JPH0624962B2 - Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace - Google Patents

Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace

Info

Publication number
JPH0624962B2
JPH0624962B2 JP60256354A JP25635485A JPH0624962B2 JP H0624962 B2 JPH0624962 B2 JP H0624962B2 JP 60256354 A JP60256354 A JP 60256354A JP 25635485 A JP25635485 A JP 25635485A JP H0624962 B2 JPH0624962 B2 JP H0624962B2
Authority
JP
Japan
Prior art keywords
gas
pipe
argon
oxygen
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60256354A
Other languages
Japanese (ja)
Other versions
JPS62119104A (en
Inventor
宏 岡本
浩 川上
一弘 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP60256354A priority Critical patent/JPH0624962B2/en
Publication of JPS62119104A publication Critical patent/JPS62119104A/en
Publication of JPH0624962B2 publication Critical patent/JPH0624962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶製造炉の排ガスより高純度アルゴンを
回収する方法に関し、詳しくは、半導体の基板素材とし
て使用されるシリコン単結晶等の如き単結晶製造時に雰
囲気ガスとして用いられた後のアルゴンガスを主成分と
する排出ガスを回収し、該排出ガスを精製して高純度ア
ルゴンとして採取する方法である。
TECHNICAL FIELD The present invention relates to a method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace, and more specifically, to a method for recovering a silicon single crystal or the like used as a substrate material for a semiconductor. As described above, the exhaust gas containing argon gas as a main component after being used as an atmospheric gas during the production of a single crystal is collected, and the exhaust gas is purified to be collected as high-purity argon.

〔従来の技術〕[Conventional technology]

アルゴンガスは不活性な性質を有していることから、溶
接用のシールドガスや、金属の熱処理のための雰囲気ガ
ス等各種産業分野で広く使用されて来ている。そして近
年半導体産業の著しい発展にともないその基板となるシ
リコン単結晶板の製造量の増加もめざましいものがあ
る。しかるにシリコン単結晶板の如き単結晶の製造にあ
たって高品質の単結晶を得るために不活性ガスであるア
ルゴンガスが雰囲気ガスとして使用されている。そして
このような単結晶の製造にあたって製造炉に供給された
高純度(99.999容量%)のアルゴンガスは炉内雰
囲気ガスと使用した後に炉内より逐次炉外に排出され
る。この排出ガスは99.9容量%のアルゴンを未だ含
有するアルゴンを主成分とするガスである。しかし炉で
の雰囲気ガスとして使用した結果、二酸化珪素,酸化珪
素,炭素等の粉塵が混入して同伴するばかりでなく不純
物として水素,酸素,一酸化炭素,二酸化炭素の外に窒
素,炭化水素,水分等多種類に及んだ成分が微量(約
0.1容量%)ではあるが混入していることが判明し
た。このようなことより排出される排出ガス99.9容
量%のアルゴンを含有しているにもかかわらず、上記し
た如き不純物成分を含んでいて、これを有効利用するこ
となく大気に放出しているのが実情である。しかし高純
度アルゴンは極めて高価であり、従って前記した結晶製
造炉より排出されるアルゴンを主成分とする排ガスを回
収して不純物を除去して高純度のアルゴンとして精製し
再利用することが経済的効果の点で好ましく、その方法
の出現が望まれている。
Since argon gas has an inert property, it has been widely used in various industrial fields such as a shielding gas for welding and an atmosphere gas for heat treatment of metal. In recent years, along with the remarkable development of the semiconductor industry, there has been a remarkable increase in the production amount of silicon single crystal plates that are the substrates. However, in producing a single crystal such as a silicon single crystal plate, an argon gas, which is an inert gas, is used as an atmospheric gas in order to obtain a high quality single crystal. The high-purity (99.999% by volume) argon gas supplied to the manufacturing furnace during the production of such a single crystal is used with the atmosphere gas in the furnace and then sequentially discharged from the inside of the furnace to the outside of the furnace. This exhaust gas is a gas whose main component is argon, which still contains 99.9% by volume of argon. However, as a result of using it as an atmospheric gas in a furnace, not only dust such as silicon dioxide, silicon oxide, and carbon is mixed and entrained, but also hydrogen, oxygen, carbon monoxide, carbon dioxide, as well as nitrogen, hydrocarbon, It was found that a wide variety of components such as water were mixed in although they were in trace amounts (about 0.1% by volume). Even though the exhaust gas discharged as described above contains 99.9% by volume of argon, it contains the above-mentioned impurity components and is released to the atmosphere without being effectively used. Is the reality. However, high-purity argon is extremely expensive. Therefore, it is economical to recover the exhaust gas containing argon as a main component, which is discharged from the above-mentioned crystal manufacturing furnace, remove impurities to purify it as high-purity argon, and reuse it. It is preferable in terms of effects, and the appearance of such a method is desired.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかるに単結晶製造炉よりの排ガス中には微量ではある
が多種類にわたる不純物が含有していて、これらの不純
物を効率よく除去することが困難であり、その方法が種
々検討提案されているが、未だ充分満足し得る方法が出
現していないのが実情である。
However, the exhaust gas from the single crystal manufacturing furnace contains a large amount of impurities, though in a trace amount, and it is difficult to remove these impurities efficiently, and various methods have been proposed for examination, but The reality is that we have not yet come up with a satisfactory method.

本発明は上述の如き現状に鑑み発明されたもので、アル
ゴンを主成分として酸化珪素,二酸化珪素,炭素等の固
形粉塵を含みかつ水素,酸素,一酸化炭素,炭化水素,
窒素,水分等の多成分の不純物を含む単結晶製造炉より
の排ガスを回収して前記不純物を除去して精製して、効
率よくかつ再利用し得るような高純度なアルゴンを採取
することを目的としたものである。
The present invention has been invented in view of the above situation, and contains solid dust such as silicon oxide, silicon dioxide, and carbon containing argon as a main component and containing hydrogen, oxygen, carbon monoxide, hydrocarbon,
Exhaust gas from a single crystal manufacturing furnace containing multi-component impurities such as nitrogen and water is removed, the impurities are removed and purified, and highly pure argon that can be reused efficiently is collected. It is intended.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的達成のため、アルゴンを主成分とし、
不純物として粉塵,油分,一酸化炭素,酸素,水素,窒
素等を含む単結晶製造炉からの排ガスを、まず粉塵等の
固形分及び油分を除去した後、該排ガス中の酸素の反応
に必要な化学量論量より過剰量の水素を添加して酸素を
触媒反応で水に転換し、次いで一酸化炭素及び水素を酸
化銅と反応させて二酸化炭素と水に転換せしめてから吸
着筒を通して前記転換した水,二酸化炭素及び不純物窒
素を除去して高純度アルゴンを回収すると共に、該高純
度アルゴンの一部を、前記吸着筒の再生用に使用した
後、酸素を添加し昇温状態で、前記一酸化炭素及び水素
と酸化銅との反応で生成した還元銅の酸化再生に使用す
ることを特徴とする単結晶製造炉の排ガスより高純度ア
ルゴンを回収する方法に関するものである。
To achieve the above object, the present invention contains argon as a main component,
Exhaust gas from a single crystal manufacturing furnace containing dust, oil, carbon monoxide, oxygen, hydrogen, nitrogen, etc. as impurities is first removed of solids such as dust and oil, and then necessary for the reaction of oxygen in the exhaust gas. Excessive stoichiometric amount of hydrogen is added to convert oxygen to water by catalytic reaction, then carbon monoxide and hydrogen are reacted with copper oxide to convert to carbon dioxide and water, and then the conversion is performed through an adsorption column. The water, carbon dioxide and nitrogen impurities are removed to recover high-purity argon, and a part of the high-purity argon is used for regenerating the adsorption column, and then oxygen is added to the high-purity argon to raise the temperature. The present invention relates to a method for recovering high-purity argon from exhaust gas of a single crystal manufacturing furnace, which is used for oxidative regeneration of reduced copper produced by a reaction of carbon monoxide and hydrogen with copper oxide.

〔実施例〕 次に図面により本発明の一実施例の系統図を例示して本
発明の方法を説明する。図において1は単結晶製造炉、
2はガスホルダ、3は一酸化珪素,二酸化珪素,カーボ
ン等の粉塵を除去するためのベンチュリースクラバー、
4は圧縮機、5は活性炭が充填されていて油を吸着除去
するための油分除去筒、6は酸素を除去するためパラジ
ュウムあるいは白金を充填した触媒筒、7は水素と一酸
化炭素を反応せしめるため酸化銅が充填されている反応
筒で、反応工程と再生工程を切り替え操作し常時いづれ
か一方の筒が反応工程で他方の筒が再生工程にあるよう
に運転し得るように二筒7a,7bが設備されている。
8は二酸化炭素や水分を吸着除去するためゼオライトが
吸着剤として充填されている第1吸着筒で、少くとも二
筒8a,8b以上一組として設備され、いずれかが吸着
工程とされその間他方が脱着再生工程とされるよう切替
操作される。又9は窒素成分を除去するためモルデナイ
ト型ゼオライトが吸着剤として充填されている第2吸着
筒で、前記炭酸ガス除去筒と同様二筒9a,9b以上一
組として設備され、いずれか一方が吸着工程、他方が脱
着再生工程であるように逐次切替え操作される。そして
10,11,12,13,14は加熱ヒータ、15,1
6は冷却用熱交換器で、それぞれ冷凍機15a,16a
を付設している。なお17は採取された高純度アルゴン
を貯蔵するためのタンクである。
[Embodiment] Next, the method of the present invention will be described with reference to the drawings, illustrating a system diagram of an embodiment of the present invention. In the figure, 1 is a single crystal manufacturing furnace,
2 is a gas holder, 3 is a venturi scrubber for removing dust such as silicon monoxide, silicon dioxide and carbon,
Reference numeral 4 is a compressor, 5 is an oil removal cylinder filled with activated carbon for adsorbing and removing oil, 6 is a catalyst cylinder filled with palladium or platinum for removing oxygen, and 7 is for reacting hydrogen and carbon monoxide Therefore, in the reaction cylinder filled with copper oxide, the two cylinders 7a and 7b can be operated such that either the reaction process or the regeneration process is switched and the one cylinder is always in the reaction process and the other cylinder is in the regeneration process. Is equipped.
Reference numeral 8 is a first adsorption column filled with zeolite as an adsorbent for adsorbing and removing carbon dioxide and water. At least two columns 8a and 8b are installed as one set or more, one of which is an adsorption step and the other is in the meantime. The switching operation is performed so that the desorption / regeneration process is performed. Reference numeral 9 is a second adsorption column filled with mordenite type zeolite as an adsorbent for removing nitrogen components. Like the carbon dioxide gas removal column, two columns 9a and 9b are installed as one set or more, and one of them is adsorbed. The process is sequentially switched so that the other process is the desorption / regeneration process. And 10, 11, 12, 13, 14 are heaters, 15, 1
6 is a heat exchanger for cooling, which are refrigerators 15a and 16a, respectively.
Is attached. Reference numeral 17 is a tank for storing the collected high-purity argon.

次に上記装置類により本発明の単結晶製造炉よりの排ガ
スの精製回収方法について説明する。まず雰囲気ガスと
して使用される高純度アルゴンは、管21より単結晶炉
1に送給されている。この間単結晶製造炉1より排ガス
が管22より排出される。該排ガスはたとえばシリコン
の単結晶を製造する場合には二酸化珪素,一酸化珪素及
びカーボンの如き粉塵を同伴し、そしてその他に炉内で
の加熱により水素,酸素,窒素,一酸化炭素,二酸化炭
素,炭化水素,水分,油分等の不純物を小量ずつ含有す
るアルゴン99.9%のガスとして導出されてガスホル
ダ2に貯えられる。このような排出ガスは管23よりベ
ンチュリースクラバー3に導入されて排出ガス中に含ま
れる前記粉塵類が除去され管24より導出される。つい
で圧縮機4で以後の工程での処理に必要な圧力を得るた
めゲージ圧4〜5kg/cm2に加圧されて管25を経て活
性炭が充填されている油分除去筒5に導入される。活性
炭は特に油分を吸着し微量な量の油分を殆ど完全に除去
する。かくして油分及び粉塵が除去されたガスは4〜5
kg/cm2のゲージ圧を保持して管26を介して加熱ヒー
タ10で約120℃に加熱され管27に導出し、管28
より水素が添加されて管29より触媒筒6に導入され
る。触媒筒6にはパラジュウムあるいは白金の如き触媒
が充填されていて、該筒6に導入された前記水素を添加
した処理ガスは、前記約120℃の温度下で触媒によっ
て、該処理ガス中の酸素分と水素との反応が促進されて
水を生成して酸素分が除去される。なおこの場合前記処
理ガス中に添加する水素量は、前記触媒筒6に導入され
る処理ガス中の酸素分量を検知して、この酸素量の反応
に必要な化学量論量より過剰な量を添加することによっ
て前記処理ガス中の不純物である酸素分は効果的に除去
される。このようにして粉塵,油分及び酸素分を除去さ
れた処理ガスは、触媒筒6より管30に導出し、加熱ヒ
ータ11で更に約320℃の温度に加熱されて、管31
より少くとも2筒一組で弁32a,32b,弁33a,
33b及び弁34a,34b,弁35a,35bの操作
で、逐次反応・再生を切換使用される酸化銅を充填して
なる反応筒7a,7bのいずれか一つの筒に導入され
る。そしてたとえば反応筒7aが反応工程にあって、反
応筒7bが再生工程にある場合(弁32a,弁33a,
弁34a,35bが開、弁32b,弁33b,弁34
a,弁35aが閉)、前記約320℃の加熱された処理
ガスは反応筒7aに導入され、該筒7aで処理ガス中に
含まれる水素と一酸化炭素とが上記温度下で充填されて
いる酸化銅と反応して水と二酸化炭素に転換される。
Next, a method for purifying and recovering exhaust gas from the single crystal production furnace of the present invention by using the above devices will be described. First, high-purity argon used as an atmosphere gas is fed to the single crystal furnace 1 through a pipe 21. During this time, the exhaust gas is discharged from the single crystal manufacturing furnace 1 through the pipe 22. The exhaust gas is accompanied by dusts such as silicon dioxide, silicon monoxide and carbon in the case of producing a single crystal of silicon, and in addition, hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide are generated by heating in a furnace. , A gas containing 99.9% of argon containing small amounts of impurities such as hydrocarbons, water and oil, and stored in the gas holder 2. Such exhaust gas is introduced into the Venturi scrubber 3 through the pipe 23, the dusts contained in the exhaust gas are removed, and the exhaust gas is led out through the pipe 24. Then, in order to obtain a pressure necessary for the subsequent processing in the compressor 4, it is pressurized to a gauge pressure of 4 to 5 kg / cm 2 and introduced into the oil removing cylinder 5 filled with activated carbon through the pipe 25. Activated carbon especially adsorbs oil and almost completely removes a trace amount of oil. Thus, the gas from which oil and dust are removed is 4 to 5
While maintaining a gauge pressure of kg / cm 2 , it is heated to about 120 ° C. by the heater 10 through the pipe 26 and led to the pipe 27.
More hydrogen is added and introduced into the catalyst cylinder 6 through the pipe 29. The catalyst cylinder 6 is filled with a catalyst such as palladium or platinum, and the hydrogen-added processing gas introduced into the cylinder 6 is treated with oxygen at a temperature of about 120 ° C. by the catalyst. The reaction between hydrogen and hydrogen is promoted to generate water and oxygen is removed. In this case, the amount of hydrogen added to the processing gas is an excess amount than the stoichiometric amount necessary for the reaction of this oxygen amount by detecting the oxygen content in the processing gas introduced into the catalyst cylinder 6. By adding it, the oxygen content as an impurity in the processing gas is effectively removed. The processing gas from which the dust, oil and oxygen components have been removed in this way is led out from the catalyst tube 6 to the tube 30 and is further heated by the heater 11 to a temperature of about 320 ° C.
At least two cylinders in one set have valves 32a, 32b, valves 33a,
33b, valves 34a, 34b, and valves 35a, 35b are introduced into any one of reaction tubes 7a, 7b filled with copper oxide used for switching between successive reactions and regeneration. And, for example, when the reaction cylinder 7a is in the reaction process and the reaction cylinder 7b is in the regeneration process (the valves 32a, 33a,
The valves 34a and 35b are opened, and the valves 32b, 33b and 34 are opened.
a, the valve 35a is closed), the heated processing gas at about 320 ° C. is introduced into the reaction column 7a, and hydrogen and carbon monoxide contained in the processing gas are charged in the column 7a at the above temperature. It reacts with existing copper oxide and is converted into water and carbon dioxide.

かくして反応筒7aより管36で導出する処理ガスはア
ルゴンを主成分として水,二酸化炭素及び窒素が含有す
ることとなる。そして該処理ガスは次いで、冷凍機15
aを付設してなる冷却用熱交換器15に導き約15℃に
冷却し管37を介して第1吸着塔8に導入する。該第1
級着筒8はゼオライトが吸着剤として充填されていて、
弁38a,38b,弁39a,39b,弁40a,40
b,弁41a,41bを付設してこれらの操作によって
吸着・再生の各工程を逐次切換えて使用する二筒8a,
8bを一組として設備されている。そしてたとえば第1
吸着筒8aが吸着工程にあって、吸着筒8bが再生工程
にあるとすると(弁38a,弁39a,弁40b,弁4
1bが開、弁38b,弁39b,弁40a,弁41aが
閉)、前記アルゴンを主成分とする約15℃の処理ガス
は第1吸着筒8の吸着筒8aに導入され、該筒8aで前
記処理ガス中の水分,二酸化炭素が吸着除去され、管4
2よりアルゴンを主成分とし少量の窒素を含んだ処理ガ
スとして導出される。この処理ガスは続いて冷凍機16
aを付設した冷却用熱交換器16を経て約−50℃に冷
却され、管43を介して第2吸着筒9に導入する。第2
吸着筒9にはモルデナイト型ゼオライトが充填されてい
て、付設されている弁44a,44b,弁45a,45
b,弁46a,46b,弁47a,47bを操作して吸
着・再生の工程を逐次切換えて使用する二筒一組の吸着
筒9a,9bよりなり、一方の吸着筒9aが吸着工程に
ある時は他方の吸着筒9bは再生工程とされて使用され
る(弁44a,弁45a,弁46b,弁47bが開、弁
44b,弁45b,弁46a,弁47aが閉)。この時
前記窒素を含むアルゴンよりなる処理ガスは吸着筒9a
に導入され、該筒9aに充填されているモルデナイト型
ゼオライトによって前記処理ガス中の窒素が吸着され
る。しかも前記処理ガスが約−50℃に冷却して導入さ
れているのでモルデナイト型ゼオライトに窒素が極めて
効果的に吸着される。
Thus, the processing gas discharged from the reaction tube 7a through the pipe 36 contains argon, water, carbon dioxide and nitrogen as main components. The processing gas is then fed to the refrigerator 15
It is led to a cooling heat exchanger 15 additionally provided with a, cooled to about 15 ° C., and introduced into the first adsorption tower 8 via a pipe 37. The first
Zeolite is filled as an adsorbent in the graded cylinder 8,
Valves 38a, 38b, valves 39a, 39b, valves 40a, 40
b, valves 41a and 41b, and two cylinders 8a which are used by sequentially switching the adsorption / regeneration steps by these operations.
It is equipped with 8b as a set. And for example the first
If the adsorption cylinder 8a is in the adsorption process and the adsorption cylinder 8b is in the regeneration process (the valve 38a, the valve 39a, the valve 40b, the valve 4).
1b is open, valve 38b, valve 39b, valve 40a, valve 41a are closed), and the processing gas containing argon as a main component and having a temperature of about 15 ° C. is introduced into the adsorption column 8a of the first adsorption column 8, and the column 8a Water and carbon dioxide in the processing gas are adsorbed and removed, and the pipe 4
2 is derived as a processing gas containing argon as a main component and a small amount of nitrogen. This process gas is then fed to the refrigerator 16
It is cooled to about −50 ° C. through the cooling heat exchanger 16 provided with a and introduced into the second adsorption cylinder 9 via the pipe 43. Second
The adsorption cylinder 9 is filled with mordenite type zeolite, and the attached valves 44a, 44b and valves 45a, 45 are attached.
b, the valves 46a, 46b, and the valves 47a, 47b are operated, and the adsorption / regeneration process is sequentially switched to be used. A pair of adsorption cylinders 9a, 9b are used. One adsorption cylinder 9a is in the adsorption step. The other adsorption cylinder 9b is used in the regeneration process (the valve 44a, the valve 45a, the valve 46b and the valve 47b are opened, and the valve 44b, the valve 45b, the valve 46a and the valve 47a are closed). At this time, the processing gas composed of argon containing nitrogen is adsorbed on the adsorption column 9a.
Nitrogen in the processing gas is adsorbed by the mordenite type zeolite introduced into the cylinder 9a and filled in the cylinder 9a. Moreover, since the treatment gas is cooled to about −50 ° C. and introduced, nitrogen is very effectively adsorbed on the mordenite zeolite.

このようにして窒素分を効果的に吸着されて除去された
結果管48より極めて高純度のアルゴンガスが導出し採
取される。そしてこの一部は管49によって分岐され
て、後述する反応筒7、第1吸着筒8、第2吸着筒9の
再生に使用されるが、大部分は管50より貯蔵タンク1
7に送られて貯えられる。そして適宜管51より導出
し、フィルタ52を経て管53より、前記単結晶炉1に
アルゴンガスを供給する管21に送入されて再使用され
る。
In this way, the nitrogen component is effectively adsorbed and removed, and as a result, an extremely high-purity argon gas is discharged from the pipe 48 and collected. Then, a part of this is branched by a pipe 49 and used for regeneration of a reaction cylinder 7, a first adsorption cylinder 8 and a second adsorption cylinder 9 which will be described later, but most of them are divided by a pipe 50 from the storage tank 1.
It is sent to 7 and stored. Then, it is appropriately led out from the pipe 51, is passed through the filter 52, is fed from the pipe 53 to the pipe 21 for supplying the argon gas to the single crystal furnace 1, and is reused.

一方前記した少くとも二筒一組として反応又は吸着・再
生の工程を切換えて使用される反応筒7、第1吸着筒8
及び第2吸着筒9の再生にあたっては、前記第2吸着筒
9の吸着筒9aより管48を経て導出された高純度アル
ゴンガスが管49で一部分岐されて以下の如き工程を経
て使用される。
On the other hand, a reaction tube 7 and a first adsorption tube 8 which are used by switching the reaction or adsorption / regeneration process as a set of at least two tubes described above.
When regenerating the second adsorption cylinder 9, the high-purity argon gas derived from the adsorption cylinder 9a of the second adsorption cylinder 9 through the pipe 48 is partially branched by the pipe 49 and used through the following steps. .

即ち管49で分岐された一部の高純度アルゴンは、管5
4を経て三方弁55に達し、まづ管56に流入するよう
三方弁55を操作し、管56より加熱ヒータ14を経て
約70℃に加温されて管57より前記した第2吸着筒9
のたとえば再生工程にある吸着筒9bに吸着工程時とは
ガスの流れが反対方向に流れる(向流)ように導入し、
該筒9bが吸着工程で約−50℃に保持されていた温度
を昇温せしめながら該筒9bを流れ管路58に導出し、
この間吸着筒9b内に充填されているモルデナイト型ゼ
オライトの吸着剤に吸着されていた窒素分を脱着して同
伴し管58から管62へ排出される。なおこの時管58
にブロワー59を連結して吸着筒9b内のガスを吸引
し、管58のガスの一部を管60より前記管54へと循
環せしめることにより再生に使用する有効なアルゴンガ
スの量を低減して節約し得る。
That is, part of the high-purity argon branched in the tube 49 is
4 to reach the three-way valve 55, and operate the three-way valve 55 so as to flow into the pipe 56. The pipe 56 is heated by the heater 14 to about 70 ° C.
For example, the gas is introduced into the adsorption cylinder 9b in the regeneration process so that the gas flows in the opposite direction (countercurrent) to that in the adsorption process,
The cylinder 9b is led to the flow pipe 58 while raising the temperature of the cylinder 9b held at about -50 ° C in the adsorption step,
During this time, the nitrogen component adsorbed by the adsorbent of the mordenite-type zeolite filled in the adsorption column 9b is desorbed, entrained, and discharged from the pipe 58 to the pipe 62. At this time the tube 58
The blower 59 is connected to and the gas in the adsorption cylinder 9b is sucked, and a part of the gas in the pipe 58 is circulated from the pipe 60 to the pipe 54 to reduce the amount of effective argon gas used for regeneration. And save money.

このようにして約70℃の温度のアルゴンガスを再生工
程にある吸着筒9bに流通せしめている間、吸着筒9b
内で吸着されていた窒素分は逐次排出されると共に温度
も逐次上昇し遂には供給されるパージ用アルゴンガスと
ほぼ同じ温度70℃に達する。この時点で吸着筒9b内
の吸着剤に吸着されていた窒素分はほとんど脱着され
る。次いで加熱と循環を停止しパージのみを行った後、
前記三方弁55を操作して、アルゴンガスの流れを管5
6より管61に切り換え冷却用熱交換器16へと流通せ
しめる。そして該熱交換器16でアルゴンガスを約−5
0℃に冷却して管57を介して脱着した後の吸着筒9b
に送給し該筒9b内の温度を吸着運転温度である約−5
0℃迄冷却する。このようにして第2吸着筒9の再生が
行なわれる。
In this way, while the argon gas at a temperature of about 70 ° C. is being circulated to the adsorption column 9b in the regeneration step, the adsorption column 9b
The nitrogen content adsorbed therein is sequentially discharged, and the temperature thereof is gradually increased until it reaches the temperature of 70 ° C., which is almost the same as the temperature of the supplied argon gas for purging. At this point, most of the nitrogen content adsorbed by the adsorbent in the adsorption column 9b is desorbed. Then after stopping heating and circulation and performing only purging,
By operating the three-way valve 55, the flow of the argon gas is controlled by the pipe 5.
The pipe 61 is switched from 6 to the cooling heat exchanger 16 for circulation. Argon gas is supplied to the heat exchanger 16 at about −5.
Adsorption cylinder 9b after cooling to 0 ° C. and desorption through the pipe 57
To the adsorption operating temperature of about −5.
Cool to 0 ° C. In this way, the second adsorption cylinder 9 is regenerated.

次に第1吸着筒8の再生は、前記第2吸着筒9の再生工
程における脱着及び予冷に使用されて管58より導出さ
れたアルゴンガスを、管62に流入せしめ三方弁63で
まず管64に導びき、加熱ヒータ13を経て約250℃
に昇温せしめ管65を介して、たとえば前記再生工程に
ある吸着筒8bに流入せしめる。そして該筒8bに充填
されているゼオライト吸着剤に吸着されている水分,二
酸化炭素を脱着しこれを同伴して管66より導出され
る。この時該筒8bに導入するアルゴンパージガスを約
250℃の温度にして供給するので極めて効率よく水
分,二酸化炭素を脱着することが出来る。
Next, in the regeneration of the first adsorption cylinder 8, the argon gas used for desorption and pre-cooling in the regeneration process of the second adsorption cylinder 9 and led out from the pipe 58 is made to flow into the pipe 62, and the three-way valve 63 is used to first make the pipe 64. To about 250 ℃
It is made to flow into the adsorption cylinder 8b in the regeneration step, for example, through the temperature raising tube 65. Then, the water and carbon dioxide adsorbed by the zeolite adsorbent filled in the cylinder 8b are desorbed, and the water and carbon dioxide are entrained and led out from the pipe 66. At this time, since the argon purge gas introduced into the cylinder 8b is supplied at a temperature of about 250 ° C., water and carbon dioxide can be desorbed extremely efficiently.

このようにして吸着筒8b内の水分,二酸化炭素の脱着
が終了したら三方弁63を操作してアルゴンガスを管6
7に流通するように切り換える。そして管67に流れる
アルゴンガスは、冷却用熱交換器15で約15℃に冷却
し管65を経て吸着筒8bに導入され、該筒8bを冷却
して管66に導出される。この間吸着筒8bに充填され
ているゼオライト吸着剤を次工程での吸着工程での運転
温度約15℃迄冷却する。そして前記第1吸着筒8の再
生工程にある吸着筒8bに流通せしめられて管66に排
出されるアルゴンガスは、前記した如く第2吸着筒9で
窒素、第1吸着筒8で水分及び二酸化炭素を脱着してこ
れらを同伴しているが、該アルゴンガスは更に加熱ヒー
タ12を経て約280℃に加温されて管68に至り、該
管68で管69より酸素を添加して反応筒7の再生に使
用される。即ちたとえば前記した如く再生工程にある反
応筒7bに約280℃に加温されて酸素を添加されたア
ルゴンガスが導入され、その結果該筒7bに充填されて
いて前工程の反応工程で水素と一酸化炭素を反応せしめ
て水と二酸化炭素を生成せしめるため作用した結果形成
された還元銅を前記温度下で添加した酸素によって酸化
銅に転換する。このようにして反応筒の再生に使用した
アルゴンガスは管70より導出されて外気に放散する。
When the desorption of water and carbon dioxide in the adsorption cylinder 8b is completed in this way, the three-way valve 63 is operated to supply argon gas to the pipe 6.
Switch to 7 circulation. Then, the argon gas flowing through the pipe 67 is cooled to about 15 ° C. by the cooling heat exchanger 15, introduced into the adsorption cylinder 8b through the pipe 65, cooled the cylinder 8b, and led to the pipe 66. During this period, the zeolite adsorbent filled in the adsorption column 8b is cooled to an operating temperature of about 15 ° C. in the adsorption step in the next step. The argon gas, which is circulated in the adsorption column 8b in the regeneration process of the first adsorption column 8 and discharged to the pipe 66, is nitrogen in the second adsorption column 9 and moisture and dioxide in the first adsorption column 8 as described above. Carbon is desorbed and entrained, but the argon gas is further heated to about 280 ° C. through the heater 12 and reaches the pipe 68 where oxygen is added from the pipe 69 to the reaction cylinder. Used to play 7. That is, for example, as described above, the argon gas heated to about 280 ° C. and added with oxygen is introduced into the reaction tube 7b in the regeneration step, and as a result, the hydrogen gas is filled in the tube 7b and hydrogen is generated in the reaction step of the previous step. The reduced copper formed as a result of acting to react carbon monoxide to generate water and carbon dioxide is converted into copper oxide by the oxygen added at the above temperature. In this way, the argon gas used to regenerate the reaction tube is led out from the pipe 70 and diffused to the outside air.

本発明は以上のようにして単結晶製造炉での雰囲気ガス
として使用される高価なアルゴンガスを有効に利用し得
るものであるが、更にかかる方法を持続して連続運転を
可能とするものである。そしてもし単結晶製造炉での雰
囲気ガスとしてのアルゴンガスの使用が変動する場合、
たとえば雰囲気ガスであるアルゴン使用量が増加した時
には処理する系内での圧縮機4の容量に合せて管22よ
り弁71を介して処理排ガス余剰分を放出し、又使用量
が減少した場合は前記精製アルゴンガスをタンク17に
送給する管50より一部の精製アルゴンガスを管72、
弁73で分岐して前記処理系統の管22に合流せしめて
処理ガスを所定量に調整する。このようにすると圧縮機
4の容量に合せて常にその容量の処理ガスが送給される
のでより安定した運転が保持し得る。
As described above, the present invention can effectively utilize the expensive argon gas used as the atmosphere gas in the single crystal manufacturing furnace, and further enables such a method to be continuously operated. is there. And if the use of argon gas as the atmosphere gas in the single crystal manufacturing furnace fluctuates,
For example, when the use amount of argon, which is an atmospheric gas, increases, the treated exhaust gas surplus is discharged from the pipe 22 through the valve 71 according to the capacity of the compressor 4 in the system to be treated, and when the use amount decreases, A pipe 72 for supplying a part of the purified argon gas from a pipe 50 for feeding the purified argon gas to the tank 17,
The valve 73 is branched to join the pipe 22 of the processing system to adjust the processing gas to a predetermined amount. In this way, the processing gas of the capacity is always supplied according to the capacity of the compressor 4, so that more stable operation can be maintained.

次に上記方法を使用した場合の実験例について説明す
る。
Next, an experimental example when the above method is used will be described.

ガスホルダ2より排出されるアルゴン99.9容量%,
粉塵150mg/Nm3,油分(H,C)10ppm ,酸素10
ppm ,水素20ppm ,一酸化炭素50ppm ,二酸化炭素
10ppm ,窒素50ppm ,水分(露点−16℃)を組成
とする流量150 Nm3/hr,圧力20mmAq,温度25℃
の処理ガスは、ベンチュリースクラバー3にて粉塵を除
去され、流量145 Nm3/hr ,圧力−1500mmAq,温
度25℃にて管24に導出され、圧縮機4にて圧力4kg
/cm2G に加圧され、流量142 Nm3/hr にて油分除去
筒5にて油分が除去され、次いで加熱ヒータ10にて1
20℃に加温され、管28より水素を添加されてガス組
成分の水素が250ppm となって触媒筒6に導入され、
該筒6で処理ガス中の酸素と水素が反応して水を生成
し、酸素が除去されて、酸素0.2ppm 以下、水素15
0ppm となって管30に導出され、次いで加熱ヒータ1
1で320℃に加温されて圧力3.8kg /cm2G で反応
筒7に導入され、ここで水素と一酸化炭素が酸化銅と反
応して水と二酸化炭素に転換され、アルゴン99.9容
量%,水素0.5ppm 以下,一酸化炭素1ppm 以下,二
酸化炭素60ppm ,窒素50ppm ,水分(露点−11
℃)となって管36より導出して冷却用熱交換器15で
15℃に冷却されて管37より圧力3.5kg /cm2G で
第1吸着筒8に導入され、ここでガス組成の水分と二酸
化炭素が吸着除去されてアルゴン99.99容量%,二
酸化炭素1ppm 以下、水分(露点−60℃)となって管
42に導出され、冷却用熱交換器16にて−50℃に冷
却され、管43より圧力3.3kg /cm2G で第2吸着筒
9に導入され、ここで含まれていた約50ppm の窒素が
吸着除去され、アルゴン99.999容量%以上,酸素
0.2ppm 以下,水素0.5ppm 以下,一酸化炭素1pp
m 以下,二酸化炭素1ppm 以下,窒素0.1ppm 以下,
水分(露点−75℃以下)の高純度アルゴンガスが14
2 Nm3/hr 採取された。そして、その一部42 Nm3/hr
を管49で分岐して再生用ガスとして使用し、100 N
m3/hr をタンク17に貯え逐次単結晶製造炉1へと再使
用し得た。
Argon discharged from the gas holder 2 is 99.9% by volume,
Dust 150 mg / Nm 3 , oil (H, C) 10 ppm, oxygen 10
ppm, hydrogen 20ppm, carbon monoxide 50ppm, carbon dioxide 10ppm, nitrogen 50ppm, water content (dew point -16 ° C) 150 Nm 3 / hr, pressure 20 mmAq, temperature 25 ° C
Dust is removed by the venturi scrubber 3, and the treated gas is discharged to the pipe 24 at a flow rate of 145 Nm 3 / hr, pressure of -1500 mmAq, and temperature of 25 ° C, and the pressure of 4 kg is compressed by the compressor 4.
The pressure is increased to / cm 2 G, the oil content is removed in the oil content removal cylinder 5 at a flow rate of 142 Nm 3 / hr, and then 1
After being heated to 20 ° C., hydrogen was added from the pipe 28, and the hydrogen of the gas composition became 250 ppm and was introduced into the catalyst cylinder 6,
Oxygen and hydrogen in the treated gas react with each other in the cylinder 6 to generate water, and the oxygen is removed.
It becomes 0ppm and is led out to the pipe 30, and then the heater 1
1 was heated to 320 ° C. and introduced at a pressure of 3.8 kg / cm 2 G into the reaction tube 7, where hydrogen and carbon monoxide react with copper oxide to be converted into water and carbon dioxide, and argon 99. 9% by volume, hydrogen 0.5 ppm or less, carbon monoxide 1 ppm or less, carbon dioxide 60 ppm, nitrogen 50 ppm, water content (dew point -11
)), Is discharged from the pipe 36, cooled to 15 ° C. by the cooling heat exchanger 15, and introduced into the first adsorption column 8 at a pressure of 3.5 kg / cm 2 G from the pipe 37. Moisture and carbon dioxide are adsorbed and removed to obtain 99.99% by volume of argon, 1 ppm or less of carbon dioxide, and water (dew point -60 ° C), which is led to the pipe 42 and cooled to -50 ° C by the heat exchanger 16 for cooling. Then, it is introduced into the second adsorption column 9 through the pipe 43 at a pressure of 3.3 kg / cm 2 G, and about 50 ppm of nitrogen contained therein is adsorbed and removed, and 99.999% by volume or more of argon and 0.2 ppm of oxygen are contained. Hydrogen 0.5ppm or less, carbon monoxide 1pp
m or less, carbon dioxide 1ppm or less, nitrogen 0.1ppm or less,
High-purity argon gas with a water content (dew point −75 ° C. or lower) of 14
2 Nm 3 / hr was collected. And part of it 42 Nm 3 / hr
Is used as a regeneration gas by branching with a pipe 49,
m 3 / hr could be stored in the tank 17 and reused for the successive single crystal production furnace 1.

〔発明の効果〕〔The invention's effect〕

本発明方法は、以上のように、粉塵,油分,一酸化炭
素,酸素,水素,窒素等の不純物を含むアルゴンガス
を、まず粉塵等の固形分及び油分を除去した後、該排ガ
ス中の酸素の反応に必要な化学量論量より過剰量の水素
を添加して酸素を触媒反応で水に転換し、次いで一酸化
炭素及び水素を酸化銅と反応させて二酸化炭素と水に転
換せしめてから吸着筒を通して前記転換した水,二酸化
炭素及び不純物窒素を除去して高純度アルゴンを回収す
ると共に、該高純度アルゴンの一部を、前記吸着筒の再
生用に使用した後、酸素を添加し昇温状態で、前記一酸
化炭素及び水素と酸化銅との反応で生成した還元銅の酸
化再生に使用するので、不純物である酸素は、その反応
に必要な化学量論量より過剰に添加された水素により極
めて微量に迄除去され、しかも、この過剰な水素は後工
程で一酸化炭素と共に効果的に除去され、さらにこれら
の工程で生成した水や二酸化炭素、及び窒素は吸着工程
で除去される。
As described above, the method of the present invention, as described above, first removes the solid content such as dust and the oil content from the argon gas containing impurities such as dust, oil content, carbon monoxide, oxygen, hydrogen, nitrogen, and then the oxygen in the exhaust gas. Excessive stoichiometric amount of hydrogen is added to the reaction to convert oxygen into water by catalytic reaction, and then carbon monoxide and hydrogen are reacted with copper oxide to convert into carbon dioxide and water. High-purity argon was recovered by removing the converted water, carbon dioxide, and impurity nitrogen through the adsorption column, and a part of the high-purity argon was used for regeneration of the adsorption column, and then oxygen was added to raise it. Since it is used for oxidative regeneration of reduced copper produced by the reaction of carbon monoxide and hydrogen with copper oxide in a warm state, oxygen as an impurity was added in excess of the stoichiometric amount required for the reaction. Removed to a very small amount by hydrogen Moreover, the excess hydrogen is effectively removed with carbon monoxide in a subsequent process, further resulting water and carbon dioxide in these steps, and the nitrogen is removed in the adsorption process.

また、吸着筒の再生や還元銅の酸化銅への再生を、回収
した高純度アルゴンの一部で両工程を直列的に行うか
ら、再生工程を少量のガスで経済的に行うことができ
る。
Further, since the regeneration of the adsorption column and the regeneration of reduced copper into copper oxide are performed in series with a part of the recovered high-purity argon, the regeneration step can be economically performed with a small amount of gas.

したがって、高純度アルゴンの回収や装置の再生工程が
極めて簡略化し、上記不純物を著しく微量に迄除去する
ことができ、微量な不純物を多種類含んで排出される単
結晶製造炉よりの排ガスから高価なアルゴンガスを極め
て高純度に精製し再使用が可能となる。
Therefore, the steps of recovering high-purity argon and the regeneration process of the apparatus are extremely simplified, the impurities can be removed to a very small amount, and the exhaust gas from the single crystal manufacturing furnace that contains a large amount of a small amount of impurities is expensive. It is possible to purify pure argon gas to an extremely high purity and reuse it.

【図面の簡単な説明】[Brief description of drawings]

図は本発明方法の一実施例を説明する系統図である。 1……単結晶製造炉、2……ガスホルダ、3……ベンチ
ュリースクラバー、4……圧縮機、5……油分除去筒、
6……触媒筒、7……反応筒、8……第1吸着筒、9…
…第2吸着筒、10乃至14……加熱ヒータ、15,1
6……冷却用熱交換器、17……タンク
The figure is a system diagram for explaining an embodiment of the method of the present invention. 1 ... Single crystal manufacturing furnace, 2 ... Gas holder, 3 ... Venturi scrubber, 4 ... Compressor, 5 ... Oil removal cylinder,
6 ... Catalyst tube, 7 ... Reaction tube, 8 ... First adsorption tube, 9 ...
... Second adsorption column, 10 to 14 ... Heater, 15,1
6 ... Cooling heat exchanger, 17 ... Tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルゴンを主成分とし、不純物として粉
塵,油分,一酸化炭素,酸素,水素,窒素等を含む単結
晶製造炉からの排ガスを、まず粉塵等の固形分及び油分
を除去した後、該排ガス中の酸素の反応に必要な化学量
論量より過剰量の水素を添加して酸素を触媒反応で水に
転換し、次いで一酸化炭素及び水素を酸化銅と反応させ
て二酸化炭素と水に転換せしめてから吸着筒を通して前
記転換した水,二酸化炭素及び不純物窒素を除去して高
純度アルゴンを回収すると共に、該高純度アルゴンの一
部を、前記吸着筒の再生用に使用した後、酸素を添加し
昇温状態で、前記一酸化炭素及び水素と酸化銅との反応
で生成した還元銅の酸化再生に使用することを特徴とす
る単結晶製造炉の排ガスより高純度アルゴンを回収する
方法。
1. Exhaust gas from a single crystal production furnace containing argon as a main component and containing dust, oil, carbon monoxide, oxygen, hydrogen, nitrogen, etc. as impurities, after first removing solids such as dust and oil. , Adding oxygen in excess of the stoichiometric amount necessary for the reaction of oxygen in the exhaust gas to convert oxygen into water by a catalytic reaction, and then reacting carbon monoxide and hydrogen with copper oxide to form carbon dioxide. After converting to water, the converted water, carbon dioxide and impurity nitrogen are removed through an adsorption column to recover high-purity argon, and a part of the high-purity argon is used for regeneration of the adsorption column. , High-purity argon is recovered from the exhaust gas of the single crystal manufacturing furnace, which is used for the oxidation regeneration of the reduced copper generated by the reaction of the above-mentioned carbon monoxide and hydrogen with copper oxide at a temperature rise by adding oxygen. how to.
JP60256354A 1985-11-15 1985-11-15 Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace Expired - Lifetime JPH0624962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60256354A JPH0624962B2 (en) 1985-11-15 1985-11-15 Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60256354A JPH0624962B2 (en) 1985-11-15 1985-11-15 Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace

Publications (2)

Publication Number Publication Date
JPS62119104A JPS62119104A (en) 1987-05-30
JPH0624962B2 true JPH0624962B2 (en) 1994-04-06

Family

ID=17291517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60256354A Expired - Lifetime JPH0624962B2 (en) 1985-11-15 1985-11-15 Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace

Country Status (1)

Country Link
JP (1) JPH0624962B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237021A (en) * 2012-05-16 2013-11-28 Sumco Techxiv株式会社 Exhaust gas treatment apparatus
US8945293B2 (en) 2009-08-06 2015-02-03 Shin-Etsu Handotai Co., Ltd. Silicon oxide removal apparatus and facility for recycling inert gas for use in silicon single crystal manufacturing apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761917B2 (en) * 1989-04-15 1998-06-04 日本酸素株式会社 Argon recovery method
US5106399A (en) * 1991-02-25 1992-04-21 Union Carbide Industrial Gases Technology Corporation Argon purification system
JP4733960B2 (en) * 2004-10-18 2011-07-27 大陽日酸株式会社 Method and apparatus for purifying argon gas containing impurities by thermal swing adsorption method
US7862645B2 (en) 2008-02-01 2011-01-04 Air Products And Chemicals, Inc. Removal of gaseous contaminants from argon
GB2477322B (en) * 2010-02-01 2015-10-21 Gas Recovery & Recycle Ltd Inert gas recovery system
TWI476038B (en) * 2010-02-10 2015-03-11 Sumitomo Seika Chemicals Purifying method and purifying apparatus for argon gas
TWI478761B (en) * 2010-02-25 2015-04-01 Sumitomo Seika Chemicals Purifying method and purifying apparatus for argon gas
JP5403685B2 (en) * 2010-02-25 2014-01-29 住友精化株式会社 Argon gas purification method and purification apparatus
JP5748272B2 (en) * 2010-07-07 2015-07-15 住友精化株式会社 Helium gas purification method and purification apparatus
JP6304089B2 (en) 2015-03-24 2018-04-04 信越半導体株式会社 Argon gas purification method and argon gas recovery and purification apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548190A (en) * 1977-06-21 1979-01-22 Nippon Oxygen Co Ltd Process for purifying inert gas
JPS59120222A (en) * 1982-12-27 1984-07-11 Ibiden Co Ltd Purification of non-oxidative gas
JPS60204608A (en) * 1984-03-30 1985-10-16 Hitachi Ltd Method and apparatus for recovery of argon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945293B2 (en) 2009-08-06 2015-02-03 Shin-Etsu Handotai Co., Ltd. Silicon oxide removal apparatus and facility for recycling inert gas for use in silicon single crystal manufacturing apparatus
DE112010003190B4 (en) 2009-08-06 2022-07-21 Shin-Etsu Handotai Co., Ltd. Silicon oxide removal apparatus and equipment for recovering inert gas to be used in a silicon monocrystal manufacturing apparatus
JP2013237021A (en) * 2012-05-16 2013-11-28 Sumco Techxiv株式会社 Exhaust gas treatment apparatus

Also Published As

Publication number Publication date
JPS62119104A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
JP3279585B2 (en) Method for producing purified air
JP3351815B2 (en) Purification method of inert gas
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
US6838066B2 (en) Process for recovery, purification, and recycle of argon
EP0489555A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
EP0197717A1 (en) Methods and apparatus for purifying inert gas streams
US3864452A (en) Process for purifying sulfur compound contaminated gas streams
JPH10114508A (en) Method for purifying flow of inert gas
JP3569017B2 (en) Method and apparatus for producing high-purity liquid nitrogen
KR970000367B1 (en) Production of nitrogen
JPH11226335A (en) Method for refining inert fluid by adsorption on lsx zeolite
US4746332A (en) Process for producing high purity nitrogen
JP3496079B2 (en) Method and apparatus for purifying argon gas
JPH10113502A (en) Method and apparatus for producing low temperature fluid in high purity liquid
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JP2000233909A (en) Method for refining waste argon gas from single crystal producing furnace
JP4070399B2 (en) Helium gas purification method
JP4733960B2 (en) Method and apparatus for purifying argon gas containing impurities by thermal swing adsorption method
JPH02284618A (en) Method for reducing oxygen concentration
JPS5930646B2 (en) Argon gas purification method
JPS62117612A (en) Regenerating method for adsorption tower
JPS621767B2 (en)
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPH0114164B2 (en)
JP3213851B2 (en) Removal method of carbon monoxide in inert gas