JPS6125650B2 - - Google Patents

Info

Publication number
JPS6125650B2
JPS6125650B2 JP53024551A JP2455178A JPS6125650B2 JP S6125650 B2 JPS6125650 B2 JP S6125650B2 JP 53024551 A JP53024551 A JP 53024551A JP 2455178 A JP2455178 A JP 2455178A JP S6125650 B2 JPS6125650 B2 JP S6125650B2
Authority
JP
Japan
Prior art keywords
gas
chamber
adsorption
cooling
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53024551A
Other languages
Japanese (ja)
Other versions
JPS54117391A (en
Inventor
Kyoshi Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP2455178A priority Critical patent/JPS54117391A/en
Publication of JPS54117391A publication Critical patent/JPS54117391A/en
Publication of JPS6125650B2 publication Critical patent/JPS6125650B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ヘリウムガスや水素ガスの精製装置
に関し、特に原子力発電に用いるヘリウムガス中
に含有する窒素、酸素、メタンなどの不純物を、
極低温下で吸着除去するガスの精製装置に関す
る。詳しくは、外側が断熱材で被覆された胴体内
に、熱交換部室と冷却吸着部室とが内包されて、
熱交換部室と冷却吸着部室との間にガス膨張部室
が介在していて、熱交換部室と冷却吸着部室とを
連通せしめてなり、熱交換部室で、胴体内に注入
されたヘリウムガス又は水素ガスと精製を終つた
ヘリウムガスとを熱交換を行わしめて、次いでガ
ス膨張部室で、等エントロピー膨張を行わしめて
温度を下げ、これを吸着部室で、例えば―196℃
の極低温下で、不純物を吸着除去し、ガスを精製
する精製装置に関する。 原子炉(高温ガス炉)に供給されるヘリウムガ
スは、純度の高いものを必要とする。ヘリウムガ
ス中の不純物を、吸着剤の充填された吸着筒を通
して吸着除去する精製方法は、公知である。しか
し従来のものは、熱効率が悪く、液体窒素などの
冷却剤の消費量が多いなどの欠点が多かつた。 本特許の発明者は永年ガスの精製を手がけてお
り、先に昭和51年3月1日に一つの筒体中を熱交
換部室とに区劃し、熱交換部室内に直列に二つの
熱交換装置を設け、気化した液化ガスと吸着精製
された精製ガスを直列に設けられた熱交換装置に
注入し、初めに被精製ガスを精製ガスと熱交換
し、次いで気化した液化ガスと熱交換して、二段
熱交換を行つて冷却し、次いで吸着部室で、吸着
剤の充填された吸着筒を通して液化ガスの気化熱
で極低温に冷却し、不純物を除去する精製筒を創
作し、特願昭51―21158号(特開昭59−119382号
公報)の許出願をした。更に引続き研究を重ねた
結果、精製ガスの流れる伝熱管と液化ガスの気化
ガスの流れる伝熱管とを並列に配設して、二種の
管側流体を被精製ガスの胴側流体と同時に熱交換
を行わせ、二つの管側流体の冷熱が同時に胴側流
体を冷却する前記昭51−21158号の発明より更に
熱効率のよい精製筒を創作し、本年1月24日出願
番号特願昭53−5808号(特開昭54−99778号公
報)で特許出願した。 併しながら、従来の低温冷却吸着方法では、相
当量の液化ガスの消耗が避けられず、前記特願昭
51−21158号及び特願昭53−5808号の発明では、
予め、熱交換部室で精製ガスと液化ガスの気化ガ
スを用いて被精製ガスを熱交換し冷却して、冷却
吸着部室で冷却吸着のために消費される液化ガス
の消費量を極力少くすることを可能にしたが、な
お、或程度の液化ガスの消費が必要であつた。 本特許の発明者は、更に液化ガスの節減につき
研究を重ねた結果、上記特許出願の精製筒におい
ては熱交換部室で被精製ガスが−190℃前後に冷
却されているので、更に−6℃前後の冷却をすれ
ば、冷却吸着部室で液化ガスによる冷却を殆んど
行わなくとも、吸着精製が可能であることに着想
し、これが方法として、ガス断熱膨張による−6
℃前後冷却することを考えた。偶々、原子力発電
に用いるヘリウムガスは加圧されており、断熱膨
張せしめるに適しているので、熱交換部室で予め
−190℃前後に冷却して、次いで断熱膨張せしめ
て−6℃前後更に冷却すれば、液化ガスの消耗を
極度に少くすることの可能であることも考え出
し、本発明を創作した。 即ち本発明は、熱交換部室と冷却吸着部室と
が、ガス膨張部室を介在せしめて、連通してなる
ガス精製装置で、熱交換部室で、ヘリウム又は水
素ガスを、その精製ガスと熱交換を行わしめ冷却
し、次いでガス膨張部室で、膨張タービンなどを
作動させて断熱膨張させ温度を下げ、これを吸着
冷却部室で、液化ガスで冷却された吸着剤の吸着
管を通して、極低温下で、不純物を吸着除去する
ヘリウム又は水素ガスの極低温吸着精製装置を提
供するものである。 以下、本発明を、一実施例を示す図に従つて詳
細説明する。 本発明のガス極低温吸着精製装置は、外側が断
熱材1の1で被覆された円筒形の筒体1の内部
が、仕切板2で上下に仕切られて、熱交換部室A
と冷却吸着部室Bとに区劃されている。 熱交換部室Aには、−図例は本出願人が出願し
た特願昭53−5808号のものに依つているので、−
上下に二枚の外側管板3の1、3の2が装着さ
れ、その中側に上下に二枚の内側管板4の1、4
の2が装着されている。外管側板3の1、3の2
を貫いて、冷却部室Bから送られる液化ガスの気
化したガスが流れる伝熱管5の複数本が配設さ
れ、また内側管板4の1、4の2を貫いて、冷却
部室Bからられる精製を終つた精製ガスの流れる
伝熱管6の複数本が配設されている。即ち、気化
ガスの流れる伝熱管5と精製ガスの流れる伝熱管
6とが、並列に配設されている。また、内側管板
4の1、4の2の間の空間には、複数枚の邪魔板
7の1、7の2……7のnが装着されている。而
して、上部胴壁に排出口8、上部外側管板3の1
と内側管板4の1との間の胴壁に排出口9、上部
内側管板4の1と最初の邪魔板7の1との間の胴
壁に注入口10、最終の邪魔板7のnと下部内側
管板4の2との間の胴壁に排出口11、下部内側
管板4の2と外側管板3の2との間の胴壁に注入
口12、下部外側管板3の2と仕切板2との間の
胴壁に注入口13とが、それぞれ開口されてい
る。 冷却吸着部室Bには、上下に二枚の管板14の
1、14の2が装着されて、これを貫いて活性炭
やモレキユラーシーブなどの吸着剤15が充填さ
れた複数本の吸着管16が配設されている。吸着
管16の外側空間には、液体窒素などの液化ガス
17が充填されている。而して、仕切板2と上部
管板14の1との間の胴部に注入口18、上部管
板14の1と下部管板14の2との間の胴壁に、
その上端部に排出口19、中央部に注入口20、
胴底部胴壁に排出口21が、それぞれ開口してい
る。 排出口11と注入口18とは、断熱材で被覆さ
れてガス膨張部室Cに連結しているる。 ガス膨張部室Cは、−図例では筒外に突出して
外側が断熱材で被覆されているが、熱交換部室A
と冷却吸着部室Bとガス膨張部室Cとを一体とし
て断熱材で被覆する構造のものもあり得る−断熱
材で外側が被覆されていて、中に膨張タービン2
2が設けられており、熱交換部室Aの底部のガス
排出口11と断熱剤で被覆されたパイプ23とが
連結され、膨張タービン22に、熱交換された冷
却ヘリウム又は水素ガスが排出口11から注入さ
れるようになつており、また、冷却吸着部室Bの
上部に開口された注入口18と断熱材で被覆され
たパイプ24とが連結され、膨張することによつ
て更に温度を下げたガスが、冷却吸着部室Bに、
注入口18から注入されるようになつている。而
して注入口13と排出口19とは、断熱材で被覆
されたパイプ25で連結されており、また、注入
口12と排出口21とは、断熱材で被覆されたパ
イプ26で連結されている。 本発明の精製装置の構造は上記のごとくであ
る。 上記説明は、実施例の一つを示す特願昭53−
5808号の精製筒を改良した精製装置であるが、勿
論、特願昭53−5808号の精製筒にガス膨張部室を
附加することも可能である。 本発明の装置を用いるには、先づ寒冷剤たる液
化ガス17を注入口20から冷却吸着部室Bに注
入する。注入された液化ガス17は、吸着管16
を冷却しつゝ気化し、気化ガスは排出口19から
パイプ25を通つて、注入口13から熱交換部室
Aの伝熱管5に流入し、胴側流体たる被精製ガス
と熱交換を行つて、これを冷却し、その後排出口
8から排出する。 一方被精製ガスを注入口10から熱交換部室A
に注入する。注入された被精製ガスは胴側流体と
して、伝熱管5を流れる気化ガスと伝熱管6を流
れる精製ガスとの二種の管側流体と、熱交換が行
われて、−190℃前後に冷却される。 冷却されたガスは、排出口11からパイプ23
を通つてガス膨張部室Cに注入され、膨張タービ
ン22を回転させ温度を更に−6℃前後低下させ
て、パイプ24を通つて注入口18から冷却吸着
部室Bの吸着管16に注入され、ガス中の不純物
は吸着除去され精製される。吸着剤の冷却には、
液化ガスを用いるが、熱交換部室Aで−190℃前
後に冷却され次いでガス膨張部室で更に−6℃前
後冷却されるので、吸着管16には−196℃前後
の極低温で注入されて、ガス中の不純物は吸着精
製される。この精製されたガスは極めて低温に冷
却されているので、排出口21からパイプ26を
通つて注入口12から熱交換部室Aの、伝熱管6
に流入し、管側流体として、被精製ガスの胴側流
体と熱交換が行われ、胴側流体を冷却して、次い
で排出口9から排出される。 本発明の装置では、熱交換部室Aで、ヘリウム
又は水素ガスは−190℃前後にまで冷却され、ガ
ス膨張部室Cにおいて、断熱膨張によつて更に−
6℃前後温度を下げる、従つて冷却吸着部室Bに
は−196℃前後の極低温で注入されるので、液化
ガスによつて更に冷却する必要がなく、従つて液
化ガスの消耗は極く微量で足り、殆んど消耗しな
い。即ち、本発明の精製装置を用うれば、液化ガ
ス消費量は極端に減少するか、又はその消費は零
になる。即ち、実施例で明かなごとく、液化ガス
は、当初相当量を注入し、気化による冷却を必要
とするが、運転が進み、熱交換部室Aにおける冷
却が繰返され、ガス膨張部室Cにおける断熱膨張
が繰返されると、液化ガスによる冷却の必要が殆
んどなくなり、液化ガスの消耗は、微量で足るか
零となる。 本発明の精製吸着装置は、液化ガスの節減の面
で、極めて優れたものといえよう。 実施例 〔使用した精製装置〕(図例の精製装置を用いた) 〇筒体1………材質ステンレス 外径 216.3mm 厚み 8.2mm 長さ 2905. mm 上記筒体の外側を、外径355.6mm厚さ4.5mm高
さ3055mmの鉄製の外筒体で覆い、中を真空断熱
とした。 〇仕切板2 筒体の下部から1300mmの位置に、厚さ22mmス
テンレスの板で仕切つた。 熱交換部室A 〇管板3,4 厚み 22mm ステンレス板 〇伝熱管5,6 材質 ステンレス 外径6.35mm厚さ1mm 長い伝熱管5の長さ
1146mm 短い伝熱管6の長さ1040mm 長い伝熱管5を30本、短い伝熱管6を71本、
計101本を装着した。 〇邪魔板7 材質 ステンレス 厚み3mm 60枚を装着した。 〇注入口10,12,13 排出口 8,9,11 口径13.7mmに開口した。 冷却吸着部室B 〇管板14 厚み22mm ステンレス板 〇吸着管16 材質ステンレス 外径42.7mm厚さ3mm長さ1220mm筒底部に金網
を装着して、7本設けた。 〇吸着剤15 活性炭やモレキユラーシーブなどの吸着剤の
5Kgを充填した。 〇注入口18,20 排出口19,21 口径13.7mmに開口した。 ガス膨出部室C 〇膨張タービン22………ヘリウム膨張タービン 仕様 入口圧力 60Kg/cm2G 出口圧力 50Kg/cm2G 入口温度 −191℃ 出口温度 −196℃ 流 量 40Nm3/h 回転数 22000回転/分 上記構造の精製装置を用いて、精製した。 先づ、注入口20から液体窒素20l/hを注入
し、気体せしめて吸着筒を冷却した。排出口19
から出た気化ガスの温度は、−196℃であつた。こ
れをパイプ25を通して注入口13から注入し、
伝熱管5に流入させ、排出口8から排出させた。
ガス注入口10から、圧力50Kg/cm2G温度250℃の
ヘリウムガス(不純物として窒素酸素メタンそれ
ぞれ10V.PPMを含む)を40Nm3/h注入した。 排出口11から出たときの温度は、−190℃であ
つた。これをガス防張部室で膨張タービンを回転
させ断熱膨張せしめたところ、圧力は40Kg/cm2
に下り、温度も−196℃に下つた。これをパイプ
24を通し、注入口18から吸着管に流入せし
め、吸着精製した。排出口21から出たとき精製
ガスの温度は、−196℃であた。これをパイプ26
を通して注入口12から注入し、伝熱管に流入さ
せ、排出口9から排出させた。排出口9から出た
精製ガスの温度は、+22℃であつた。 また、排出口8から出た気化ガスの温度も同じ
く+22℃であつた。 かゝる運転を続けたが、運転開始から約1時間
を経過してからは液体窒素の消耗は全くなくな
り、運転を続けることができた。 液体窒素の節減ができた。
The present invention relates to a purification device for helium gas and hydrogen gas, and in particular, to remove impurities such as nitrogen, oxygen, and methane contained in helium gas used for nuclear power generation.
This invention relates to a gas purification device that adsorbs and removes gases at extremely low temperatures. Specifically, a heat exchanger chamber and a cooling adsorption chamber are contained within a body whose outside is covered with a heat insulating material.
A gas expansion chamber is interposed between the heat exchange chamber and the cooling adsorption chamber to communicate the heat exchange chamber and the cooling adsorption chamber, and the helium gas or hydrogen gas injected into the fuselage is After heat exchange with the purified helium gas, isentropic expansion is performed in the gas expansion chamber to lower the temperature, and the temperature is lowered to, for example, -196℃ in the adsorption chamber.
This invention relates to a purification device that adsorbs and removes impurities and purifies gas at extremely low temperatures. Helium gas supplied to nuclear reactors (high-temperature gas reactors) needs to be of high purity. A purification method in which impurities in helium gas are adsorbed and removed through an adsorption column filled with an adsorbent is known. However, conventional systems have many drawbacks, such as poor thermal efficiency and large consumption of coolant such as liquid nitrogen. The inventor of this patent has been engaged in gas refining for many years, and on March 1, 1976, he divided a cylinder into a heat exchanger chamber, and installed two heat exchangers in series in the heat exchanger chamber. An exchange device is installed, and the vaporized liquefied gas and the adsorbed purified purified gas are injected into the heat exchange device installed in series, and the purified gas is first heat exchanged with the purified gas, and then the vaporized liquefied gas is heat exchanged. Then, in the adsorption chamber, the liquefied gas is cooled to an extremely low temperature using the heat of vaporization of the liquefied gas through an adsorption cylinder filled with adsorbent, and impurities are removed by creating a purification cylinder. I filed an application for patent application No. 51-21158 (Japanese Unexamined Patent Publication No. 59-119382). As a result of further research, the heat exchanger tube through which the purified gas flows and the heat exchanger tube through which the vaporized gas of the liquefied gas flows are arranged in parallel, and the two types of tube-side fluids are heated simultaneously with the body-side fluid of the gas to be purified. We have created a refining tube that is even more thermally efficient than the invention of No. 51-21158, in which the cold heat of the two tube side fluids cools the body side fluid at the same time by exchanging the fluids. A patent application was filed under No. 53-5808 (Japanese Unexamined Patent Publication No. 54-99778). However, in the conventional low-temperature cooling adsorption method, a considerable amount of liquefied gas is unavoidably consumed.
In the invention of No. 51-21158 and Japanese Patent Application No. 53-5808,
To reduce the amount of liquefied gas consumed for cooling adsorption in the cooling adsorption chamber by exchanging heat and cooling the purified gas in advance using vaporized gas of purified gas and liquefied gas in the heat exchange chamber. However, it still required consumption of a certain amount of liquefied gas. As a result of further research into reducing liquefied gas, the inventor of this patent found that in the purification cylinder of the above patent application, the gas to be purified is cooled to around -190°C in the heat exchange chamber, We came up with the idea that by cooling before and after, adsorption purification is possible without much cooling with liquefied gas in the cooling adsorption chamber, and this method is based on -6 gas adiabatic expansion.
I thought about cooling it around ℃. Coincidentally, the helium gas used in nuclear power generation is pressurized and is suitable for adiabatic expansion, so it is first cooled to around -190℃ in the heat exchange chamber, then adiabatically expanded and further cooled to around -6℃. For example, they discovered that it is possible to extremely reduce the consumption of liquefied gas, and created the present invention. That is, the present invention provides a gas purification device in which a heat exchange section chamber and a cooling adsorption section chamber are connected to each other with a gas expansion section interposed therebetween, in which helium or hydrogen gas is heat exchanged with the purified gas in the heat exchange section chamber. Then, in the gas expansion chamber, an expansion turbine or the like is operated to perform adiabatic expansion to lower the temperature, and in the adsorption cooling chamber, the adsorbent is passed through an adsorption tube cooled with liquefied gas at extremely low temperatures. The present invention provides a cryogenic adsorption purification device for helium or hydrogen gas that adsorbs and removes impurities. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to figures showing one embodiment. In the gas cryogenic adsorption purification apparatus of the present invention, the inside of a cylindrical body 1 whose outside is covered with a heat insulating material 1 is partitioned into upper and lower parts by a partition plate 2, and a heat exchanger chamber A
It is divided into a cooling adsorption chamber B and a cooling adsorption chamber B. In the heat exchanger chamber A, -The illustration is based on the one in Japanese Patent Application No. 53-5808 filed by the present applicant, so -
Two outer tube sheets 3, 1 and 3, 2 are installed on the upper and lower sides, and two inner tube sheets 4, 1 and 4, are installed on the inside thereof.
2 are installed. Outer tube side plate 3-1, 3-2
A plurality of heat transfer tubes 5 are arranged through which the vaporized liquefied gas sent from the cooling section B flows, and through which the purified gas from the cooling section B flows, passing through 1 and 2 of the inner tube plate 4. A plurality of heat transfer tubes 6 are provided through which the purified gas flows. That is, heat exchanger tubes 5 through which vaporized gas flows and heat exchanger tubes 6 through which purified gas flows are arranged in parallel. Further, in the space between 1 and 2 of the inner tube plate 4, a plurality of baffle plates 7, 1, 7, 2, . . ., 7, n are attached. Thus, there is a discharge port 8 in the upper body wall and 1 in the upper outer tube plate 3.
and an inlet 9 in the body wall between 1 of the upper inner tube sheet 4 and 1 of the first baffle plate 7; An outlet 11 is provided in the body wall between n and 2 of the lower inner tube sheet 4, an inlet 12 is provided in the body wall between 2 of the lower inner tube sheet 4 and 2 of the outer tube sheet 3, and a lower outer tube sheet 3 is provided. 2 and the partition plate 2, an injection port 13 is opened in the body wall between the two and the partition plate 2, respectively. In the cooling adsorption chamber B, two tube plates 14 1 and 14 2 are installed at the top and bottom, and a plurality of adsorption tubes filled with adsorbent 15 such as activated carbon or molecular sieve are inserted through these. 16 are arranged. The outer space of the adsorption tube 16 is filled with a liquefied gas 17 such as liquid nitrogen. Thus, an inlet 18 is provided in the body between the partition plate 2 and the upper tube sheet 14, and an injection port 18 is provided in the body wall between the upper tube sheet 14 and the lower tube sheet 1.
The outlet 19 is at the upper end, the inlet 20 is at the center,
A discharge port 21 is opened in the bottom wall of the trunk. The outlet 11 and the inlet 18 are covered with a heat insulating material and connected to the gas expansion chamber C. In the example shown in the figure, the gas expansion chamber C protrudes outside the cylinder and is covered with a heat insulating material, but the heat exchange chamber A
There may also be a structure in which the cooling adsorption chamber B and the gas expansion chamber C are integrally covered with a heat insulating material - the outside is covered with a heat insulating material, and the expansion turbine 2 is inside.
2 is provided, and the gas outlet 11 at the bottom of the heat exchanger chamber A is connected to a pipe 23 coated with a heat insulating agent, and the heat-exchanged cooling helium or hydrogen gas is sent to the outlet 11 to the expansion turbine 22. In addition, the injection port 18 opened at the top of the cooling adsorption chamber B is connected to a pipe 24 covered with a heat insulating material, and the temperature is further lowered by expanding. The gas enters the cooling adsorption chamber B,
It is designed to be injected from an injection port 18. The inlet 13 and the outlet 19 are connected by a pipe 25 covered with a heat insulating material, and the inlet 12 and the outlet 21 are connected by a pipe 26 covered in a heat insulating material. ing. The structure of the purification apparatus of the present invention is as described above. The above description is a patent application filed in 1983, which shows one of the embodiments.
Although this purification apparatus is an improved version of the purification cylinder of Japanese Patent Application No. 5808, it is of course possible to add a gas expansion chamber to the purification cylinder of Japanese Patent Application No. 5808. To use the apparatus of the present invention, first, liquefied gas 17, which is a cryogen, is injected into the cooling adsorption chamber B through the injection port 20. The injected liquefied gas 17 is transferred to the adsorption tube 16
The vaporized gas passes through the pipe 25 from the outlet 19, flows into the heat exchanger tube 5 of the heat exchanger chamber A from the inlet 13, and exchanges heat with the gas to be purified, which is the body side fluid. , this is cooled and then discharged from the discharge port 8. On the other hand, the gas to be purified is supplied from the inlet 10 to the heat exchanger chamber A.
Inject into. The injected gas to be purified is heated as a body-side fluid with two types of tube-side fluids: vaporized gas flowing through the heat exchanger tubes 5 and purified gas flowing through the heat exchanger tubes 6, and cooled to around -190°C. be done. The cooled gas flows from the outlet 11 to the pipe 23
The gas is injected into the expansion chamber C through the pipe 24, the temperature is further lowered by around -6°C, and the gas is injected into the adsorption pipe 16 of the cooling adsorption chamber B through the pipe 24 from the inlet 18. Impurities inside are removed by adsorption and purified. To cool the adsorbent,
Liquefied gas is used, but it is cooled to around -190°C in the heat exchange chamber A, and then further cooled to around -6°C in the gas expansion chamber, so it is injected into the adsorption tube 16 at an extremely low temperature of around -196°C. Impurities in the gas are purified by adsorption. Since this purified gas has been cooled to an extremely low temperature, it passes from the discharge port 21 through the pipe 26 and from the inlet 12 to the heat exchanger chamber A through the heat transfer tube 6.
It flows into the tube side fluid and exchanges heat with the shell side fluid of the gas to be purified, cools the shell side fluid, and then discharges it from the discharge port 9. In the apparatus of the present invention, helium or hydrogen gas is cooled to around -190°C in the heat exchanger chamber A, and further - by adiabatic expansion in the gas expansion chamber C.
The temperature is lowered by around 6°C. Therefore, since it is injected into the cooling adsorption chamber B at an extremely low temperature of around -196°C, there is no need for further cooling with liquefied gas, and therefore the consumption of liquefied gas is extremely small. It's enough and doesn't consume much. That is, if the purification apparatus of the present invention is used, the amount of liquefied gas consumed will be extremely reduced or the consumption will become zero. That is, as is clear from the examples, a considerable amount of liquefied gas is initially injected and requires cooling by vaporization, but as the operation progresses, cooling in heat exchange chamber A is repeated, and adiabatic expansion occurs in gas expansion chamber C. When this is repeated, there is almost no need for cooling with liquefied gas, and the consumption of liquefied gas becomes minimal or zero. The purification adsorption apparatus of the present invention can be said to be extremely excellent in terms of saving liquefied gas. Example [Refining equipment used] (The refining equipment shown in the figure was used) 〇Cylinder 1: Material: Stainless steel Outer diameter: 216.3 mm Thickness: 8.2 mm Length: 2905. mm It was covered with an iron outer cylinder with a thickness of 4.5 mm and a height of 3055 mm, and the inside was vacuum-insulated. 〇Partition plate 2 A 22mm thick stainless steel plate was used to partition the cylinder at a position 1300mm from the bottom. Heat exchanger chamber A 〇Tube plates 3, 4 Thickness: 22mm Stainless steel plate〇Heat exchanger tubes 5, 6 Material: Stainless steel Outer diameter: 6.35mm Thickness: 1mm Length of long heat exchanger tube 5
1146mm Length of short heat exchanger tube 6 1040mm 30 long heat exchanger tubes 5, 71 short heat exchanger tubes 6,
A total of 101 pieces were installed. 〇Baffle plate 7 Material: Stainless steel, thickness: 3mm, 60 pieces installed. 〇Inlet ports 10, 12, 13 Outlet ports 8, 9, 11 Opened to a diameter of 13.7 mm. Cooling adsorption chamber B 〇Tube plate 14 Thickness 22mm Stainless steel plate 〇Adsorption tube 16 Material: Stainless steel Outer diameter 42.7mm Thickness 3mm Length 1220mm A wire mesh was attached to the bottom of the cylinder, and 7 tubes were provided. 〇Adsorbent 15 5 kg of adsorbent such as activated carbon or molecular sieve was filled. 〇Inlet ports 18, 20 Outlet ports 19, 21 Opened to a diameter of 13.7 mm. Gas expansion chamber C 〇 Expansion turbine 22... Helium expansion turbine Specification inlet pressure 60Kg/cm 2 G Outlet pressure 50Kg/cm 2 G Inlet temperature -191℃ Outlet temperature -196℃ Flow rate 40Nm 3 /h Rotation speed 22000 rotations /min Purification was performed using a purification apparatus having the above structure. First, 20 l/h of liquid nitrogen was injected from the injection port 20 to cool the adsorption cylinder. Outlet 19
The temperature of the vaporized gas that came out was -196°C. This is injected from the injection port 13 through the pipe 25,
It was made to flow into the heat exchanger tube 5 and discharged from the discharge port 8.
From the gas injection port 10, 40 Nm 3 /h of helium gas (containing 10 V.PPM of nitrogen, oxygen, and methane as impurities) at a pressure of 50 Kg/cm 2 and a temperature of 250° C. was injected. The temperature when it came out from the outlet 11 was -190°C. When this was adiabatically expanded by rotating an expansion turbine in the gas barrier chamber, the pressure was 40Kg/cm 2 G.
The temperature dropped to -196℃. This was passed through the pipe 24 and flowed into the adsorption tube from the injection port 18, where it was purified by adsorption. The temperature of the purified gas when it exited from the outlet 21 was -196°C. Pipe 26
It was injected from the injection port 12 through the tube, flowed into the heat exchanger tube, and discharged from the discharge port 9. The temperature of the purified gas coming out of the outlet 9 was +22°C. Furthermore, the temperature of the vaporized gas coming out of the outlet 8 was also +22°C. Although such operation continued, after about one hour had passed since the start of operation, the liquid nitrogen was no longer consumed at all, and operation could be continued. We were able to save on liquid nitrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の精製装置の構成
概要を示す断面概要図。第2図は第1図のA−A
断面概要図。 1……筒体、2……仕切板、A……熱交換部
室、3……外側管板、4……内側管板、5,6…
…伝熱管、7……邪魔板、8……排出口、9……
排出口、10……注入口、11……排出口、12
……注入口、13……注入口、B……冷却吸着部
室、14……管板、15……吸着剤、16……吸
着管、17……液化ガス、18……注入口、19
……排出口、20……注入口、21……排出口、
C……ガス膨張部室、22……膨張タービン、2
3,24,25,26……パイプ。
FIG. 1 is a cross-sectional schematic diagram showing a general configuration of a purification apparatus according to an embodiment of the present invention. Figure 2 is A-A of Figure 1.
Cross-sectional schematic diagram. DESCRIPTION OF SYMBOLS 1... Cylindrical body, 2... Partition plate, A... Heat exchange chamber, 3... Outer tube plate, 4... Inner tube plate, 5, 6...
...heat exchanger tube, 7...baffle plate, 8...discharge port, 9...
Outlet, 10... Inlet, 11... Outlet, 12
... Inlet, 13... Inlet, B... Cooling adsorption chamber, 14... Tube plate, 15... Adsorbent, 16... Adsorption tube, 17... Liquefied gas, 18... Inlet, 19
...Discharge port, 20...Inlet port, 21...Discharge port,
C... Gas expansion chamber, 22... Expansion turbine, 2
3, 24, 25, 26...pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 熱交換部室と冷却吸着部室とが、ガス膨張部
室を介在せしめて、連続してなるガス精製装置
で、熱交換部室で、ヘリウム又は水素ガスを、そ
の精製ガスと熱交換を行わしめ冷却し、次いでガ
ス膨張部室で、膨張タービンなどを作動させて断
熱膨張させ温度を下げ、これを吸着冷却部室で、
液化ガスで冷却された吸着剤の吸着管を通して、
極低温下で、不純物を吸着除去するヘリウム又は
水素ガスの極低温吸着精製装置。
1. A gas purification device in which a heat exchange chamber and a cooling adsorption chamber are connected in series with a gas expansion chamber interposed therebetween, in which helium or hydrogen gas is cooled by exchanging heat with the purified gas in the heat exchange chamber. Next, in the gas expansion chamber, an expansion turbine or the like is operated to perform adiabatic expansion and lower the temperature, and this is then transferred to the adsorption cooling chamber.
Through the adsorption tube of adsorbent cooled with liquefied gas,
Cryogenic adsorption purification equipment for helium or hydrogen gas that adsorbs and removes impurities at extremely low temperatures.
JP2455178A 1978-03-06 1978-03-06 Cryogenic absorbing purification apparatus for helium and hydrogen gas Granted JPS54117391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2455178A JPS54117391A (en) 1978-03-06 1978-03-06 Cryogenic absorbing purification apparatus for helium and hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2455178A JPS54117391A (en) 1978-03-06 1978-03-06 Cryogenic absorbing purification apparatus for helium and hydrogen gas

Publications (2)

Publication Number Publication Date
JPS54117391A JPS54117391A (en) 1979-09-12
JPS6125650B2 true JPS6125650B2 (en) 1986-06-17

Family

ID=12141278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2455178A Granted JPS54117391A (en) 1978-03-06 1978-03-06 Cryogenic absorbing purification apparatus for helium and hydrogen gas

Country Status (1)

Country Link
JP (1) JPS54117391A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893990B2 (en) * 2006-06-21 2012-03-07 常広 武田 Helium purifier

Also Published As

Publication number Publication date
JPS54117391A (en) 1979-09-12

Similar Documents

Publication Publication Date Title
US4030896A (en) Regeneration of adsorbents
US5291942A (en) Multiple stage sorption and desorption process and apparatus
KR101458098B1 (en) A pre-cooler for hydrogen liquefying apparatus
KR100902911B1 (en) Apparatus for Enriching and Purifying Waste Helium Gases
JPS61133116A (en) Gas purification apparatus
JPS6156009B2 (en)
JPH07280432A (en) Plant for distilling air and method thereof
FR2983086A1 (en) METHOD AND APPARATUS FOR HEATING NITROGEN FOR REGENERATING AN ADSORPTION UNIT OF AN AIR SEPARATION UNIT
US4582516A (en) Fast regenerating adsorption column
JPS6125650B2 (en)
CN114505014B (en) Pressure container
JP2007268439A (en) Spiral heat exchanger incorporated adsorption apparatus
KR20060091067A (en) Method and apparatus for cryogenic helium purification
GB1309426A (en) Refrigeration
JPS557565A (en) Helium or hydrogen gas purification apparatus
JPH07124440A (en) Carbon dioxide separating device
JPS63140200A (en) Storage device for hydrogen absorbing alloy
JPS62123001A (en) Method for purifying hydrogen
RU2111425C1 (en) Plant for deep cleaning of cryogenic gases
JPH0579715A (en) Helium refining device
JPH0233865Y2 (en)
JP2020116545A (en) Low-temperature refining device and operation method of low-temperature refining device
CN109859868B (en) Hot trap system for purifying high-temperature lithium loop
JPH05277325A (en) Gaseous helium purifier and operating method thereof
CN218901372U (en) Xenon purification device