JPH0114164B2 - - Google Patents

Info

Publication number
JPH0114164B2
JPH0114164B2 JP9244983A JP9244983A JPH0114164B2 JP H0114164 B2 JPH0114164 B2 JP H0114164B2 JP 9244983 A JP9244983 A JP 9244983A JP 9244983 A JP9244983 A JP 9244983A JP H0114164 B2 JPH0114164 B2 JP H0114164B2
Authority
JP
Japan
Prior art keywords
gas
adsorption
nitrogen
temperature
mordenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9244983A
Other languages
Japanese (ja)
Other versions
JPS59223203A (en
Inventor
Tadao Takebayashi
Kyoharu Hashiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9244983A priority Critical patent/JPS59223203A/en
Publication of JPS59223203A publication Critical patent/JPS59223203A/en
Publication of JPH0114164B2 publication Critical patent/JPH0114164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルゴンガス(Ar)中の微量窒素
(N2)の吸着除去法に関する。 Arは化学的に不活性であるところから、化学
反応の雰囲気用として窒素などとともに広く用い
られている。 特に近年、半導体工業の発展にともない高純度
結晶シリコンの合成あるいは加工の雰囲気用に高
純度アルゴンが多用され、その需要が飛躍的に伸
びている。 Arは空気中に約0.9vol%含まれており、通常、
この空気の低温精留を2〜3段経て99%以上の高
純度なArを得ている。ArはN2に比して約3倍の
価格であるので使用ずみArの回収、再利用が経
済性の向上に必要である。使用ずみArはその使
用条件によつて各種の不純物を含んでいる。水分
あるいは炭酸ガスなどの混入に対しては、シリカ
ゲル、ゼオライトなどによる吸着除去や低温凍結
による固形化分離が可能である。また、Ar中の
酸素は水素吹込みにより、デオキソ触媒上で水を
生成させ、前述の方法で生成水分の除去を行なう
ことができる。 上述の各法は、いずれも不純物濃度を1vol.
ppm以下に低減するための工業的手法として汎用
されている。従来、Arに含まれる不純物がN2
場合は、チタンスポンジとの高温反応による除去
法が用いられてきた。この方法によれば、
N21vol.ppm以下の精製度は容易に達成できるが、
反応温度として800℃以上を要することと反応生
成物の窒素チタンによる反応阻害で原料チタンの
利用効率が低いことなどのためにArの回収コス
トが大幅に上昇する。 他方、ガス中のN2除去に吸着剤を用いるいく
つかの方法が知られている。例えば、日特公52−
20959号公報には空気液化分離装置から得られる
酸素中の低濃度N2の除去を天然モルデナイトあ
るいは天然クリノプチロライトを用いて行なう方
法が、また、日特公52−42755号公報には空気液
化分離装置及び粗Ar精留装置を用いて得られる
Ar中の窒素不純物を、常温で5〜35Kg/cm2Gに
てゼオライトを用いて吸着除去する方法が開示さ
れている。 これらの技術はゼオライトによる窒素除去ない
し、Ar精製の可能性を示唆するが、得られるガ
ス純度と収率が低く、高純度Arの回収技術とし
ては必ずしも充分とは言えない。 本発明者らはN2を含むArから、適正な規模の
装置によつて、極めて高い回収率で高純度Arと
して回収する方法について種々探索、検討した結
果、特定の吸着剤と、操作条件を組み合わせるこ
とにより、上記目的を達成しうることを見いだ
し、本発明を完成した。 本発明によればAr中に混在するN2の除去が少
量の吸着剤の使用で可能となるばかりでなく、操
作上必然となる高価なArの系外廃棄を極端に削
減でき、しかも極めて高い精製度の製品Arを得
る事が可能である。以下その内容について詳述す
る。 本発明で使用する吸着剤は、N2に対する選択
吸着性がArより高く、かつN2吸着容量の大きい
ものが望ましい。N2吸着容量の高いゼオライト
としては、5A、13X型、モルデナイト型などが
知られているが、これらの吸着剤の中でモルデナ
イト型ゼオライトが他のゼオライト例えば5A型、
13X型ゼオライトより優れたN2吸着選択性を有
することを本発明者らは見出し、さらに検討の結
果、通常のモルデナイトを特定のイオンを以つて
ある交換率以上までイオン交換することにより、
特に優れたN2に対する吸着選択性を保持させう
ることを見出した。 モルデナイトは一般にNa2O・Al2O3
XSiO2・nH2Oの組成で表わされ、X(シリカ対ア
ルミナモル比)は約10〜20である。nはモルデナ
イト結晶中の吸着水分量で例えばX=10のときn
=6となる。式中のNa2Oは酸化物形で表示され
るが、結晶内ではNaイオンとして存在し、他の
陽イオン例えばLi+,K+などアルカリ金属イオ
ン、Mg2+,Ca2+などアルカリ土類イオン、その
他の金属イオンあるいはアンモニウムイオン、水
素イオンなどと交換しうる。 日特公昭46−37162号公報には、モルデナイト
の各種イオン交換体が比較的高い吸着容量を有す
ることが示されており、これを水素気流中のN2
除去に用いる方法が提案されている。この中で、
特にMg2+イオン交換モルデナイトがN2吸着容量
が大きく、水素気流精製に好適としている。 本発明で対象とするN2含有Arの精製では、Ar
の損失を抑制し、極めて高い回収率を達成するこ
とを一つの目的とする。N2を吸着・捕捉したモ
ルデナイト吸着剤に対し再びN2の捕捉能力を回
復させるために一般に加熱、減圧、あるいはパー
ジなどの再生操作を施すが、このとき使用吸着剤
からは濃縮されたN2だけでなく、共吸着してい
るArも脱離し、共に系外へ排出される。この排
出されるAr量、すなわち共吸着Ar量が少ないほ
ど当然Ar回収率は高く維持出来ることになる。
この点について、本発明者等は、更に検討した結
果、モルデナイトの交換イオンが、Mg2+より、
Ca2+及び/又はSr2+の場合が更に好結果が得ら
れ、又、これらの交換量は、Ca2+及び/又は
Sr2+で50%当量以上であることが好適なことを見
出した。 即ち、本発明によるAr精製に最も適した組成
のモルデナイトは、その陽イオンの50%当量以上
をCa2+及び/又はSr2+で交換したものであり該
ゼオライトの使用に当つては、加熱等により結晶
内に存在する水分を脱離させた、謂ゆる活性化状
態のモルデナイトとすることが好ましい。 次に本発明での操作を詳述する。 吸着剤とN2含有Ar(原料ガス)との接触は特
にその方法は限定されないが、通常、吸着剤を充
填した充填塔を用いる固定層吸着方式で行なわれ
る。この原料ガスは吸着塔の一端から流入し、含
有するN2は選択的に吸着剤に吸着され、他の一
端からN2を含まない精製されたArとして流出す
る。 原料ガス中のN2濃度は特に規定しないが10vol
%以上望ましくは1vol%以下が特に本発明の実施
に好適である。吸着の温度条件は、−20℃以下が
望ましく、吸着剤温度及び/又は送入ガス温度で
制御する。同温度が、それより高いとN2の吸着
能が低下し好ましくない。この吸着の温度が低い
ほどN2の吸着容量が大きくなり、原料ガスが液
化しない範囲でその温度を下げることができる
が、冷却のためのコストを考慮すると−100℃以
上とするのが実用的である。吸着時の塔内圧力
は、大気圧以上とすることが本発明では重要であ
る。原料ガスの流入を継続すると、流入端側から
吸着剤がN2を吸着し、謂ゆるN2吸着帯を形成し
て、それが流出端へ移動する。一定量の原料ガス
が流入するとN2吸着帯が流出端へ到達する。こ
の時点もしくはこれより以前にガス流入を停止す
る。ガス流入を停止した吸着塔内は、N2を含む
Arで充たされている。N2を吸着した吸着層の再
生は同層を、外部から加熱するか又は、吸着塔に
残存するガスを吸着塔の一端、例えば、精製され
たガスの流出端より吸引して取り出し、同ガスを
塔外部の加熱器によつて0℃以上、例えば20℃ま
で加熱し再び吸着に使用した吸着塔の原料ガス送
入端より吸着塔内へ送入し、吸着塔を加熱昇温せ
しめ、所定の再生温度へ吸着塔温が到達するまで
循環を継続するなどして加熱する。 −20℃以下の吸着温度において吸着されていた
N2と残余のArは前記操作による吸着塔温の上昇
に伴ない吸着剤より脱離する。循環方法を用いる
場合は脱離ガスが循環系に合流すると、その結果
循環回路内の圧力が上昇するので随時回路内より
ガスを抜き出し、系内が過大な圧とならないよう
制御する。 ガス循環で吸着塔温が所定の再生温度に到達し
たのち、加熱ガスの循環を停止する。このとき吸
着塔内には、昇温の間に脱離したN2がなお残留
しているので吸着塔外へこれを排出する必要があ
る。 この際の塔外への排出方法として吸引ポンプな
どにより、吸引排気する方法とN2を含まないAr
を送入し塔内ガスを押し流す(パージ)方法およ
びこの二法を併用する方法などが適用できる。 ポンプのみによる吸引もしくは減圧後純Arに
よつてパージする方法では、純Arの消費量が少
なく、従つてAr回収率を高く保つことができる。
しかしながら装置の規模もしくは構造によつては
吸着塔内が真空減圧となつた際に大気の流入の危
険性がある。この危険性を避ける為には、吸着及
び再生の全工程を通じて装置内圧力を常に大気以
上に保つことである。 吸着塔内圧力を常に大気圧以上に保ちながら吸
着層残留N2を排出せしめる為に本発明では、敢
えて、パージによるAr消費量の比較的大きい、
常圧Arによるパージ方法を用いる。これにより
製品Ar純度が99.9999以上の高純度に保たれるこ
とが保証される。しかも後述するパージ排ガス回
収の併用により、常圧パージ採用による系外排出
アルゴン量は極く僅かな増加にとどめることがで
きる。 吸着層再生温度は0℃以上望ましくは20℃以上
が適している。この温度をあまり高くすると吸着
層を吸着温度に下げるのにコストがかかりすぎる
ことになるので、50℃以下とするのが実用的であ
る。0℃より低い温度でも吸着剤からN2を脱離
させる(脱着)ことは可能であり、特に吸着温度
から昇温する過程において脱離するガス量が少な
いという長所をもつが反面、引き続き行う純Ar
によるパージ量が急激に増大し、結果的にArの
総合回収率を低下させることになる。 純Arによる塔内N2の押し出し(パージ)によ
り、流出するガス中のN2濃度は、指数関数的に
減少する。初期に流出するガスは高濃度N2を含
有するが、更に流入を継続することにより流出す
るガスは、原料ガス中のN2濃度を下回る部分を
有するまでになる。この部分については、原料ガ
スラインへ回収することにより、Ar収率の高維
持を可能とする。 排出ガス中N2濃度が十分低下したのち、純Ar
の送入を停止し、続いて吸着層のArを吸着塔内
が大気圧以下にならぬ条件で吸引し、吸引した
Arを−20℃以下へ冷却したのち再び吸着層へ送
入し、この操作をくり返すことにより、吸着層の
循環冷却を行う。又、冷却Arの循環によらず、
吸着層を冷却することもできる。 吸着層冷却の期間中、吸着層温低下に伴ない、
Arの吸着が進み、循環回路内圧力の低下をきた
すが、回路内圧力が常に大気圧以上となるよう
N2を含まない純Ar例えば、他の吸着層で精製し
た製品Arを回路内に供給する。 吸着層温が所定の温度に到達した時点で回路内
の冷却を停止し、新たな原料ガス送入を行なう。
以後順次この操作を繰り返す。 又、吸着層を複数個設置することにより、連続
的に精製Arを得ることができる。 本発明を要約すれば、N2対Arの吸着選択性
が特異的に高いモルデナイト型ゼオライトを用
い、その特異性を発揮する−20℃以下の吸着温
度においてN2を含むArをゼオライトと接触さ
せ、高純度Arを得たのち、吸着層を0℃以上
の再生温度へ昇温し、しかるのち、純Arの一過
流通で吸着層内になお残留するN2を排出し、次
いで吸着層を吸着温度まで低下させ、被精製
Arを導入し、以上の操作を系内圧力を常に大
気圧もしくは大気圧以上に保ちながら順次くり返
すことである。 本発明を実施する為の装置の1例を図−1に示
す。吸着塔1には、モルデナイト型ゼオライトを
充填する。精製すべき原料ガスは管路11、流路
切換弁14を介して送風機2により吸引吐出し、
切換弁15、冷却器3を流通させて冷却後、切換
弁16,17を経て送入端7より吸着塔1へ送入
する。 原料ガス中のN2は充填ゼオライトで選択吸着
され、N2を含まないArが流出端5から流出し流
路切換弁18を経て製品Ar管路8へ送られる。 一定量の原料ガス送入後、14,15,16,
18を切換え、送風機2、ヒーター4、吸着塔1
からなる閉回路を形成し、2によつて吐出するガ
スを4で加熱後、吸着塔1へ送入、昇温せしめ
る。流出端5より流出するガスは管路6、切換弁
14を経て再び送風機2の吸引側へ循環する。回
路内ガスの加熱循環により吸着塔1は昇温し、吸
着しているN2とArが脱離される。この脱離ガス
は5,18,6,14を経て2へ戻り、回路内を
循環する。1の温度上昇に伴う脱離ガスの増加は
回路内圧力を上昇させるから、この圧が過大とな
らぬよう、回路内圧力を感知し、弁13を開き、
加圧されたガスを管12より排出する。塔1が所
定の再生温度に達したのち、弁14が切りかわ
り、弁19が開き、導入口20から純Arを流入
せしめ、2,15,4,16,17,7を経て1
へ送入される。 吸着塔内残留の高濃度N2は7からの流入Arに
より押し流され、流出端5より流出せしめ、1
8,13を経て排出口12より排気される。排気
ガス中N2濃度は20からの流入Ar量に従つて低
下し、原料ガス中N2濃度に等しくなる時期に至
る。この時点において13を閉とし、14を切換
えて5から流出するガスを管11へ送出し、原料
ガス系統へ還流する。引き続き11で含有N2
度が十分低下したことを確認できるまで20より
Ar送入を行なう。 次いで弁14,15,16,17,18を切換
え、冷却器3を動作させながら2によつて送風循
環し、回路内圧力低下を感知し、弁19を介し、
管20より純Arを送入し、回路内圧力を常に大
気圧以上に保ちながら吸着塔1を吸着温度まで循
環冷却する。尚、吸着層の加熱、冷却は、ガス循
環で行なうことなく外部加熱、又は冷却にて行な
うこともできる。又、両者を併用することもでき
る。 本発明は、回収率良く、高純度のArを得るこ
とができる。 実施例 1 ナトリウム型モルデナイトおよびこのナトリウ
ムイオンのそれぞれ50および74当量%をカルシウ
ムイオンに置換したモルデナイトを調製した。内
径2.7cm、長さ150cmの3本のカラムに各試料を充
填し、−20℃とした。1000ppm窒素を含むアルゴ
ンガスを1Nl/MINでそれぞれ送入しカラムから
の流出ガスの体積と窒素濃度測定を行ない、窒素
を含まない精製アルゴンガス量を求めた。(表−
1)カルシウム交換率が50%当量以上になると精
製容量が飛躍的に増加する。
The present invention relates to a method for adsorbing and removing trace amounts of nitrogen (N 2 ) in argon gas (Ar). Since Ar is chemically inert, it is widely used along with nitrogen etc. as an atmosphere for chemical reactions. Particularly in recent years, with the development of the semiconductor industry, high-purity argon has been frequently used for the atmosphere in the synthesis or processing of high-purity crystalline silicon, and the demand for it has increased dramatically. Ar is contained in the air at about 0.9vol%, and usually
This air undergoes two to three stages of low-temperature rectification to obtain Ar with a purity of over 99%. Since Ar is about three times more expensive than N 2 , it is necessary to recover and reuse used Ar to improve economic efficiency. Used Ar contains various impurities depending on its usage conditions. Contamination with moisture or carbon dioxide gas can be removed by adsorption using silica gel, zeolite, etc., or solidified and separated by low-temperature freezing. Further, the oxygen in Ar can be used to generate water on the deoxo catalyst by hydrogen blowing, and the generated water can be removed by the method described above. In each of the above methods, the impurity concentration is set to 1 vol.
It is widely used as an industrial method to reduce the amount below ppm. Conventionally, when the impurity contained in Ar is N 2 , a removal method using a high-temperature reaction with a titanium sponge has been used. According to this method,
Purification levels of less than 1 vol.ppm of N 2 can be easily achieved;
The cost of recovering Ar increases significantly because the reaction temperature requires a temperature of 800°C or higher and the efficiency of using titanium as a raw material is low due to reaction inhibition by the reaction product, titanium nitrogen. On the other hand, several methods are known that use adsorbents to remove N2 from gas. For example, Nittokuko 52−
Publication No. 20959 describes a method of using natural mordenite or natural clinoptilolite to remove low concentration N 2 from oxygen obtained from an air liquefaction separation device, and Japanese Patent Publication No. 52-42755 describes a method for removing low concentration N 2 from oxygen obtained from an air liquefaction separation device. Obtained using liquefaction separation equipment and crude Ar rectification equipment
A method is disclosed in which nitrogen impurities in Ar are adsorbed and removed using zeolite at room temperature and at 5 to 35 kg/cm 2 G. Although these techniques suggest the possibility of nitrogen removal or Ar purification using zeolite, the obtained gas purity and yield are low, and it cannot be said that they are necessarily sufficient as a recovery technique for high-purity Ar. The present inventors have explored and studied various methods for recovering high-purity Ar from Ar containing N2 with an extremely high recovery rate using an appropriately sized device. It was discovered that the above object could be achieved by combining the two, and the present invention was completed. According to the present invention, it is not only possible to remove N 2 mixed in Ar by using a small amount of adsorbent, but also it is possible to drastically reduce the disposal of expensive Ar outside the system, which is necessary for operation, and it is also possible to remove N 2 mixed in Ar. It is possible to obtain product Ar with high purity. The contents will be explained in detail below. The adsorbent used in the present invention preferably has a higher selective adsorption property for N 2 than Ar and a large N 2 adsorption capacity. Zeolites with high N 2 adsorption capacity are known as zeolites such as 5A, 13X, mordenite, etc. Among these adsorbents, mordenite zeolite has a high adsorption capacity compared to other zeolites such as 5A type,
The present inventors discovered that it has superior N 2 adsorption selectivity to 13X type zeolite, and as a result of further investigation, by ion-exchanging ordinary mordenite with specific ions to a certain exchange rate or higher,
It has been found that particularly excellent adsorption selectivity for N 2 can be maintained. Mordenite is generally Na 2 O・Al 2 O 3
It is represented by the composition of XSiO 2 .nH 2 O, and X (silica to alumina molar ratio) is about 10-20. n is the amount of water adsorbed in the mordenite crystal, for example, when X = 10, n
=6. Although Na 2 O in the formula is expressed in the form of an oxide, it exists as Na ions in the crystal, and other cations such as alkali metal ions such as Li + and K + , alkaline earths such as Mg 2+ and Ca 2+ It can be exchanged with similar ions, other metal ions, ammonium ions, hydrogen ions, etc. Japanese Patent Publication No. 46-37162 shows that various ion exchangers of mordenite have a relatively high adsorption capacity, and this can be used to absorb N 2 in a hydrogen stream.
Methods used for removal have been proposed. In this,
In particular, Mg 2+ ion-exchanged mordenite has a large N 2 adsorption capacity, making it suitable for hydrogen stream purification. In the purification of N2- containing Ar, which is the target of the present invention, Ar
One of the objectives is to suppress losses and achieve an extremely high recovery rate. Mordenite adsorbents that have adsorbed and captured N 2 are generally subjected to regeneration operations such as heating, depressurization, or purging in order to restore their N 2 capture ability, but at this time concentrated N 2 is released from the adsorbent used. In addition, the co-adsorbed Ar is also desorbed and discharged from the system together. Naturally, the smaller the amount of Ar that is discharged, that is, the amount of co-adsorbed Ar, the higher the Ar recovery rate can be maintained.
Regarding this point, the present inventors further investigated and found that the exchange ion of mordenite is more than Mg 2+ .
Even better results were obtained in the case of Ca 2+ and/or Sr 2+ , and the exchange amount of these
It has been found that it is preferable to have an equivalent of 50% or more in Sr 2+ . That is, the mordenite with the most suitable composition for Ar purification according to the present invention is one in which more than 50% equivalent of its cations have been exchanged with Ca 2+ and/or Sr 2+ . It is preferable to use mordenite in a so-called activated state, in which water present in the crystals has been removed by such methods. Next, the operation according to the present invention will be explained in detail. Although the method for contacting the adsorbent with N 2 -containing Ar (raw material gas) is not particularly limited, it is usually carried out by a fixed bed adsorption method using a packed column filled with an adsorbent. This raw material gas flows in from one end of the adsorption column, the contained N 2 is selectively adsorbed by the adsorbent, and flows out from the other end as purified Ar containing no N 2 . The N2 concentration in the raw material gas is not specified, but it is 10vol.
% or more, preferably 1 vol% or less, is particularly suitable for carrying out the present invention. The adsorption temperature condition is desirably -20°C or lower, and is controlled by the adsorbent temperature and/or the feed gas temperature. If the temperature is higher than that, the N 2 adsorption ability will decrease, which is not preferable. The lower the adsorption temperature, the greater the N 2 adsorption capacity, and the temperature can be lowered as long as the raw material gas does not liquefy, but considering the cost of cooling, it is practical to set the temperature to -100°C or higher. It is. In the present invention, it is important that the pressure inside the column during adsorption is equal to or higher than atmospheric pressure. When the raw material gas continues to flow, the adsorbent adsorbs N 2 from the inflow end, forming a so-called N 2 adsorption zone, which moves to the outflow end. When a certain amount of raw material gas flows in, the N 2 adsorption zone reaches the outflow end. Gas inflow is stopped at or before this point. The inside of the adsorption tower with gas inflow stopped contains N2 .
Filled with Ar. The adsorption layer that has adsorbed N 2 can be regenerated by heating the same layer from the outside, or by suctioning and extracting the gas remaining in the adsorption tower from one end of the adsorption tower, for example, the outlet end of the purified gas. is heated to 0°C or higher, for example 20°C, using a heater outside the tower, and then fed into the adsorption tower from the raw material gas inlet end of the adsorption tower used for adsorption, and the adsorption tower is heated to a predetermined temperature. The adsorption tower is heated by continuing circulation until the adsorption tower temperature reaches the regeneration temperature. Adsorbed at adsorption temperatures below -20℃
N 2 and the remaining Ar are desorbed from the adsorbent as the temperature of the adsorption tower increases due to the above operation. When the circulation method is used, when the desorbed gas joins the circulation system, the pressure in the circulation circuit increases, so the gas is extracted from the circuit at any time to control the pressure in the system to avoid excessive pressure. After the temperature of the adsorption tower reaches a predetermined regeneration temperature through gas circulation, the circulation of the heated gas is stopped. At this time, N 2 that was desorbed during the temperature rise still remains in the adsorption tower, so it is necessary to discharge it to the outside of the adsorption tower. At this time, the method of discharging outside the tower is to use a suction pump, etc. to suck and exhaust, and to use Ar that does not contain N2 .
Possible methods include a method in which gas is introduced into the column and the gas inside the tower is swept away (purge), and a method in which these two methods are used together. In the method of suction using only a pump or purging with pure Ar after depressurization, the amount of pure Ar consumed is small, and therefore the Ar recovery rate can be kept high.
However, depending on the scale or structure of the device, there is a risk of atmospheric air entering when the adsorption tower becomes vacuum-reduced. In order to avoid this danger, the pressure within the apparatus must be maintained at all times above atmospheric pressure throughout the entire adsorption and regeneration process. In order to discharge the residual N 2 from the adsorption layer while always maintaining the internal pressure of the adsorption tower at or above atmospheric pressure, the present invention purposely uses a method that consumes a relatively large amount of Ar due to purge.
A purge method using atmospheric pressure Ar is used. This ensures that the Ar purity of the product is maintained at a high purity of 99.9999 or higher. Furthermore, by combining purge exhaust gas recovery, which will be described later, the amount of argon discharged outside the system due to the adoption of normal pressure purge can be kept to a very small increase. The adsorption layer regeneration temperature is preferably 0°C or higher, preferably 20°C or higher. If this temperature is too high, it will cost too much to lower the adsorption layer to the adsorption temperature, so it is practical to set it to 50°C or less. It is possible to desorb (desorb) N 2 from the adsorbent even at temperatures lower than 0°C, and it has the advantage that the amount of gas desorbed is small, especially in the process of increasing the temperature from the adsorption temperature. Ar
The purge amount increases rapidly, resulting in a decrease in the overall recovery rate of Ar. By pushing out (purging) the N 2 in the column with pure Ar, the N 2 concentration in the outflowing gas decreases exponentially. Initially, the outflowing gas contains a high concentration of N 2 , but as the inflow continues, the outflowing gas reaches a point where the N 2 concentration is lower than the N 2 concentration in the source gas. By recovering this portion to the source gas line, it is possible to maintain a high Ar yield. After the N2 concentration in the exhaust gas has decreased sufficiently, pure Ar
The supply of Ar was stopped, and then the Ar in the adsorption layer was sucked out under conditions that the pressure inside the adsorption tower did not drop below atmospheric pressure.
After cooling the Ar to below -20°C, it is fed into the adsorption layer again, and this operation is repeated to perform circulation cooling of the adsorption layer. In addition, regardless of the circulation of cooling Ar,
It is also possible to cool the adsorption layer. During the period of adsorption bed cooling, as the adsorption bed temperature decreases,
As the adsorption of Ar progresses, the pressure inside the circulation circuit decreases, but the pressure inside the circuit must always be above atmospheric pressure.
For example, pure Ar that does not contain N 2 is supplied into the circuit, such as Ar that has been purified using another adsorption layer. When the temperature of the adsorption layer reaches a predetermined temperature, cooling in the circuit is stopped and new source gas is introduced.
Thereafter, repeat this operation sequentially. Furthermore, by installing a plurality of adsorption layers, purified Ar can be obtained continuously. To summarize the present invention, a mordenite-type zeolite with a specifically high adsorption selectivity for N2 vs. Ar is used, and Ar containing N2 is brought into contact with the zeolite at an adsorption temperature of -20°C or lower, which exhibits its specificity. After obtaining high-purity Ar, the temperature of the adsorption layer is raised to a regeneration temperature of 0°C or higher.N2 remaining in the adsorption layer is then discharged by a temporary flow of pure Ar, and then the adsorption layer is heated. Reduced to adsorption temperature and purified
Ar is introduced and the above operations are repeated one after another while always maintaining the system pressure at or above atmospheric pressure. An example of an apparatus for carrying out the present invention is shown in Figure 1. The adsorption tower 1 is filled with mordenite-type zeolite. The raw material gas to be purified is sucked and discharged by the blower 2 through the pipe line 11 and the flow path switching valve 14.
After being cooled by passing through the switching valve 15 and the cooler 3, it is fed into the adsorption tower 1 from the inlet end 7 via the switching valves 16 and 17. N 2 in the raw material gas is selectively adsorbed by the packed zeolite, and Ar containing no N 2 flows out from the outlet end 5 and is sent to the product Ar pipe 8 via the flow path switching valve 18 . After feeding a certain amount of raw material gas, 14, 15, 16,
Switch 18, blower 2, heater 4, adsorption tower 1
The gas discharged by 2 is heated by 4 and then fed into the adsorption tower 1 where it is heated. The gas flowing out from the outlet end 5 passes through the pipe line 6 and the switching valve 14 and circulates again to the suction side of the blower 2. The temperature of the adsorption tower 1 is raised by heating and circulating the gas in the circuit, and the adsorbed N 2 and Ar are desorbed. This desorbed gas returns to 2 via 5, 18, 6, and 14, and circulates within the circuit. The increase in desorbed gas caused by the temperature rise in step 1 increases the pressure in the circuit, so in order to prevent this pressure from becoming excessive, the pressure in the circuit is sensed and the valve 13 is opened.
The pressurized gas is discharged through tube 12. After the column 1 reaches a predetermined regeneration temperature, the valve 14 is switched and the valve 19 is opened, allowing pure Ar to flow in from the inlet 20, passing through 2, 15, 4, 16, 17, and 1.
sent to. The high concentration N 2 remaining in the adsorption tower is swept away by the inflowing Ar from 7 and flows out from the outlet end 5.
8 and 13, and is exhausted from the exhaust port 12. The N 2 concentration in the exhaust gas decreases according to the amount of Ar flowing in from 20, and reaches a time when it becomes equal to the N 2 concentration in the source gas. At this point, 13 is closed and 14 is switched to send the gas flowing out from 5 to pipe 11 and return to the source gas system. Continue from 20 until it is confirmed that the contained N 2 concentration has decreased sufficiently at 11.
Deliver Ar. Next, the valves 14, 15, 16, 17, and 18 are switched, and while operating the cooler 3, the air is circulated through 2, the pressure drop in the circuit is sensed, and the air is sent through the valve 19.
Pure Ar is introduced through the pipe 20, and the adsorption tower 1 is circulated and cooled to the adsorption temperature while the pressure inside the circuit is always kept above atmospheric pressure. The adsorption layer may be heated or cooled by external heating or cooling without gas circulation. Moreover, both can also be used together. The present invention can obtain highly purified Ar with a good recovery rate. Example 1 Sodium-type mordenite and mordenite in which 50 and 74 equivalent percent of the sodium ions were replaced with calcium ions, respectively, were prepared. Each sample was packed into three columns with an inner diameter of 2.7 cm and a length of 150 cm, and the temperature was kept at -20°C. Argon gas containing 1000 ppm nitrogen was introduced at a rate of 1 Nl/min, and the volume and nitrogen concentration of the gas flowing out from the column were measured to determine the amount of purified argon gas containing no nitrogen. (Table-
1) When the calcium exchange rate becomes 50% equivalent or more, the purification capacity increases dramatically.

【表】 実施例 2 ストロンチウムによつて交換率を24%当量およ
び79%当量に調製したモルデナイトについて実施
例1と同様の試験を行ない窒素を含まない精製ア
ルゴンガス量を求め表−2の結果を得た。
[Table] Example 2 The same test as in Example 1 was conducted on mordenite prepared with strontium to give an exchange rate of 24% equivalent and 79% equivalent, and the amount of purified argon gas containing no nitrogen was determined, and the results are shown in Table 2. Obtained.

【表】 比較例 1 吸着剤として5A型ゼオライトを使用し、その
他の条件を実施例1と同一にして、試験を行なつ
た。窒素を含まない精製アルゴンガス量は、24N
であつた。 比較例 2 吸着剤として13X型ゼオライトを使用し、その
他の条件を実施例1と同一にして、試験を行なつ
た。窒素を含まない精製アルゴンガス量は、11N
であつた。 実施例 3 カルシウム交換率60%当量のモルデナイトを実
施例1で用いたカラムに充填し−50℃とする。 次に1000ppmの窒素を含むアルゴンを入口圧力
0.18Kg/cm2Gで送入した。カラムからの流出ガス
を捕集し、窒素濃度を分析したところで、窒素
1ppm以下のアルゴンが502N得られた。続いて
この吸着カラムを+20℃へ昇温し脱離ガス量とそ
の組成を分析した。この昇温の間カラム内圧力は
0.02Kg/cm2Gに保つた。カラムから放出した脱離
ガス量は10.8Nであり、窒素濃度は平均2.5%で
あつた。続いてカラムを+20℃に保ちながら0.1
Kg/cm2Gで純アルゴンを送入し、流出ガスが
1000ppm窒素で低下するまで放出し、更に濃度降
下が進む間流出ガスを捕集し、窒素濃度1ppm以
下に達するまで継続した。 純アルゴン送入後1000ppmに達する迄の放出排
気ガス量は43.6Nであり、更に1000ppm〜
1ppmの間に捕集したガス量は、34.3Nで原料
ガスタンクに回収した。 その後カラムを再び−50℃とし、この間純アル
ゴンを供給し、カラム内を常に0.1Kg/cm2Gとし
た。 −50℃到達後カラムへ1000ppm窒素を含むアル
ゴンを0.18Kg/cm2Gにて送入し、カラムからの流
出ガスの体積と窒素濃度を測定したところ、
1ppm以下の窒素濃度をもつ高純度アルゴンを
500N得ることができた。精製出来たアルゴン
量と排気した損失アルゴン量の割合は、90:10で
あり、90%の高収率でアルゴン精製を行うことが
できた。 比較例 3 実施例3と全く同様に1000ppm窒素を含むアル
ゴンを−50℃でカラムへ送入し、1ppm以下の窒
素濃度の精製アルゴンを500N得たのち、カラ
ムを−10℃とした。この間にカラムからは7.7N
のガス放出があり、平均窒素濃度は、1.3%で
あつた。続いて純アルゴンを送入し、流出ガス中
の窒素濃度を測定し1000ppmまで窒素濃度が低下
する間放出排気し、1000ppm以下の流出分は原料
タンクへ回収し、1ppm以下となるまで継続した。 1000ppm窒素に達するまでに排出したガス量
は、81Nであり、1000ppmから1ppmに達する
間の流出ガス量は、93Nであつた。 −50℃へ冷却ののち再び1000ppm窒素を含むア
ルゴンを流通し、1ppm以下の窒素となつたアル
ゴンを495N得た。アルゴン回収率は、85%に
達しない値であつた。
[Table] Comparative Example 1 A test was conducted using 5A type zeolite as the adsorbent and keeping the other conditions the same as in Example 1. The amount of purified argon gas that does not contain nitrogen is 24N.
It was hot. Comparative Example 2 A test was conducted using 13X type zeolite as an adsorbent and under the same conditions as in Example 1 except for the following conditions. The amount of purified argon gas that does not contain nitrogen is 11N.
It was hot. Example 3 Mordenite equivalent to a calcium exchange rate of 60% was packed into the column used in Example 1 and heated to -50°C. Next, argon containing 1000 ppm nitrogen is added to the inlet pressure.
It was delivered at 0.18Kg/cm 2 G. After collecting the gas flowing out from the column and analyzing the nitrogen concentration, the nitrogen
502N of argon less than 1ppm was obtained. Subsequently, this adsorption column was heated to +20°C and the amount of desorbed gas and its composition were analyzed. During this temperature increase, the pressure inside the column is
It was maintained at 0.02Kg/cm 2 G. The amount of desorbed gas released from the column was 10.8N, and the nitrogen concentration was 2.5% on average. Then, while keeping the column at +20℃,
Pure argon is introduced at Kg/cm 2 G, and the outflow gas is
The gas was discharged until the nitrogen concentration dropped to 1000 ppm, and as the concentration continued to drop, the effluent gas was collected and continued until the nitrogen concentration reached 1 ppm or less. After supplying pure argon, the amount of exhaust gas released until reaching 1000ppm was 43.6N, and further increased to 1000ppm~
The amount of gas collected during 1 ppm was recovered to the raw material gas tank at 34.3N. Thereafter, the column was heated to −50° C. again, and pure argon was supplied during this time, so that the inside of the column was always 0.1 Kg/cm 2 G. After reaching −50°C, argon containing 1000 ppm nitrogen was introduced into the column at 0.18 Kg/cm 2 G, and the volume and nitrogen concentration of the gas flowing out from the column were measured.
High purity argon with a nitrogen concentration of 1ppm or less
I was able to get 500N. The ratio of the amount of argon that could be purified to the amount of lost argon that was exhausted was 90:10, and argon could be purified with a high yield of 90%. Comparative Example 3 In exactly the same manner as in Example 3, argon containing 1000 ppm nitrogen was fed into the column at -50°C to obtain 500N of purified argon with a nitrogen concentration of 1 ppm or less, and then the column was heated to -10°C. During this time, 7.7N from the column
There was gas release, and the average nitrogen concentration was 1.3%. Next, pure argon was introduced, the nitrogen concentration in the effluent gas was measured, and the gas was discharged until the nitrogen concentration decreased to 1000 ppm, and the effluent less than 1000 ppm was collected into the raw material tank, and the process was continued until the concentration was 1 ppm or less. The amount of gas discharged to reach 1000 ppm nitrogen was 81N, and the amount of gas discharged from 1000 ppm to 1 ppm was 93N. After cooling to -50°C, argon containing 1000 ppm nitrogen was passed through again to obtain 495N of argon containing less than 1 ppm nitrogen. The argon recovery rate was less than 85%.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、本発明を実施する装置の1例を示す
工程図で、1は吸着層、2は送風機、3は冷却
器、4は加熱器を夫々示す。
FIG. 1 is a process diagram showing an example of an apparatus for implementing the present invention, in which 1 represents an adsorption layer, 2 represents a blower, 3 represents a cooler, and 4 represents a heater.

Claims (1)

【特許請求の範囲】 1 ゼオライトと接触させて窒素を含むアルゴン
ガスを精製する方法において 1 −20℃以下で、被精製アルゴンガスをモルデ
ナイト型ゼオライト層に導入しながら窒素をこ
れに吸着させ、 2 前記ゼオライト層が全て窒素吸着帯域となる
前に被精製ガスの導入を停止し、 3 吸着層内に残留するガスを層内から取り出
し、 4 吸着層を0℃以上として同層内に残留する窒
素を同層と分離し、 5 次いで、窒素を含まないアルゴンガスを前記
吸着層に導入して残余の窒素を押し出し除去
し、 6 以上の操作を大気圧以上で順次操返す ことを特徴とする精製方法。 2 50%当量以上の陽イオンが、カルシウムイオ
ンおよび/又はストロンチウムイオンで交換した
モルデナイト型ゼオライトである特許請求の範囲
第1項記載の方法。
[Claims] 1. In a method for purifying argon gas containing nitrogen by contacting it with zeolite, 1. argon gas to be purified is introduced into a mordenite-type zeolite layer at a temperature of -20°C or lower, and nitrogen is adsorbed thereto; 2. Before the zeolite layer becomes a nitrogen adsorption zone, the introduction of the gas to be purified is stopped; 3. The gas remaining in the adsorption layer is taken out from the layer; 4. The adsorption layer is heated to 0°C or above to remove the nitrogen remaining in the same layer. 5. Then, argon gas not containing nitrogen is introduced into the adsorption layer to push out and remove the remaining nitrogen, and 6. Purification characterized by repeating the above operations one after another at atmospheric pressure or higher. Method. 2. The method according to claim 1, wherein 50% or more of the cations are mordenite-type zeolite exchanged with calcium ions and/or strontium ions.
JP9244983A 1983-05-27 1983-05-27 Method for purifying gaseous argon Granted JPS59223203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9244983A JPS59223203A (en) 1983-05-27 1983-05-27 Method for purifying gaseous argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9244983A JPS59223203A (en) 1983-05-27 1983-05-27 Method for purifying gaseous argon

Publications (2)

Publication Number Publication Date
JPS59223203A JPS59223203A (en) 1984-12-15
JPH0114164B2 true JPH0114164B2 (en) 1989-03-09

Family

ID=14054708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9244983A Granted JPS59223203A (en) 1983-05-27 1983-05-27 Method for purifying gaseous argon

Country Status (1)

Country Link
JP (1) JPS59223203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238093A (en) * 1988-03-18 1989-09-22 Elna Co Ltd Holding method of printed board and device therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215509A (en) * 1984-04-06 1985-10-28 Kogyo Kaihatsu Kenkyusho Method of concentration of argon gas by adsorption process and preparation of adsorbent
US4744805A (en) * 1986-05-22 1988-05-17 Air Products And Chemicals, Inc. Selective adsorption process using an oxidized ion-exchanged dehydrated chabizite adsorbent
US4747854A (en) * 1986-05-22 1988-05-31 Air Products And Chemicals, Inc. Selective chromatographic process using an ion-exchanged, dehydrated chabazite adsorbent
US5601634A (en) * 1993-09-30 1997-02-11 The Boc Group, Inc. Purification of fluids by adsorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238093A (en) * 1988-03-18 1989-09-22 Elna Co Ltd Holding method of printed board and device therefor

Also Published As

Publication number Publication date
JPS59223203A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
EP0128580B1 (en) Process for drying gas streams
EP0718024B1 (en) Removal of carbon dioxide from gas streams
US6616732B1 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
US20060117952A1 (en) Syngas purification process
US7608134B1 (en) Decarbonating gas streams using zeolite adsorbents
JPH11226335A (en) Method for refining inert fluid by adsorption on lsx zeolite
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
US4746332A (en) Process for producing high purity nitrogen
KR101686085B1 (en) Recovery of NF3 from Adsorption Operation
EP0284850B1 (en) Improved adsorptive purification process
JP2008537720A (en) Purification of nitrogen trifluoride
JPH10113502A (en) Method and apparatus for producing low temperature fluid in high purity liquid
JPS62119104A (en) Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
JPH0114164B2 (en)
JPH0379288B2 (en)
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JPS6129768B2 (en)
JPS5964510A (en) Purification of argon gas
JP4508716B2 (en) Isotope selective adsorbent, isotope separation and enrichment method, and isotope separation and enrichment apparatus
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method
JPH0768042B2 (en) High-purity oxygen production method
JPH0732857B2 (en) Methane gas purification method
JP2006007004A (en) Isotope selective adsorbent, isotope separation concentration method and isotope separation concentration apparatus
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JPS6139090B2 (en)