KR102003230B1 - A method for addition producing higher purity oxygen and an apparatus thereof - Google Patents

A method for addition producing higher purity oxygen and an apparatus thereof Download PDF

Info

Publication number
KR102003230B1
KR102003230B1 KR1020170126527A KR20170126527A KR102003230B1 KR 102003230 B1 KR102003230 B1 KR 102003230B1 KR 1020170126527 A KR1020170126527 A KR 1020170126527A KR 20170126527 A KR20170126527 A KR 20170126527A KR 102003230 B1 KR102003230 B1 KR 102003230B1
Authority
KR
South Korea
Prior art keywords
nitrogen
oxygen
purity
storage tank
liquid
Prior art date
Application number
KR1020170126527A
Other languages
Korean (ko)
Other versions
KR20190036977A (en
Inventor
오염근
정상근
곽남규
김대억
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020170126527A priority Critical patent/KR102003230B1/en
Publication of KR20190036977A publication Critical patent/KR20190036977A/en
Application granted granted Critical
Publication of KR102003230B1 publication Critical patent/KR102003230B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04963Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipment within or downstream of the fractionation unit(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Abstract

고순도산소를 추가 생산하기 위한 방법 및 장치가 개시된다. 본 발명의 일 측면에 따르면, 공기를 분리하도록 대기 중 공기를 공기압축기에서 압축하여 수제냉각탑, 흡착기, 열교환기, 팽창터빈 및 정류통을 거쳐 온도 비점차에 의한 산소, 질소, 아르곤을 분리하는 제철소의 산소생산장치에 있어서, 상기 공기 분리 공정을 통해 생산된 고순도질소(액체질소)와 고순도산소(액체산소)를 각각 액체질소 저장탱크와 액체산소 저장탱크에 저장하는 복수의 플랜트; 및 질소 사용처에 필요한 질소를 제외한 여분의 질소가 생산되는 경우 상기 액체질소 저장탱크에 저장된 여분의 고순도질소를 어느 하나의 플랜트의 정류통 상탑에 역투입하는 역투입 배관라인;을 포함하고, 상기 정류통 상탑에 역투입된 고순도질소와 상기 정류통 내의 저순도질소에 포함된 저순도산소간 열교환에 의해 저순도산소를 재액화시켜 고순도산소를 추가 생산하는 산소생산장치가 제공될 수 있다.Methods and apparatus for further producing high purity oxygen are disclosed. According to an aspect of the present invention, an air compressor for compressing atmospheric air in an air compressor to separate air to separate oxygen, nitrogen, and argon from each other by a temperature gradient through a hand cooling tower, an adsorber, a heat exchanger, an expansion turbine, The apparatus comprising: a plurality of plants each storing high purity nitrogen (liquid nitrogen) and high purity oxygen (liquid oxygen) produced through the air separation process in a liquid nitrogen storage tank and a liquid oxygen storage tank, respectively; And a back-feed pipe line for feeding extra high-purity nitrogen stored in the liquid nitrogen storage tank back to the rectification column of one of the plants when extra nitrogen is produced except for nitrogen required for nitrogen use, There can be provided an oxygen production apparatus for re-liquefying low-purity oxygen by heat exchange between high-purity nitrogen introduced into a column and low-purity oxygen contained in low-purity nitrogen in the rectification column to further produce high purity oxygen.

Description

고순도산소를 추가 생산하기 위한 방법 및 장치{A METHOD FOR ADDITION PRODUCING HIGHER PURITY OXYGEN AND AN APPARATUS THEREOF}FIELD OF THE INVENTION [0001] The present invention relates to a method and apparatus for additionally producing high purity oxygen,

본 발명은 고순도산소를 추가 생산하기 위한 방법 및 장치에 관한 것으로서, 더욱 상세하게는 온도 비점차에 의하여 공기 중에 포함된 산소와 질소, 아르곤을 분리하고, 저순도질소 내에 포함된 산소성분을 재액화하여 고순도산소를 추가 생산하기 위한 방법 및 장치에 관한 것이다.The present invention relates to a method and an apparatus for additionally producing high purity oxygen, and more particularly, to a method and an apparatus for producing high purity oxygen by separating oxygen, nitrogen and argon contained in air by the temperature ratio gradually, To a method and apparatus for further production of high purity oxygen.

일반적으로 제철소에서는 대기 중의 공기를 흡입, 압축시켰다가 다시 팽창시키면서 온도를 떨어뜨려 비점차에 의하여 공기 중에 포함된 산소와 질소, 아르곤을 분리하는 공기분리설비(이하 '플랜트'라 함)가 운용되고 있다. 즉, 플랜트는 온도 비점차를 이용한 정류 원리에 의해 고순도의 산소 및 질소를 생산하였다가 사용처에 공급하는 역할을 한다.Generally, the steel mill operates an air separation facility (hereinafter referred to as "plant") that separates oxygen, nitrogen, and argon contained in the air by inhaling, compressing, and expanding the atmospheric air while lowering the temperature have. In other words, the plant produces high purity oxygen and nitrogen by the principle of rectification using the temperature ratio, and supplies the oxygen and nitrogen to the use place.

이러한 플랜트는 대기 중의 공기를 공기압축기에서 압축하고, 압축기(30)에서 압축된 공기는 수세냉각탑, 흡착기, 열교환기, 팽창터빈 및 정류통을 거침에 의해 온도 비점차에 의한 액체가스(산소, 질소, 아르곤)를 분리 생산하게 된다.Such a plant compresses atmospheric air in an air compressor, and the compressed air in the compressor 30 passes through a water cooling tower, an adsorber, a heat exchanger, an expansion turbine, and a rectifier, , Argon).

최근 제철소에서는 생산량 증대를 위한 제강 취련 횟수 증가에 따라 가스사용 추이가 산소 사용량은 증가하고 질소 사용량은 감소하고 있다. 즉, 상기한 플랜트를 통하여 생산되는 액체가스의 생산량은 일정하기 때문에 가스 수급에 불균형이 발생되고 있다. 구체적으로, 플랜트는 설비사양에 따라 공기 중의 21%인 산소 중 최대 19% 정동의 산소를 추출하고, 나머지 2% 정도는 산소순도를 맞추지 못하여 저순도질소와 함께 대기로 폐기된다. 이와 함께 공기 중의 78%인 질소를 산소와 동일한량의 고순도질소만 생산하고 나머지 저순도질소는 원료공기의 냉각에 도움을 주는 보충용으로 사용하고 버려지게 된다. 이는 질소를 산소보다 많이 생산하더라도 현 산업사회에서 질소의 수요가 산소보다 많지 않으므로 질소를 증산하여도 부가가치를 유발하지 못하기 때문이다.In recent years, the use of oxygen has increased and the amount of nitrogen used has been decreasing with the increase in the number of steelmaking taps to increase production in steel mills. That is, since the production amount of the liquid gas produced through the plant is constant, an imbalance is generated in the gas supply and demand. Specifically, the plant extracts up to 19% of the oxygen of 21% oxygen in the air according to the equipment specifications, and the remaining 2% can not meet oxygen purity and is discarded with low purity nitrogen into the atmosphere. At the same time, 78% of the air produces only the high purity nitrogen of the same amount as oxygen, and the remaining low purity nitrogen is used as a supplement for the cooling of the feed air and is discarded. This is because, even if nitrogen is produced more than oxygen, the demand of nitrogen is not higher than oxygen in the present industrial society, so even if nitrogen is added, it can not induce added value.

상기와 같이, 고순도산소의 생산량을 증가시키기 위해서는 플랜트의 가동시간을 증가시키거나 산소생산장치(플랜트)를 증가시켜야 한다. 그러나, 플랜트의 가동시간 및 장치를 증가시키더라도 설비사양에 따라 생산되는 산소량은 일정하기 때문에 산소 생산에 따른 전력에너지의 상승으로 전력비가 증가됨은 물론, 불필요한 질소 생산량 추가로 인해 버려지는 질소가 증가하는 문제점이 있다.As described above, in order to increase the production amount of high-purity oxygen, the operation time of the plant must be increased or the oxygen production plant (plant) must be increased. However, even if the operation time and equipment of the plant are increased, the amount of oxygen produced according to the equipment specifications is constant, so the power ratio is increased due to the production of oxygen, and the amount of nitrogen that is discarded due to the addition of unnecessary nitrogen production is increased There is a problem.

본 발명의 실시 예에 따른 고순도산소를 추가 생산하기 위한 방법 및 장치는 사용처에서 필요로하는 질소를 제외한 여분의 질소를 통해 정류된 저순도질소 내에 포함된 산소성분 재액화시킴으로써 버려지는 저순도질소에서 고순도산소를 추가적으로 회수할 수 있도록 한다.The method and apparatus for further producing high-purity oxygen according to an embodiment of the present invention is characterized in that the low-purity nitrogen which is discharged by re-liquefying the oxygen component contained in the low-purity nitrogen rectified through the extra nitrogen except for the nitrogen required at the use site So that high-purity oxygen can be further recovered.

본 발명의 일 측면에 따르면, 공기를 분리하도록 대기 중 공기를 공기압축기에서 압축하여 수제냉각탑, 흡착기, 열교환기, 팽창터빈 및 정류통을 거쳐 온도 비점차에 의한 산소, 질소, 아르곤을 분리하는 제철소의 산소생산장치에 있어서, 상기 공기 분리 공정을 통해 생산된 고순도질소(액체질소)와 고순도산소(액체산소)를 각각 액체질소 저장탱크와 액체산소 저장탱크에 저장하는 복수의 플랜트; 및 질소 사용처에 필요한 질소를 제외한 여분의 질소가 생산되는 경우 상기 액체질소 저장탱크에 저장된 여분의 고순도질소를 어느 하나의 플랜트의 정류통 상탑에 역투입하는 역투입 배관라인;을 포함하고, 상기 정류통 상탑에 역투입된 고순도질소와 상기 정류통 내의 저순도질소에 포함된 저순도산소간 열교환에 의해 저순도산소를 재액화시켜 고순도산소를 추가 생산하는 산소생산장치가 제공될 수 있다.According to an aspect of the present invention, an air compressor for compressing atmospheric air in an air compressor to separate air to separate oxygen, nitrogen, and argon from each other by a temperature gradient through a hand cooling tower, an adsorber, a heat exchanger, an expansion turbine, The apparatus comprising: a plurality of plants each storing high purity nitrogen (liquid nitrogen) and high purity oxygen (liquid oxygen) produced through the air separation process in a liquid nitrogen storage tank and a liquid oxygen storage tank, respectively; And a back-feed pipe line for feeding extra high-purity nitrogen stored in the liquid nitrogen storage tank back to the rectification column of one of the plants when extra nitrogen is produced except for nitrogen required for nitrogen use, There can be provided an oxygen production apparatus for re-liquefying low-purity oxygen by heat exchange between high-purity nitrogen introduced into a column and low-purity oxygen contained in low-purity nitrogen in the rectification column to further produce high purity oxygen.

또한, 상기 액체질소 저장탱크에 저장된 고순도질소를 기화기를 통해 질소 사용처에 압송하도록 상기 액체질소 저장탱크와 기화기를 연결하는 액체질소 공급배관이 마련되고, 상기 역투입 배관라인은 상기 액체질소 공급배관으로부터 분기되어 상기 정류통의 상탑과 연결될 수 있다.Also, a liquid nitrogen supply pipe for connecting the liquid nitrogen storage tank and the vaporizer is provided so as to pressurize the high-purity nitrogen stored in the liquid nitrogen storage tank through a vaporizer, and the back-charged pipe line is connected to the liquid nitrogen supply pipe And can be connected to the upper tower of the rectifier.

또한, 상기 역투입 배관라인에는 고순도질소를 배출하는 펌프의 기동에 의해 상기 액체질소 저장탱크로부터 상기 정류탑의 상탑으로 고순도질소의 흐름을 제어하는 제어밸브가 마련될 수 있다.In addition, a control valve for controlling the flow of high-purity nitrogen from the liquid nitrogen storage tank to the upper tower of the rectifying column may be provided in the back-charged pipe line by starting a pump for discharging high purity nitrogen.

또한, 상기 제어밸브는 자동으로 제어되는 제1 제어밸브와 수동으로 제어되는 제2 제어밸브를 구비할 수 있다.In addition, the control valve may include a first control valve that is automatically controlled and a second control valve that is manually controlled.

또한, 상기 역투입 배관라인에는 안전밸브가 더 마련될 수 있다.Further, a safety valve may be further provided in the back-charged pipe line.

본 발명의 다른 측면에 따르면, 대기 중 공기를 온도 비점차에 의한 산소, 질소, 아르곤을 분리하는 공기 분리 공정을 수행하는 복수의 플랜트를 갖춘 산소생산장치를 이용하여 고순도산소를 추가 생산하는 방법에 있어서, 복수의 플랜트를 가동하여 고순도질소(액체질소)와 고순도산소(액체산소)를 각각 액체질소 저장탱크와 액체산소 저장탱크에 저장하고, 상기 액체질소 저장탱크에 저장된 고순도질소가 질소 사용처의 사용량 보다 증가되는 경우 고순도질소를 어느 하나의 플랜트의 정류통 상탑에 역투입하여, 역투입된 고순도질소와 정류통 내의 저순도질소에 포함된 저순도산소간 열교환에 의해 저순도산소를 재액화시키는 산소생산장치를 이용한 산소 추가 생산방법이 제공될 수 있다.According to another aspect of the present invention, there is provided a method of additionally producing high purity oxygen by using an oxygen production apparatus having a plurality of plants for performing an air separation process for separating oxygen, nitrogen, and argon (Liquid nitrogen) and high purity oxygen (liquid oxygen) are stored in a liquid nitrogen storage tank and a liquid oxygen storage tank, respectively, by operating a plurality of plants, and the high purity nitrogen stored in the liquid nitrogen storage tank is used Purity nitrogen is re-introduced into the rectification column of a plant and the re-liquefaction of low-purity oxygen is performed by heat exchange between the high-purity nitrogen introduced into the rectifier and the low-purity oxygen contained in the low- Can be provided.

또한, 상기 액체질소 저장탱크에 저장된 고순도질소를 정류통 상탑으로 역투입 시 펌프를 기동하고, 상기 액체질소 저장탱크와 정유통 상탑을 연결하는 역투입 배관라인에 마련되는 안전밸브와 자동제어되는 제1 제어밸브 및 수동제어되는 제2 제어밸브를 개방할 수 있다.In addition, when the high-purity nitrogen stored in the liquid nitrogen storage tank is returned to the rectification column top, the pump is started, and a safety valve provided in a back-feeding pipe line connecting the liquid nitrogen storage tank and the rectification top plate, 1 control valve and manually controlled second control valve.

또한, 상기 정유통의 상탑으로 역투입되는 고순도질소의 투입량은 상기 제1 제어밸브의 개방 정도를 통해 제어될 수 있다.In addition, the amount of high purity nitrogen introduced back into the tower of the constant flow can be controlled through the opening degree of the first control valve.

또한, 상기 정류통 상탑으로 고순도질소의 역투입을 차단 시 제1 제어밸브와 제2 제어밸브 및 안전밸브를 폐쇄하되, 상기 안전밸브는 완전 폐쇄되지 않도록 하여 상기 제2 제어밸브와 정류통 사이의 역투입 배관라인에 저장된 고순도질소의 기화에 따라 역투입 배관라인 내의 압력 상승을 방지할 수 있다.The first control valve, the second control valve, and the safety valve are closed when the high-purity nitrogen is shut off by the rectifying column top, and the safety valve is not completely closed, It is possible to prevent an increase in the pressure in the back-charged pipeline due to the vaporization of the high-purity nitrogen stored in the back-charged pipeline.

본 발명의 일 실시예에 따른 고순도산소를 추가 생산하기 위한 방법 및 장치는 사용처에서 필요로하는 질소를 제외한 여분의 질소를 이용하여 저순도질소 내에 포함된 산소성분을 재액화시킴으로써 추가적으로 고순도산소를 생산할 수 있는 효과가 있다. 이에, 저순도질소 내에 포함된 산소 방산량을 최소화할 수 있다.The method and apparatus for further producing high purity oxygen according to an embodiment of the present invention may further re-liquefy an oxygen component contained in low-purity nitrogen by using extra nitrogen except for the nitrogen necessary for use, thereby producing additional high purity oxygen There is an effect that can be. Thus, the amount of oxygen contained in the low-purity nitrogen can be minimized.

또한, 추가적인 플랜트(산소생산장치)를 가동하기 위한 전력에너지 손실을 줄여 전력비를 절감할 수 있음은 물론, 추가 생산되는 고순도산소의 판매 증대로 수익성을 향상시킬 수 있는 효과가 있다.In addition, it is possible to reduce power loss by reducing power energy loss for operating an additional plant (oxygen production equipment), and to increase profitability by increasing sales of high-purity oxygen produced further.

아울러, 고순도산소 증량 기술력을 확보할 수 있게 된다.At the same time, it is possible to secure high purity oxygen increasing technology.

본 발명은 아래 도면들에 의해 구체적으로 설명될 것이지만, 이러한 도면은 본 발명의 바람직한 실시예를 나타낸 것이므로 본 발명의 기술사상이 그 도면에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 일 실시예에 따른 고순도산소를 추가 생산하는 산소생산장치를 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 산소생산장치의 플랜트를 개략적으로 나타내는 도면이다.
도 3은 본 발명의 다른 실시예에 따른 고순도산소를 추가 생산하는 산소생산장치를 나타내는 도면이다.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described in detail with reference to the following drawings, which illustrate preferred embodiments of the present invention, and thus the technical idea of the present invention should not be construed as being limited thereto.
1 is a view showing an oxygen production apparatus for further producing high purity oxygen according to an embodiment of the present invention.
2 is a schematic view showing a plant of an oxygen production apparatus according to an embodiment of the present invention.
3 is a view showing an oxygen production apparatus for further producing high purity oxygen according to another embodiment of the present invention.

이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided to fully convey the spirit of the present invention to a person having ordinary skill in the art to which the present invention belongs. The present invention is not limited to the embodiments shown herein but may be embodied in other forms. For the sake of clarity, the drawings are not drawn to scale, and the size of the elements may be slightly exaggerated to facilitate understanding.

도 1은 본 발명의 일 실시예에 따른 고순도산소를 추가 생산하는 산소생산장치를 나타내는 도면이고, 도 2는 상기 산소생산장치의 플랜트를 개략적으로 나타내는 도면이다.FIG. 1 is a view showing an oxygen production apparatus for further producing high purity oxygen according to an embodiment of the present invention, and FIG. 2 is a view schematically showing a plant of the oxygen production apparatus.

도 1 및 도 2를 참조하면, 본 발명의 일 측면에 따른 산소생산장치(10)는 공기 분리 공정을 통해 생산된 고순도질소(액체질소)와 고순도산소(액체산소)를 각각 액체질소 저장탱크(20)와 액체산소 저장탱크(30)에 저장하는 복수의 플랜트(110, 120)를 갖추고, 질소 사용처(P)에 필요한 질소를 제외한 여분의 질소가 생산되는 경우 액체질소 저장탱크(30)에 저장된 여분의 고순도질소를 어느 하나의 플랜트(120)의 정류통(6) 상탑에 역투입하는 역투입 배관라인(200)을 구비한다. 도 1에 도시된 바에 따르면, 복수의 플랜트(110, 120)는 제1 플랜트(110)와 제2 플랜트(120)로 구분될 수 있다. 이 제1 플랜트(110)와 제2 플랜트(120)는 서로 대응되는 구성을 갖도록 구성될 수 있으며, 또한 선택적으로 고순도산소를 생산하는 설비사양에 따라 고효율설비 및 일반설비로 마련될 수 있다. 즉, 본 발명의 일 측면에 따른 산소생산장치(10)의 복수의 플랜트(110, 120)는 상기한 설비사양에 한정되지 않으며, 또한 정류되어 생성된 고순도질소의 잔여분을 이용하여 고순도산소를 추가생산할 수 있다면 플랜트의 개수는 증가될 수 있다.1 and 2, an oxygen production apparatus 10 according to an aspect of the present invention includes high purity nitrogen (liquid nitrogen) and high purity oxygen (liquid oxygen) produced through an air separation process in a liquid nitrogen storage tank And a plurality of plants 110 and 120 stored in the liquid nitrogen storage tank 30 and stored in the liquid nitrogen storage tank 30 when excess nitrogen other than the nitrogen required for the nitrogen use place P is produced. And a back-feed pipe line 200 for feeding extra high-purity nitrogen back to the tower on the rectifying column 6 of any one of the plants 120. 1, the plurality of plants 110 and 120 may be divided into a first plant 110 and a second plant 120. [ The first plant 110 and the second plant 120 may be configured to have a configuration corresponding to each other, and may also be provided with high-efficiency facilities and general facilities according to facility specifications for selectively producing high-purity oxygen. That is, the plurality of plants 110 and 120 of the oxygen production apparatus 10 according to an aspect of the present invention are not limited to the above-described equipment specifications, and additionally, high purity oxygen is added using the remnants of the purified high- If it can produce, the number of plants can be increased.

한편, 본 발명의 일 측면에 따른 산소생산장치(10)를 통하여 고순도산소를 추가 생산하는 방법 및 그 장치를 설명하기 앞서, 플랜트(110, 120)를 통해 온도 비점차에 의한 가스(산소, 질소, 아르곤)를 생산하는 공정에 대하여 간략히 살펴보기로 한다.Before describing a method and apparatus for additionally producing high purity oxygen through the oxygen production apparatus 10 according to one aspect of the present invention, , Argon) are produced.

도 2에는 플랜트의 구성이 개략적으로 도시되어 있다. 이때, 제1 플랜트(110)와 제2 플랜트(120)는 전술한 바와 같이 동일한 구성으로 이루어질 수 있으나, 설비사양에 따라 일부 구성이 변경될 수 있는 것으로 이해되어야 한다.Fig. 2 schematically shows the construction of the plant. In this case, the first plant 110 and the second plant 120 may have the same configuration as described above, but it should be understood that some configurations may be changed depending on the equipment specifications.

도 2에 도시된 바와 같이, 플랜트(110, 120)는 공기압축기(1), 수세냉각탑(2), 흡착기(3), 열교환기(4), 팽창터빈(5) 및 정류통(6)을 구비한다. 즉, 대기 중의 공기를 공기압축기(1)에서 압축하고, 공기압축기(1)에서 압축된 공기는 수세냉각탑(2), 흡착기(3), 열교환기(4), 팽창터빈(5) 및 정류통(6)을 거쳐 온도 비점차에 의해 액체가스(산소, 질소, 아르곤)를 분리 생산하게 된다.2, the plants 110 and 120 include an air compressor 1, a water cooling tower 2, an adsorber 3, a heat exchanger 4, an expansion turbine 5, and a rectifier 6 Respectively. That is, the air in the atmosphere is compressed by the air compressor 1, and the air compressed in the air compressor 1 passes through the water cooling tower 2, the adsorber 3, the heat exchanger 4, the expansion turbine 5, (Oxygen, nitrogen, and argon) by the temperature ratio gradually through the reaction tube 6.

대기 중은 공기는 공기압축기(1)를 통해 압축되기 전 공기필터(미도시)에 의해 이물질이 제거된 후, 공기압축기(1)로 공급될 수 있다. 공기압축기(1)는 여러단의 압축단을 가지며, 다단 압축 과정을 거쳐 고압으로 압축되어 수세냉각탑(2)으로 제공된다.In the air, the air can be supplied to the air compressor 1 after foreign matters are removed by an air filter (not shown) before being compressed through the air compressor 1. The air compressor 1 has multiple stages of compression stages, is compressed to a high pressure through a multi-stage compression process, and is supplied to the water cooling tower 2.

수세냉각탑(2)에 제공된 공기는 열교환기(4)에서 제공되는 냉각수의 분사에 의해 냉각되고, 수세냉각탑(2)을 거친 냉각 공기는 수세냉각탑(2)의 출구와 연결된 흡착기(3)로 보내져 공기 중에 포함된 수분 및 이산화탄소가 제거된 후 공기 중의 순수 질소와 산소, 아르곤을 후속 공정인 열교환기(4)를 통해 정류통(6)으로 이송한다.The air supplied to the water cooling tower 2 is cooled by the injection of the cooling water provided in the heat exchanger 4 and the cooling air passing through the water cooling tower 2 is sent to the adsorption machine 3 connected to the outlet of the water cooling tower 2 After moisture and carbon dioxide contained in the air are removed, pure nitrogen, oxygen and argon in the air are transferred to the rectifier 6 through the heat exchanger 4 as a subsequent process.

팽창터빈(5)은 냉각 운전시 열교환기(4) 및 정류통(6)에 한냉을 공급하여 서서히 공기를 액화시키는 역할을 한다.The expansion turbine (5) supplies cold air to the heat exchanger (4) and the rectifier (6) during the cooling operation to slowly liquefy the air.

정류통(6)은 혼합물질인 공기의 압력과 온도에 따른 각각의 비점차가 다른 성질을 이용하여 특정부위에서 농축하고 정제하는 과정을 연속적으로 반복하여 액체가스(산소, 질소, 아르곤)를 분리하여 생산한다. 상기 정류통(6)으로부터 분리된 고순도질소(액체질소)와 고순도산소(액체산소)는 각각 액체질소 저장탱크(20)와 액체산소 저장탱크(30)로 이송되어 저장된다. 이와 같은, 공기 분리 공정을 통하여 고순도질소와 고순도산소를 생산하는 플랜트(110, 120)의 설비는 통상적으로 사용되는 것으로서 상세한 설명은 생략하기로 한다.The rectifying column 6 continuously separates and purifies the liquid gas (oxygen, nitrogen, and argon) by repeating the process of concentrating and purifying at a specific site by using different properties depending on the pressure and temperature of the air, . High purity nitrogen (liquid nitrogen) and high purity oxygen (liquid oxygen) separated from the rectifier 6 are transferred to and stored in the liquid nitrogen storage tank 20 and the liquid oxygen storage tank 30, respectively. The facilities of the plants 110 and 120 for producing high-purity nitrogen and high-purity oxygen through the air separation process are generally used, and a detailed description thereof will be omitted.

한편, 본 명세서에서 사용되는 용어 '고순도산소'는 99몰% 이상의 범위의 산소 농도를 갖는 유체를 의미한다.On the other hand, the term 'high purity oxygen' as used herein means a fluid having an oxygen concentration in the range of 99 mol% or more.

본 명세서에서 사용되는 용어 '고순도질소'는 99몰% 이상의 범위의 질소 농도를 갖는 유체를 의미한다.The term 'high purity nitrogen' as used herein means a fluid having a nitrogen concentration in the range of 99 mol% or more.

본 명세서에서 사용되는 용어 '저순도산소'는 50 내지 99몰% 미만의 범위의 산소 농도를 갖는 유체를 의미한다.As used herein, the term " low purity oxygen " means a fluid having an oxygen concentration in the range of 50 to less than 99 mol%.

본 명세서에서 사용되는 용어 '저순도질소'는 고순도질소 범위를 초과하지 않으며 산소 성분을 갖는 유체를 의미한다. 예컨대, 플랜트(110, 120)를 통하여 추출되는 각 산소량은 공기 중의 21%인 산소를 19% 정도 추출하고, 2% 정도는 저순도질소 내에 포함되어 대기로 폐기된다. 이에, 본 발명의 일 측면에 따르면, 저순도질소에 포함된 산소 성분을 회수하여 추가 고순도산소 생산량을 증가시키는데 그 목적이 있다.As used herein, the term "low purity nitrogen" refers to a fluid that does not exceed the high purity nitrogen range and has an oxygen content. For example, each oxygen amount extracted through the plants 110 and 120 extracts about 19% of oxygen, which is 21% in the air, and about 2%, is contained in low purity nitrogen and is discarded as air. Therefore, according to one aspect of the present invention, it is an object of the present invention to recover oxygen components contained in low purity nitrogen to increase the production of additional high purity oxygen.

도면을 참조하면, 제1 플랜트(110) 및 제2 플랜트(120)의 가동에 의해 고순도질소는 액체질소 저장탱크(20)에 저장되고, 고순도산소는 액체산소 저장탱크(30)에 저장된다. 상기 액체질소 저장탱크(20)에 저장된 고순도질소는 필요에 따라 기화기(40)를 통해 사용처(P)로 보내지게 된다. 비록 도시되지는 않았으나, 고순도질소의 사용과 마찬가지로, 액체산소 저장탱크(30)에 저장된 고순도산소도 필요에 따라 기화기를 통해 사용처로 보내질 수 있다.Referring to the drawings, high purity nitrogen is stored in the liquid nitrogen storage tank 20 by the operation of the first plant 110 and the second plant 120, and the high purity oxygen is stored in the liquid oxygen storage tank 30. The high purity nitrogen stored in the liquid nitrogen storage tank 20 is sent to the place of use P through the vaporizer 40 as necessary. Although not shown, the high purity oxygen stored in the liquid oxygen storage tank 30, as well as the use of high purity nitrogen, can be sent to the application via the vaporizer as needed.

액체질소 저장탱크(20)는 액체질소 공급배관(22)을 통해 기화기(40)와 연결된다. 액체질소 공급배관(22)에는 고순도질소의 흐름을 제어하는 배출밸브(23)가 마련된다. 즉, 액체질소 저장탱크(20)의 출구측에 마련된 펌프(21)가 기동하면 배출밸브(23)가 열리며 액체질소 공급배관(22)을 통해 기화기(40)로 전달된다. 기화기(40)로 전달된 고순도질소는 기화된 후 사용처(P)로 보내지게 된다.The liquid nitrogen storage tank 20 is connected to the vaporizer 40 through the liquid nitrogen supply pipe 22. The liquid nitrogen supply pipe 22 is provided with a discharge valve 23 for controlling the flow of high purity nitrogen. That is, when the pump 21 provided at the outlet side of the liquid nitrogen storage tank 20 is activated, the discharge valve 23 is opened and transferred to the vaporizer 40 through the liquid nitrogen supply pipe 22. The high-purity nitrogen transferred to the vaporizer 40 is vaporized and then sent to the place of use P.

한편, 미설명된 참조부호 '25'는 액체질소 충전배관이고, 참조부호 '26'은 액체질소 충전배관(25)에 설치된 충전밸브이다.Reference numeral 25 denotes a liquid nitrogen filling pipe, and reference numeral 26 denotes a filling valve provided in the liquid nitrogen filling pipe 25.

또한, 미설명된 참조부호 '27'은 펌프 리사이클 배관이고, 참조부호 '28'은 펌프 리사이클 배관(27)에 설치된 압력제어밸브이다.Reference numeral 27 denotes a pump recycle pipe, and reference numeral 28 denotes a pressure control valve provided in the pump recycle pipe 27.

또한, 미설명된 참조부호 '35'는 액체산소 충전배관이고, 참조부호 '36'은 액체산소 충전배관(35)에 설치된 충전밸브이다.Reference numeral 35 'denotes a liquid oxygen filling pipe, and reference numeral 36' denotes a filling valve provided in the liquid oxygen filling pipe 35.

상기와 같이, 고순도질소가 사용처(P)로 필요한 만큼 사용되고 남은 잔여의 고순도질소가 생산되는 경우 잔여의 고순도질소를 제1 및 제2 플랜트(110, 120) 중 어느 하나의 플랜트(110, 120)의 정류통(6) 상탑으로 역투입하도록 이루어진다. 예컨대, 잔여의 고순도질소는 제2 플랜트(120)의 정류통(6) 상탑으로 보내어질 수 있다.As described above, when the high purity nitrogen is used as much as necessary for the use site P and the remaining high purity nitrogen is produced, the residual high purity nitrogen is supplied to any one of the plants 110 and 120 of the first and second plants 110 and 120, To the top of the rectifier (6). For example, the remaining high purity nitrogen can be sent to the tower above the rectification column 6 of the second plant 120.

보다 구체적으로, 고순도질소를 제2 플랜트(120)의 정류통(6)으로 역투입시키기 위하여 역투입 배관라인(200)이 마련된다. 역투입 배관라인(200)은 액체질소 공급배관(22)으로부터 분기되어 정류통(6)의 상탑과 연결된다. 이때, 역투입 배관라인(200)은 직접 액체질소 저장탱크(20) 및 정류통(6)과 연결될 수도 있다. 역투입 배관라인(200)에는 제어밸브(210, 220) 및 안전밸브(230)가 설치된다. 제어밸브(210, 220) 및 안전밸브(230)는 정상 운전 시 잔여의 고순도질소가 발생하는 경우 즉, 추가적인 고순도산소를 생산 시 개방되어 고순도질소를 정류통(6)으로 제공한다. 여기서, 제어밸브(210, 220)는 자동으로 개폐되는 제1 제어밸브(210)와, 수동으로 개폐되는 제2 제어밸브(220)를 구비한다.More specifically, a back-feeding pipe line 200 is provided to feed high-purity nitrogen back into the rectifying column 6 of the second plant 120. The back charge pipe line 200 is branched from the liquid nitrogen supply pipe 22 and connected to the top of the rectifier 6. At this time, the back-feed pipe line 200 may be directly connected to the liquid nitrogen storage tank 20 and the rectifier 6. Control valves 210 and 220 and a safety valve 230 are installed in the back-charged pipeline 200. The control valves 210 and 220 and the safety valve 230 are opened when the remaining high purity nitrogen is generated during normal operation, that is, when the additional high purity oxygen is produced, and the high purity nitrogen is supplied to the rectifier 6. The control valves 210 and 220 include a first control valve 210 that is automatically opened and closed and a second control valve 220 that is manually opened and closed.

상기 제1 제어밸브(210)와 제2 제어밸브(220)를 마련한 것은 안전사고 발생방지 및 기밀유지를 위함이다.The first control valve 210 and the second control valve 220 are provided to prevent a safety accident and to maintain confidentiality.

안전밸브(230)는 고순도질소의 흐름제어 기능과 더불어, 역투입 배관라인(200)을 통해 흐르는 고순도질소가 주변환경이나 작업요건 등에 따라 기화되는 경우 압력이 상승할 수 있어 역투입 배관라인(200)의 압력을 제어하는 역할을 수행한다. 상기한 제어밸브(210, 220)와 안전밸브(230)의 작동상태에 대해서는 아래에서 다시 설명하기로 한다.In addition to the flow control function of the high purity nitrogen, the safety valve 230 can increase the pressure when the high purity nitrogen flowing through the back-feeding pipe line 200 is vaporized according to the surrounding environment, And the pressure of the gas. The operation states of the control valves 210 and 220 and the safety valve 230 will be described below.

역투입 배관라인(200)을 통해 고순도질소가 정류통(6)의 상탑으로 제공되면, 정류통(6) 내의 저순도질소에 포함된 산소 성분이 고순도질소와 열교환되며 재액화된다. 즉, 재액화되는 산소 성분이 고순도산소로 추가 생산되게 된다.When high purity nitrogen is supplied to the upper tower of the rectifying column 6 through the reverse input piping line 200, the oxygen component contained in the low purity nitrogen in the rectifying column 6 is heat-exchanged with the high purity nitrogen and is re-liquefied. That is, the oxygen component to be re-liquefied is further produced by high-purity oxygen.

그러면, 본 발명의 일 측면에 따른 산소생산장치(10)를 통해 고순도산소를 추가 생산하는 방법 및 그 작동구조에 대하여 설명하기로 한다.Hereinafter, a method for further producing high purity oxygen through the oxygen production apparatus 10 according to an aspect of the present invention and its operation structure will be described.

먼저, 산소생산장치(10)는 대기의 공기를 액체가스로 분리하는 공기 분리 공정을 수행하고, 고순도질소 역투입은 정상 운전 시 잔여 고순도질소가 발생시 실시하도록 설정될 수 있다.First, the oxygen production apparatus 10 performs an air separation process for separating the air of the atmosphere into liquid gas, and the high purity nitrogen reverse osmosis can be set to be performed when residual high purity nitrogen is generated during normal operation.

잔여 고순도질소가 발생한 경우 액체질소 저장탱크(20) 출구측에 마련된 펌프(21)가 기동된다. 이와 함께, 액체질소 공급배관(22)에 설치된 배출밸브(23)는 폐쇄되고, 역투입 배관라인(200)에 설치된 제1 및 제2 제어밸브(210, 220)와 안전밸브(230)가 개방된다. 이에, 역투입 배관라인(200)을 통해 고순도질소가 정류통(6)으로 역투입되며 저순도질소에 포함된 산소 성분간 열교환되어 재액화됨에 따라 고순도산소를 추가 생산하게 된다. 이때, 제1 제어밸브(210)는 고순도질소의 투입량 조절을 위해 개방량이 조절되어 개방된다. 즉, 많은양의 고순도질소가 역투입되는 경우 산소순도가 저하되기 때문이다. 또한, 고순도질소 역투입은 설비에 따라 특정량 이상 이루어질 수 있다. 예컨대, 산소 50,000N㎥/h 산소생산장치에서 고순도질소 역투입량은 2,000N㎥/h 이상 이루어질 수 있다. 이에 따라, 제1 제어밸브(210)는 개방 시 대략 40 내지 50% 개방되도록 제어될 수 있으며, 설비에 따라 제1 제어밸브(210)의 개방량이 조절될 수 있다.When the residual high purity nitrogen is generated, the pump 21 provided at the outlet side of the liquid nitrogen storage tank 20 is started. At the same time, the discharge valve 23 provided in the liquid nitrogen supply pipe 22 is closed and the first and second control valves 210 and 220 provided in the back-charged pipe line 200 and the safety valve 230 are opened do. As a result, high-purity nitrogen is introduced back into the rectifying column 6 through the back-inlet piping line 200 and heat exchange is performed between the oxygen components contained in the low-purity nitrogen to re-liquefy. At this time, the first control valve 210 is opened to regulate the amount of high purity nitrogen to be supplied. That is, oxygen purity decreases when a large amount of high purity nitrogen is added backward. In addition, high-purity nitrogen reverse osmosis can be achieved by a certain amount or more depending on the equipment. For example, a high purity nitrogen feedstock may be supplied at a rate of 2,000 Nm 3 / h or higher in an oxygen producing apparatus of 50,000 Nm 3 / h of oxygen. Accordingly, the first control valve 210 can be controlled to be opened by about 40 to 50% at the time of opening, and the opening amount of the first control valve 210 can be adjusted according to the equipment.

다음으로, 고순도질소 역투입을 차단할 경우 제1 및 제2 제어밸브(210, 220)와 안전밸브(230)를 닫아 흐름을 차단시키게 된다. 이때, 안전밸브(230)는 완전히 폐쇄되지 않고 일정량 개방된 상태를 유지하도록 페쇄된다. 이는 정류통(6)과 제2 제어밸브(220) 사이의 역투입 배관라인(200)에 잔여하는 고순도질소가 외부 또는 작업 환경에 의하여 기화됨에 따라 역투입 배관라인(200)의 압력이 상승할 수 있기 때문이다. 즉, 안전밸브(230)가 일정량 개방된 상태로 작동됨에 따라 압력을 제거하여 압력 상승에 따른 역투입 배관라인(200)의 파손을 방지할 수 있게 된다.Next, when high-purity nitrogen is shut off, the first and second control valves 210 and 220 and the safety valve 230 are closed to interrupt the flow. At this time, the safety valve 230 is closed so as not to be completely closed but to maintain a certain amount of open state. This is because the high-purity nitrogen remaining in the back-feeding pipe line 200 between the rectifying box 6 and the second control valve 220 is vaporized by the outside or the working environment and the pressure of the back-feeding pipe line 200 rises It is because. In other words, as the safety valve 230 is operated in a state of being opened to a certain extent, the pressure is removed to prevent breakage of the back-charged pipe line 200 due to pressure increase.

본 발명의 일 측면에 따르면, 산소생산장치(10)는 두 개의 제1 플랜트(110)와 제2 플랜트(120)를 통해 고순도산소를 추가 생산하는 것으로 도시하고 설명되었으나, 이에 한정되지 않으며, 원료공기 추가 없이 고순도산소를 추가 생산할 수 있다면 사용처 또는 시설 설비사양에 따라 3 이상의 플랜트를 가동하는 설비에 사용할 수 있다. 이러한 일 예가 도 3에 도시되어 있다. 도 3은 본 발명의 다른 실시예에 따른 고순도산소를 추가 생산하는 산소생산장치를 나타내는 도면이다. 여기서, 앞서 도시된 도면에서와 동일한 참조번호는 동일한 기능을 하는 부재를 가리킨다.According to an aspect of the present invention, the oxygen production apparatus 10 has been illustrated and described as additionally producing high purity oxygen through the two first plants 110 and the second plant 120, but the present invention is not limited thereto, If additional high purity oxygen can be produced without adding air, it can be used in equipment that operates more than three plants, depending on the equipment used or facility specifications. An example of this is shown in FIG. 3 is a view showing an oxygen production apparatus for further producing high purity oxygen according to another embodiment of the present invention. Here, the same reference numerals as in the drawings shown above indicate members having the same function.

도 3을 참조하면, 본 실시예에 따른 산소생산장치(10')는 앞선 실시예에 비해 제3 플랜트(130)를 더 구비한다. 즉, 제1 및 제2 플랜트(110, 120)로부터 생산된 고순도질소 및 고순도산소는 각각 액체질소 저장탱크(20)와 액체산소 저장탱크(30)로 저장된다. 이에, 추가적인 고순도산소를 생산하기 위하여 액체질소 저장탱크(20)로부터 잔여의 고순도질소를 제3 플랜트(130)의 정류통(6) 상탑으로 역투입시키게 된다. 즉, 고순도질소를 역투입 및 역투입 차단시키는 일련의 과정은 앞선 실시예와 동일하도록 이루어지게 된다. 예컨대, 제3 플랜트(130)의 가동 시 저순도질소 188,320N㎥/h에 포함된 2.4%의 산소 성분 4,520N㎥/h는 냉각탑을 지나 대기로 버려지는 가스이지만, 본 발명의 일 측면에 따른 산소생산장치(10, 10')에 의하여 고순도산소를 추가 생산할 수 있게 된다. 즉, 저순도질소에 포함된 산소 성분을 1.2%로 줄여 대략 2,200N㎥/h의 고순도산소를 추가생산 할 수 있게 된다. Referring to FIG. 3, the oxygen production apparatus 10 'according to the present embodiment further includes a third plant 130 as compared with the previous embodiment. That is, the high purity nitrogen and the high purity oxygen produced from the first and second plants 110 and 120 are stored in the liquid nitrogen storage tank 20 and the liquid oxygen storage tank 30, respectively. Thus, in order to produce additional high-purity oxygen, the remaining high-purity nitrogen from the liquid nitrogen storage tank 20 is fed back to the tower on the rectifying column 6 of the third plant 130. That is, a series of processes for reversely charging and shutting off high purity nitrogen is performed in the same manner as in the previous embodiment. For example, when the third plant 130 is operated, the low-purity nitrogen 188 and the oxygen component 4,520 Nm 3 / h of 2.4% included in 320 Nm 3 / h are the gases discharged to the atmosphere through the cooling tower. However, It is possible to further produce high purity oxygen by the oxygen production apparatuses 10 and 10 '. That is, the oxygen content in low-purity nitrogen can be reduced to 1.2%, and high-purity oxygen of about 2,200 Nm 3 / h can be further produced.

결과적으로, 대기로 버려지는 잔여의 고순도질소 및 저순도질소를 이용하여 원료공기의 추가 공급없이 저순도질소에 포함된 버려지는 산소 성분을 회수할 수 있게 된다.As a result, the residual high-purity nitrogen and low-purity nitrogen discharged into the atmosphere can be used to recover the discarded oxygen components contained in the low-purity nitrogen without further supply of raw air.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be understood that various modifications and changes may be made without departing from the scope of the appended claims.

10, 10' : 산소생산장치
20 : 액체질소 저장탱크
30 : 액체산소 저장탱크
40 : 기화기
110, 120, 130 : 플랜트
200 : 역투입 배관라인
210, 220 : 제어밸브 230 : 안전밸브
10, 10 ': oxygen production device
20: Liquid nitrogen storage tank
30: Liquid oxygen storage tank
40: vaporizer
110, 120, 130: Plant
200: Reverse feed line
210, 220: Control valve 230: Safety valve

Claims (9)

공기를 분리하도록 대기 중 공기를 공기압축기에서 압축하여 수제냉각탑, 흡착기, 열교환기, 팽창터빈 및 정류통을 거쳐 온도 비점차에 의한 산소, 질소, 아르곤을 분리하는 제철소의 산소생산장치에 있어서,
상기 공기 분리 공정을 통해 생산된 고순도질소(액체질소)와 고순도산소(액체산소)를 각각 액체질소 저장탱크와 액체산소 저장탱크에 저장하는 복수의 플랜트; 및
정상 운전 시 질소 사용처에 필요한 질소를 제외한 여분의 질소가 생산되는 경우 상기 액체질소 저장탱크에 저장된 여분의 고순도질소를 어느 하나의 플랜트의 정류통 상탑에 역투입하는 역투입 배관라인;을 포함하고,
상기 정류통 상탑에 역투입된 고순도질소와 상기 정류통 내의 공기분리에 의해 정류된 저순도질소에 포함된 저순도산소간 열교환에 의해 저순도산소를 재액화시켜 고순도산소를 추가 생산하는 산소생산장치.
1. An oxygen production plant for a steelworks for separating oxygen, nitrogen and argon by temperature gradient through a hand-held cooling tower, an adsorber, a heat exchanger, an expansion turbine, and a rectification column by compressing atmospheric air in an air compressor so as to separate air,
A plurality of plants storing the high purity nitrogen (liquid nitrogen) and the high purity oxygen (liquid oxygen) produced through the air separation process in a liquid nitrogen storage tank and a liquid oxygen storage tank, respectively; And
And a reverse feed pipe line for feeding extra high purity nitrogen stored in the liquid nitrogen storage tank back to the rectification column of one of the plants when excess nitrogen is produced except for nitrogen required for nitrogen use during normal operation,
Wherein the low purity oxygen is re-liquefied by heat exchange between the high-purity nitrogen introduced into the rectifying column and the low purity oxygen contained in the low purity nitrogen rectified by the air separation in the rectifying column to further produce high purity oxygen.
제1항에 있어서,
상기 액체질소 저장탱크에 저장된 고순도질소를 기화기를 통해 질소 사용처에 압송하도록 상기 액체질소 저장탱크와 기화기를 연결하는 액체질소 공급배관이 마련되고,
상기 역투입 배관라인은 상기 액체질소 공급배관으로부터 분기되어 상기 정류통의 상탑과 연결되는 산소생산장치.
The method according to claim 1,
A liquid nitrogen supply pipe is provided for connecting the liquid nitrogen storage tank and the vaporizer so that the high purity nitrogen stored in the liquid nitrogen storage tank is sent to the nitrogen use place through the vaporizer,
And the back-charged pipe line is branched from the liquid nitrogen supply pipe and connected to the upper tower of the rectifier.
제1항에 있어서,
상기 역투입 배관라인에는 고순도질소를 배출하는 펌프의 기동에 의해 상기 액체질소 저장탱크로부터 상기 정류탑의 상탑으로 고순도질소의 흐름을 제어하는 제어밸브가 마련되는 산소생산장치.
The method according to claim 1,
And a control valve for controlling the flow of high-purity nitrogen from the liquid nitrogen storage tank to the upper tower of the rectifying column by the startup of a pump for discharging high-purity nitrogen is provided in the back-charged pipe line.
제3항에 있어서,
상기 제어밸브는 자동으로 제어되는 제1 제어밸브와 수동으로 제어되는 제2 제어밸브를 구비하는 산소생산장치.
The method of claim 3,
Wherein the control valve comprises a first control valve that is automatically controlled and a second control valve that is manually controlled.
제3항에 있어서,
상기 역투입 배관라인에는 안전밸브가 더 마련되는 산소생산장치.
The method of claim 3,
And a safety valve is further provided in the back-charged pipe line.
대기 중 공기를 온도 비점차에 의한 산소, 질소, 아르곤을 분리하는 공기 분리 공정을 수행하는 복수의 플랜트를 갖춘 산소생산장치를 이용하여 고순도산소를 추가 생산하는 방법에 있어서,
복수의 플랜트를 가동하여 고순도질소(액체질소)와 고순도산소(액체산소)를 각각 액체질소 저장탱크와 액체산소 저장탱크에 저장하고,
정상 운전 시 상기 액체질소 저장탱크에 저장된 고순도질소가 질소 사용처의 사용량 보다 증가되는 경우 고순도질소를 어느 하나의 플랜트의 정류통 상탑에 역투입하여, 역투입된 고순도질소와 정류통 내의 공기분리에 의해 정류된 저순도질소에 포함된 저순도산소간 열교환에 의해 저순도산소를 재액화시키는 산소생산장치를 이용한 산소 추가 생산방법.
There is provided a method of additionally producing high purity oxygen using an oxygen production apparatus equipped with a plurality of plants for performing an air separation process for separating oxygen, nitrogen and argon by the temperature ratio of air in the atmosphere,
A plurality of plants are operated to store high purity nitrogen (liquid nitrogen) and high purity oxygen (liquid oxygen) in a liquid nitrogen storage tank and a liquid oxygen storage tank, respectively,
When the high-purity nitrogen stored in the liquid nitrogen storage tank is increased during the normal operation, the high-purity nitrogen is fed back into the rectification column of one of the plants and the rectified nitrogen is returned to the rectification column A method for the production of oxygen using an oxygen production unit which re - liquefies low purity oxygen by heat exchange between low purity oxygen contained in low purity nitrogen.
제6항에 있어서,
상기 액체질소 저장탱크에 저장된 고순도질소를 정류통 상탑으로 역투입 시 펌프를 기동하고, 상기 액체질소 저장탱크와 정유통 상탑을 연결하는 역투입 배관라인에 마련되는 안전밸브와 자동제어되는 제1 제어밸브 및 수동제어되는 제2 제어밸브를 개방하는 산소생산장치를 이용한 산소 추가 생산방법.
The method according to claim 6,
Wherein the pump is started when the high-purity nitrogen stored in the liquid nitrogen storage tank is returned to the rectification column top, and a safety valve provided in a back-feeding pipe line connecting the liquid nitrogen storage tank and the rectification top plate, And an oxygen production device for opening a valve and a manually controlled second control valve.
제7항에 있어서,
상기 정유통의 상탑으로 역투입되는 고순도질소의 투입량은 상기 제1 제어밸브의 개방 정도를 통해 제어되는 산소생산장치를 이용한 산소 추가 생산방법.
8. The method of claim 7,
Wherein the amount of high purity nitrogen introduced back into the tower is controlled through the degree of opening of the first control valve.
제7항에 있어서,
상기 정류통 상탑으로 고순도질소의 역투입을 차단 시 제1 제어밸브와 제2 제어밸브 및 안전밸브를 폐쇄하되,
상기 안전밸브는 완전 폐쇄되지 않도록 하여 상기 제2 제어밸브와 정류통 사이의 역투입 배관라인에 저장된 고순도질소의 기화에 따라 역투입 배관라인 내의 압력 상승을 방지하도록 하는 산소생산장치를 이용한 산소 추가 생산방법.
8. The method of claim 7,
Closing the first control valve, the second control valve, and the safety valve when shutting back the high-purity nitrogen by the rectifying column top,
Wherein the safety valve is not completely closed so as to prevent an increase in the pressure in the back-charged pipe line due to the vaporization of high-purity nitrogen stored in the back-charged pipe line between the second control valve and the rectifier, Way.
KR1020170126527A 2017-09-28 2017-09-28 A method for addition producing higher purity oxygen and an apparatus thereof KR102003230B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170126527A KR102003230B1 (en) 2017-09-28 2017-09-28 A method for addition producing higher purity oxygen and an apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170126527A KR102003230B1 (en) 2017-09-28 2017-09-28 A method for addition producing higher purity oxygen and an apparatus thereof

Publications (2)

Publication Number Publication Date
KR20190036977A KR20190036977A (en) 2019-04-05
KR102003230B1 true KR102003230B1 (en) 2019-07-24

Family

ID=66104352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170126527A KR102003230B1 (en) 2017-09-28 2017-09-28 A method for addition producing higher purity oxygen and an apparatus thereof

Country Status (1)

Country Link
KR (1) KR102003230B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102260840B1 (en) * 2020-02-25 2021-06-07 주식회사 케이씨 Gas Supply System
CN112161427B (en) * 2020-09-29 2023-05-26 上海启元气体发展有限公司 Symmetrical mixing flowing oxygen-nitrogen separation preparation machine
CN113091401B (en) * 2021-04-29 2022-05-31 开封迪尔空分实业有限公司 Liquid air separation device for preparing liquid oxygen by using liquid nitrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330276B1 (en) * 2011-09-27 2013-11-15 주식회사 포스코 Air separating apparatus and operating method for thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190277A (en) * 1985-02-16 1986-08-23 大同酸素株式会社 High-purity nitrogen and oxygen gas production unit
JPH11118350A (en) * 1997-10-17 1999-04-30 Iwatani Internatl Corp Separating method of air and air separating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330276B1 (en) * 2011-09-27 2013-11-15 주식회사 포스코 Air separating apparatus and operating method for thereof

Also Published As

Publication number Publication date
KR20190036977A (en) 2019-04-05

Similar Documents

Publication Publication Date Title
US7078011B2 (en) Method of storing and supplying hydrogen to a pipeline
KR102003230B1 (en) A method for addition producing higher purity oxygen and an apparatus thereof
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
KR102493917B1 (en) gas production system
US20160003527A1 (en) System and method for liquefying natural gas employing turbo expander
RU2558579C2 (en) Producing standard-quality synthesis gas for ammonia synthesis with cryogenic purification
JP6354517B2 (en) Cryogenic air separation device and cryogenic air separation method
US20130299337A1 (en) Method and equipment for purifying a gas stream
EP3350119A1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
JP2009052807A (en) Low-temperature air liquefaction separation device and its operation method
CN111351315B (en) Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit
JP6464399B2 (en) Air separation device
JP3373013B2 (en) Nitrogen gas production equipment
KR101964331B1 (en) Air separation plant
JP6588265B2 (en) Carbon dioxide separation and recovery method and separation and recovery system
JP4365635B2 (en) Deuterium production apparatus, deuterium production method, and deuterium production plant
KR102010067B1 (en) Equipment and method for manufacturing industrial gases
KR102139990B1 (en) Method for operating air separation plant
JP2004197981A (en) Air separating device, and product gas manufacturing method using the same
FR2972793A1 (en) Method for liquefying carbon dioxide enriched feed gas for transportation in boat, involves compressing and cooling cycle gas heated in exchanger to pressure, and expanding gas to another pressure for being cooled during refrigeration cycle
JPH06194036A (en) Method and device for liquifying gas containing impurities of low boiling point
JP5244491B2 (en) Air separation device
JP4514556B2 (en) Artificial air production equipment
JP2017030996A5 (en)
JP2023155545A (en) Supply facility of nitrogen and oxygen, and supply method of nitrogen and oxygen

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant