JPS5964510A - Purification of argon gas - Google Patents

Purification of argon gas

Info

Publication number
JPS5964510A
JPS5964510A JP17402282A JP17402282A JPS5964510A JP S5964510 A JPS5964510 A JP S5964510A JP 17402282 A JP17402282 A JP 17402282A JP 17402282 A JP17402282 A JP 17402282A JP S5964510 A JPS5964510 A JP S5964510A
Authority
JP
Japan
Prior art keywords
gas
column
adsorption
argon
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17402282A
Other languages
Japanese (ja)
Inventor
Tadao Takebayashi
竹林 忠夫
Kiyoharu Hashiba
羽柴 清晴
Hideo Mitsui
光井 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP17402282A priority Critical patent/JPS5964510A/en
Publication of JPS5964510A publication Critical patent/JPS5964510A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To recover high-purity Ar gas in high recovery, by carrying out the adsorption and desorption of N2 gas from Ar gas containing N2 using zeolite as the adsorbent under specific condition. CONSTITUTION:Ar gas containing N2 is introduced into the adsorption column packed with zeolite, and N2 is selectively adsorbed at -70-0 deg.C. The flow of the Ar gas is stopped just before the N2-adsorbed zone reaches the outlet of the adsorption column. The column is heated and the gas existing in the column is expelled from the column. Thereafter, the desorption of N2 is carried out under reduced pressure at -50-+20 deg.C to regenerate the zeolite.

Description

【発明の詳細な説明】 本発明は、アルゴンガス中の徹覇°窃素の吸着除去法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adsorptive removal of impurities in argon gas.

アルゴンガスは化学的に不活性であるところから、化学
反応の雰囲気用として窒素などとともに広く用いられて
いる。
Since argon gas is chemically inert, it is widely used along with nitrogen etc. as an atmosphere for chemical reactions.

特に近年、半導体工業の発展にともない高純度結晶シリ
コンの合成あるいは加工の雰囲気用に高純11)′アル
ゴンが多片され、その需要が飛躍的に伸びている。
Particularly in recent years, with the development of the semiconductor industry, high-purity 11)' argon has been produced in large quantities for use in the synthesis or processing atmosphere of high-purity crystalline silicon, and the demand for it has increased dramatically.

アルゴンガスは空気中に約0.9 vo1%含まれてお
り、通常、この空気の低渦桔留を2〜6段経て99%以
上の高純度なアルゴンを得ている。アルゴンは窒素に比
して約3倍という価格であるので使用ずみアルゴンの回
収、再利用が経済性の向上に必要である。使用ずみアル
ゴンはその用途に応じて各種の不純物を含んでいる。水
分あるいは炭酸ガスなどの混入に対しては、シリカゲル
、ゼオライトなどによる吸着除去や低温凍結による固形
化分離かり能である。また、アルゴン中の酸素は水素吹
込みにより、デオキン触謀上で水を生成させ、前述の方
法で生成水分の除去を行なうことができる。
Argon gas is contained in air at about 0.9 vol%, and argon with a purity of 99% or more is usually obtained by passing this air through two to six stages of low vortex distillation. Since argon is about three times more expensive than nitrogen, recovery and reuse of used argon is necessary to improve economic efficiency. Used argon contains various impurities depending on its use. Contamination with moisture or carbon dioxide gas can be removed by adsorption using silica gel, zeolite, etc., or solidified and separated by low-temperature freezing. Further, oxygen in argon can be used to generate water on the deokine catalyst by hydrogen injection, and the generated water can be removed by the method described above.

上述の各法は、いずれも不純物濃度を1 vol、1l
TIT1以下に低減するための工業的手法として混相さ
れている。従来、アルゴンに含まれる不純物が窒素の場
合は、チタンスポンジとの〜j温反応による除去法が用
いられてきた。この方法によれば、窒素1 v o ]
、−Ill”以下の精製度は容易に達成できるが、反応
温度として800℃以上を要することと反応生成物の窒
化チタンによる反応阻害で原料チタンの利用効率が低い
こと、また、アルゴンの回収コストが大幅に上昇するな
どの欠点がある。
In each of the above methods, the impurity concentration is 1 vol, 1 l.
Mixed phase is used as an industrial method to reduce TIT to 1 or less. Conventionally, when the impurity contained in argon is nitrogen, a removal method using a ~j temperature reaction with a titanium sponge has been used. According to this method, nitrogen 1 v o ]
Although it is possible to easily achieve a purification level of 800°C or higher, the efficiency of using titanium as a raw material is low due to reaction inhibition by the reaction product titanium nitride, and the cost of recovering argon is high. There are disadvantages such as a significant increase in

他方、ガス中の窒素除去に吸着剤を用いる方法が知られ
ている。例えば、日時分52−20959号公報には空
気液化分離装置から得られる酸素中の低濃度窒素の除去
を天然モルデナイトあるいは天然クリノプチロライトを
用いて行なう方法が、また、日時分52−42755号
公報には空気液化分離装置及び粗アルゴン精留装置を用
いてイOられるアルゴン中の窃素不純物を、常温で5〜
35kg/ Cm2Gにてゼオライトを用いて吸着除去
する方法が開示されている。
On the other hand, a method is known in which an adsorbent is used to remove nitrogen from gas. For example, Japanese Patent Publication No. 52-20959 describes a method for removing low concentration nitrogen from oxygen obtained from an air liquefaction separation device using natural mordenite or natural clinoptilolite. The publication states that impurities in argon, which is oxidized using an air liquefaction separation device and a crude argon rectification device, are
A method of adsorption removal using zeolite at 35 kg/Cm2G is disclosed.

これらの技術はゼオライトによる窒素除去ないしアルゴ
ン精製の可能性は示唆されるが得られろ精4i1Jカス
の純度及び回収率が比較的単1・点で高純度アルゴンの
回収を行なうには必ずしも充分とは営えない。
Although these techniques suggest the possibility of nitrogen removal or argon purification using zeolite, the purity and recovery rate of the purified 4i1J residue obtained are not necessarily sufficient to recover high-purity argon at a relatively single point. cannot operate.

本発明者らは、高純度のアルゴンカスを高い回収率で侍
る方法を探索し、特定の吸着剤と特定の操作条件とを組
合せることによって達成しイ:することを見い出した。
The present inventors have searched for a method to obtain a high purity argon gas with a high recovery rate, and have found that this can be achieved by combining a specific adsorbent and specific operating conditions.

本発明は、単にアルゴンガス中に混入する窒素を高い捕
捉率(吸着率)で除去するのみならず、アルゴンガスの
系外排出量を相対的に充分に抑制することによって商い
回収率でアルゴンを回収できる。工業的なカス吸着操作
は一般的に連続処理で行なわれることが多く、従って吸
着塔は2塔以上の複数基が用いられ、一方を吸着工程に
用いながら他方は能力回有をはかる。この能力回向操作
を再生あるいは脱着と称する。
The present invention not only removes nitrogen mixed into argon gas with a high capture rate (adsorption rate), but also relatively sufficiently suppresses the amount of argon gas discharged from the system, thereby removing argon with a high recovery rate. It can be recovered. Industrial waste adsorption operations are generally carried out in a continuous manner, and therefore, two or more adsorption towers are used, one of which is used for the adsorption process while the other is used for capacity recovery. This capacity reversal operation is called regeneration or detachment.

アルゴン中の窒素を選択的に吸着する吸着剤を充填した
吸着塔は、力えられたン3%庁、圧力、瀞度の条件下で
、ある定まったアルゴンガス和製容量を持つ。Tすを定
量の供給ガスを処理したのち吸着塔は、吸着工稈より再
生工程に入り、吸着9素の脱離(脱’41F )が行な
われる。この脱着方法には加熱昇温する熱再牛法、圧力
を沖、じる減圧脱着法、精製されたアルゴン等で洗浄す
るパージ脱着法等があり、いずれも吸着1稈完了直後の
塔内残留ガス(ホールドアツプ)の排出を行なう。この
ホールドアツプは吸着剤粒子内及び吸着剤粒子充填空隙
に分布し、窒素のみならずアルゴンも共存している。吸
着剤粒子間空隙容積は粒子の形状と寸法及びその分布に
よって必ずしも一定しないが、一般的に吸着塔容A′〜
の約40〜50%で、粒子の吸着特性とは関係ない。従
って内生工程において系外に排出されるガス中のアルゴ
ン含有量を左右するのは充填吸着剤の対アルゴン吸着特
性である。
An adsorption column filled with an adsorbent that selectively adsorbs nitrogen in argon has a certain argon gas capacity under conditions of 3% strength, pressure, and stability. After treating a fixed amount of the supplied gas, the adsorption tower enters a regeneration process from the adsorption culm, where the 9 adsorbed elements are desorbed (de-'41F). This desorption method includes the heat reheating method in which the temperature is increased by heating, the reduced pressure desorption method in which the pressure is lowered, and the purge desorption method in which cleaning is performed with purified argon, etc. All of these methods are used to remove the residue that remains in the column immediately after the completion of one adsorption culm. Exhaust gas (hold up). This holdup is distributed within the adsorbent particles and in the voids filled with the adsorbent particles, and not only nitrogen but also argon coexists. The volume of voids between adsorbent particles is not necessarily constant depending on the shape and size of the particles and their distribution, but generally adsorption tower volume A'~
approximately 40-50% of the adsorption properties of the particles. Therefore, it is the argon adsorption characteristics of the filled adsorbent that determines the argon content in the gas discharged outside the system in the endogenous process.

この観点から神々の吸着剤とその操作条件を倹肘した結
果、後述の各神ゼオライトを比較的低い温度で、かつ大
気圧付近において窒素を含むアルゴンガスと接触させる
ことによって吸着系外に排出されろガス中のアルゴン含
有量を相対的に低くできることを見い出した。
From this point of view, as a result of careful consideration of the God's adsorbent and its operating conditions, the God's zeolites described below are brought into contact with nitrogen-containing argon gas at a relatively low temperature and near atmospheric pressure to be discharged from the adsorption system. It has been discovered that the argon content in the filtrate gas can be relatively lowered.

すなわち、この方法は処理に供せられたアルコンを高率
で回収し得る方法である。
In other words, this method allows a high rate of recovery of alcones subjected to treatment.

本発明で用いる吸着剤、すなわちゼオライトはA型、フ
ォージャサイト型1モルデナイト型ゼオライトである。
The adsorbent used in the present invention, that is, the zeolite, is a type A, faujasite type 1 mordenite type zeolite.

これらは結合剤を加えであるいは加えずに成型、造粒し
乾燥後、焼成、硬化させるなどの通常の方法で処理し用
いる。本発明に適した粒子の形状は特に制限されず、球
状9円柱状またはこれらを破砕したものでもよい。本発
明で用いる吸着剤粒子の大きさは、特に制限されないが
、精製操作において窒素吸着のみを考えた場合は、粒子
径が小さい稈好ましい。しかし、通常処理すべきガスと
吸着剤との接触は、固定層への流通による方法であるの
で過大な流通圧力損失をもたらさぬような吸着剤粒子径
の実用的下限が設けられる。本発明の実I血に好適なる
粒子径下限は、径0、1 mmである。
These are processed and used by conventional methods such as molding, granulation, drying, firing, and hardening with or without the addition of a binder. The shape of particles suitable for the present invention is not particularly limited, and may be spherical, 9 cylindrical, or crushed shapes thereof. The size of the adsorbent particles used in the present invention is not particularly limited, but if only nitrogen adsorption is considered in the purification operation, culms with small particle diameters are preferred. However, since the gas to be treated and the adsorbent are usually brought into contact by flowing through a fixed bed, a practical lower limit is set for the particle size of the adsorbent so as not to cause an excessive pressure loss in the flow. The lower limit of the particle size suitable for real blood of the present invention is 0.1 mm.

ゼオライトを構成するナトリウムは、他の陽イオンとイ
オン9換が可能であることは従来から知られている。本
発明では、このようにイオン交換したゼオライトを用い
ると精製処理能力の点で好ましい結果が得られる。ゼオ
ライト中のナトリウムと交換するイオンの種類は、カリ
ウム、リチウム、カルシウム、ストロンチウム、マグネ
シウム。
It has been known for a long time that sodium constituting zeolite can undergo nine ion exchanges with other cations. In the present invention, when ion-exchanged zeolite is used in this manner, favorable results can be obtained in terms of purification processing capacity. The types of ions that exchange with sodium in zeolite are potassium, lithium, calcium, strontium, and magnesium.

バリウム、コバルト、ニッケル、 銀、銅、 1ilj
鉛。
Barium, cobalt, nickel, silver, copper, 1ilj
lead.

鉛、カドミウムなどである。イオン交換は導入する陽イ
オンを含む溶液と接触させるなどの通常の方法で行なう
。A型ゼオライトに導入して特に効果の見られるイオン
は、カルシウム、ストロンチウム、マグネシウムである
。X型及びY型などのフォージャサイト型ゼオライトに
導入して特に効果の見られるイオンは、カリウム、バリ
ウム、カルシウム、銅、マグネシウムである。また、モ
ルデナイト型ゼオライトに導入して%に効果のあるもの
は、カルンウム、ストロンチウムである。
These include lead and cadmium. Ion exchange is performed by a conventional method such as contacting with a solution containing cations to be introduced. Ions that are particularly effective when introduced into A-type zeolite are calcium, strontium, and magnesium. Ions that are particularly effective when introduced into faujasite zeolites such as X-type and Y-type zeolites are potassium, barium, calcium, copper, and magnesium. Also, substances that are effective when introduced into mordenite-type zeolite are carunium and strontium.

本発明で特に好ましい吸着剤は、モルデナイト型ゼオラ
イトである。モルデナイト型ゼオライトは、通常、シリ
カ・アルiす比(S’10.、 /1203)が10〜
30で、他のゼオライトと同様に、イオン交換可能な型
でナトリウムイオンを含んでいる。
A particularly preferred adsorbent in the present invention is mordenite-type zeolite. Mordenite type zeolite usually has a silica-aluminum ratio (S'10., /1203) of 10 to
30 and, like other zeolites, contains sodium ions in an ion-exchangeable form.

本発明では特に5in2/A/20. 10〜15で、
カチオン棟としてNa  、  Oa2.  Sr2 
 を含むモルデナイト型ゼオライトである。しかし、H
イオンで90%以上のNa  イオンを交換したH−モ
ルデナイトば、対窒索吸着容計が著しく低く、本発明で
は好ましくない。
In the present invention, especially 5in2/A/20. 10-15,
As a cation building, Na, Oa2. Sr2
It is a mordenite-type zeolite containing However, H
H-mordenite in which 90% or more of Na ions have been exchanged with ions has a significantly low nitrogen adsorption capacity and is not preferred in the present invention.

窒素を含有するアルゴン(貝下、原ガスと称すンと吸着
剤との接触名贋度、すなわち吸着湿度は0℃以下で、特
に−20℃〜−70℃が好適である。
The degree of contact between nitrogen-containing argon (referred to as raw gas) and the adsorbent, that is, the adsorption humidity, is 0°C or lower, preferably -20°C to -70°C.

再生工程において僅かな加i1卑操作を行なう際に有効
な脱着ン都度へ到梓せしめるための所装熱エネルギーを
過大にしない範囲で、かつ、原ガス処理量対ホールドア
ツプの比が充分に大きい領域として上記の温度範囲が有
利である。
When carrying out slight additive operations in the regeneration process, the required thermal energy to reach effective desorption each time is not excessive, and the ratio of the raw gas throughput to the hold-up is sufficiently large. The temperature ranges mentioned above are advantageous.

吸着剤と原ガスとの接触?、情度(吸着湯度ンシより低
くすると窒素吸着量が増大する。同時にアルゴン吸着量
も増大する。窒素吸着量の増大はガス精製量を増加させ
、アルゴン吸着骨の増大は再t(二時の圧抜工程におけ
る系外排出アルゴン骨を増加させる。アルゴンの吸着4
’+”J製における回収率(精製ガス量フ (7″”7回I17率= (精製カス(ハ)→−(系剛
出、11′)は、窒素吸着のみならず、アルゴン吸着の
温度依存性から評価しなければならない。
Contact between adsorbent and raw gas? , when the adsorption temperature is lower than the water temperature, the amount of nitrogen adsorption increases.At the same time, the amount of argon adsorption increases.The increase in the amount of nitrogen adsorption increases the amount of gas purification, and the increase in the amount of argon adsorption increases again. Increase the amount of argon discharged from the system during the depressurization process. Argon adsorption 4
'+' recovery rate in J product (purified gas amount f (7'') 7 times I17 rate = (refined scum (c) → - (system Goide, 11') is determined by the temperature of not only nitrogen adsorption but also argon adsorption. It must be evaluated based on dependence.

吸着剤と原ガスを所定の温度まで冷却し、吸着温度を維
持するには、通常の熱交換方法が適用で鍍るが、Ifi
−に吸着剤にモルデナイト型ゼオライトを用いる場合は
、このものが0.5 Kcal/m帝Hr・℃という(
J)熱伝導率であるので、対流伝熱を行なわせるよう吸
着カラムに冷却用のガスを流通させる必要がある。この
ガスは純アルゴンが峡も好ましいが、精製アルゴンガス
の用途によっては、水素ガス及び他の希ガスを用いるこ
ともできろ。アルコ゛ンをはじめとするこれらのガスは
高を由なので、カラムから流出後、冷却して揚送入する
循JHje用が経済的である。極めて特殊な例では、液
化アルゴンを吸着カラム内へ1自接送入することも可能
である。この方法は改めて後述する。
In order to cool the adsorbent and raw gas to a predetermined temperature and maintain the adsorption temperature, ordinary heat exchange methods can be applied, but Ifi
- When mordenite-type zeolite is used as an adsorbent, this material has a concentration of 0.5 Kcal/mTeHr・℃ (
J) Since it is thermal conductivity, it is necessary to flow a cooling gas through the adsorption column to cause convective heat transfer. Preferably, this gas is pure argon, but depending on the use of the purified argon gas, hydrogen gas or other noble gases may also be used. Since these gases including alkones are expensive, it is economical to circulate them by cooling them and pumping them in after they flow out of the column. In very special cases, it is also possible to directly introduce liquefied argon into the adsorption column. This method will be described later.

精製に用いた固定層吸着塔は、所定の精製ガス量を製造
したのち再生される。吸着剤に吸着した窒素の脱着を行
なうためには、加熱、減圧、洗浄などの操作が適用でき
る。特に本発明ではこれらの絹合せが効果的である。
The fixed bed adsorption tower used for purification is regenerated after producing a predetermined amount of purified gas. In order to desorb nitrogen adsorbed on the adsorbent, operations such as heating, depressurization, washing, etc. can be applied. Particularly in the present invention, these silk combinations are effective.

吸着工程を終了1〜だ後、吸着塔の加熱を行フ、仁つ。After completing the adsorption step, the adsorption tower was heated.

加熱方法は、充填吸着剤の熱伝導度が低いので気体循環
による対流伝熱が適当であり、史に循環カスとして吸着
工程終了時に塔内りに留ガスを用いるのが回収率を高く
保つうえで有効である。い1゛れにせよ吸着塔は再生工
程において加熱外?1μする必要がある。その所要エネ
ルギーの節減のためにゼ)生温度を必要にして十分な温
度レベルに抑制することが重要である。本発明において
窒素脱着に必要な温度は、−50℃〜+20℃である。
As for the heating method, since the thermal conductivity of the packed adsorbent is low, convective heat transfer through gas circulation is appropriate. Historically, it has been a good idea to use residual gas in the column at the end of the adsorption process as circulating waste in order to maintain a high recovery rate. is valid. In any case, is the adsorption tower not heated during the regeneration process? It is necessary to make it 1μ. In order to save the required energy, it is important to control the raw temperature to a necessary and sufficient temperature level. In the present invention, the temperature required for nitrogen desorption is -50°C to +20°C.

/!lJ論これより高い脱着需1度を用いることもでき
る力瓢アルゴン中の不純物窒素の吸着精製には不必要な
条件である。同様の考え方によって吸着温度に関しても
より低い温度が窒素吸着に有利であり、アルゴンに対す
る窒素の吸着選択性も高くなるが、吸着速度、脱着速度
が充分大きく、かつ再生工程における加熱所要エネルギ
ーを過大とせぬような下限潟塵が存在し、−70℃〜0
℃が好適な範囲である。
/! Although higher desorption demands than this can be used, this is an unnecessary condition for adsorption purification of impurity nitrogen in argon. Based on the same idea, a lower adsorption temperature is advantageous for nitrogen adsorption, and the adsorption selectivity of nitrogen to argon is also higher, but the adsorption rate and desorption rate are sufficiently high, and the heating energy required in the regeneration process is There is a lower limit of lagoon dust, -70℃~0
℃ is a suitable range.

吸着塔外淵後、塔内ガスの圧抜きを行なう。圧抜きは原
ガス済、他方向と向流に真空ポンプなどを用いて塔外へ
排出せしめる。塔内圧力が大気圧以下の目標圧力に到達
した後、到達圧力で所定の時間保持する。この期間に、
精製されたアルゴンガスを原ガス流通方向と向流に塔内
を流通洗浄することもで敦、また、減圧脱気のみを継続
することもできる。
After reaching the outer edge of the adsorption tower, the gas inside the tower is depressurized. After the raw gas has been depressurized, it is discharged outside the tower using a vacuum pump or the like in a countercurrent direction to the other direction. After the internal pressure of the column reaches a target pressure below atmospheric pressure, it is maintained at the ultimate pressure for a predetermined period of time. During this period,
The purified argon gas may be passed through the tower in a countercurrent direction to the flow direction of the raw gas for cleaning, or only vacuum degassing may be continued.

次に絆ガス流通圧力とほぼ等しい塔内圧力に復する昇圧
と吸着温度へ到達ぜしめる冷却を併行する。この昇圧に
用いるガスは精製アルゴンをMlいるか、一部属ガスを
併用して昇圧する。冷却を加速するためには導入したア
ルゴンガスを吸着塔内に滞留させずに冷却器との間を循
環せしめることが有効であり、この場合には、窒素不純
物を含まぬ精製アルゴンガスのみによる塔内昇圧がより
好適である。
Next, pressure is increased to return the pressure inside the column to approximately the same as the bonding gas flow pressure, and cooling is performed to reach the adsorption temperature. The gas used for this pressurization is ml of purified argon or a combination of some metal gases. In order to accelerate cooling, it is effective to circulate the introduced argon gas between the condenser and the adsorption tower without allowing it to remain in the adsorption tower. Internal pressurization is more suitable.

以上の原ガス送入、停止、昇温、圧抜、パージ。Raw gas supply, stop, temperature rise, depressurization, and purge of the above raw gas.

冷却及び昇圧の各工程を順次行ない、かつ連続的に精製
アルゴンを付るためには2基以上の吸着カラムを設置し
、循環的に使用する方法がとられる。
In order to perform the cooling and pressurization steps in sequence and to continuously apply purified argon, two or more adsorption columns are installed and used cyclically.

更に6塔以上の吸着カラムを備えろj、Q合は、少なく
とも1塔が減圧工程にある時に、他の少なくとも1塔を
昇圧工程となる様に時間割を絹む。これら2塔間は互い
にP9換させながらエネルギーの保存をはかることが効
率の向上をもたらす。
Furthermore, if six or more adsorption columns are provided, the time schedule should be arranged so that when at least one column is in the pressure reduction step, at least one other column is in the pressure increase step. Efficiency is improved by conserving energy while exchanging P9 between these two towers.

本発明の方法とその効果を具体的に説明するために、以
下に実施例を示す。
Examples are shown below to specifically explain the method of the present invention and its effects.

実施例1 シリカ対アルミナのモル比10のNa型モルデナイトよ
りなる1、5朋φ柱状粒子(ペレット)5501を内径
2.76Cm、長さ150cnLのカラムに充填し、−
50℃へ冷却した。この吸着カラムへ1000V○1.
ppllの窒素を含むアルゴンガス(原ガスを1 at
aにて送入し、カラム出口側より流出せしめた(第1回
流通工程)。流入速度は毎分2.5 N!である。
Example 1 A column with an inner diameter of 2.76 cm and a length of 150 cnL was packed with 1,5 mm diameter columnar particles (pellets) 5501 made of Na-type mordenite with a silica to alumina molar ratio of 10, and -
Cooled to 50°C. 1000V to this adsorption column 1.
Argon gas containing ppll of nitrogen (1 at
a, and allowed to flow out from the column outlet side (first distribution step). The inflow speed is 2.5 N/min! It is.

流出口にて流出ガスの組成分析を行なった。窒素のリー
クが検出された時点で原ガス送入を停止した。1νシ、
着力ラムの両端を弁で閉止したのち、カラム温度を一2
0℃に上昇せしめた。吸着カラム内圧力は2.3に9/
(z2Gまで上昇した。次にカラム入口側へ向流的にカ
ラム内圧力の脱圧を行なった。
Composition analysis of the outflow gas was conducted at the outflow port. Raw gas supply was stopped when a nitrogen leak was detected. 1νsi,
After closing both ends of the force ram with valves, reduce the column temperature to -2
The temperature was raised to 0°C. The internal pressure of the adsorption column is 2.3 to 9/
(The pressure rose to z2G.) Next, the pressure inside the column was depressurized countercurrently toward the column inlet side.

1ataまで降圧する間にカラムから流出したガス陣は
21℃、Iataで8.11であった。 更に、真空ポ
ンプによって50 mvrHgまで減圧した。真空ポン
プによるカラムからの吸引ガス憚°は、21°C91a
、taで7.5 、dであった。引続λカラム内圧力を
50 mmH(:t、に保持しながらカラ人出口側より
ボンベアルゴンガスを減圧時と同方向に流通してカラム
入口側より流出せしめた。流出ガス量は21℃、1at
aにて61であった。
The gas flow that flowed out from the column while the pressure was lowered to 1ata was 21°C and 8.11 at Iata. Furthermore, the pressure was reduced to 50 mvrHg using a vacuum pump. The suction gas from the column by the vacuum pump is 21°C91a.
, ta was 7.5, and d. Subsequently, while maintaining the internal pressure of the λ column at 50 mmH (:t), cylinder argon gas was passed from the empty outlet side in the same direction as during depressurization, and was allowed to flow out from the column inlet side.The amount of gas flowing out was 21°C and 1at.
It was 61 at a.

次に、カラム出口側からのガス送入を継続しながらカラ
ム入口側の弁を閉止し、カラム内を1 ataまで昇圧
した。この間カラム温度を再び一50°Cに戻した。カ
ラム内が一50℃、1ataK到達したのち、再びカラ
ム入口側より原ガスを1 a、ta 。
Next, while continuing to feed gas from the column outlet side, the valve on the column inlet side was closed, and the pressure inside the column was increased to 1 ata. During this time, the column temperature was returned to -50°C. After the temperature inside the column reached 150°C and 1 ataK, the raw gas was fed again at 1 a,ta from the column inlet side.

2、63 Nl/MINで送入しカラム出口側より流出
せしめた(第2回流通工稈)。
It was fed at a rate of 2,63 Nl/MIN and allowed to flow out from the column outlet side (second flow culm).

流出ガス組成を一定時間毎に分析して流出ガス中の窒素
濃度が11−を越えるまで原ガス送入を継続した。送入
された原ガス体積は、21℃、1a、taにて1981
であった。
The composition of the effluent gas was analyzed at regular intervals, and raw gas feeding was continued until the nitrogen concentration in the effluent gas exceeded 11-. The raw gas volume fed was 1981 at 21°C, 1a, ta.
Met.

この結果を整理し、以下のような僚れた成績を得た。After organizing the results, we obtained the following excellent results.

アルゴンガス純1<99.9999 vol、%アルゴ
ンガス回収率  90.0% 実施例2 第1回流通工程までは実施例1と同様に行なった。次に
カラム視1度を一50°Cに保持したままでカラム入口
側より真空ポンプにてカラム内ガスの吸引を行なった。
Argon gas purity 1<99.9999 vol, % argon gas recovery rate 90.0% Example 2 The same procedure as in Example 1 was performed up to the first distribution step. Next, the gas inside the column was suctioned from the column inlet side using a vacuum pump while maintaining the column viewing angle at -50°C.

吸引開始後10分にてカラム内圧力はim+l(g以下
になったも更に真空吸引を50分継続した。次にアルゴ
ンガスをカラム出口側より送入し、カラム内圧力を1 
ataへ昇圧した。
Ten minutes after the start of suction, the pressure inside the column fell below im+l (g), but vacuum suction was continued for another 50 minutes.Next, argon gas was introduced from the column outlet side, and the pressure inside the column was lowered to 1
The pressure was increased to ATA.

カラム内が1 a、ta、  −50℃であることを確
認したのち、カラム入口側から原ガスを1月び送入する
第2回流通工程を行なった。送入条件は実施例1と同様
、1 a t a+  263N lΔ訂Nである。
After confirming that the temperature inside the column was 1 a, ta, -50°C, a second circulation process was performed in which raw gas was introduced from the column inlet side for one month. The feeding conditions are the same as in Example 1: 1 a t a + 263 N l Δ correction N.

流出ガス組成分析を行なったところ、原ガス流通開始後
20分で50 voLll−のり索の洩出が認められた
When the composition of the outflow gas was analyzed, leakage of 50 voLll-glue cable was observed 20 minutes after the start of raw gas flow.

実施例6 第1回流辿工稈までは実施例1と全く同様に行なったの
ち、カラム渦層を0℃まで弁溝した。この時カラム内圧
力は5.9 kl? / cnL”Gを示した。
Example 6 The procedure up to the first flow-tracing culm was carried out in exactly the same manner as in Example 1, and then the column vortex layer was valved to 0°C. At this time, the pressure inside the column is 5.9 kl? / cnL”G was shown.

次にカラム入口側からカラム内のガスを自流的に抜き出
し、大気圧まで達I−たのち、更に真空ポンプにて1朋
Hgまで減圧した。原ガス送入停止後、カラムより抜き
出されたガスの総体積は、21℃。
Next, the gas in the column was extracted from the column inlet side in a self-current manner, and after reaching atmospheric pressure, the pressure was further reduced to 1 Hg using a vacuum pump. After stopping supply of raw gas, the total volume of gas extracted from the column was 21°C.

1a、t、aにて16.5/であツタ。Ivy at 16.5/ at 1a, t, and a.

次にカラム内口側1から窒素を含まぬアルゴンガスを送
入し、併せて一50℃への冷却を行なってカラム内を一
50℃、1ataとした。次に1 ata。
Next, argon gas not containing nitrogen was introduced from the column inner inlet side 1, and the column was cooled to -50°C to bring the inside of the column to -50°C and 1 ata. Then 1 ata.

2、65 N7/MINで原ガスを送入した(第2回流
通工程)。流出ガスの分析を行なった結果、流辿直債か
ら窒素含有に’r 1 vol、pI”以下のアルゴン
が得られ、21℃、1ataにて220ノ流出する市で
9素濃度は不変であった。すなわち、ガス純度99、9
999 vol、%のアルゴンを回収*93%という優
れた成績で得ることができた。
Raw gas was introduced at 2,65 N7/MIN (second distribution step). As a result of analysis of the effluent gas, it was found that argon with a nitrogen content of less than 'r 1 vol, pI'' was obtained from the flow-tracing direct bond, and the concentration of 9 elements remained unchanged in the city where 220 nitric acid leaked out at 21°C and 1 ata. In other words, the gas purity was 99,9
999 vol.% of argon was recovered with an excellent result of 93%.

実施例4 シリカ対アルミナのモル比10のナトリウムモルデナイ
ト結晶の交換可能なナトリウムイオンの98%をカルシ
ウムイオンで置きかえたモルデナイトよりなる1、5朋
φ柱状粒子を用いる以外は実施例1と同様の操作を行な
ったところ、得られた精製アルゴン体積は1901(2
1℃、 1 ata)でアルゴン中窒素濃度ば1 vo
l、ρ囲板下であった。
Example 4 The same operation as in Example 1 except that 1.5 mm diameter columnar particles made of mordenite in which 98% of the exchangeable sodium ions in sodium mordenite crystals with a silica to alumina molar ratio of 10 were replaced with calcium ions were used. The volume of purified argon obtained was 1901 (2
Nitrogen concentration in argon is 1 vo at 1°C, 1 ata)
l, ρ was below the wall plate.

第1回流通工稈と第2回流通工秤の中間に行なった再生
工程で排出されたガス体積は総計2001であった。す
なわち、アルゴン回収率は90%であった。
The total volume of gas discharged in the regeneration process performed between the first flow mill and the second flow mill scale was 2001. That is, the argon recovery rate was 90%.

実施例5 カルシウムイオンによってナトリウムイオンの80%を
9換したA型ゼオライトなる1、5−φ柱状粒層ペレッ
ト)550グを内径2.76CM、長さ150−のカラ
ムに充填1.、−50 ’cへ冷却した。
Example 5 550 g of 1,5-φ columnar particle layer pellets made of type A zeolite in which 80% of sodium ions were converted into 9 by calcium ions were packed into a column with an inner diameter of 2.76 CM and a length of 150 mm. , and cooled to -50'c.

この吸着カラムへ1000 vol、III”mの窒素
を含むアルゴンガス(原ガス)を−50℃、1ataに
て送入し、カラ人出口側より流出せしめた(第1回流)
nj工程フ。流入速度は毎分2.5N/である。流出口
にて流出ガスの舶成分析をガスクロマドクラフィーにて
行なった。流出アルゴン中の窒素の濃度が5vol。卿
検出された時点で原ガス送入を停止した。
Argon gas (original gas) containing 1000 vol, III"m of nitrogen was fed into this adsorption column at -50°C and 1 ata, and was allowed to flow out from the empty outlet side (first flow).
nj process. The inlet velocity is 2.5 N/min. Marine composition analysis of the outflow gas was performed at the outflow port using gas chromatography. The concentration of nitrogen in the flowing argon is 5 vol. Raw gas supply was stopped when this was detected.

吸着カラムの両端を弁で閉止した後、カラム泥度を一2
0℃に上昇した。吸着カラム内圧力は2.0 kg/c
m 2Gまで上昇した。次にカラム入口側へ自流的にカ
ラム内圧力の脱灰性なった。1 ataまで降圧する間
にカラムから流出したガス帯ば21°G、  1 at
aで6.21であった。更に真空ポンプによって50i
mHgまで減、圧した。真空ポンプによるカラムからの
吸引ガス骨ば21°C,1ataで5.01であった。
After closing both ends of the adsorption column with valves, reduce the muddyness of the column to 12
The temperature rose to 0°C. Adsorption column internal pressure is 2.0 kg/c
It rose to m2G. Next, the internal pressure of the column became demineralized in a self-current manner toward the column inlet side. The gas band flowing out from the column while the pressure was lowered to 1 ata was 21°G, 1 at
It was 6.21 in a. Furthermore, 50i by vacuum pump
The pressure was reduced to mHg. The suction gas from the column by the vacuum pump was 5.01 at 21°C and 1 ata.

引続きカラム内圧力を50mmHgに保持しなからカラ
ム出口側よりボンベアルゴンガスを減圧時と同方向に流
通l〜てカラム入口側1より流出せしめた。流出ガス慴
は21°C,1ataにて61であった。次にカラム出
口0111からのガス送入を継続しなからカラム入口側
の弁を閉止し、カラム内を1 ataまで昇圧した。
Subsequently, while maintaining the column internal pressure at 50 mmHg, cylinder argon gas was passed from the column outlet side in the same direction as when the pressure was reduced, and was allowed to flow out from the column inlet side 1. The effluent gas volume was 61 at 21°C and 1 ata. Next, while continuing to feed gas from the column outlet 0111, the valve on the column inlet side was closed, and the pressure inside the column was increased to 1 ata.

この1出カラムf、完度を肖び一50℃に冷却した。This first column was then cooled to -50°C.

カラム内か一50℃、 1 ataに到達したのち、再
びカラム入口側より原ガスを一50°G、  1 at
a。
After the temperature inside the column reaches -50°C and 1 ata, the raw gas is again heated to -50°G and 1at from the column inlet side.
a.

2.65Nl/MT、Nで送入し、カラム内[E (i
lIlより流出せしめた(第2回流通工程)。流出ガス
組成を−定時間毎に分析して流出ガス中の窒素濃度が1
咽を越えるまで原ガス送入を継続した。送入された原ガ
ス体積は21°に、1ataにて951であった。
2.65 Nl/MT, N was introduced into the column [E (i
It was allowed to flow out from IIl (second distribution step). The composition of the effluent gas is analyzed at regular intervals and the nitrogen concentration in the effluent gas is 1.
Raw gas was continued to be fed until it passed the throat. The raw gas volume fed was 951 at 21° and 1 ata.

この結果を整理し、以下のような優れた成績をイ↓tた
The results were summarized and the following excellent results were obtained.

アルゴンカス純度   99.9999vo1.%アル
ゴンガス回収率  84.6% 実施例6 第1回流辿工稈までは実施例5と同様に行なった。次に
カラム温度を一50℃に保持したままでカラム入口側よ
り真空ポンプにてカラム内ガスの吸引を行なった。吸引
開始後1o分にてカラム内圧力は1mm13g以下にな
った。
Argon gas purity 99.9999vol. % Argon gas recovery rate 84.6% Example 6 The same procedure as in Example 5 was performed up to the first flow tracing process. Next, while maintaining the column temperature at -50° C., the gas inside the column was sucked from the column inlet side using a vacuum pump. One minute after the start of suction, the pressure inside the column became 1 mm and 13 g or less.

更に真空吸引を50分継続した。次にアルゴンガスをカ
ラム出口側より送入し、カラム内圧力を1ataへ昇圧
した。カラム内が1ata、−50℃に到達したのち、
カラム入口側から原ガスを再び送入する第2回流通工程
を行なった。送入条件は実施例5と同様−50°C、1
ata、  2.65 Nt/MINである。
Vacuum suction was continued for an additional 50 minutes. Next, argon gas was introduced from the column outlet side to increase the column internal pressure to 1 ata. After the inside of the column reached 1 ata and -50°C,
A second circulation step was performed in which raw gas was again introduced from the column inlet side. The feeding conditions were the same as in Example 5: -50°C, 1
ata, 2.65 Nt/MIN.

流出ガス組成分析を行なったところ、原ガス流通開始後
、7分で50 vol、pFlの窒素の洩出が認められ
た。
An analysis of the composition of the outflow gas revealed that 50 vol, pFl of nitrogen leaked 7 minutes after the raw gas started flowing.

実施例7 第1流通工稈までは実施例5と全く同様に行なった後、
カラム温度を0℃まで昇温した。この時カラム内圧力は
3.0 k!?/Crn2Gを示した。次にカラム入口
側からカラム内のガスを向流的に抜き出し、大気圧まで
達したのち史に真空ポンプにて1+vI++)(gまで
減圧した。原ガス送入停止り後、カラムより抜き出され
たガスの総体積は21℃、  LataにてIAO7で
あった。
Example 7 After carrying out exactly the same procedure as in Example 5 up to the first distribution culm,
The column temperature was raised to 0°C. At this time, the pressure inside the column was 3.0 k! ? /Crn2G was shown. Next, the gas in the column was extracted countercurrently from the column inlet side, and after reaching atmospheric pressure, the pressure was reduced to 1+vI++) (g) using a vacuum pump.After the supply of raw gas was stopped, the gas was extracted from the column. The total volume of gas was IAO 7 at 21°C and Lata.

次にカラム出口側から窒素を含まぬアルゴンガスを送入
し、併せて一50℃への冷却を行なってカラム内を一5
0℃、1ata とした。次に一50℃、  1 at
a、 2.65Nl/kA工Nで坤ガスを送入した(第
2同流通工程)。流出ガスの分析を行なった結果、流通
直後から窒素含有骨1 vol、PI1m以下のアルゴ
ンが得られ、21℃、1ataにて751流出するまで
窒素濃度は不変であった。すなわち、ガス純度9 ’9
.9999 vow、、%のアルゴンを回収率84.9
%とい5 aidれた成績で得ることができた。
Next, argon gas that does not contain nitrogen is introduced from the column outlet side, and the inside of the column is cooled to 150°C.
The temperature was 0°C and 1ata. Then -50℃, 1 at
a. Gas was introduced at 2.65 Nl/kA (second distribution process). As a result of analyzing the outflow gas, argon with a nitrogen content of less than 1 vol and PI of 1 m was obtained immediately after the flow, and the nitrogen concentration remained unchanged until 751 outflow at 21° C. and 1 ata. i.e. gas purity 9'9
.. 9999 vow,% argon recovery rate 84.9
I was able to get a score that was 5% aided.

実施例8 A ’1llIゼオライトのナトリウムイオンの75%
をストロンチウムで置きかえた(Sr、 Na) Aよ
りなる1、5朋φベレツトを吸着剤として使用する以外
は実施例5と同様の操作を行なったところ、伊られた梢
H7ルゴン体積は8.4.8 l (21°C,1at
a)でアルゴン中窒素濃度は1 vol、1)1111
以下であった。
Example 8 75% of sodium ions in A'1llI zeolite
When the same operation as in Example 5 was carried out except that a 1.5 mm diameter beret made of A was replaced with strontium (Sr, Na) as the adsorbent, the volume of the trapped treetop H7 was 8.4. .8 l (21°C, 1at
In a), the nitrogen concentration in argon is 1 vol, 1) 1111
It was below.

第1回流通工程と第2回流通工程の中間に行なわれた再
生工程で排出されたガス体積は、21°0゜1 ata
にて15.07であり、アルゴン回収率85%という好
成績であった。
The volume of gas discharged in the regeneration process performed between the first distribution process and the second distribution process is 21°0°1 ata
It was a good result with an argon recovery rate of 85%.

実施例9 吸着剤としてナトリウムx(試料A)、このナトリウム
をカリウムイオンで交換したカリウムX(試料B)、カ
ルシウムイオンで交換したカルシウムX(試料C)、マ
グネシウムイオンで交換したマグネシウムX(試料D)
、ナトリウムY(E料E)、このナトリウムを銅イオン
で交(婆した銅Y(試別F)及びバリウムイオンで交換
したバリウムY(試料G)を実施例5と同様の方法で試
、呻した結果を表−1に掲げる。
Example 9 Sodium x (sample A) as an adsorbent, potassium X (sample B) in which the sodium was exchanged with potassium ions, calcium )
, sodium Y (E material E), copper Y (specimen F) in which this sodium was exchanged with copper ions, and barium Y (sample G) in which the sodium was exchanged with barium ions were tested in the same manner as in Example 5. The results are listed in Table-1.

それぞれの吸着剤がいずれもアルゴン中の窒素除去に優
れた性能を示すことが判る。
It can be seen that each adsorbent exhibits excellent performance in removing nitrogen from argon.

実施例10〜20 実施例1で月1いた装置を用いて10001’1lll
llの望素を含むアルゴンガスを一19°C,Iata
、流量2、5 N110でカラムに導入し、カラ人出口
にて流出ガス中の窒素イ農度をガスクロマトグラフィー
にて分析し、そのi ppm以上の濃度となるまでに流
出したガス訃を1シタ着剤量基準に換算(Nl/(9)
シ、各脚−2に示した各神ゼオライトを用いた際のイr
t製容量を求めた。結果を表−2に示した。
Examples 10-20 10001'1ll using the device used once a month in Example 1
Argon gas containing 1 liter of desired elements was heated to -19°C, Iata
, the nitrogen concentration in the effluent gas was analyzed by gas chromatography at the empty outlet, and the amount of gas that had flowed out was 1 ppm or higher. Converted to base adhesive amount (Nl/(9)
B, Ir when using each god zeolite shown in each leg-2
The capacity of the product was determined. The results are shown in Table-2.

表 −2 65−Table-2 65-

Claims (1)

【特許請求の範囲】 り窒素を含むアルゴンガスをゼオライトを充填した吸着
塔に導入し、−70°C〜0℃の温度範囲で窒素を選択
的に吸着させる吸着工程。 窒素吸着帯か吸着塔出口に到達する直前で前Rづガスの
流通を停止したのち吸着塔を加i′品し、吸着塔内ガス
を塔外へ排出し、大気圧以下でかつ、−50℃〜20℃
の温度範囲で脱着2行なう脱着工程からなるアルゴンガ
ス精製法。 2) 吸着剤として、A型、フォージャザイト型。 モルデナイト型ゼオライトの一種以上を用いる特許請求
の範囲第1項記載の方法。 3) ゼオライトの交換可能な陽イオンが、ナトリウム
、カリウム、リチウム、カルシウム。 ストロンチウム、マグネシウム、バリウム。 コバルト、ニッケル、銀、銅、亜鉛、鉛、カドミウムか
らなる群から選ばれた一種以上のイオンと交換したゼオ
ライトを用いろ特許請求の範囲第1又は2項記載の方法
[Claims] An adsorption step in which argon gas containing nitrogen is introduced into an adsorption tower filled with zeolite, and nitrogen is selectively adsorbed in a temperature range of -70°C to 0°C. Immediately before reaching the nitrogen adsorption zone or the outlet of the adsorption tower, the flow of the gas is stopped, the adsorption tower is added, the gas inside the adsorption tower is discharged to the outside, and the pressure is below atmospheric pressure and -50 ℃~20℃
An argon gas purification method consisting of two desorption steps at a temperature range of . 2) Type A and forujazite type adsorbents. The method according to claim 1, wherein one or more types of mordenite type zeolite are used. 3) The exchangeable cations of zeolite are sodium, potassium, lithium, and calcium. Strontium, Magnesium, Barium. The method according to claim 1 or 2, wherein zeolite exchanged with one or more ions selected from the group consisting of cobalt, nickel, silver, copper, zinc, lead, and cadmium is used.
JP17402282A 1982-10-05 1982-10-05 Purification of argon gas Pending JPS5964510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17402282A JPS5964510A (en) 1982-10-05 1982-10-05 Purification of argon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17402282A JPS5964510A (en) 1982-10-05 1982-10-05 Purification of argon gas

Publications (1)

Publication Number Publication Date
JPS5964510A true JPS5964510A (en) 1984-04-12

Family

ID=15971268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17402282A Pending JPS5964510A (en) 1982-10-05 1982-10-05 Purification of argon gas

Country Status (1)

Country Link
JP (1) JPS5964510A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040332A1 (en) * 1998-12-30 2000-07-13 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
US6780806B1 (en) 1998-12-30 2004-08-24 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective absorption
CN101962179A (en) * 2009-06-12 2011-02-02 住友精化株式会社 Method and apparatus for purifying argon, and method and apparatus for purifying object gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
CN102784617A (en) * 2012-08-14 2012-11-21 洛阳市建龙化工有限公司 Adsorbent containing silver molecular sieve as well as preparation method and application of adsorbent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516088A (en) * 1978-07-18 1980-02-04 Union Carbide Corp Stabilized polymer organic silane composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516088A (en) * 1978-07-18 1980-02-04 Union Carbide Corp Stabilized polymer organic silane composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040332A1 (en) * 1998-12-30 2000-07-13 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
US6780806B1 (en) 1998-12-30 2004-08-24 The Regents Of The University Of Michigan Lithium-based zeolites containing silver and copper and use thereof for selective absorption
CN101962179A (en) * 2009-06-12 2011-02-02 住友精化株式会社 Method and apparatus for purifying argon, and method and apparatus for purifying object gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
CN102784617A (en) * 2012-08-14 2012-11-21 洛阳市建龙化工有限公司 Adsorbent containing silver molecular sieve as well as preparation method and application of adsorbent
CN102784617B (en) * 2012-08-14 2014-05-07 洛阳市建龙化工有限公司 Adsorbent containing silver molecular sieve as well as preparation method and application of adsorbent

Similar Documents

Publication Publication Date Title
US3996028A (en) Process for purification of argon from oxygen
JP5608184B2 (en) Zeolite adsorbent, process for obtaining it and use for removing carbonate from gas streams
KR100580340B1 (en) Decarbonating gas streams using zeolite adsorbents
JPH08266844A (en) Method for removing carbon dioxide from gas flow
EP0718024A2 (en) Removal of carbon dioxide from gas streams
JP5689733B2 (en) Recovery of NF3 from adsorption operation
JP2000317244A (en) Method and device for purifying gas
JP3037574B2 (en) How to recover lithium
JPH0459926B2 (en)
EP0284850B1 (en) Improved adsorptive purification process
JPH07207280A (en) Recovery of alkene from exhaust gas
JPS5964510A (en) Purification of argon gas
JPH0379288B2 (en)
KR101868811B1 (en) Method for purifying boron trifluoride
JPH09308811A (en) Method for concentration of krypton in mixed gas of oxygen-nitrogen
AU674607B2 (en) Process for the production of ethanol and isopropanol
JPH0114164B2 (en)
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
CN113727960A (en) Method for purifying 1, 2-difluoroethylene (HFO-1132)
JPS60127202A (en) Production of oxygen with n2 adsorption column using ca-na-a and na-x
CN1022824C (en) Molecular sieve adsorbent for removing trace Kr, nitrogen oxides from Xe
JP6655645B2 (en) Purified gas production apparatus and purified gas production method
JPS63123417A (en) Refining method for methane
KR20090037746A (en) The method to recover the waste-polar solvents using continuous adsorption/desorption process
JP2004089767A (en) Isotope selectively adsorbing agent and method and apparatus for separating/concentrating isotope