JP4313882B2 - Method for removing organic impurities in methanol decomposition gas by closed TSA method - Google Patents

Method for removing organic impurities in methanol decomposition gas by closed TSA method Download PDF

Info

Publication number
JP4313882B2
JP4313882B2 JP08295199A JP8295199A JP4313882B2 JP 4313882 B2 JP4313882 B2 JP 4313882B2 JP 08295199 A JP08295199 A JP 08295199A JP 8295199 A JP8295199 A JP 8295199A JP 4313882 B2 JP4313882 B2 JP 4313882B2
Authority
JP
Japan
Prior art keywords
methanol
adsorption tower
decomposition gas
gas
organic impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08295199A
Other languages
Japanese (ja)
Other versions
JP2000272905A (en
Inventor
勲 関
隆広 神戸
正彦 平城
和彦 高殿
智文 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP08295199A priority Critical patent/JP4313882B2/en
Publication of JP2000272905A publication Critical patent/JP2000272905A/en
Application granted granted Critical
Publication of JP4313882B2 publication Critical patent/JP4313882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタノール分解プロセスで一酸化炭素を生成する際に生成するメタノール分解ガスにおいて、このメタノール分解ガス中に含有されるジメチルエーテル、蟻酸メチル、未反応のメタノール等からなる有機不純物をクローズドTSA法で除去する方法に関するものである。
【0002】
【従来の技術】
従来より、一酸化炭素及び水素はメタノール分解プロセスにより得られることが知られている。メタノール分解プロセスは、メタノールを分解して一酸化炭素と水素を生成するプロセスであり、メタノール分解ガス中に混在する一酸化炭素と水素は、さらにCO−PSAまたは深冷分離装置により分離され、それぞれ製品ガスとなる。
【0003】
しかし、この分解プロセスは、一酸化炭素と水素以外にもジメチルエーテル、蟻酸メチル等の反応副生成物が生成してメタノール分解ガス中に残留すると共に未反応のメタノールも残留する。このため、メタノール分解ガスを分離して一酸化炭素、水素等の製品とするためには、CO−PSA等で分離する前に予めこれら有機不純物をメタノール分解ガス中から除去しておく必要がある。メタノール分解ガス中から有機不純物を除去する方法としては、メタノール吸収及び活性炭吸着を用いる方法が知られており、メタノール分解ガスをメタノール吸収塔や活性炭吸着塔に通すことにより、有機不純物を実質的に含まない精製ガスを得ることができる。しかし、吸着塔で用いられる吸着剤は吸着容量に限度があるため、ある程度吸着した後は吸着剤を加熱する等して吸着物を脱着して吸着剤を再生しなければならない。このような吸着剤の再生工程を、精製ガスの製造工程と同時に行う方法として、従来よりTSA法(熱スイング法)が知られている。TSA法は、2基の吸着塔を使用し、一方の吸着塔を精製ガスの製造工程に使用すると同時に、他方の吸着塔を上記吸着剤の加熱脱着による再生工程に使用し、これを2基の吸着塔で交互に繰り返し行うことによって、精製ガスの製造を途切れさせずに行うことができ、生産効率が高い方法である。
【0004】
TSA法において、吸着塔内の吸着剤を再生する方法としては、TSAプロセス装置の系外より、窒素ガス又は精製ガスをCO−PSAでさらに精製して製品ガスを製造した残余分で若干の有機不純物を含むオフガスなどを媒体として加熱して吸着塔に導入して有機不純物を脱着して吸着剤を再生し、次いでこの吸着塔を冷却する方法が知られている。
【0005】
【発明が解決しようとする課題】
しかし、再生する媒体として窒素ガスを用いると、窒素ガスの購入、あるいはTSAプロセス装置の系内へ窒素ガスを導入・排出処理する設備の建設等に費用がかかるという問題がある。また、オフガスを用いると、TSAプロセス装置の系内へのオフガスの導入設備の建設等に費用がかかるという問題がある。
【0006】
さらに、窒素ガスやオフガスは有機不純物を全くあるいはほとんど含まない。このため、吸着塔中の吸着剤が濃度の低い有機不純物の代わりにCOガスを吸着するようになり、得られる精製ガス中のCOガス濃度が減少してCO−PSAや深冷分離装置等がうまく作動せず、運転継続が困難になり、高純度COガスの製造に悪影響を及ぼすことがあるという問題がある。
【0007】
従って、本発明の目的は、TSA法によるメタノール分解ガス中の有機不純物の除去方法において、吸着塔の再生媒体としてTSAプロセス装置系外から導入するガスを用いずに系内のメタノール分解ガスを用いることにより、媒体費用及び導入・排出処理設備等の費用が不要で、且つ、精製ガス中のCOガス濃度を低下させずに高純度の精製ガスを得ることができる有機不純物の除去方法を提供することにある。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、吸着と脱着を交互に行う2基の吸収塔に、さらにメタノール分解ガス中の有機不純物をメタノール吸収により吸収除去するメタノール吸収塔、メタノール分解ガスを加熱する加熱手段、及び必要に応じて設けられる予備吸着塔を備えた装置で、吸着塔の再生媒体としてTSAプロセス装置系内のメタノール分解ガスを用い、このガスを2基の吸着塔、メタノール吸収塔、加熱手段、及び必要に応じて予備吸着塔に所定の手順で循環させることにより、上記目的を達成することを見出し、本発明を完成するに至った。
【0009】
すなわち、請求項1記載の発明は、吸着工程と加熱脱着工程を交互に行う2基の吸着塔を用い、一方の吸着塔が吸着工程にあり、有機不純物を含むメタノール分解ガスを通過せしめて吸着剤に有機不純物を吸着させて精製されたメタノール分解ガスを製造すると共に、他方の吸着塔が加熱脱着工程にあり、吸着塔に加熱されたメタノール分解ガスを導入して吸着剤に吸着した有機不純物を脱着させるTSA法によるメタノール分解ガス中の有機不純物の除去方法において、前記加熱脱着工程にある吸着塔から排出された有機不純物を含むメタノール分解ガスをメタノール吸収塔に導入してメタノール分解ガス中の有機不純物の一部を吸収除去し、一方、該メタノール吸収塔から排出された残余の有機不純物を含むメタノール分解ガスを前記吸着工程にある吸着塔に戻す第1工程、前記他方の吸着塔に前記加熱されたメタノール分解ガスに代えて、加熱されていないメタノール分解ガスを導入して該他方の吸着塔を予備冷却する第2工程を順次行うことを特徴とするクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を提供するものである。従って、吸着塔の再生媒体としてTSAプロセス装置系外から導入するガスを用いずに系内のメタノール分解ガスを用いることができ、媒体費用及び導入・排出処理設備等の費用が不要で、且つ、精製ガス中のCOガス濃度を低下させずに、有機不純物濃度が数十ppm 程度の比較的高純度の精製ガスを得ることができる。
【0010】
また、請求項2記載の発明は、前記第2工程に続いて、前記他方の吸着塔に第2工程のガスの流れと逆方向に原料のメタノール分解ガスを直接導入して該吸着塔を冷却し、該吸着塔から排出されたメタノール分解ガスを前記メタノール吸収塔に導入する第3工程を設けることを特徴とする請求項1記載のクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を提供するものである。従って、請求項1記載の発明と同様の効果を奏する他、予備冷却では冷却が不十分である吸着剤層の底部の冷却を行うことができ、吸着塔の吸着性能を安定化させることができる。
【0011】
また、請求項3記載の発明は、前記加熱脱着工程で使用する加熱されたメタノール分解ガスが、予め、予備吸着塔を通過して有機不純物の少なくとも一部が除去されたものであること及び前記第2工程に続いて、前記他方の吸着塔に第2工程のガスの流れと逆方向に原料のメタノール分解ガスを直接導入して該吸着塔を冷却し、該吸着塔から排出されたメタノール分解ガスを加熱して前記予備吸着塔に導入して該予備吸着塔の有機不純物を加熱脱着し、該予備吸収塔から排出されたメタノール分解ガスを前記メタノール吸収塔に導入する第3工程を設けることを特徴とする請求項1記載のクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を提供するものである。従って、請求項1及び請求項2記載の発明と同様の効果を奏する他、加熱脱着工程及び予備冷却工程では有機不純物を含まないメタノール分解ガスを使用するため、後工程の吸着工程において、有機不純物の除去が十分且つ安定して行える。このため、不純物濃度が1ppm 以下の極めて高純度の精製ガスを得ることができる。
【0012】
また、請求項4記載の発明は、前記メタノール吸収塔においてメタノール分解ガス中の有機不純物を吸収したメタノールを再生する方法が、前記精製されたメタノール分解ガスをさらにCO−PSA法で精製した後のオフガスを用いるガスストリッピング方法又は蒸留法であることを特徴とする請求項1〜3のいずれか1項記載のクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を提供するものである。従って、後工程のCO−PSA法で精製した後のオフガスが利用できる場合はオフガスを使用し、熱源が豊富な環境ではその熱源を有効利用でき、再生方法の選択の余地が広がる。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明を詳細に説明する。図1は、本発明の第1の実施の形態におけるクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を示すプロセスフローシートである。図1において、4は吸着剤が充填された予備吸着塔、5は加熱手段、6、7は吸着剤が充填された吸着塔、10はメタノール吸収塔、11はメタノール再生塔である。原料となるメタノール分解プロセスにより生成したメタノール分解ガスは原料主配管101及び分岐配管102を通って本発明のメタノール分解ガス除去装置の系内に供給される。なお、図中、実線矢印は第1及び第2工程におけるメタノール分解ガスの流れ方向を示し、破線矢印は第3工程におけるメタノール分解ガスの流れ方向を示す(以下、図2及び図3も同様である。)。メタノール分解ガスは、メタノールを分解して得られた目的生成物の一酸化炭素、水素以外にも、未反応のメタノール、ジメチルエーテル、蟻酸メチル等の反応副生成物が有機不純物として含んでおり、有機不純物の含有量は、通常0.3〜0.6容量%である。
【0014】
(第1工程)
図1中、第1工程は弁1、73、64、71及び62は開の状態、弁74、64、72、61は閉の状態、三方弁2aは配管101と103が連通状態、三方弁2bは配管104と105が連通状態である。また、吸着塔7は吸着工程にあり、吸着塔6は加熱脱着工程にある。吸着塔6、7に充填される吸着剤としては、活性炭が使用される。
【0015】
原料のメタノール分解ガスの一部は配管101、103を通って予備吸着塔4に導入され、メタノール分解ガス中の有機不純物の一部が吸着除去される。予備吸着塔4は活性炭等の吸着剤が充填されており、その活性炭量はメタノール分解ガス中の有機不純物の一部を除去すればよいから、吸着塔6、7に充填される活性炭量を100重量部として、通常12〜40重量部、好ましくは30〜40重量部程度で十分である。予備吸着塔4で有機不純物が除去された清浄なガスは配管110を通って、加熱手段5で通常150〜250℃、好ましくは170〜220℃に加熱された後、吸着塔6に図中、下降流で導入されて有機不純物の脱着を行い吸着剤を再生する。吸着塔6から排出されたメタノール分解ガスは配管109、104、105を通って、吸収塔冷却器8及び吸収塔熱交換器9で順次冷却されてメタノール吸収塔10に導入される。吸着塔6から排出されたメタノール分解ガス中の未反応メタノール及び有機不純物は、通常0.3〜1.2容量%である。メタノール吸収塔10において、メタノール分解ガス中の有機不純物は一部がメタノール溶液に吸収除去される。
【0016】
吸収剤のメタノール溶液はポンプ12の作動により、冷却器18、メタノール吸収塔10及びメタノール再生塔11と順に循環され、メタノール吸収塔10に導入されたメタノール分解ガスと向流接触されてメタノール分解ガス中の有機不純物を吸収除去する。吸収塔10に供給されるメタノール溶液の温度は通常−5〜−15℃である。メタノール分解ガス中の不純物を吸収したメタノール溶液は再生塔11でオフガス16の導入によりストリッピングされ、有機不純物を含んだガスは塔頂に設けられた排出管17からオフガスとして大気に放出される。オフガスとしては、メタノール分解ガスをさらにCO−PSA法で精製した後のオフガスを用いることができる。
【0017】
一方、メタノール吸収塔10の塔頂から排出される残余の有機不純物を含むメタノール分解ガスは、吸着塔熱交換器9でメタノール吸収塔10への導入ガスと熱交換されて配管107を通って、配管102から供給される原料のメタノール分解ガスの一部と共に吸着塔7に導入される。吸着塔7においては実質的に有機不純物を含まない精製されたメタノール分解ガスが製造され、この精製ガスは配管106を通って次工程のCO−PSAや深冷分離装置(不図示)に送られる。この精製されたメタノール分解ガス中の有機不純物量は1ppm 以下である。
【0018】
第1工程は、吸着塔6の塔内が十分に加熱され吸着剤から有機不純物が脱着されると次の第2工程に移行する。移行の判断方法は温度又は時間で行われる。例えば、吸着塔6の中央部又は底部の塔内温度が100℃まで上昇したり、所定時間が経過したときに移行するように予め設定しておく方法が挙げられる。第1工程の所要時間は装置仕様によって異なるため特に限定されることはないが、例えば2〜3時間である。
【0019】
(第2工程)
第2工程は、吸着塔6に第1工程の加熱されたメタノール分解ガスの代わりに、加熱されていないメタノール分解ガスを導入して他方の吸着塔6を予備冷却する以外は、第1工程と同様であり、吸着塔7は吸着工程、吸着塔6は予備冷却工程となる。すなわち、予備吸着塔4から排出された清浄ガスは加熱手段5をバイパス(又は加熱手段5はOFF)して配管108を通って、吸着塔6に導入される。これにより、吸着塔6に導入されるメタノール分解ガスの温度は徐々に下がり、吸着塔6の吸着剤が徐々に冷却される。吸着塔6は、この予備冷却により通常50〜100℃、好ましくは70〜90℃に冷却される。この第2工程及び後述の第3工程を設けることにより、予備冷却された吸着剤は円滑に吸着工程へ移行できる。
【0020】
第2工程は、吸着塔6の塔内、特に上部と中央部が十分に冷却されると次の第3工程に移行する。移行の判断方法は温度又は時間で行われる。例えば、吸着塔6中央部の塔内温度が50℃まで低下したり、所定時間が経過したときに移行するように予め設定しておく方法が挙げられる。第2工程の所要時間は装置仕様によって異なるため特に限定されることはないが、例えば10分〜1時間である。
【0021】
(第3工程)
図1中、第3工程における弁の状態は三方弁2aは配管101と104が連通状態、三方弁2bは配管103と105が連通状態とする以外は、第1工程と同じであり、吸着塔7は吸着工程、吸着塔6は加熱脱着工程にある。すなわち、常温の原料のメタノール分解ガスは配管101、104、109を通って直接、吸着塔6に図中、上昇流で導入され吸着塔6の吸着剤はさらに冷却される。吸着塔6から排出されたメタノール分解ガスは配管108を通って、加熱手段5により150〜250℃、好ましくは170〜220℃に加熱された後、配管110を通って、予備吸着塔4に導入され有機不純物を加熱脱着し、吸着剤を再生する。吸着塔6から排出されたメタノール分解ガス中の有機不純物濃度は、通常1ppm 以下である。また、予備吸着塔4から排出されるメタノール分解ガス中の有機不純物は、通常0.3〜1.6容量%である。予備吸着塔4から排出されたメタノール分解ガスは配管103、105を通って、吸収塔冷却器8及び吸収塔熱交換器9で順次冷却されてメタノール吸収塔10に導入される。メタノール吸収塔10から排出される有機不純物を吸収したメタノール溶液及び残余の有機不純物を含むメタノール分解ガスの流れは第1工程と同様である。第3工程により、第2工程の予備冷却で冷却不十分となった底部側の吸着剤が十分に冷却されるため、更に吸着性能が安定した吸着塔とすることができる。また、予備吸着塔4の吸着剤を再生すると共に、予備吸着塔4で吸着された有機不純物は系外に放出される。
【0022】
第3工程は、吸着塔6の塔内が十分に冷却されると、次の第4工程に移行する。移行の判断方法は温度又は時間で行われる。例えば、吸着塔6上部の塔内温度が50℃まで下降したり、所定時間が経過したときに移行するように予め設定しておく方法が挙げられる。第3工程の所要時間は装置仕様によって異なるため特に限定されることはないが、例えば1〜2時間である。
【0023】
(第4工程〜第6工程)
第4工程は第1工程において、第5工程は第2工程において、第6工程は第3工程において、一方の吸着塔7と他方の吸着塔6とを置き換えたものと同様の工程である。すなわち、図1中、第4工程は弁1、74、63、72及び61は開の状態、弁73、63、71、62は閉の状態、三方弁2aは配管101と103が連通状態、三方弁2bは配管104と105が連通状態であり、吸着塔6及び予備吸着塔4は吸着工程、吸着塔7は加熱脱着工程及び加熱手段5はON状態である。また、第5工程は吸着塔6及び予備吸着塔4は吸着工程、吸着塔7は予備冷却工程、加熱手段5はOFF状態である。また、第6工程は吸着塔6は吸着工程、吸着塔7は冷却工程、予備吸着塔4は加熱脱着工程及び加熱手段5はON状態である。
【0024】
本発明の第1の実施の形態における方法によれば、メタノール分解ガス中の有機不純物が予め除去された再生媒体が吸着塔の加熱脱着工程に導入されるため、後工程の吸着工程において有機不純物の除去が十分かつ安定して行われる。また、得られる精製ガス中の有機不純物濃度が低く安定するため、精製ガスをさらに精製するCO−PSA、または深冷分離装置に供給される精製ガスの組成の変動が少なく、これらの装置の正常運転を妨げることがない。
【0025】
次に、本発明の第2の実施の形態におけるクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を図2を参照して説明する。図2は本第2の実施の形態例を示すプロセスフローシートである。図2中、図1と同一構成要素には同一符号を付して、その説明を省略し異なる点について説明する。すなわち、第2の実施の形態例において、第1の実施の形態例と異なる点は、第1の実施の形態例において、予備吸着塔4を無くして配管103を通って、予備吸着塔4に導入されるメタノール分解ガス中の有機不純物の除去を省略した点及び予備吸着塔4の再生を省略した点である。従って、第1工程及び第2工程における吸着塔6の加熱脱着工程及び予備冷却工程に配管108を通って供給される加熱又は非加熱のメタノール分解ガスは原料組成のままで有機不純物を含んだものである。また、第3工程における吸着塔6の冷却を終えたメタノール分解ガスは配管108を通って、加熱手段5をバイパス(加熱手段OFF状態)し、配管110、103、105を通って吸収塔冷却器8及び吸収塔熱交換器9で順次冷却されてメタノール吸収塔10に導入される。本第2の実施の形態における方法によれば、この方法を実施する除去装置を簡略化することができる。また、配管106から得られる精製ガス中の有機不純物濃度は例えば、数十ppm 程度であり、第1の実施の形態例よりも高くなるが、それ以外は、第1の実施の形態例と同様の作用を奏する。
【0026】
次に、本発明の第3の実施の形態におけるクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を図3を参照して説明する。図3は本第3の実施の形態例を示すプロセスフローシートである。図3中、図2と同一構成要素には同一符号を付して、その説明を省略し異なる点について説明する。すなわち、第3の実施の形態例において、第2の実施の形態例と異なる点は、第2の実施の形態例において、三方バルブ2a、三方バルブ2b及びこれに関連する不要配管を省略して、第1及び第2の実施の形態例における第3工程の原料メタノール分解ガスによる吸着塔の冷却工程を省略した点にある。本第3の実施の形態における方法によれば、この方法を実施する除去装置を簡略化することができる。また、配管106から得られる精製ガス中の有機不純物濃度は第1及び第2の実施の形態例よりも高くなるが、それ以外は、第1及び第2の実施の形態例と同様の作用を奏する。
【0027】
本発明のクローズドTSA法による有機不純物の除去方法は、上記実施の形態例に制限されず、本発明の要旨を逸脱しない範囲で種々の変形又は追加が可能である。例えば、再生塔11でのメタノールの再生方法は、上記ストリッピング法以外に、再生塔11を蒸留塔としてメタノール溶液中の有機不純物を蒸留法により除去してもよい。図4は図1において、再生塔11が蒸留塔である場合のプロセスフローシートである。すなわち、図4中、再生塔11で再生され底部より抜き出されたメタノール溶液の一部はリボイラー19で加熱され、再生塔11に戻され再生塔底部の温度を保持する。一方、底部より抜き出された残部のメタノール溶液は再生塔11に張込まれるメタノール溶液と熱交換器20により熱交換され冷却器18で冷却されてメタノール吸収塔10にフィードされる。リボイラー19の熱源14としては、熱媒油、スチーム等が挙げられる。なお、配管17から放出されるオフガスは熱媒用ヒータの燃料として用いることができる。
【0028】
本発明のクローズドTSA法による有機不純物の除去方法は、メタノール分解プロセスで生成したメタノール分解ガス中の有機不純物の除去等に用いることができる。また、本発明の除去方法で製造された精製ガスは、CO−PSA装置または深冷分離装置に供されてさらに精製分離され、このさらに精製分離されたガスは、高純度ガスとして、各種有機化学原料または還元ガスとして用いられる。
【0029】
【実施例】
次に実施例を挙げて本発明を更に具体的に説明する。
実施例1
図1のプロセスフローシートで表される下記仕様の装置を用い、前述の第1の実施の形態例に準ずる方法でメタノール分解ガス(以下、「原料ガス」とも言う)中の有機不純物の除去を行った。第1工程〜第6工程の1サイクル後、製造された精製ガス組成は、分析の結果、水素66.6%、一酸化炭素32.9%、その他残余ガスとして、二酸化炭素、メタンが含まれ、ジメチルエーテル、蟻酸メチル及び未反応メタノール等の有機不純物濃度は1ppm 以下であった。この結果より、製造された精製ガスは原料のメタノール分解ガスの組成と比して、一酸化炭素濃度は低下しておらず不純物のみが除去されていることが判る。
【0030】
(クローズドTSA法による有機不純物除去装置)
・原料ガス組成:水素66.1%、一酸化炭素32.7%、その他残余ガスとして、二酸化炭素0.3%、メタン0.2%が含まれ、ジメチルエーテル870ppm 、蟻酸メチル20ppm 、未反応メタノール0.5%
・原料ガスの供給量:42m3/ 分
・吸着塔:活性炭;白鷺ペレット(武田薬品工業社製)、1基当たりの活性炭 量は3,700kg
・予備吸着塔:活性炭;白鷺ペレット(武田薬品工業社製)、1基当たりの活性炭量は2,000kg
・加熱メタノール分解ガスの温度;190℃
・第1工程:所要時間2.3時間、吸着塔底部の温度100℃で第2工程に切替、原料ガス中、配管101側に供給される原料ガスの割合80%
・第2工程:所要時間0.5時間、吸着塔底部の温度50℃で第3工程に切替
・第3工程:所要時間1.2時間、吸着塔上部の温度50℃で第4工程に切替
【0031】
【発明の効果】
本発明のクローズドTSA法による有機不純物の除去方法によれば、吸着塔の再生媒体としてTSAプロセス装置系外から導入するガスを用いずに系内のメタノール分解ガスを用いることにより、媒体費用及び導入・排出処理設備等の費用が不要で、且つ、精製ガス中のCOガス濃度を低下させずに高純度COガスの製造を安定して行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態におけるクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を示すフローシートである。
【図2】本発明の第2の実施の形態におけるクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を示すフローシートである。
【図3】本発明の第3の実施の形態におけるクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法を示すフローシートである。
【図4】図1で再生塔が蒸留塔の場合を示すプロセスフローシートである。
【符号の説明】
1、61〜64、71〜74 弁
2a、2b 三方弁
4 予備吸着塔
5 加熱手段
6、7 吸着塔
8 吸収塔冷却器
9 吸収塔熱交換器
10 メタノール吸収塔
11 再生塔
12 吸収塔循環ポンプ
14 熱媒油
15 冷却水
16 CO−PSAからのオフガス
17 再生塔からのオフガス
18 メタノール冷却器
19 リボイラー
20 熱交換器
101〜110 配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a methanol decomposition gas generated when carbon monoxide is generated in a methanol decomposition process. A closed TSA method is used to remove organic impurities such as dimethyl ether, methyl formate, and unreacted methanol contained in the methanol decomposition gas. It is related with the removal method.
[0002]
[Prior art]
Conventionally, it is known that carbon monoxide and hydrogen are obtained by a methanol decomposition process. The methanol decomposition process is a process in which methanol is decomposed to generate carbon monoxide and hydrogen. Carbon monoxide and hydrogen mixed in the methanol decomposition gas are further separated by CO-PSA or a cryogenic separator, Product gas.
[0003]
However, in this decomposition process, in addition to carbon monoxide and hydrogen, reaction by-products such as dimethyl ether and methyl formate are generated and remain in the methanol decomposition gas, and unreacted methanol also remains. For this reason, in order to separate the methanol cracked gas into products such as carbon monoxide and hydrogen, it is necessary to remove these organic impurities from the methanol cracked gas before separation with CO-PSA or the like. . As a method for removing organic impurities from the methanol decomposition gas, a method using methanol absorption and activated carbon adsorption is known. By passing the methanol decomposition gas through a methanol absorption tower or an activated carbon adsorption tower, the organic impurities are substantially eliminated. A purified gas not contained can be obtained. However, since the adsorbent used in the adsorption tower has a limited adsorption capacity, after adsorbing to some extent, the adsorbent must be desorbed by heating the adsorbent or the like to regenerate the adsorbent. A TSA method (thermal swing method) has been conventionally known as a method for performing such an adsorbent regeneration step simultaneously with a purified gas production step. In the TSA method, two adsorption towers are used, and one adsorption tower is used for the purification gas production process, and at the same time, the other adsorption tower is used for the regeneration process by heat desorption of the adsorbent. By alternately and repeatedly carrying out the adsorption tower, the production of purified gas can be carried out without interruption, and the production efficiency is high.
[0004]
In the TSA method, as a method of regenerating the adsorbent in the adsorption tower, the organic gas from the outside of the TSA process apparatus is further purified with CO-PSA to produce a product gas by refining the product gas. A method is known in which offgas containing impurities is heated as a medium, introduced into an adsorption tower, organic impurities are desorbed to regenerate the adsorbent, and then the adsorption tower is cooled.
[0005]
[Problems to be solved by the invention]
However, when nitrogen gas is used as the medium to be regenerated, there is a problem that it is expensive to purchase nitrogen gas or to construct facilities for introducing and discharging nitrogen gas into the TSA process system. Further, when off-gas is used, there is a problem that it is expensive to construct a facility for introducing off-gas into the TSA process system.
[0006]
Further, nitrogen gas and off-gas contain no or almost no organic impurities. For this reason, the adsorbent in the adsorption tower adsorbs CO gas instead of low-concentration organic impurities, and the concentration of CO gas in the resulting purified gas decreases, so that CO-PSA, a cryogenic separator, etc. There is a problem that it does not work well, it becomes difficult to continue the operation, and the production of high purity CO gas may be adversely affected.
[0007]
Accordingly, an object of the present invention is to use a methanol decomposition gas in the system without using a gas introduced from outside the TSA process apparatus system as a regeneration medium of the adsorption tower in the method for removing organic impurities in the methanol decomposition gas by the TSA method. Thus, there is provided a method for removing organic impurities that can obtain a high-purity purified gas without lowering the CO gas concentration in the purified gas without the need for the medium cost and the introduction / discharge processing facility. There is.
[0008]
[Means for Solving the Problems]
In this situation, the present inventor has conducted extensive studies, and as a result, two absorption towers that alternately perform adsorption and desorption, a methanol absorption tower that absorbs and removes organic impurities in methanol decomposition gas by methanol absorption, and methanol decomposition A device equipped with a heating means for heating a gas and a pre-adsorption tower provided as necessary, using a methanol decomposition gas in the TSA process apparatus system as a regeneration medium of the adsorption tower, and using this gas as two adsorption towers, The inventors have found that the above object can be achieved by circulating the methanol absorption tower, heating means, and, if necessary, the preliminary adsorption tower in a predetermined procedure, and have completed the present invention.
[0009]
That is, the invention described in claim 1 uses two adsorption towers that alternately perform the adsorption process and the heat desorption process, one of the adsorption towers is in the adsorption process, and the methanol decomposition gas containing organic impurities is allowed to pass through for adsorption. the organic impurity is adsorbed with the production of refining has been methanolysis gas agent, the other adsorption tower is in the thermal desorption process, organic adsorbed to the adsorbent by introducing the methanolysis gas heated in the adsorption tower In the method for removing organic impurities in the methanol decomposition gas by the TSA method for desorbing impurities, the methanol decomposition gas containing organic impurities discharged from the adsorption tower in the heat desorption step is introduced into the methanol absorption tower, While absorbing a part of the organic impurities, the methanol decomposition gas containing the remaining organic impurities discharged from the methanol absorption tower is absorbed. A first step of returning to the adsorption tower in the process, a second step of precooling the other adsorption tower by introducing an unheated methanol decomposition gas instead of the heated methanol decomposition gas into the other adsorption tower. The present invention provides a method for removing organic impurities in methanol decomposition gas by a closed TSA method characterized by sequentially performing the steps. Therefore, the methanol decomposition gas in the system can be used as the regeneration medium of the adsorption tower without using the gas introduced from outside the TSA process apparatus system, the medium cost and the cost of the introduction / discharge treatment equipment are unnecessary, and A relatively high-purity purified gas having an organic impurity concentration of about several tens of ppm can be obtained without reducing the CO gas concentration in the purified gas.
[0010]
Further, in the invention described in claim 2, following the second step, the raw material methanol decomposition gas is directly introduced into the other adsorption tower in the direction opposite to the gas flow of the second step to cool the adsorption tower. A method for removing organic impurities in the methanol decomposition gas by the closed TSA method according to claim 1, further comprising a third step of introducing the methanol decomposition gas discharged from the adsorption tower into the methanol absorption tower. It is to provide. Therefore, in addition to the same effects as the invention of the first aspect, it is possible to cool the bottom of the adsorbent layer, which is insufficiently cooled by the preliminary cooling, and to stabilize the adsorption performance of the adsorption tower. .
[0011]
The invention according to claim 3 is that the heated methanol decomposing gas used in the heat desorption step is one in which at least a part of organic impurities has been removed by passing through a preliminary adsorption tower in advance. Subsequent to the second step, the methanol decomposition gas as a raw material is directly introduced into the other adsorption tower in the direction opposite to the gas flow in the second step to cool the adsorption tower, and the methanol decomposed from the adsorption tower is decomposed. Providing a third step of heating the gas and introducing it into the pre-adsorption tower to thermally desorb organic impurities from the pre-adsorption tower and introducing the methanol decomposition gas discharged from the pre-absorption tower into the methanol absorption tower; A method for removing organic impurities in methanol decomposition gas by the closed TSA method according to claim 1 is provided. Therefore, in addition to the effects similar to those of the invention described in claims 1 and 2, since the methanol decomposing gas containing no organic impurities is used in the heat desorption process and the preliminary cooling process, the organic impurities are used in the adsorption process in the subsequent process. Can be removed sufficiently and stably. For this reason, an extremely high purity purified gas having an impurity concentration of 1 ppm or less can be obtained.
[0012]
In the invention according to claim 4, the method for regenerating methanol that has absorbed the organic impurities in the methanol decomposition gas in the methanol absorption tower is obtained by further purifying the purified methanol decomposition gas by a CO-PSA method. The method for removing organic impurities in the methanol decomposition gas by the closed TSA method according to any one of claims 1 to 3, which is a gas stripping method or distillation method using off-gas. Therefore, when off-gas refined by the CO-PSA method in the subsequent step can be used, off-gas is used, and in an environment where heat sources are abundant, the heat source can be used effectively, and the scope for selecting a regeneration method is widened.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a process flow sheet showing a method for removing organic impurities in methanol decomposition gas by the closed TSA method according to the first embodiment of the present invention. In FIG. 1, 4 is a preliminary adsorption tower filled with an adsorbent, 5 is a heating means, 6 and 7 are adsorption towers filled with an adsorbent, 10 is a methanol absorption tower, and 11 is a methanol regeneration tower. The methanol decomposition gas generated by the methanol decomposition process as a raw material is supplied into the system of the methanol decomposition gas removal apparatus of the present invention through the raw material main pipe 101 and the branch pipe 102. In the figure, solid arrows indicate the flow direction of the methanol decomposition gas in the first and second steps, and broken line arrows indicate the flow direction of the methanol decomposition gas in the third step (hereinafter the same applies to FIGS. 2 and 3). is there.). Methanol decomposition gas contains organic by-products such as unreacted methanol, dimethyl ether and methyl formate as well as carbon monoxide and hydrogen, which are the target products obtained by decomposing methanol. The content of impurities is usually 0.3 to 0.6% by volume.
[0014]
(First step)
In FIG. 1, the first step is that the valves 1, 73, 64, 71 and 62 are open, the valves 74, 64, 72 and 61 are closed, the three-way valve 2a is in communication with the pipes 101 and 103, and the three-way valve. In 2b, the pipes 104 and 105 are in communication. The adsorption tower 7 is in the adsorption process, and the adsorption tower 6 is in the heat desorption process. As the adsorbent filled in the adsorption towers 6 and 7, activated carbon is used.
[0015]
A part of the raw material methanol decomposition gas is introduced into the preliminary adsorption tower 4 through the pipes 101 and 103, and a part of the organic impurities in the methanol decomposition gas is adsorbed and removed. The pre-adsorption tower 4 is filled with an adsorbent such as activated carbon, and the amount of the activated carbon may be obtained by removing a part of the organic impurities in the methanol decomposition gas. As the parts by weight, usually 12 to 40 parts by weight, preferably about 30 to 40 parts by weight is sufficient. The clean gas from which the organic impurities have been removed in the preliminary adsorption tower 4 passes through the pipe 110 and is heated to usually 150 to 250 ° C., preferably 170 to 220 ° C. by the heating means 5. It is introduced in a downward flow to desorb organic impurities and regenerate the adsorbent. The methanol decomposition gas discharged from the adsorption tower 6 passes through the pipes 109, 104 and 105, is sequentially cooled by the absorption tower cooler 8 and the absorption tower heat exchanger 9, and is introduced into the methanol absorption tower 10. Unreacted methanol and organic impurities in the methanol decomposition gas discharged from the adsorption tower 6 are usually 0.3 to 1.2% by volume. In the methanol absorption tower 10, a part of the organic impurities in the methanol decomposition gas is absorbed and removed by the methanol solution.
[0016]
The methanol solution of the absorbent is circulated through the cooler 18, the methanol absorption tower 10, and the methanol regeneration tower 11 in this order by the operation of the pump 12, and is countercurrently contacted with the methanol decomposition gas introduced into the methanol absorption tower 10. Absorbs and removes organic impurities. The temperature of the methanol solution supplied to the absorption tower 10 is usually −5 to −15 ° C. The methanol solution that has absorbed impurities in the methanol decomposition gas is stripped by introduction of the off gas 16 in the regeneration tower 11, and the gas containing organic impurities is released to the atmosphere as an off gas from a discharge pipe 17 provided at the top of the tower. As the off gas, an off gas after further purifying the methanol decomposition gas by the CO-PSA method can be used.
[0017]
On the other hand, the methanol decomposition gas containing residual organic impurities discharged from the top of the methanol absorption tower 10 is heat-exchanged with the gas introduced into the methanol absorption tower 10 in the adsorption tower heat exchanger 9 and passes through the pipe 107. It is introduced into the adsorption tower 7 together with a part of the raw material methanol decomposition gas supplied from the pipe 102. In the adsorption tower 7, purified methanol decomposition gas substantially free of organic impurities is produced, and this purified gas is sent to a CO-PSA or a cryogenic separation device (not shown) in the next step through a pipe 106. . The amount of organic impurities in the purified methanol decomposition gas is 1 ppm or less.
[0018]
The first step proceeds to the next second step when the inside of the adsorption tower 6 is sufficiently heated and organic impurities are desorbed from the adsorbent. The determination method of the transition is performed by temperature or time. For example, a method may be set in advance such that the temperature in the tower at the center or bottom of the adsorption tower 6 rises to 100 ° C. or shifts when a predetermined time elapses. The time required for the first step is not particularly limited because it varies depending on the apparatus specifications, but is, for example, 2 to 3 hours.
[0019]
(Second step)
The second step is the same as the first step except that the adsorption column 6 is preliminarily cooled by introducing an unheated methanol decomposition gas instead of the heated methanol decomposition gas of the first step. Similarly, the adsorption tower 7 is an adsorption process, and the adsorption tower 6 is a preliminary cooling process. That is, the clean gas discharged from the preliminary adsorption tower 4 bypasses the heating means 5 (or the heating means 5 is turned off) and is introduced into the adsorption tower 6 through the pipe 108. Thereby, the temperature of the methanol decomposition gas introduced into the adsorption tower 6 gradually decreases, and the adsorbent in the adsorption tower 6 is gradually cooled. The adsorption tower 6 is usually cooled to 50 to 100 ° C., preferably 70 to 90 ° C., by this preliminary cooling. By providing the second step and the third step described later, the precooled adsorbent can be smoothly transferred to the adsorption step.
[0020]
The second step proceeds to the next third step when the inside of the adsorption tower 6, in particular, the upper part and the central part are sufficiently cooled. The determination method of the transition is performed by temperature or time. For example, there is a method of setting in advance so that the temperature in the tower at the center of the adsorption tower 6 is lowered to 50 ° C. or when a predetermined time has passed. The time required for the second step is not particularly limited because it varies depending on the apparatus specifications, but is, for example, 10 minutes to 1 hour.
[0021]
(Third step)
In FIG. 1, the state of the valve in the third step is the same as that in the first step, except that the three-way valve 2a is in communication with the pipes 101 and 104 and the three-way valve 2b is in communication with the pipes 103 and 105. 7 is in the adsorption step, and the adsorption tower 6 is in the heat desorption step. That is, the methanol decomposition gas of the raw material at room temperature is directly introduced into the adsorption tower 6 through the pipes 101, 104 and 109 in the upward flow in the figure, and the adsorbent in the adsorption tower 6 is further cooled. The methanol decomposition gas discharged from the adsorption tower 6 passes through the pipe 108 and is heated to 150 to 250 ° C., preferably 170 to 220 ° C. by the heating means 5, and then introduced into the preliminary adsorption tower 4 through the pipe 110. The organic impurities are heated and desorbed to regenerate the adsorbent. The concentration of organic impurities in the methanol decomposition gas discharged from the adsorption tower 6 is usually 1 ppm or less. Moreover, the organic impurity in the methanol decomposition gas discharged | emitted from the preliminary adsorption tower 4 is 0.3 to 1.6 volume% normally. The methanol decomposition gas discharged from the preliminary adsorption tower 4 passes through the pipes 103 and 105, is sequentially cooled by the absorption tower cooler 8 and the absorption tower heat exchanger 9, and is introduced into the methanol absorption tower 10. The flow of the methanol decomposition gas that has absorbed the organic impurities discharged from the methanol absorption tower 10 and the remaining organic impurities is the same as in the first step. In the third step, the adsorbent on the bottom side, which has become insufficiently cooled by the preliminary cooling in the second step, is sufficiently cooled, so that an adsorption tower with further stable adsorption performance can be obtained. Further, the adsorbent of the preliminary adsorption tower 4 is regenerated, and the organic impurities adsorbed by the preliminary adsorption tower 4 are released out of the system.
[0022]
The third step proceeds to the next fourth step when the inside of the adsorption tower 6 is sufficiently cooled. The determination method of the transition is performed by temperature or time. For example, a method may be set in advance such that the temperature inside the tower at the top of the adsorption tower 6 drops to 50 ° C. or shifts when a predetermined time elapses. The time required for the third step is not particularly limited because it varies depending on the apparatus specifications, but is, for example, 1 to 2 hours.
[0023]
(4th to 6th steps)
The fourth step is the same step as the first step, the fifth step is the second step, the sixth step is the third step, and the one adsorption tower 7 and the other adsorption tower 6 are replaced. That is, in FIG. 1, in the fourth step, the valves 1, 74, 63, 72 and 61 are open, the valves 73, 63, 71 and 62 are closed, the three-way valve 2a is in a state where the pipes 101 and 103 are in communication, In the three-way valve 2b, the pipes 104 and 105 are in communication, the adsorption tower 6 and the preliminary adsorption tower 4 are in the adsorption process, the adsorption tower 7 is in the heat desorption process, and the heating means 5 is in the ON state. In the fifth step, the adsorption tower 6 and the preliminary adsorption tower 4 are in the adsorption process, the adsorption tower 7 is in the preliminary cooling process, and the heating means 5 is in the OFF state. In the sixth step, the adsorption tower 6 is an adsorption process, the adsorption tower 7 is a cooling process, the preliminary adsorption tower 4 is a heat desorption process, and the heating means 5 is in an ON state.
[0024]
According to the method of the first embodiment of the present invention, the regeneration medium from which the organic impurities in the methanol decomposition gas have been removed in advance is introduced into the heat desorption process of the adsorption tower. Is removed sufficiently and stably. In addition, since the concentration of organic impurities in the resulting purified gas is low and stable, there is little variation in the composition of the purified gas supplied to the CO-PSA that further purifies the purified gas or the cryogenic separation device, and the normal operation of these devices. Does not interfere with driving.
[0025]
Next, a method for removing organic impurities in the methanol decomposition gas by the closed TSA method in the second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a process flow sheet showing the second embodiment. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof will be omitted, and different points will be described. In other words, the second embodiment differs from the first embodiment in that the preliminary adsorption tower 4 is eliminated and the preliminary adsorption tower 4 is passed through the pipe 103 in the first embodiment. That is, the removal of the organic impurities in the methanol decomposition gas to be introduced is omitted and the regeneration of the preliminary adsorption tower 4 is omitted. Therefore, the heated or non-heated methanol decomposition gas supplied through the pipe 108 to the heat desorption process and the precooling process of the adsorption tower 6 in the first process and the second process contains organic impurities in the raw material composition. It is. The methanol decomposition gas that has finished cooling the adsorption tower 6 in the third step passes through the pipe 108, bypasses the heating means 5 (heating means OFF state), and passes through the pipes 110, 103, 105 to absorb the absorption tower cooler. 8 and absorption tower heat exchanger 9 are sequentially cooled and introduced into methanol absorption tower 10. According to the method in the second embodiment, the removal device that performs this method can be simplified. Further, the concentration of organic impurities in the purified gas obtained from the pipe 106 is, for example, about several tens of ppm, which is higher than that in the first embodiment, but other than that, it is the same as that in the first embodiment. Has the effect of.
[0026]
Next, a method for removing organic impurities in the methanol decomposition gas by the closed TSA method in the third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a process flow sheet showing the third embodiment. In FIG. 3, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted and different points will be described. That is, the third embodiment differs from the second embodiment in that the three-way valve 2a, the three-way valve 2b, and unnecessary piping related thereto are omitted in the second embodiment. In the first and second embodiments, the cooling step of the adsorption tower by the raw material methanol decomposition gas in the third step is omitted. According to the method in the third embodiment, the removal apparatus that performs this method can be simplified. In addition, the concentration of organic impurities in the purified gas obtained from the pipe 106 is higher than that in the first and second embodiments, but the other operations are the same as those in the first and second embodiments. Play.
[0027]
The method for removing organic impurities by the closed TSA method of the present invention is not limited to the above embodiment, and various modifications or additions are possible without departing from the gist of the present invention. For example, as a method for regenerating methanol in the regeneration tower 11, organic impurities in the methanol solution may be removed by distillation using the regeneration tower 11 as a distillation tower in addition to the stripping method. FIG. 4 is a process flow sheet when the regeneration tower 11 is a distillation tower in FIG. That is, in FIG. 4, a part of the methanol solution regenerated by the regeneration tower 11 and extracted from the bottom is heated by the reboiler 19 and returned to the regeneration tower 11 to maintain the temperature at the bottom of the regeneration tower. On the other hand, the remaining methanol solution extracted from the bottom is heat-exchanged by the heat exchanger 20 with the methanol solution put in the regeneration tower 11, cooled by the cooler 18, and fed to the methanol absorption tower 10. Examples of the heat source 14 of the reboiler 19 include heat transfer oil and steam. The off-gas released from the pipe 17 can be used as fuel for the heater for the heat medium.
[0028]
The method for removing organic impurities by the closed TSA method of the present invention can be used for removing organic impurities in the methanol decomposition gas produced by the methanol decomposition process. In addition, the purified gas produced by the removal method of the present invention is supplied to a CO-PSA apparatus or a cryogenic separation apparatus to be further purified and separated, and the further purified and separated gas is used as a high-purity gas for various organic chemistry. Used as raw material or reducing gas.
[0029]
【Example】
Next, the present invention will be described more specifically with reference to examples.
Example 1
Removal of organic impurities in methanol decomposition gas (hereinafter also referred to as “source gas”) is performed by a method according to the first embodiment described above using an apparatus having the following specifications represented by the process flow sheet of FIG. went. As a result of analysis, the purified gas composition produced after one cycle of the first to sixth steps contains 66.6% hydrogen, 32.9% carbon monoxide, and carbon dioxide and methane as other residual gases. The concentration of organic impurities such as dimethyl ether, methyl formate and unreacted methanol was 1 ppm or less. From this result, it can be seen that the produced purified gas has a reduced carbon monoxide concentration and has only impurities removed as compared with the composition of the raw material methanol decomposition gas.
[0030]
(Organic impurity removal equipment by closed TSA method)
Source gas composition: Hydrogen 66.1%, carbon monoxide 32.7%, other residual gases include carbon dioxide 0.3%, methane 0.2%, dimethyl ether 870 ppm, methyl formate 20 ppm, unreacted methanol 0.5%
・ Raw gas supply amount: 42 m 3 / min ・ Adsorption tower: Activated carbon; Shirakaba pellets (manufactured by Takeda Pharmaceutical Co., Ltd.), activated carbon amount per unit is 3,700 kg
・ Preliminary adsorption tower: Activated carbon; Shirakaba pellets (manufactured by Takeda Pharmaceutical Company Limited), the amount of activated carbon per unit is 2,000 kg
・ Temperature of heated methanol decomposition gas: 190 ℃
First step: The required time is 2.3 hours, and the temperature is switched to the second step at a temperature of 100 ° C. at the bottom of the adsorption tower. The ratio of the raw material gas supplied to the pipe 101 side in the raw material gas is 80%.
・ Second step: Switched to the third step at a temperature of 50 ° C. at the bottom of the adsorption tower for a required time of 0.5 hours. [0031]
【The invention's effect】
According to the method for removing organic impurities by the closed TSA method of the present invention, by using the methanol decomposition gas in the system without using the gas introduced from outside the TSA process apparatus system as the regeneration medium of the adsorption tower, the medium cost and introduction -Expenses such as exhaust treatment facilities are unnecessary, and high-purity CO gas can be stably produced without reducing the CO gas concentration in the refined gas.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a method for removing organic impurities in methanol decomposition gas by a closed TSA method according to a first embodiment of the present invention.
FIG. 2 is a flow sheet showing a method for removing organic impurities in methanol decomposition gas by a closed TSA method according to a second embodiment of the present invention.
FIG. 3 is a flow sheet showing a method for removing organic impurities in methanol decomposition gas by a closed TSA method in a third embodiment of the present invention.
FIG. 4 is a process flow sheet showing a case where the regeneration tower is a distillation tower in FIG.
[Explanation of symbols]
1, 61-64, 71-74 Valve 2a, 2b Three-way valve 4 Preliminary adsorption tower 5 Heating means 6, 7 Adsorption tower 8 Absorption tower cooler 9 Absorption tower heat exchanger 10 Methanol absorption tower 11 Regeneration tower 12 Absorption tower circulation pump 14 Heat transfer oil 15 Cooling water 16 Off-gas from CO-PSA 17 Off-gas from regeneration tower 18 Methanol cooler 19 Reboiler 20 Heat exchangers 101 to 110 Piping

Claims (4)

吸着工程と加熱脱着工程を交互に行う2基の吸着塔を用い、一方の吸着塔が吸着工程にあり、有機不純物を含むメタノール分解ガスを通過せしめて吸着剤に有機不純物を吸着させて精製されたメタノール分解ガスを製造すると共に、他方の吸着塔が加熱脱着工程にあり、吸着塔に加熱されたメタノール分解ガスを導入して吸着剤に吸着した有機不純物を脱着させるTSA法によるメタノール分解ガス中の有機不純物の除去方法において、前記加熱脱着工程にある吸着塔から排出された有機不純物を含むメタノール分解ガスをメタノール吸収塔に導入してメタノール分解ガス中の有機不純物の一部を吸収除去し、一方、該メタノール吸収塔から排出された残余の有機不純物を含むメタノール分解ガスを前記吸着工程にある吸着塔に戻す第1工程、前記他方の吸着塔に前記加熱されたメタノール分解ガスに代えて、加熱されていないメタノール分解ガスを導入して該他方の吸着塔を予備冷却する第2工程を順次行うことを特徴とするクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法。Using an adsorption tower 2 groups alternately perform the adsorption step and the thermal desorption process, is in the adsorption step one adsorption tower, the organic impurities by adsorbing made fine to adsorbent passed through a methanol decomposition gas containing organic impurities Methanol decomposition gas by the TSA method in which the methanol adsorption gas is produced and the other adsorption tower is in the heat desorption step, and the heated methanol decomposition gas is introduced into the adsorption tower to desorb the organic impurities adsorbed on the adsorbent In the method for removing organic impurities, a methanol decomposition gas containing organic impurities discharged from the adsorption tower in the heat desorption step is introduced into the methanol absorption tower to absorb and remove a part of the organic impurities in the methanol decomposition gas. On the other hand, the first step of returning the methanol decomposition gas containing residual organic impurities discharged from the methanol absorption tower to the adsorption tower in the adsorption step A closed TSA which sequentially performs the second step of introducing an unheated methanol decomposition gas into the other adsorption tower instead of the heated methanol decomposition gas and precooling the other adsorption tower. Method for removing organic impurities in methanol decomposition gas by the method. 前記第2工程に続いて、前記他方の吸着塔に第2工程のガスの流れと逆方向に原料のメタノール分解ガスを直接導入して該吸着塔を冷却し、該吸着塔から排出されたメタノール分解ガスを前記メタノール吸収塔に導入する第3工程を設けることを特徴とする請求項1記載のクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法。  Following the second step, the methanol decomposition gas as the raw material is directly introduced into the other adsorption tower in the direction opposite to the gas flow of the second step to cool the adsorption tower, and the methanol discharged from the adsorption tower The method for removing organic impurities in the methanol decomposition gas by the closed TSA method according to claim 1, further comprising a third step of introducing the decomposition gas into the methanol absorption tower. 前記加熱脱着工程で使用する加熱されたメタノール分解ガスが、予め、予備吸着塔を通過して有機不純物の少なくとも一部が除去されたものであること及び前記第2工程に続いて、前記他方の吸着塔に第2工程のガスの流れと逆方向に原料のメタノール分解ガスを直接導入して該吸着塔を冷却し、該吸着塔から排出されたメタノール分解ガスを加熱して前記予備吸着塔に導入して該予備吸着塔の有機不純物を加熱脱着し、該予備吸収塔から排出されたメタノール分解ガスを前記メタノール吸収塔に導入する第3工程を設けることを特徴とする請求項1記載のクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法。  The heated methanol decomposing gas used in the heat desorption step is one in which at least part of the organic impurities has been removed in advance through the pre-adsorption tower, and the second step is followed by the other The raw material methanol decomposition gas is directly introduced into the adsorption tower in the opposite direction to the gas flow in the second step to cool the adsorption tower, and the methanol decomposition gas discharged from the adsorption tower is heated to enter the preliminary adsorption tower. The closed process according to claim 1, further comprising a third step of introducing and desorbing organic impurities in the preliminary adsorption tower by heating, and introducing the methanol decomposition gas discharged from the preliminary absorption tower into the methanol absorption tower. Removal method of organic impurities in methanol decomposition gas by TSA method. 前記メタノール吸収塔においてメタノール分解ガス中の有機不純物を吸収したメタノールを再生する方法が、前記精製されたメタノール分解ガスをさらにCO−PSA法で精製した後のオフガスを用いるガスストリッピング方法又は蒸留法であることを特徴とする請求項1〜3のいずれか1項記載のクローズドTSA法によるメタノール分解ガス中の有機不純物の除去方法。  A method of regenerating methanol having absorbed organic impurities in methanol decomposition gas in the methanol absorption tower is a gas stripping method or distillation method using off-gas after further purifying the purified methanol decomposition gas by a CO-PSA method. The method for removing organic impurities in methanol decomposition gas by the closed TSA method according to any one of claims 1 to 3, wherein
JP08295199A 1999-03-26 1999-03-26 Method for removing organic impurities in methanol decomposition gas by closed TSA method Expired - Lifetime JP4313882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08295199A JP4313882B2 (en) 1999-03-26 1999-03-26 Method for removing organic impurities in methanol decomposition gas by closed TSA method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08295199A JP4313882B2 (en) 1999-03-26 1999-03-26 Method for removing organic impurities in methanol decomposition gas by closed TSA method

Publications (2)

Publication Number Publication Date
JP2000272905A JP2000272905A (en) 2000-10-03
JP4313882B2 true JP4313882B2 (en) 2009-08-12

Family

ID=13788540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08295199A Expired - Lifetime JP4313882B2 (en) 1999-03-26 1999-03-26 Method for removing organic impurities in methanol decomposition gas by closed TSA method

Country Status (1)

Country Link
JP (1) JP4313882B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326821B2 (en) 2003-06-16 2008-02-05 Exxonmobil Chemical Patents Inc. Removal of oxygenate from an olefin stream
CN103091460A (en) * 2013-01-15 2013-05-08 安徽皖维高新材料股份有限公司 System and method for detecting top purity of methanol pressurized refining tower on line
US20220233994A1 (en) * 2019-05-30 2022-07-28 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Process and apparatus for the separation of two gaseous streams each containing carbon monoxide, hydrogen and at least one acid gas
CN116062690A (en) * 2021-10-30 2023-05-05 无锡隆基氢能科技有限公司 Hydrogen purification system and method and water electrolysis hydrogen production system

Also Published As

Publication number Publication date
JP2000272905A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
TWI521056B (en) Methane recovery method and methane recovery unit
JP2003175311A (en) Thermal swing adsorption method and adsorption unit and apparatus therefor
JPS63501549A (en) Ammonia treatment method and equipment
EP2364766B1 (en) Method for the removal of moist in a gas stream
JP5614808B2 (en) Helium gas purification method and purification apparatus
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP2004202393A (en) Carbon dioxide desorption method
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JP2012031049A (en) Method and apparatus for purifying helium gas
JP5729765B2 (en) Helium gas purification method and purification apparatus
JP5665120B2 (en) Argon gas purification method and purification apparatus
CN103517751A (en) Method for purification by means of adsorption with regeneration using gas containing undesired component in the purified gas
JP5403685B2 (en) Argon gas purification method and purification apparatus
JP2019512384A (en) Temperature swing adsorption method
EP0018183A1 (en) Process for the purification of natural gas
JPH02284618A (en) Method for reducing oxygen concentration
KR101823154B1 (en) Purifying method and purifying apparatus for argon gas
CN102807199B (en) Purifying method and purifying device for argon gas
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JPH04257688A (en) Regenerating method for adsorption tower
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS62273290A (en) Separation of co from synthesis gas
JPH10202115A (en) Regenerating method for catalytic adsorbent bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term