧縮機C1で昇圧されて、水素供給系から供給された新たな水素とともに、重油に混入される。
一方、ナフサ吸収槽14から取り出されたナフサは、回収槽16に送られる。この回収槽16では、ナフサの圧力を減圧することによって、ナフサに含まれている気体(メタンガス等及び水素を含む)をナフサから解放させ、回収する。
【0005】
気体が解放されたナフサは、高圧多段ポンプからなる昇圧ポンプP2によって再び一定の圧力まで昇圧され、ナフサ吸収槽14に戻される。また、ナフサから解放,回収されたメタンガス等と水素とを含む気体は水素回収装置17に送られる。この水素回収装置17では、例えば深冷分離法等によって、前記気体中から水素が回収される。回収された水素は、水素供給系に送られ、圧縮機C2で昇圧された後、重油に混入される。また、水素回収装置で水素が回収された後の残余のメタンガス等は、圧縮機C3で昇圧されて水素供給系の水素製造装置18に送られ、水素製造の原料として利用される。
さらに、水素製造装置18には、他の設備等から送られてきたメタンガス等の水素原料が、圧縮機C4によって昇圧されて供給される。
【0006】
上記したような重油直接脱硫設備4は、気液分離槽13で分離した気体の中から水素及びメタンガス等の水素原料を可能な限り回収して循環利用しているため、新たに供給する水素の量を少なくすることができ、コスト的に優れているという利点がある。
しかし、近年のさらなるコストダウンの要求や省エネ,ひいては環境保護の観点から、効率化のさらなる向上が望まれている。
【0007】
また、反応塔12で発生する気体の量は、反応塔12内の触媒の寿命によって変化する。すなわち、触媒の使用初期においては、その活性が高いため反応温度が低く、気体の発生量も少ない。そして、触媒の寿命が進行するにしたがって反応温度が上昇し、気体の発生量が増加する。したがって、反応塔12における気体の発生量の変化にともなって、ナフサ等の吸収媒体の供給量又は循環量を調整するのが好ましい。
【0008】
図6は、図5の重油直接脱硫設備4において、触媒の寿命の進行の度合い(時間)とナフサの循環量との関係を模式的に示したグラフである。
なお、このグラフで示す例において、重油直接脱硫設備4は、吐出能力M1の昇圧ポンプP2を複数台有していて、ナフサの循環量の増加に応じて、昇圧ポンプP2を順次駆動させるものとする。
図6中符号Iで示す時間で、重油直接脱硫設備4の稼働を開始させるとともに、複数台の昇圧ポンプP2のうちの一台を駆動させて、ナフサの循環を開始させる。
【0009】
図6のグラフに示すように、時間の経過(触媒の寿命の進行)に比例して、循環させるナフサの量を増加させるが、図中符号IIで示す時間に達したときに、循環させるナフサの量が昇圧ポンプP2の最大の吐出能力M1に達するため、このとき二台目の昇圧ポンプP2を駆動させて、二台の昇圧ポンプP2を使って吐出能力M2(M2=M1×2)でナフサを循環させるようにする。
ところで、昇圧ポンプP2、特に、上記したような多段式の昇圧ポンプP2においては、循環させるナフサの量に応じて吐出能力を変化させることができず、一定の吐出能力M1,M2で昇圧ポンプP2を駆動させながら、バルブの操作でナフサ吸収槽13に戻すナフサの量を調整しているのが現状である。
そのため、上記したような従来の重油直接脱硫設備4においては、図6のグラフ中斜線で示す分だけ、昇圧ポンプP2の駆動エネルギが無駄に消費されているという問題がある。
【0010】
【発明が解決しようとする課題】
本発明は上記の点にかんがみてなされたもので、既存の設備を大幅に改変することなく、安価なコストで大きなコストダウン及び設備全体で大きな省エネ効果を得ることができ、かつ、効率良く水素を回収することができる水素化処理設備及び水素化処理方法の提供を目的とするものである。
【0011】
【課題を達成するための手段】
本発明の発明者は、吸収槽に吸収媒体を供給又は循環させる昇圧ポンプ等の駆動源のエネルギの消費量が、水素処理設備において大きなウェイトを占めている点に着目し、本発明に想到した。
すなわち、請求項1に記載の発明は、重油に水素を混入させて不純物を除去する水素化処理設備において、前記水素を前記不純物に接触させる反応塔と、この反応塔で生成された生成物を、液体と気体とに分離する気液分離槽と、この気液分離槽で分離された前記気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収槽と、この吸収槽から取り出された残りの前記気体のうちの少なくとも一部が供給され、この気体の中から水素を分離する水素分離装置と、この水素分離装置で分離した前記水素を、前記重油に水素を混入させる工程まで導く管路とを有する構成としてある。
【0012】
例えば、図5に示した従来の吸収槽においては、水素循環系に送る水素の純度が少なくとも一定の基準値以上に確保されている必要がある。そのため、この基準値を確保するために、吸収槽で可能な限り多くの不純物(メタンガス等)を除去する必要があるが、その分、多くの吸収媒体を吸収槽に供給又は循環させなければならず、昇圧ポンプ等の駆動源のエネルギの消費量も大きくなる。
【0013】
そこで、請求項1に記載の発明のように構成すれば、吸収槽の気体の一部を水素分離装置に送って水素を分離させ、この純度の高い水素を水素供給系又は水素循環系に送って原料油混入用に利用することができるので、水素供給系又は水素循環系に送る水素の純度を一定の基準値以上に保ったままで、前記吸収槽における吸収媒体の供給量又は循環量を減ずることができ、前記吸収媒体を供給又は循環させるためのポンプ等の駆動源のエネルギ消費量を削減することができる。
【0014】
請求項2に記載の発明は、重油に水素を混入させて不純物を除去する水素化処理設備において、前記水素を前記不純物に接触させる反応塔と、この反応塔で生成された生成物を、液体と気体とに分離する気液分離槽と、この気液分離槽で分離された前記気体の一部が供給され、前記気体に吸収媒体を吸収させて、前記気体の一部を前記吸収媒体に吸収させる吸収槽と、前記気液分離槽で分離された前記気体の他の一部が供給され、当該気体の中から水素を分離する水素分離装置と、この水素分離装置で分離した前記水素を、前記重油に水素を混入させる工程まで導く管路とを有する構成としてある。
【0015】
この構成では、気液分離槽で分離された気体の一部を吸収槽に送るとともに、他の一部を直接水素分離装置に供給するようにしている。そのため、この請求項2に記載の発明によっても、前記吸収槽における吸収媒体の供給量又は循環量を減ずることができ、吸収媒体を供給又は循環させるためのエネルギの消費量を削減することができる。
【0016】
請求項3に記載の発明は、前記水素分離装置で分離した水素以外の気体の少なくとも一部を、前記重油に混入される水素を製造するための水素製造装置に導く管路を設けた構成としてある。この構成によれば、水素分離装置で分離された水素以外の気体の中に、メタンガス等のような水素製造の原料となる成分を含む場合に、この気体を水素製造装置に供給することで、気液分離槽で分離された気体の有効利用を図ることができる。
【0017】
請求項4に記載の発明は、前記吸収槽で前記吸収媒体に吸収された前記気体を、前記吸収媒体から解放して回収する回収槽と、この回収槽で回収された前記気体から前記水素を回収する水素回収装置と、前記水素分離装置で水素を分離した気体の少なくとも一部を、前記水素回収装置に導く管路とを有する構成としてある。
この構成によれば、前記回収槽で回収された気体の中から水素を回収することができるほか、水素分離装置で水素が分離された残余の気体中に、水素の一部が残存していても、水素回収装置で当該水素を回収することができる。
【0018】
請求項5に記載の発明は、重油に水素を混入させて不純物を除去する水素化処理設備において、前記水素を前記不純物に接触させる反応塔と、この反応塔で生成された生成物を、液体と気体とに分離する気液分離槽と、この気液分離槽で分離された前記気体の一部が供給され、前記気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収槽と、この吸収槽で前記吸収媒体に吸収された前記気体を、前記吸収媒体から解放して回収する回収槽と、この回収槽で回収された前記気体から前記水素を回収する水素回収装置と、前記気液分離槽で分離された前記気体の他の一部、又は、前記吸収槽から取り出された残りの前記気体のうちの少なくとも一部を前記水素回収装置まで導く管路と、前記水素回収装置で回収された水素を、前記重油に水素を混入させる工程まで導く管路とを有する。
【0019】
この構成によれば、吸収槽又は気液分離槽から気体の一部を水素回収装置に送って水素を回収させ、回収された純度の高い水素を水素供給系又は水素循環系に送って原料油混入用に利用することができるので、前記吸収槽における吸収媒体の供給量又は循環量を減ずることができ、前記吸収媒体を供給又は循環させるためのエネルギの消費量を削減することができる。
【0020】
請求項6に記載の発明は、前記気液分離槽又は前記吸収槽と前記水素分離装置又は前記水素回収装置との間に、前記水素分離装置又は前記水素回収装置に供給される前記気体の量を調整する調整手段を設けた構成としてある。
吸収槽で吸収する気体の量が減少すれば、吸収槽に吸収媒体を供給又は循環させるためのエネルギの消費量を削減することができるが、水素循環系又は水素供給系において圧縮機等の負荷が増し、これらの消費エネルギが増加することになる。
【0021】
そこで、水素循環系及び水素供給系を含めた設備全体のエネルギ消費を考慮し、前記調整手段を適宜に操作して適切な量の気体を水素分離装置又は水素回収装置に供給するようにすることで、設備全体のエネルギ消費量を削減することができる。
また、この構成によれば、触媒の寿命の進行にともなう気体の発生量の変化に応じて、適当量の気体を前記水素分離装置又は前記水素回収装置に送るようにすることができ、吸収媒体の供給量又は循環量を容易に調整することが可能となって、無駄なエネルギの消費を抑制することができる。
【0022】
本発明は、請求項7に記載するように、前記重油は、常圧蒸留残油,減圧留出油及び減圧残油のうちの一種類であってもよいし、これらのうちの二種類以上をブレンドしたものであってもよい。また、請求項8に記載するように、前記気体には、水素の他に炭化水素ガスが含まれ、前記吸収槽でナフサに前記気体を吸収させて前記炭化水素ガス等を取り除く構成としてもよい。例えば、重油直接脱硫設備においては、水素を用いて常圧蒸留残油である重油から硫黄成分を除去し、この際に生じるメタンガスを主体とする炭化水素ガスを、ナフサによって気体中から取り除き、水素の純度を向上させることができる。
【0023】
請求項9に記載の発明は、前記気体をアミン溶液に接触させて前記気体の中から硫化水素を除去するアミン接触槽を設け、前記硫化水素を除去した前記気体を前記水素分離装置又は前記水素回収装置に供給する構成としてある。
重油直接脱硫設備のような設備においては、発生した硫化水素を除去するためにアミン接触槽を設けている。そのため、このアミン接触槽で硫化水素を除去して水素純度を高めた気体を、水素分離装置に送るようにするとよい。
【0024】
なお、水素分離装置としては、請求項10に記載するように水素分離膜を用いて水素の分離を行うものであるのが好ましい。
このような膜分離式の水素分離装置は、電力等のエネルギの消費量が極めて小さく、省エネ上有利である。
【0025】
上記構成の水素化処理設備によって、請求項11〜18に記載の処理方法の実施が可能になり、これによっても本発明の目的の達成が可能である。具体的には、重油に水素を混入させて不純物を除去する水素化処理方法において、前記水素を前記不純物に接触させて生成された生成物から気体を分離し、この気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収工程と、この吸収工程で吸収されずに残った前記気体の少なくとも一部から水素を分離する水素分離工程と、分離した前記水素を、前記重油に供給する供給工程とを有する方法である。
【0026】
また、重油に水素を混入させて不純物を除去する水素化処理方法において、前記水素を前記不純物に接触させて生成された生成物から気体を分離し、この気体の一部に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収工程と、前記気体の他の一部から水素を分離する水素分離工程と、分離した前記水素を、前記重油に供給する供給工程とを有する方法である。さらに、前記水素分離装置で分離した水素以外の気体の少なくとも一部を、前記重油に混入される水素を製造するための水素製造装置に供給する方法である。
【0027】
また、重油に水素を混入させて不純物を除去する水素化処理方法において、前記水素を前記不純物に接触させて生成された生成物から気体を分離し、この気体の一部に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収工程と、この吸収工程で前記吸収媒体に吸収された前記気体を前記吸収媒体から解放して回収する回収工程と、この回収工程で回収された前記気体から水素を回収するとともに、前記生成物から分離した気体の他の一部又は前記吸収工程で吸収されずに残った前記気体の一部から水素を回収する水素回収工程と、回収した前記水素を、前記重油に供給する供給工程とを有する方法である。
【0028】
【発明の実施の形態】
本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
[第一の実施形態]
図1は、本発明の水素化処理設備及び水素化処理方法の第一の実施形態にかかり、水素化処理設備及びこの処理設備における処理の手順を説明するフロー図である。
なお、この実施形態の水素化処理設備及び方法は、重油から硫黄分を取り除く重油直接脱硫設備及び方法であるものとし、図5を参照しながら説明した従来の重油直接脱硫設備と同一部位には同一の符号を付して、当該部位の詳しい説明は省略する。
【0029】
図1に示すように、この第一の実施形態の重油直接脱硫設備1には、気体中から水素を分離する水素分離装置21が設けられている。そして、アミン接触槽15から取り出された気体の一部が水素分離装置21に送られ、他の一部が圧縮機C1に送られるようにしている。また、水素分離装置21に送られる気体の量を調整することができるように、水素分離装置21とアミン接触槽15とを連結する管路の途中部位に、バルブV1を設けている。
【0030】
水素分離装置21で分離された水素は、水素供給系の圧縮機C2に送られて昇圧され、水素が分離された気体(メタンガス等及び分離されずに残った水素を含む)は、水素の原料として水素製造装置18に送られる。
なお、気体中から水素を分離する水素分離装置21としては、水素のみを透過させることのできる水素分離膜を用いた公知のものを利用するとよい。このような水素分離膜を用いた水素分離装置21は、消費電力がきわめて小さく、エネルギ消費量削減の点で有利である。
【0031】
また、図1中仮想線で示すように、水素分離装置21で分離された気体の一部を水素回収装置17に送るようにしてもよい。これにより、水素分離装置21を通過した気体の中から、分離されずに残った残余の水素を回収して水素供給系に送り、重油混入用に再利用することができる。
【0032】
この実施形態の重油直接脱硫設備1によれば、ナフサ吸収槽14の気体の一部を水素分離装置21に送って純度の高い水素を分離することができるので、ナフサ吸収槽14で吸収するメタンガスの量を減らすことができ、昇圧ポンプによって循環させるナフサの量を減らすことができる。そのため、昇圧ポンプP2の駆動による電力等のエネルギ消費量を大幅に削減することができる。
【0033】
[第二の実施形態]
図2は、本発明の水素化処理設備及び水素化処理方法の第二の実施形態にかかり、水素化処理設備及びこの処理設備における処理の手順を説明するフロー図である。
この実施形態の重油直接脱硫設備2では、気液分離槽13で分離された気体の一部を、ナフサ吸収槽14に送るとともに、他の一部を直接アミン接触槽15に送るようにしている。そして、アミン接触槽15から取り出された気体の一部を、水素分離装置21に送るようにしている。
また、アミン接触槽15と気液分離槽13とを連結する管路の途中にバルブV2を設けて、アミン接触槽15に送られる気体の量を調整できるようにしている。
【0034】
また、この実施形態においても、先の実施形態と同様に、水素分離装置21で水素を分離した残余の気体の一部を水素回収装置17に送って、回収した水素を水素供給系に送るようにするとよい。
この実施形態の重油直接脱硫設備2によると、気液分離槽13からナフサ吸収槽14に送られる気体の量を減らすことができるので、循環させるナフサの量を減らすことができ、昇圧ポンプP2の駆動による電力等のエネルギ消費量を大幅に削減することができる。
【0035】
[第三の実施形態]
図3は、本発明の水素化処理設備及び水素化処理方法の第三の実施形態にかかり、水素化処理設備及びこの処理設備における処理の手順を説明するフロー図である。
この実施形態の重油直接脱硫設備3では、ナフサ吸収槽14の気体の一部をアミン接触槽15に送り、アミン接触槽15から取り出された気体の一部を、水素回収装置17に供給するようにしている。また、水素回収装置17とアミン接触槽15とを連結する管路の途中に、水素回収装置17に送る気体の量を調整するためのバルブV1を設けている。
【0036】
すなわち、この実施形態では、第一及び第二の実施形態で説明した水素分離装置21を設ける代わりに、水素回収装置17とアミン接触槽15とを管路で連結して、既存の水素回収装置17でアミン接触槽15から取り出された気体の中から水素を回収するようにしているわけである。
さらに、この第三の実施形態においては、図3中仮想線で示すように、アミン接触槽15と気液分離槽13とを連結する管路を設け、気液分離槽13で分離された気体の一部を直接アミン接触槽15に送るようにしてもよい。また、管路の途中にバルブV2を設けて、アミン接触槽15に送られる気体の量を調整できるようするとよい。
【0037】
この実施形態の重油直接脱硫設備3によっても、ナフサ吸収槽14で吸収しなければならない気体の量を減らすことができ、昇圧ポンプP2の駆動による電力等のエネルギ消費量を削減することができる。
【0038】
上記の第一,第二及び第三の実施形態では、バルブV1,V2を操作して、水素分離装置21又は水素回収装置17に送る気体の量を調整することができる。そして、水素分離装置21又は水素回収装置17に送る気体の量を増加させるほど、ナフサ吸収槽14で吸収しなければならない気体の量を減少させることができ、昇圧ポンプP2等のエネルギ消費量を削減することができる。
しかし、この一方で、圧縮機C1,C2,C3,水素回収装置17等に送られる気体の量が増えて負荷が増し、これらのエネルギ消費量が増大することになる。
【0039】
したがって、重油直接脱硫設備1,2,3の全体としてエネルギの消費量の削減を図るには、昇圧ポンプP2等のエネルギ消費量の削減分と圧縮機C1,C2,C3,水素回収装置17等のエネルギ消費量の増大分とを勘案して、水素分離装置21又は水素回収装置17に送られる気体の量が適切な量になるように、バルブV1,V2を操作しなければならない。バルブV1,V2の操作量は、実験や計算等によって求めることができる。
【0040】
[実施例]
本発明の発明者は、本発明の水素化処理設備及び水素化処理方法の効果を検証するため、第一の実施形態と同様の重油直接脱硫設備1を用いて検証を行った。
その結果を、図4を参照しながら説明する。
図4は、昇圧ポンプP2の駆動のタイミングと循環させるナフサの量及び水素分離装置21に気体を供給するタイミングと気体の量の関係を示すグラフで、横軸が触媒の寿命の進行の度合い(時間)、左縦軸が水素分離装置への気体の供給量,右縦軸がナフサ循環量及び昇圧ポンプの吐出能力(括弧書き)である。
また、図中、実線が水素分離装置に送られる気体の量の変化を、点線が昇圧ポンプP2によるナフサの循環量の変化を示している。
【0041】
この実施例では、実験期間を反応塔12内の触媒の寿命に応じて初期,中期及び後期に分けた。そして、触媒の寿命の進行にともなう気体の発生量に応じて、水素分離装置21に送る気体の量及び昇圧ポンプP2の駆動の制御を適宜に行って、重油に混入される水素の純度が常に88%以上に保たれるようにした。
グラフ中のIにおいて重油直接脱硫設備1の稼働が開始される。稼働開始後の初期の状態においては、反応塔12内の触媒が新しく、発生する気体の量も少ないため、昇圧ポンプP2を駆動してナフサを循環させなくても、水素分離装置21のみで重油に混入される水素の純度を88%以上に保つことができた。なお、稼働開始時に水素分離装置21に送る気体の量は、図4に示すように、S0である。
【0042】
前記したように、反応塔12内の触媒の寿命の進行にともなって、発生する気体の量も増加する。そこで、水素分離装置21に送る気体の量も、前記気体の増加量に応じて増加させる。
この実施例では、水素分離装置21に送る気体の量が水素分離装置21の最大能力であるS2(S2=430KNm/日,Nは常態を示す)に達したところ(図中の符号IIのところ)で、重油に混入される水素の純度を88%以上に保つことができなくなったので、ナフサ循環用の昇圧ポンプP2(吐出能力M1)の駆動を開始させて、ナフサ吸収槽14での気体の吸収を開始させた。また、これに伴い、水素分離装置21に送る気体の量をS1=290KNm/日のレベルまで下降させて、図4中斜線で示す昇圧ポンプP2のエネルギの無駄ができるだけ小さくなるようにした。
【0043】
この後、反応塔12における気体の発生量の増加に応じて、S1のレベルから、水素分離装置21に送る気体の量を徐々に増加させた。図中符号IIIで示す位置で、再び水素分離装置21の最大能力S2に達したが、反応塔12における気体の発生量が増加し続けているため、バルブを操作してナフサの循環量を増加させ、不足分を補うようにした。
【0044】
この実施例からわかるように、水素分離装置21を有しない従来の重油直接脱硫設備4では、重油に混入される水素の純度を88%以上に保つには、循環させるナフサの量はL2(M2)=11200kl/日程度必要であったが、本発明の重油直接脱硫設備1では、これをL1=4000〜6000kl/日程度にすることができ、かつ、昇圧ポンプP2の駆動によるエネルギの無駄(図4中斜線で示す部分)も半分以下に抑制することができた。
また、バルブV1及び/又はバルブV2を操作することによって、反応塔12における気体の発生量の変化に応じて水素分離装置21に送る気体の量を適切に変化させて、設備全体のエネルギ消費量が最小になるように調整することも容易である。
【0045】
本発明の好適な実施形態について説明したが、本発明は上記の実施形態により何ら限定されるものではない。
例えば、上記の実施形態では、重油から硫黄成分を取り除く重油直接脱硫設備を例に挙げて説明したが、本発明は、このような設備に限らず、他の水素化処理設備にも適用が可能である。
【0046】
また、原料油としての重油は、常圧蒸留残油,減圧留出油及び減圧残油のうちのいずれか一種類であってもよいし、これらのうちの二種類以上を適宜にブレンドしたものであってもよい。
さらに、上記の実施形態では、水素分離装置21又は水素回収装置17から取り出された水素を、水素供給系に送るものとして説明したが、水素循環系の圧縮機C1で十分に加圧することができるのであれば、前記水素を水素循環系に送るようにしてもよい。
【0047】
【発明の効果】
本発明は、上記のように構成されているので、水素化処理設備の省エネを図り、稼働コストの削減を図ることができる。また、既存設備をほぼそのまま利用することができるので、安価なコストで実施が可能である。
さらに、反応塔内での触媒の寿命の変化にともなう気体の発生量に応じて、水素分離装置で処理する気体の量を調整することによって、吸収槽における吸収媒体の供給過剰や循環過剰によるエネルギの損失を抑制することができる。
【図面の簡単な説明】
【図1】本発明の水素化処理設備及び水素化処理方法の第一の実施形態にかかり、水素化処理設備及びこの処理設備における処理の手順を説明するフロー図である。
【図2】本発明の水素化処理設備及び水素化処理方法の第二の実施形態にかかり、水素化処理設備及びこの処理設備における処理の手順を説明するフロー図である。
【図3】本発明の水素化処理設備及び水素化処理方法の第三の実施形態にかかり、水素化処理設備及びこの処理設備における処理の手順を説明するフロー図である。
【図4】昇圧ポンプの駆動のタイミングと循環させるナフサの量及び水素分離装置に気体を供給するタイミングと気体の量の関係を示すグラフである。
【図5】本発明の従来例にかかり、重油直接脱硫設備の構成を説明するフロー図である。
【図6】図5の重油直接脱硫設備において、触媒の寿命の進行の度合い(時間)とナフサの循環量との関係を模式的に示したグラフである。
【符号の説明】
1〜4 重油直接脱硫設備(水素化処理設備)
11 加熱器
12 反応塔
13 気液分離槽
14 ナフサ吸収槽(吸収槽)
15 アミン接触槽
16 回収槽
17 水素回収装置
18 水素製造装置
21 水素分離装置
P1,P2 昇圧ポンプ
C1〜C4 圧縮機
V1.V2 バルブ
[0001]
[Technical field to which the invention belongs]
The present invention relates to a hydrotreating equipment and a hydrotreating method for removing impurities by mixing hydrogen into a raw material oil.
[0002]
[Prior art]
As a hydrotreating equipment and a hydrotreating method for removing impurities by mixing hydrogen into raw material oil, for example, a heavy oil direct desulfurization equipment and a heavy oil direct desulfurization method for removing sulfur components from heavy oil are known.
An example of this heavy oil direct desulfurization facility and method will be described with reference to FIG.
In the heavy oil direct desulfurization equipment 4, the heavy oil that is the raw material oil is pressurized by the booster pump P <b> 1, mixed with hydrogen, heated by the heater 11, and sent to the reaction tower 12.
In the reaction tower 12, the sulfur content in heavy oil reacts with hydrogen and is converted to hydrogen sulfide. And the heavy oil taken out from the reaction tower 12 is sent to the gas-liquid separation tank 13, and is isolate | separated into a liquid and gas. The separated gas is sent to the naphtha absorption tank 14 and the separated liquid is sent from the bottom of the gas-liquid separation tank 13 to a distillation tower or the like.
[0003]
The gas sent to the naphtha absorption tank 14 includes hydrocarbon gas mainly composed of hydrogen sulfide and methane gas (this includes butane, propane, ethane, etc. Note that the hydrocarbon gas mainly composed of methane gas is , Hereinafter referred to as “methane gas, etc.”), and surplus hydrogen remaining without being used for removing sulfur components. In the naphtha absorption tank 14, methane gas or the like is mainly removed from the gas by naphtha as an absorption medium, and the hydrogen purity of the gas taken out from the naphtha absorption tank 14 is increased.
[0004]
The gas taken out from the naphtha absorption tank 14 is further sent to the amine contact tank 15. And in this amine contact tank 15, the hydrogen sulfide in gas is removed by amine aqueous solution. Further, the remaining gas (hydrogen including a small amount of methane gas or the like) is pressurized by a compressor C1 provided in the hydrogen circulation system and mixed with heavy oil together with new hydrogen supplied from the hydrogen supply system.
On the other hand, the naphtha taken out from the naphtha absorption tank 14 is sent to the recovery tank 16. In the recovery tank 16, by reducing the pressure of the naphtha, the gas (including methane gas and hydrogen) included in the naphtha is released from the naphtha and recovered.
[0005]
The naphtha from which the gas has been released is boosted again to a certain pressure by a booster pump P2 composed of a high-pressure multistage pump, and returned to the naphtha absorption tank 14. A gas containing methane gas and the like released and recovered from naphtha and hydrogen is sent to the hydrogen recovery device 17. In the hydrogen recovery device 17, hydrogen is recovered from the gas by, for example, a cryogenic separation method. The recovered hydrogen is sent to the hydrogen supply system, boosted by the compressor C2, and then mixed into heavy oil. Further, the remaining methane gas or the like after the hydrogen is recovered by the hydrogen recovery device is pressurized by the compressor C3 and sent to the hydrogen production device 18 of the hydrogen supply system and used as a raw material for hydrogen production.
Furthermore, the hydrogen production apparatus 18 is supplied with a hydrogen raw material such as methane gas sent from another facility or the like after being pressurized by the compressor C4.
[0006]
The heavy oil direct desulfurization equipment 4 as described above collects hydrogen raw materials such as hydrogen and methane gas from the gas separated in the gas-liquid separation tank 13 and circulates them as much as possible. There is an advantage that the amount can be reduced and the cost is excellent.
However, further improvement in efficiency is desired from the viewpoint of further cost reduction in recent years, energy saving, and environmental protection.
[0007]
Further, the amount of gas generated in the reaction tower 12 varies depending on the life of the catalyst in the reaction tower 12. That is, at the initial stage of use of the catalyst, its activity is high, so the reaction temperature is low and the amount of gas generated is small. And as the life of the catalyst advances, the reaction temperature rises and the amount of gas generated increases. Therefore, it is preferable to adjust the supply amount or the circulation amount of an absorption medium such as naphtha in accordance with the change in the amount of gas generated in the reaction tower 12.
[0008]
FIG. 6 is a graph schematically showing the relationship between the degree of progress of catalyst life (time) and the amount of naphtha circulated in the heavy oil direct desulfurization equipment 4 of FIG.
In the example shown in this graph, the heavy oil direct desulfurization equipment 4 has a plurality of booster pumps P2 having a discharge capacity M1, and sequentially drives the booster pumps P2 according to an increase in the amount of naphtha circulated. To do.
The operation of the heavy oil direct desulfurization equipment 4 is started at the time indicated by the symbol I in FIG. 6, and one of the plurality of booster pumps P2 is driven to start the naphtha circulation.
[0009]
As shown in the graph of FIG. 6, the amount of naphtha to be circulated is increased in proportion to the passage of time (progress of catalyst life), but when the time indicated by symbol II in the figure is reached, the naphtha to be circulated is increased. At this time, the second booster pump P2 is driven and the two booster pumps P2 are used and the discharge capacity M2 (M2 = M1 × 2) is reached. Circulate naphtha.
By the way, in the booster pump P2, in particular, in the multistage booster pump P2 as described above, the discharge capacity cannot be changed according to the amount of naphtha to be circulated, and the booster pump P2 with a constant discharge capacity M1, M2. At present, the amount of naphtha to be returned to the naphtha absorption tank 13 is adjusted by operating the valve while driving.
Therefore, in the conventional heavy oil direct desulfurization equipment 4 as described above, there is a problem that the driving energy of the booster pump P2 is wasted as much as indicated by the hatched lines in the graph of FIG.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and can greatly reduce the cost at a low cost and achieve a large energy saving effect in the entire equipment without significantly modifying the existing equipment, and can efficiently produce hydrogen. The purpose is to provide a hydrotreating facility and a hydrotreating method capable of recovering water.
[0011]
[Means for achieving the object]
The inventor of the present invention has arrived at the present invention by paying attention to the fact that the energy consumption of a driving source such as a booster pump that supplies or circulates an absorption medium to an absorption tank occupies a large weight in the hydrogen treatment facility. .
That is, The invention described in claim 1 heavy oil In a hydrotreating facility for removing impurities by mixing hydrogen into the reaction tower, a reaction tower for bringing the hydrogen into contact with the impurities, and a gas-liquid separation tank for separating the product produced in the reaction tower into a liquid and a gas An absorption medium in which an absorption medium is brought into contact with the gas separated in the gas-liquid separation tank and a part of the gas is absorbed by the absorption medium; and the remaining gas taken out from the absorption tank At least a part of the hydrogen separator for separating hydrogen from the gas, and the hydrogen separated by the hydrogen separator, heavy oil And a pipe that leads to a step of mixing hydrogen into the pipe.
[0012]
For example, in the conventional absorption tank shown in FIG. 5, the purity of the hydrogen sent to the hydrogen circulation system needs to be ensured to be at least a certain reference value or more. Therefore, in order to secure this reference value, it is necessary to remove as much impurities (methane gas, etc.) as possible in the absorption tank, but as much absorption medium must be supplied or circulated to the absorption tank. In addition, the amount of energy consumed by a drive source such as a booster pump increases.
[0013]
Therefore, if configured as in the invention described in claim 1, a part of the gas in the absorption tank is sent to the hydrogen separator to separate the hydrogen, and this high-purity hydrogen is sent to the hydrogen supply system or the hydrogen circulation system. Therefore, the supply amount or circulation amount of the absorption medium in the absorption tank is reduced while maintaining the purity of hydrogen to be sent to the hydrogen supply system or the hydrogen circulation system at a certain reference value or higher. The energy consumption of a driving source such as a pump for supplying or circulating the absorbing medium can be reduced.
[0014]
The invention described in claim 2 heavy oil In a hydrotreating facility for removing impurities by mixing hydrogen into the reaction tower, a reaction tower for bringing the hydrogen into contact with the impurities, and a gas-liquid separation tank for separating the product produced in the reaction tower into a liquid and a gas A part of the gas separated in the gas-liquid separation tank, an absorption tank in which the gas absorbs an absorption medium, and a part of the gas is absorbed in the absorption medium, and the gas-liquid separation Another part of the gas separated in the tank is supplied, a hydrogen separator for separating hydrogen from the gas, and the hydrogen separated by the hydrogen separator, heavy oil And a pipe that leads to a step of mixing hydrogen into the pipe.
[0015]
In this configuration, a part of the gas separated in the gas-liquid separation tank is sent to the absorption tank, and the other part is directly supplied to the hydrogen separator. Therefore, the invention according to claim 2 can also reduce the supply amount or circulation amount of the absorption medium in the absorption tank, and reduce the consumption of energy for supplying or circulating the absorption medium. .
[0016]
According to a third aspect of the present invention, at least part of a gas other than hydrogen separated by the hydrogen separator is heavy oil In this configuration, a pipe that leads to a hydrogen production apparatus for producing hydrogen mixed in is provided. According to this configuration, in a gas other than hydrogen separated by the hydrogen separator, when a component that is a raw material for hydrogen production such as methane gas is included, by supplying this gas to the hydrogen production device, Effective utilization of the gas separated in the gas-liquid separation tank can be achieved.
[0017]
According to a fourth aspect of the present invention, there is provided a recovery tank that releases the gas absorbed in the absorption medium in the absorption tank and recovers the gas, and the hydrogen from the gas recovered in the recovery tank. A configuration is provided that includes a hydrogen recovery device that recovers, and a pipe that guides at least part of the gas from which hydrogen has been separated by the hydrogen separator to the hydrogen recovery device.
According to this configuration, hydrogen can be recovered from the gas recovered in the recovery tank, and part of the hydrogen remains in the remaining gas from which hydrogen has been separated by the hydrogen separator. In addition, the hydrogen can be recovered by a hydrogen recovery device.
[0018]
The invention described in claim 5 heavy oil In a hydrotreating facility for removing impurities by mixing hydrogen into the reaction tower, a reaction tower for bringing the hydrogen into contact with the impurities, and a gas-liquid separation tank for separating the product produced in the reaction tower into a liquid and a gas A part of the gas separated in the gas-liquid separation tank, an absorption medium in which an absorption medium is brought into contact with the gas and a part of the gas is absorbed by the absorption medium, and the absorption tank A recovery tank that releases and recovers the gas absorbed by the absorption medium from the absorption medium, a hydrogen recovery device that recovers the hydrogen from the gas recovered in the recovery tank, and a gas-liquid separation tank A pipe that leads at least a part of the other part of the separated gas or the remaining gas taken out from the absorption tank to the hydrogen recovery unit, and hydrogen recovered by the hydrogen recovery unit The above heavy oil And a conduit for leading to the step of mixing hydrogen into the.
[0019]
According to this configuration, a part of the gas from the absorption tank or the gas-liquid separation tank is sent to the hydrogen recovery device to recover the hydrogen, and the recovered high purity hydrogen is sent to the hydrogen supply system or the hydrogen circulation system to feed the raw material oil. Since it can utilize for mixing, the supply amount or circulation amount of the absorption medium in the said absorption tank can be reduced, and the consumption of energy for supplying or circulating the said absorption medium can be reduced.
[0020]
The invention according to claim 6 is the amount of the gas supplied to the hydrogen separation device or the hydrogen recovery device between the gas-liquid separation vessel or the absorption tank and the hydrogen separation device or the hydrogen recovery device. It is the structure which provided the adjustment means which adjusts.
If the amount of gas absorbed in the absorption tank is reduced, energy consumption for supplying or circulating the absorption medium to the absorption tank can be reduced. However, in the hydrogen circulation system or the hydrogen supply system, a load such as a compressor is reduced. As a result, the energy consumption increases.
[0021]
Therefore, in consideration of the energy consumption of the entire facility including the hydrogen circulation system and the hydrogen supply system, the adjusting means is appropriately operated so that an appropriate amount of gas is supplied to the hydrogen separation device or the hydrogen recovery device. Thus, the energy consumption of the entire facility can be reduced.
Further, according to this configuration, it is possible to send an appropriate amount of gas to the hydrogen separation device or the hydrogen recovery device in accordance with a change in the amount of gas generated as the life of the catalyst progresses. Therefore, it is possible to easily adjust the supply amount or the circulation amount, and it is possible to suppress wasteful energy consumption.
[0022]
The present invention provides the method according to claim 7, wherein heavy oil May be one of atmospheric distillation residue, reduced pressure distillate and reduced pressure residue, or may be a blend of two or more of these. In addition, as described in claim 8, the gas may include a hydrocarbon gas in addition to hydrogen, and the gas may be absorbed by the naphtha in the absorption tank to remove the hydrocarbon gas and the like. . For example, in a heavy oil direct desulfurization facility, hydrogen is used to remove sulfur components from heavy oil, which is atmospheric distillation residue, and the hydrocarbon gas mainly composed of methane gas is removed from the gas by naphtha, and hydrogen is removed. The purity of can be improved.
[0023]
The invention according to claim 9 is provided with an amine contact tank for removing hydrogen sulfide from the gas by bringing the gas into contact with the amine solution, and removing the hydrogen sulfide from the hydrogen separator or the hydrogen. It is configured to supply to the recovery device.
In equipment such as heavy oil direct desulfurization equipment, an amine contact tank is provided to remove generated hydrogen sulfide. Therefore, it is advisable to send a gas whose hydrogen purity is increased by removing hydrogen sulfide in this amine contact tank to the hydrogen separator.
[0024]
In addition, as a hydrogen separation apparatus, it is preferable to perform hydrogen separation using a hydrogen separation membrane as described in claim 10.
Such a membrane separation type hydrogen separation apparatus has an extremely small consumption amount of energy such as electric power and is advantageous in terms of energy saving.
[0025]
The hydrotreating equipment having the above-described configuration makes it possible to carry out the treating method according to claims 11 to 18, thereby achieving the object of the present invention. In particular, heavy oil In the hydrotreating method in which impurities are removed by mixing hydrogen into the gas, a gas is separated from a product produced by bringing the hydrogen into contact with the impurities, an absorbing medium is brought into contact with the gas, and the gas is separated. An absorption step of absorbing a part into the absorption medium, a hydrogen separation step of separating hydrogen from at least a part of the gas remaining without being absorbed in the absorption step, and the separated hydrogen, heavy oil And a supply step of supplying to the method.
[0026]
Also, heavy oil In the hydrotreating method in which impurities are removed by mixing hydrogen into the gas, a gas is separated from a product generated by bringing the hydrogen into contact with the impurities, an absorbing medium is brought into contact with a part of the gas, and the An absorption step of absorbing a part of gas into the absorption medium, a hydrogen separation step of separating hydrogen from another part of the gas, and the separated hydrogen, heavy oil And a supply step of supplying to the method. Furthermore, at least a part of the gas other than hydrogen separated by the hydrogen separator, heavy oil This is a method of supplying hydrogen to a hydrogen production apparatus for producing hydrogen mixed in.
[0027]
Also, heavy oil In the hydrotreating method in which impurities are removed by mixing hydrogen into the gas, a gas is separated from a product generated by bringing the hydrogen into contact with the impurities, an absorbing medium is brought into contact with a part of the gas, and the An absorption process for absorbing a part of gas in the absorption medium, a recovery process for releasing the gas absorbed in the absorption medium in the absorption process from the absorption medium and recovering, and the recovered in the recovery process A hydrogen recovery step of recovering hydrogen from the gas and recovering hydrogen from another part of the gas separated from the product or a part of the gas remaining unabsorbed in the absorption step, and the recovered hydrogen The above heavy oil And a supply step of supplying to the method.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described in detail with reference to the drawings.
[First embodiment]
FIG. 1 is a flow diagram illustrating a hydroprocessing facility and a processing procedure in the processing facility according to the first embodiment of the hydroprocessing facility and the hydroprocessing method of the present invention.
The hydrotreating equipment and method of this embodiment is a heavy oil direct desulfurization equipment and method for removing sulfur from heavy oil, and the same part as the conventional heavy oil direct desulfurization equipment described with reference to FIG. The same reference numerals are given, and detailed descriptions of the parts are omitted.
[0029]
As shown in FIG. 1, the heavy oil direct desulfurization facility 1 of the first embodiment is provided with a hydrogen separator 21 for separating hydrogen from gas. A part of the gas taken out from the amine contact tank 15 is sent to the hydrogen separator 21 and the other part is sent to the compressor C1. In addition, a valve V <b> 1 is provided in the middle of the pipe connecting the hydrogen separator 21 and the amine contact tank 15 so that the amount of gas sent to the hydrogen separator 21 can be adjusted.
[0030]
The hydrogen separated by the hydrogen separation device 21 is sent to the hydrogen supply compressor C2 to be pressurized, and the gas from which hydrogen is separated (including methane gas and the like and hydrogen remaining without separation) is a raw material of hydrogen. To the hydrogen production device 18.
As the hydrogen separation device 21 for separating hydrogen from the gas, a known device using a hydrogen separation membrane that can permeate only hydrogen may be used. The hydrogen separator 21 using such a hydrogen separation membrane has an extremely small power consumption and is advantageous in terms of reducing energy consumption.
[0031]
Further, as indicated by a virtual line in FIG. 1, a part of the gas separated by the hydrogen separation device 21 may be sent to the hydrogen recovery device 17. Thereby, the remaining hydrogen remaining without being separated from the gas that has passed through the hydrogen separator 21 can be recovered and sent to the hydrogen supply system and reused for mixing with heavy oil.
[0032]
According to the heavy oil direct desulfurization facility 1 of this embodiment, since a part of the gas in the naphtha absorption tank 14 can be sent to the hydrogen separator 21 to separate high-purity hydrogen, methane gas absorbed in the naphtha absorption tank 14 The amount of naphtha circulated by the booster pump can be reduced. Therefore, energy consumption such as electric power by driving the booster pump P2 can be greatly reduced.
[0033]
[Second Embodiment]
FIG. 2 is a flowchart for explaining a hydrogenation treatment facility and a processing procedure in the treatment facility according to the second embodiment of the hydrogenation treatment facility and the hydrogenation treatment method of the present invention.
In the heavy oil direct desulfurization facility 2 of this embodiment, a part of the gas separated in the gas-liquid separation tank 13 is sent to the naphtha absorption tank 14 and the other part is sent directly to the amine contact tank 15. . A part of the gas taken out from the amine contact tank 15 is sent to the hydrogen separator 21.
Further, a valve V <b> 2 is provided in the middle of a pipeline connecting the amine contact tank 15 and the gas-liquid separation tank 13 so that the amount of gas sent to the amine contact tank 15 can be adjusted.
[0034]
Also in this embodiment, as in the previous embodiment, a part of the remaining gas separated from the hydrogen by the hydrogen separation device 21 is sent to the hydrogen recovery device 17, and the recovered hydrogen is sent to the hydrogen supply system. It is good to.
According to the heavy oil direct desulfurization facility 2 of this embodiment, since the amount of gas sent from the gas-liquid separation tank 13 to the naphtha absorption tank 14 can be reduced, the amount of naphtha to be circulated can be reduced. Energy consumption such as electric power by driving can be greatly reduced.
[0035]
[Third embodiment]
FIG. 3 is a flow diagram illustrating a hydroprocessing facility and a processing procedure in the processing facility according to the third embodiment of the hydroprocessing facility and the hydroprocessing method of the present invention.
In the heavy oil direct desulfurization facility 3 of this embodiment, a part of the gas in the naphtha absorption tank 14 is sent to the amine contact tank 15 and a part of the gas taken out from the amine contact tank 15 is supplied to the hydrogen recovery device 17. I have to. Further, a valve V <b> 1 for adjusting the amount of gas sent to the hydrogen recovery device 17 is provided in the middle of a pipe line connecting the hydrogen recovery device 17 and the amine contact tank 15.
[0036]
That is, in this embodiment, instead of providing the hydrogen separation device 21 described in the first and second embodiments, the hydrogen recovery device 17 and the amine contact tank 15 are connected by a pipe, and the existing hydrogen recovery device is connected. In step 17, hydrogen is recovered from the gas taken out from the amine contact tank 15.
Further, in the third embodiment, as shown by the phantom line in FIG. 3, a pipe for connecting the amine contact tank 15 and the gas-liquid separation tank 13 is provided, and the gas separated in the gas-liquid separation tank 13 A part of this may be sent directly to the amine contact tank 15. Moreover, it is good to provide the valve | bulb V2 in the middle of a pipe line so that the quantity of the gas sent to the amine contact tank 15 can be adjusted.
[0037]
The heavy oil direct desulfurization equipment 3 of this embodiment can also reduce the amount of gas that must be absorbed in the naphtha absorption tank 14, and can reduce energy consumption such as electric power by driving the booster pump P2.
[0038]
In said 1st, 2nd and 3rd embodiment, valve | bulb V1, V2 can be operated and the quantity of the gas sent to the hydrogen separation apparatus 21 or the hydrogen recovery apparatus 17 can be adjusted. As the amount of gas sent to the hydrogen separator 21 or the hydrogen recovery device 17 is increased, the amount of gas that must be absorbed in the naphtha absorption tank 14 can be reduced, and the energy consumption of the booster pump P2 and the like can be reduced. Can be reduced.
However, on the other hand, the amount of gas sent to the compressors C1, C2, C3, the hydrogen recovery device 17 and the like increases, the load increases, and the amount of energy consumption increases.
[0039]
Therefore, in order to reduce the energy consumption of the heavy oil direct desulfurization equipment 1, 2, 3 as a whole, the energy consumption of the booster pump P2 and the like, the compressors C1, C2, C3, the hydrogen recovery device 17, etc. Considering the increase in energy consumption, the valves V1 and V2 must be operated so that the amount of gas sent to the hydrogen separation device 21 or the hydrogen recovery device 17 becomes an appropriate amount. The manipulated variables of the valves V1 and V2 can be obtained through experiments and calculations.
[0040]
[Example]
The inventor of the present invention performed verification using the same heavy oil direct desulfurization facility 1 as in the first embodiment in order to verify the effects of the hydroprocessing facility and the hydroprocessing method of the present invention.
The result will be described with reference to FIG.
FIG. 4 is a graph showing the relationship between the driving timing of the booster pump P2, the amount of naphtha to be circulated, the timing of supplying gas to the hydrogen separator 21 and the amount of gas, and the horizontal axis represents the degree of progress of the catalyst life ( Time), the left vertical axis represents the amount of gas supplied to the hydrogen separator, and the right vertical axis represents the naphtha circulation amount and the discharge capacity of the booster pump (in parentheses).
In the figure, the solid line shows the change in the amount of gas sent to the hydrogen separator, and the dotted line shows the change in the amount of naphtha circulated by the booster pump P2.
[0041]
In this example, the experiment period was divided into an initial period, a middle period, and a late period according to the life of the catalyst in the reaction tower 12. The amount of gas sent to the hydrogen separator 21 and the drive of the booster pump P2 are appropriately controlled according to the amount of gas generated as the life of the catalyst progresses, so that the purity of hydrogen mixed in heavy oil is always maintained. It was kept at 88% or more.
The operation of the heavy oil direct desulfurization equipment 1 is started at I in the graph. In the initial state after the start of operation, since the catalyst in the reaction tower 12 is new and the amount of gas generated is small, heavy oil can be obtained only by the hydrogen separator 21 without driving the booster pump P2 and circulating the naphtha. The purity of the hydrogen mixed in can be kept at 88% or more. The amount of gas sent to the hydrogen separator 21 at the start of operation is S0 as shown in FIG.
[0042]
As described above, as the catalyst life in the reaction tower 12 progresses, the amount of gas generated also increases. Therefore, the amount of gas sent to the hydrogen separator 21 is also increased in accordance with the increase amount of the gas.
In this embodiment, the amount of gas sent to the hydrogen separator 21 is S2 (S2 = 430 KNm), which is the maximum capacity of the hydrogen separator 21. 3 / Day, N indicates normal state) (indicated by reference numeral II in the figure), the purity of hydrogen mixed in heavy oil can no longer be maintained at 88% or more, so the pressure for circulating naphtha The driving of the pump P2 (discharge capacity M1) was started, and gas absorption in the naphtha absorption tank 14 was started. Accordingly, the amount of gas sent to the hydrogen separator 21 is set to S1 = 290 KNm. 3 / Day level so that the waste of energy of the booster pump P2 indicated by the oblique lines in FIG. 4 is minimized.
[0043]
Thereafter, the amount of gas sent to the hydrogen separator 21 was gradually increased from the level of S1 in accordance with the increase in the amount of gas generated in the reaction tower 12. The maximum capacity S2 of the hydrogen separation device 21 is reached again at the position indicated by the symbol III in the figure, but since the amount of gas generated in the reaction tower 12 continues to increase, the valve is operated to increase the amount of naphtha circulated. To make up for the shortage.
[0044]
As can be seen from this example, in the conventional heavy oil direct desulfurization equipment 4 that does not have the hydrogen separator 21, the amount of naphtha to be circulated is L2 (M2) in order to keep the purity of hydrogen mixed in heavy oil at 88% or more. ) = 11200 kl / day was necessary, but in the heavy oil direct desulfurization equipment 1 of the present invention, this can be made L1 = 4000 to 6000 kl / day, and energy wasted by driving the booster pump P2 ( The portion indicated by diagonal lines in FIG. 4 could also be suppressed to less than half.
Further, by operating the valve V1 and / or the valve V2, the amount of gas sent to the hydrogen separator 21 is appropriately changed according to the change in the amount of gas generated in the reaction tower 12, and the energy consumption of the entire equipment It is also easy to adjust so that is minimized.
[0045]
Although preferred embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments.
For example, in the above embodiment, a heavy oil direct desulfurization facility that removes sulfur components from heavy oil has been described as an example, but the present invention is not limited to such a facility, and can also be applied to other hydroprocessing facilities. It is.
[0046]
Further, the heavy oil as the raw material oil may be any one of atmospheric distillation residual oil, reduced pressure distillate oil and reduced pressure residual oil, or a suitable blend of two or more of these. It may be.
Furthermore, in the above embodiment, the hydrogen taken out from the hydrogen separator 21 or the hydrogen recovery device 17 has been described as being sent to the hydrogen supply system, but can be sufficiently pressurized by the compressor C1 in the hydrogen circulation system. In this case, the hydrogen may be sent to the hydrogen circulation system.
[0047]
【The invention's effect】
Since this invention is comprised as mentioned above, it can aim at the energy-saving of a hydroprocessing equipment, and can aim at reduction of operating cost. In addition, since the existing equipment can be used almost as it is, it can be implemented at a low cost.
Furthermore, by adjusting the amount of gas to be treated in the hydrogen separator according to the amount of gas generated with the change in the catalyst life in the reaction tower, the energy due to excessive supply of the absorption medium and excessive circulation in the absorption tank Loss can be suppressed.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a flow diagram illustrating a hydroprocessing facility and a processing procedure in the processing facility according to a first embodiment of a hydroprocessing facility and a hydroprocessing method of the present invention.
FIG. 2 is a flow diagram illustrating a hydrogenation treatment facility and a processing procedure in the treatment facility according to a second embodiment of the hydrogenation treatment facility and the hydrogenation treatment method of the present invention.
FIG. 3 is a flow diagram illustrating a hydroprocessing facility and a processing procedure in the processing facility according to a third embodiment of the hydroprocessing facility and the hydroprocessing method of the present invention.
FIG. 4 is a graph showing the relationship between the timing of driving the booster pump, the amount of naphtha to be circulated, the timing of supplying gas to the hydrogen separator, and the amount of gas.
FIG. 5 is a flowchart illustrating the configuration of a heavy oil direct desulfurization facility according to a conventional example of the present invention.
6 is a graph schematically showing the relationship between the degree of progress of catalyst life (time) and the amount of naphtha circulated in the heavy oil direct desulfurization facility of FIG.
[Explanation of symbols]
1-4 Heavy oil direct desulfurization equipment (hydrotreating equipment)
11 Heater
12 reaction tower
13 Gas-liquid separation tank
14 Naphtha absorption tank (absorption tank)
15 Amine contact tank
16 Collection tank
17 Hydrogen recovery equipment
18 Hydrogen production equipment
21 Hydrogen separator
P1, P2 Booster pump
C1-C4 compressor
V1. V2 valve

Claims (18)

重油に水素を混入させて不純物を除去する水素化処理設備において、
前記水素を前記不純物に接触させる反応塔と、
この反応塔で生成された生成物を、液体と気体とに分離する気液分離槽と、
この気液分離槽で分離された前記気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収槽と、
この吸収槽から取り出された残りの前記気体のうちの少なくとも一部が供給され、この気体の中から水素を分離する水素分離装置と、
この水素分離装置で分離した前記水素を、前記重油に水素を混入させる工程まで導く管路と、
を有することを特徴とする水素化処理設備。
In hydroprocessing equipment that removes impurities by mixing hydrogen into heavy oil ,
A reaction tower for contacting the hydrogen with the impurities;
A gas-liquid separation tank for separating the product produced in this reaction tower into a liquid and a gas;
An absorption tank in which an absorption medium is brought into contact with the gas separated in the gas-liquid separation tank, and a part of the gas is absorbed by the absorption medium;
A hydrogen separator for supplying at least a part of the remaining gas taken out from the absorption tank and separating hydrogen from the gas;
A conduit for guiding the hydrogen separated by the hydrogen separator to a step of mixing hydrogen into the heavy oil ;
A hydrotreatment facility characterized by comprising:
重油に水素を混入させて不純物を除去する水素化処理設備において、
前記水素を前記不純物に接触させる反応塔と、
この反応塔で生成された生成物を、液体と気体とに分離する気液分離槽と、
この気液分離槽で分離された前記気体の一部が供給され、前記気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収槽と、
前記気液分離槽で分離された前記気体の他の一部が供給され、当該気体の中から水素を分離する水素分離装置と、
この水素分離装置で分離した前記水素を、前記重油に水素を混入させる工程まで導く管路と、
を有することを特徴とする水素化処理設備。
In hydroprocessing equipment that removes impurities by mixing hydrogen into heavy oil ,
A reaction tower for contacting the hydrogen with the impurities;
A gas-liquid separation tank for separating the product produced in this reaction tower into a liquid and a gas;
A part of the gas separated in the gas-liquid separation tank is supplied, an absorption medium is brought into contact with the gas, and the absorption medium absorbs a part of the gas; and
A hydrogen separation device for supplying another part of the gas separated in the gas-liquid separation tank and separating hydrogen from the gas;
A conduit for guiding the hydrogen separated by the hydrogen separator to a step of mixing hydrogen into the heavy oil ;
A hydrotreatment facility characterized by comprising:
前記水素分離装置で分離した水素以外の気体の少なくとも一部を、前記重油に混入される水素を製造するための水素製造装置に導く管路を設けたことを特徴とする請求項1又は2に記載の水素化処理設備。3. A pipe line is provided for guiding at least a part of a gas other than hydrogen separated by the hydrogen separation device to a hydrogen production device for producing hydrogen mixed in the heavy oil. The hydroprocessing facility described. 前記吸収槽で前記吸収媒体に吸収された前記気体を、前記吸収媒体から解放して回収する回収槽と、この回収槽で回収された前記気体から前記水素を回収する水素回収装置と、前記水素分離装置で水素を分離した気体の少なくとも一部を、前記水素回収装置に導く管路とを有することを特徴とする請求項1〜3のいずれかに記載の水素化処理設備。  A recovery tank that releases and recovers the gas absorbed in the absorption medium in the absorption tank from the absorption medium, a hydrogen recovery apparatus that recovers the hydrogen from the gas recovered in the recovery tank, and the hydrogen The hydrotreating equipment according to any one of claims 1 to 3, further comprising: a pipe that guides at least a part of the gas separated from the hydrogen by the separator to the hydrogen recovery unit. 重油に水素を混入させて不純物を除去する水素化処理設備において、
前記水素を前記不純物に接触させる反応塔と、
この反応塔で生成された生成物を、液体と気体とに分離する気液分離槽と、
この気液分離槽で分離された前記気体の一部が供給され、前記気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収槽と、
この吸収槽で前記吸収媒体に吸収された前記気体を、前記吸収媒体から解放して回収する回収槽と、
この回収槽で回収された前記気体から前記水素を回収する水素回収装置と、
前記気液分離槽で分離された前記気体の他の一部、又は、前記吸収槽から取り出された残りの前記気体のうちの少なくとも一部を前記水素回収装置まで導く管路と、
前記水素回収装置で回収された水素を、前記重油に水素を混入させる工程まで導く管路と、
を有することを特徴とする水素化処理設備。
In hydroprocessing equipment that removes impurities by mixing hydrogen into heavy oil ,
A reaction tower for contacting the hydrogen with the impurities;
A gas-liquid separation tank for separating the product produced in this reaction tower into a liquid and a gas;
A part of the gas separated in the gas-liquid separation tank is supplied, an absorption medium is brought into contact with the gas, and the absorption medium absorbs a part of the gas; and
A recovery tank for releasing and recovering the gas absorbed in the absorption medium in the absorption tank from the absorption medium;
A hydrogen recovery device that recovers the hydrogen from the gas recovered in the recovery tank;
A conduit for guiding at least a part of the other part of the gas separated in the gas-liquid separation tank or the remaining gas taken out from the absorption tank to the hydrogen recovery device;
A pipe for guiding the hydrogen recovered by the hydrogen recovery device to a step of mixing hydrogen into the heavy oil ;
A hydrotreatment facility characterized by comprising:
前記気液分離槽又は前記吸収槽と前記水素分離装置又は前記水素回収装置との間に、前記水素分離装置又は前記水素回収装置に供給される前記気体の量を調整する調整手段を設けたことを特徴とする請求項1〜5のいずれかに記載の水素化処理設備。  An adjusting means for adjusting the amount of the gas supplied to the hydrogen separation device or the hydrogen recovery device is provided between the gas-liquid separation tank or the absorption tank and the hydrogen separation device or the hydrogen recovery device. The hydroprocessing equipment according to claim 1, wherein: 前記重油が、常圧蒸留残油,減圧留出油及び減圧残油のうちの一種類又は二種類以上であることを特徴とする請求項1〜6のいずれかに記載の水素化処理設備。The hydroprocessing equipment according to any one of claims 1 to 6, wherein the heavy oil is one type or two or more types of an atmospheric distillation residue, a vacuum distillate oil, and a vacuum residue. 前記気体には、水素の他に炭化水素ガスが含まれ、前記吸収媒体がナフサであることを特徴とする請求項1〜7のいずれかに記載の水素化処理設備。  The hydrotreating equipment according to claim 1, wherein the gas contains a hydrocarbon gas in addition to hydrogen, and the absorption medium is naphtha. 前記気体をアミン溶液に接触させて前記気体の中から硫化水素を除去するアミン接触槽を設け、前記硫化水素を除去した前記気体を前記水素分離装置又は前記水素回収装置に供給することを特徴とする請求項1〜8のいずれかに記載の水素化処理設備。  An amine contact tank for removing hydrogen sulfide from the gas by bringing the gas into contact with an amine solution is provided, and the gas from which the hydrogen sulfide has been removed is supplied to the hydrogen separator or the hydrogen recovery device. The hydrotreating equipment according to any one of claims 1 to 8. 前記水素分離装置が、水素分離膜を用いて水素の分離を行うものであることを特徴とする請求項1〜9のいずれかに記載の水素化処理設備。  The hydrotreating equipment according to any one of claims 1 to 9, wherein the hydrogen separator performs hydrogen separation using a hydrogen separation membrane. 重油に水素を混入させて不純物を除去する水素化処理方法において、
前記水素を前記不純物に接触させて生成された生成物から気体を分離し、この気体に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収工程と、
この吸収工程で吸収されずに残った前記気体の少なくとも一部から水素を分離する水素分離工程と、
分離した前記水素を、前記重油に供給する供給工程と、
を有することを特徴とする水素化処理方法。
In a hydroprocessing method of removing impurities by mixing hydrogen into heavy oil ,
An absorption step in which a gas is separated from a product generated by bringing the hydrogen into contact with the impurities, an absorption medium is brought into contact with the gas, and a part of the gas is absorbed into the absorption medium;
A hydrogen separation step of separating hydrogen from at least a part of the gas remaining unabsorbed in this absorption step;
A supply step of supplying the separated hydrogen to the heavy oil ;
A hydroprocessing method characterized by comprising:
重油に水素を混入させて不純物を除去する水素化処理方法において、
前記水素を前記不純物に接触させて生成された生成物から気体を分離し、この気体の一部に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収工程と、
前記気体の他の一部から水素を分離する水素分離工程と、
分離した前記水素を、前記重油に供給する供給工程と、
を有することを特徴とする水素化処理方法。
In a hydroprocessing method of removing impurities by mixing hydrogen into heavy oil ,
An absorption step of separating a gas from a product generated by bringing the hydrogen into contact with the impurities, contacting an absorption medium with a part of the gas, and absorbing a part of the gas into the absorption medium;
A hydrogen separation step for separating hydrogen from the other part of the gas;
A supply step of supplying the separated hydrogen to the heavy oil ;
A hydroprocessing method characterized by comprising:
前記水素分離装置で分離した水素以外の気体の少なくとも一部を、前記重油に混入される水素を製造するための水素製造装置に供給することを特徴とする請求項11又は12に記載の水素化処理方法。The hydrogenation according to claim 11 or 12, wherein at least a part of a gas other than hydrogen separated by the hydrogen separation device is supplied to a hydrogen production device for producing hydrogen mixed in the heavy oil . Processing method. 前記吸収工程で前記吸収媒体に吸収された前記気体を前記吸収媒体から解放して回収する回収工程と、
この回収工程で回収された前記気体から水素を回収するとともに、前記水素分離工程で水素が分離された気体から水素を回収する水素回収工程と、
を有することを特徴とする請求項11〜13のいずれかに記載の水素化処理方法。
A recovery step of releasing and recovering the gas absorbed in the absorption medium in the absorption step from the absorption medium;
A hydrogen recovery step of recovering hydrogen from the gas recovered in the recovery step and recovering hydrogen from the gas from which hydrogen has been separated in the hydrogen separation step;
The hydrotreatment method according to claim 11, wherein
重油に水素を混入させて不純物を除去する水素化処理方法において、
前記水素を前記不純物に接触させて生成された生成物から気体を分離し、この気体の一部に吸収媒体を接触させて、前記気体の一部を前記吸収媒体に吸収させる吸収工程と、
この吸収工程で前記吸収媒体に吸収された前記気体を前記吸収媒体から解放して回収する回収工程と、
この回収工程で回収された前記気体から水素を回収するとともに、前記生成物から分離した気体の他の一部又は前記吸収工程で吸収されずに残った前記気体の一部から水素を回収する水素回収工程と、
回収した前記水素を、前記重油に供給する供給工程と、
を有することを特徴とする水素化処理方法。
In a hydroprocessing method of removing impurities by mixing hydrogen into heavy oil ,
An absorption step of separating a gas from a product generated by bringing the hydrogen into contact with the impurities, contacting an absorption medium with a part of the gas, and absorbing a part of the gas into the absorption medium;
A recovery step for releasing and recovering the gas absorbed in the absorption medium in the absorption step from the absorption medium;
Hydrogen that recovers hydrogen from the gas recovered in the recovery step and recovers hydrogen from another part of the gas separated from the product or from the part of the gas that remains unabsorbed in the absorption step A recovery process;
A supply step of supplying the recovered hydrogen to the heavy oil ;
A hydroprocessing method characterized by comprising:
前記水素分離工程又は前記水素回収工程に供給される前記気体の量を調整可能にし、水素化処理設備における水素供給系及び水素循環系のエネルギ消費が最小となるように、前記水素分離工程又は前記水素回収工程に供給される気体の量を調整することを特徴とする請求項11〜15のいずれかに記載の水素化処理方法。  The amount of the gas supplied to the hydrogen separation step or the hydrogen recovery step can be adjusted and the hydrogen separation step or the hydrogen circulation step so that the energy consumption of the hydrogen supply system and the hydrogen circulation system in the hydroprocessing facility is minimized. The hydrogenation method according to any one of claims 11 to 15, wherein the amount of gas supplied to the hydrogen recovery step is adjusted. 前記重油が、常圧蒸留残油,減圧留出油及び減圧残油のうちの一種類又は二種類以上であることを特徴とする請求項11〜16のいずれかに記載の水素化処理方法。The hydroprocessing method according to any one of claims 11 to 16, wherein the heavy oil is one type or two or more types of an atmospheric distillation residue, a vacuum distillate oil, and a vacuum residue. 前記気体をアミン溶液に接触させて前記気体の中から硫化水素を除去する工程を設け、前記硫化水素を除去した前記気体を前記水素分離工程又は前記水素回収工程に供給することを特徴とする請求項11〜17のいずれかに記載の水素化処理方法。  A step of contacting the gas with an amine solution to remove hydrogen sulfide from the gas is provided, and the gas from which the hydrogen sulfide has been removed is supplied to the hydrogen separation step or the hydrogen recovery step. Item 18. The hydrotreating method according to any one of Items 11 to 17.
JP2002132829A 2002-05-08 2002-05-08 Hydrotreating equipment and hydrotreating method Expired - Fee Related JP4112894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132829A JP4112894B2 (en) 2002-05-08 2002-05-08 Hydrotreating equipment and hydrotreating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132829A JP4112894B2 (en) 2002-05-08 2002-05-08 Hydrotreating equipment and hydrotreating method

Publications (2)

Publication Number Publication Date
JP2003327969A JP2003327969A (en) 2003-11-19
JP4112894B2 true JP4112894B2 (en) 2008-07-02

Family

ID=29696180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132829A Expired - Fee Related JP4112894B2 (en) 2002-05-08 2002-05-08 Hydrotreating equipment and hydrotreating method

Country Status (1)

Country Link
JP (1) JP4112894B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519448U (en) * 1991-08-29 1993-03-12 株式会社小松製作所 Building material mounting device
US10379531B2 (en) 2016-03-17 2019-08-13 Fanuc Corporation Test system for performing machine test

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968526B2 (en) * 2007-06-21 2012-07-04 石油コンビナート高度統合運営技術研究組合 Method for separating hydrogen-containing gas
JP4964686B2 (en) * 2007-06-21 2012-07-04 石油コンビナート高度統合運営技術研究組合 Hydrogen interchange system
JP4915804B2 (en) * 2007-06-21 2012-04-11 石油コンビナート高度統合運営技術研究組合 Method for separating hydrogen-containing gas
JP5014891B2 (en) * 2007-06-21 2012-08-29 石油コンビナート高度統合運営技術研究組合 Mutual use of hydrogen-containing gas
US8424181B2 (en) * 2009-04-17 2013-04-23 Exxonmobil Research And Engineering Company High pressure revamp of low pressure distillate hydrotreating process units

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519448U (en) * 1991-08-29 1993-03-12 株式会社小松製作所 Building material mounting device
US10379531B2 (en) 2016-03-17 2019-08-13 Fanuc Corporation Test system for performing machine test

Also Published As

Publication number Publication date
JP2003327969A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4022555B2 (en) Biogas purification method and biogas purification equipment
KR930010571B1 (en) Purifying combustible gases containing carbon monoxide
JP4344773B1 (en) Digestion gas desulfurization method and apparatus
JP4112894B2 (en) Hydrotreating equipment and hydrotreating method
CN101554560B (en) Method for treating coal bed gas at low pressure
WO2016111184A1 (en) Method for operating hydrogen generation apparatus and hydrogen generation apparatus
KR20220143246A (en) Lng reformer system
CN113430534B (en) Hydrogen production method, hydrogen production system, hydrogen production electrolyte circulation method and hydrogen production electrolyte circulation device
CN100582623C (en) Integrated process and apparatus for the compression, cooling, and purification of air
WO2020196822A1 (en) Method for operating hydrogen production apparatus and hydrogen production apparatus
JP5101882B2 (en) Adsorption method for producing hydrogen and apparatus for carrying out said method
JP2001000949A (en) Digestion gas storing apparatus
KR102003230B1 (en) A method for addition producing higher purity oxygen and an apparatus thereof
JP2014188405A (en) Apparatus and method for separating carbon dioxide
JP5457854B2 (en) Production method of high purity hydrogen
KR100425274B1 (en) Waste heat collection system using dual recompression systems and its method
US7074322B2 (en) System and method for liquefying variable selected quantities of light hydrocarbon gas with a plurality of light hydrocarbon gas liquefaction trains
JP2002249032A (en) Hydrogen station
JP4594686B2 (en) Gas-liquid contact reaction method and gas-liquid contact reaction apparatus
JP2010024443A (en) Method for desulfurizing digestion gas and desulfurizer therefor
CN106438272B (en) A kind of gas pushes away oily energy-storage system
JP2008063392A (en) Method for recovering methane and apparatus for purifying digestive gas
JP2006299105A (en) Method for concentrating methane gas and carbon dioxide gas and concentrator
CN108865237A (en) A kind of recycle hydrogen recovery system and method
CN109650644B (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4112894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees