JPH0732857B2 - Methane gas purification method - Google Patents

Methane gas purification method

Info

Publication number
JPH0732857B2
JPH0732857B2 JP61270520A JP27052086A JPH0732857B2 JP H0732857 B2 JPH0732857 B2 JP H0732857B2 JP 61270520 A JP61270520 A JP 61270520A JP 27052086 A JP27052086 A JP 27052086A JP H0732857 B2 JPH0732857 B2 JP H0732857B2
Authority
JP
Japan
Prior art keywords
methane gas
nitrogen
gas
adsorption
type zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61270520A
Other languages
Japanese (ja)
Other versions
JPS63123417A (en
Inventor
明 大辻
宏夫 土屋
稔 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP61270520A priority Critical patent/JPH0732857B2/en
Publication of JPS63123417A publication Critical patent/JPS63123417A/en
Publication of JPH0732857B2 publication Critical patent/JPH0732857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はメタンガスの精製方法に関するものであり、更
に詳しく述べると、メタンガス中に含まれる不純物であ
る窒素を選択的に吸着除去し、高純度メタンガスを得る
方法を提供するものである。
TECHNICAL FIELD The present invention relates to a method for purifying methane gas. More specifically, the present invention relates to a method for purifying methane gas. More specifically, nitrogen, which is an impurity contained in methane gas, is selectively adsorbed and removed to obtain high purity. A method for obtaining methane gas is provided.

〈従来の技術と発明が解決しようとする問題点〉 半導体用の原料は一般に高純度であることが要求される
が、超硬合金の製造に用いられるメタンガスも例外では
なく、できる限り高純度が要求されることから、窒素等
の不純物の含有量を極微量にまで低減する必要がある。
<Problems to be Solved by Conventional Techniques and Inventions> Raw materials for semiconductors are generally required to have a high purity, but methane gas used in the production of cemented carbide is no exception, and the purity is as high as possible. Since it is required, it is necessary to reduce the content of impurities such as nitrogen to an extremely small amount.

窒素は容器、材料等からの混入も考えられ、その混入量
を無視することはできず、半導体用原料として使用する
場合、メタンガス中に於ける主要な不純物であることか
ら、その除去が不可欠である。メタンガスの精製には、
蒸留、吸着等の手法が用いられることは勿論であるが、
極微量の不純物を除去する場合、一般的には、吸着法が
好ましい。しかしながら、メタンガスの精製に関して除
去効率の高い有効な方法は従来知られていなかった。例
えば特公昭52−20959号公報には空気液化分離装置から
得られる酸素中に低濃度窒素の除去に際して、天然モル
デナイトあるいは、天然クリノプチロライトを用いて行
う方法が、また特公昭52−42755号公報には空気液化分
離装置及び粗アルゴン精製装置を用いて得られるアルゴ
ン中の窒素不純物を、常温で5〜35kg/cm2Gの加圧下に
ゼオライトを用いて吸着除去する方法が開示されてい
る。しかしながら上記の技術でメタンガス中の窒素を除
去吸着実験を試みたが、メタンガスの分子径(4.25Å)
が窒素の分子径(4.09Å)より大きくしかもその差が小
さい為に選択性に乏しく窒素等の不純物と共にメタンガ
スも吸着する傾向があり、目的物の回収率が低く工業的
に高純度メタンガスを得るのは困難であった。従って実
用的にメタンガスを吸着せず、メタンガス中に含まれる
窒素のみを吸着する選択性の良い吸着剤の出現が望まれ
ている。このような状況に鑑み、本発明者らは窒素を含
むメタンガスから適正な規模の装置によって極めて高い
回収率で高純度メタンガスとして回収する方法について
種々探索、検討した結果、特定の吸着剤と、操作条件を
繰み合わせることにより、上記目的を達成しうることを
見いだし本発明を完成した。
Nitrogen may be mixed in from containers, materials, etc., and its amount cannot be ignored, and when used as a raw material for semiconductors, its removal is indispensable because it is a major impurity in methane gas. is there. For purification of methane gas,
Of course, techniques such as distillation and adsorption are used,
When removing a very small amount of impurities, the adsorption method is generally preferred. However, an effective method with high removal efficiency has not been known for the purification of methane gas. For example, Japanese Patent Publication No. 52-20959 discloses a method of removing low concentration nitrogen in oxygen obtained from an air liquefaction separation device using natural mordenite or natural clinoptilolite, and Japanese Patent Publication No. 52-42755. The publication discloses a method of removing nitrogen impurities in argon obtained by using an air liquefaction separator and a crude argon purifier by using zeolite under a pressure of 5 to 35 kg / cm 2 G at room temperature. . However, an adsorption experiment was conducted to remove nitrogen in methane gas with the above technique, but the molecular diameter of methane gas (4.25Å)
Is smaller than the molecular diameter of nitrogen (4.09Å) and the difference is small, so selectivity is poor and methane gas tends to be adsorbed with impurities such as nitrogen, and the recovery rate of the target substance is low and industrially high-purity methane gas is obtained. It was difficult. Therefore, the advent of an adsorbent having good selectivity that does not practically adsorb methane gas but adsorbs only nitrogen contained in methane gas is desired. In view of such a situation, the present inventors have conducted various searches and studies on a method of recovering high-purity methane gas from a methane gas containing nitrogen with an apparatus of an appropriate scale at an extremely high recovery rate, and as a result, a specific adsorbent and operation The present invention has been completed by discovering that the above object can be achieved by repeating the conditions.

〈問題点を解決するための手段〉 本発明の目的は容易かつ確実にメタンガスを精製するこ
とのできる新たな方法を提供することにある。その要旨
は吸着法によりメタンガス中の窒素を除去して高純度メ
タンガスを得る精製法においてモルデナイト型のゼオラ
イトを用いて、メタンガス中の窒素を吸着除去すること
を特徴とするメタンガスの精製法である。
<Means for Solving Problems> An object of the present invention is to provide a new method capable of easily and reliably purifying methane gas. The gist is a purification method for methane gas, which is characterized by adsorbing and removing nitrogen in methane gas by using a mordenite type zeolite in a purification method for obtaining high-purity methane gas by removing nitrogen in methane gas by an adsorption method.

本発明の方法では、−20℃以下−150℃の範囲で常圧条
件でも、メタンガスを吸着することなく、不純物である
窒素を極微量にまで容易に除去することができる。
According to the method of the present invention, even in a range of −20 ° C. or lower and −150 ° C., nitrogen, which is an impurity, can be easily removed to a very small amount without adsorbing methane gas even under normal pressure conditions.

モルデナイト型ゼオライトは一般にNa2O・Al2O3・10SiO
2・XH2Oの化学組成を有するとされており、このナトリ
ウム塩型が一般に市販されている。
Mordenite-type zeolite is generally Na 2 O ・ Al 2 O 3・ 10SiO
It is said to have a chemical composition of 2 · XH 2 O, and this sodium salt form is generally commercially available.

本発明ではナトリムウ塩型のモルデナイト型ゼオライト
をそのまま使用することもできるが、そのナトリウムを
カルシウム、バリウム、鉄等の2価カチオンで陽イオン
交換したものの単独または混合物を使用すればより好ま
しい結果が得られる。吸着剤と窒素含有のメタンガス
(原料ガス)との接触方法は特に限定されないが、通
常、吸着剤を充填した充填塔を用いる固定層吸着方式で
行うのが便利である。この原料ガスは吸着塔の一端から
流入し、含有する窒素は選択的に吸着剤に吸着され、他
の一端から窒素を含まない精製されたメタンガスとして
流出する。処理する原料ガス中に含まれる窒素濃度は特
に限定されないが濃度が高いと短時間で吸着破過し、好
ましくないので1容量%以下、望ましくは0.5容量%以
下のものが特に本発明の実施に適している。吸着の温度
条件は、−20℃以下−150℃までが望ましく、吸着剤温
度と原料ガス温度のいずれかまたは両方によって制御す
る。温度が−20℃より高いと窒素の吸着能力が著しく低
下し、−150℃より低くなるとメタンガスが凝固するの
で好ましくない。吸着時の塔内圧力は、空気中の窒素の
混入を防ぐために若干加圧とし、大気圧以上とすること
が望ましい。原料ガスの流入を継続すると流入端側から
吸着剤が窒素を吸着し、所謂窒素吸着帯を形成して、そ
れが流出端へ移動する。一定量の原料ガスが流入すると
窒素吸着帯が流出端に到達する。この時点もしくはこれ
より以前にガス流入を停止する。ガス流入を停止した吸
着塔内は、窒素を含むメタンガスで充たされている。窒
素を吸着した吸着剤の再生は吸着塔を外部から加熱する
か、又は、吸着塔に残存するガスを吸着塔の一端、例え
ば精製されたガスの流出端より吸引して取り出し、同ガ
スを塔外部の加熱器によって常温以上まで加熱し再び吸
着に使用した吸着塔の原料ガス送入端より吸着塔内へ送
入し吸着塔を加熱昇温せしめ、吸着塔温度が100℃以上
の再生温度に到達するまで循環するなどして加熱する。
−20℃以下の吸着温度において吸着されていた窒素と残
余のメタンガスは前記操作により吸着塔の温度上昇に伴
い吸着剤より脱離する。循環再生方法による場合は、循
環系に合流すると、その結果循環回路内の圧力が上昇す
るので随時回路内よりガスを抜き出し、系内が過大な圧
とならないよう制御する。ガス循環で吸着塔の温度が所
定の再生温度に到達したのち、加熱ガスの循環を停止す
る。このとき吸着塔内には、昇温の間に離脱した窒素が
なお残留しているので吸着塔外へこれを排出する必要が
ある。この際の塔外への排出方法として吸引ポンプなど
により吸引排気する方法と、窒素を含まない純メタンを
送入し塔内ガスを押し流す(パージ)方法、あるいはこ
の吸引方法とパージ方法を併用する方法などが適用でき
る。
In the present invention, the sodium mordenite type zeolite of the sodium salt type can be used as it is, but more preferable results can be obtained by using a single or a mixture of sodium, whose cations are exchanged with divalent cations such as calcium, barium and iron. To be The contact method between the adsorbent and the nitrogen-containing methane gas (raw material gas) is not particularly limited, but it is usually convenient to carry out the fixed bed adsorption method using a packed column packed with the adsorbent. The raw material gas flows in from one end of the adsorption tower, the nitrogen contained therein is selectively adsorbed by the adsorbent, and flows out from the other end as purified methane gas containing no nitrogen. The concentration of nitrogen contained in the raw material gas to be treated is not particularly limited, but if the concentration is high, adsorption breakthrough occurs in a short time and it is not preferable. Are suitable. The temperature condition for adsorption is preferably −20 ° C. or lower and −150 ° C. or less, and is controlled by either or both of the adsorbent temperature and the raw material gas temperature. If the temperature is higher than -20 ° C, the nitrogen adsorption capacity is significantly lowered, and if it is lower than -150 ° C, methane gas is solidified, which is not preferable. The pressure in the tower at the time of adsorption is slightly increased to prevent nitrogen in the air from mixing, and is preferably atmospheric pressure or higher. When the inflow of the raw material gas is continued, the adsorbent adsorbs nitrogen from the inflow end side to form a so-called nitrogen adsorption zone, which moves to the outflow end. When a certain amount of raw material gas flows in, the nitrogen adsorption zone reaches the outflow end. Gas inflow is stopped at this point or earlier. The inside of the adsorption tower where the gas flow is stopped is filled with methane gas containing nitrogen. To regenerate the adsorbent that has adsorbed nitrogen, heat the adsorption tower from the outside, or suck out the gas remaining in the adsorption tower from one end of the adsorption tower, for example, the outflow end of the purified gas, and remove the same gas from the tower. It is heated to room temperature or higher by an external heater and is fed again into the adsorption tower from the feed gas feed end of the adsorption tower used for adsorption to heat the adsorption tower and raise the temperature of the adsorption tower to a regeneration temperature of 100 ° C or higher. Heat by circulating, etc. until reaching.
At the adsorption temperature of −20 ° C. or lower, the nitrogen adsorbed and the residual methane gas are desorbed from the adsorbent as the temperature of the adsorption tower rises by the above operation. In the case of the circulation regeneration method, when the circulation system joins, the pressure in the circulation circuit rises as a result, so gas is withdrawn from the circuit at any time and control is performed to prevent an excessive pressure in the system. After the temperature of the adsorption tower reaches a predetermined regeneration temperature by gas circulation, the circulation of heating gas is stopped. At this time, the nitrogen desorbed during the temperature rise still remains in the adsorption tower, so it is necessary to discharge it to the outside of the adsorption tower. At this time, as a method of discharging to the outside of the tower, a method of sucking and exhausting with a suction pump or the like, a method of feeding pure methane containing no nitrogen and purging the gas in the tower (purge), or a combination of this suction method and the purge method The method etc. can be applied.

一旦ポンプによって吸引して塔内を減圧にした後純メタ
ンを導入する方法では、純メタンガスの消費量が少な
く、従ってメタンガス回収率を高く保つことができる。
しかしながら装置の規模もしくは構造によっては、吸着
塔内が真空減圧となった際に大気の流入の危険性がある
ので注意を要する。長時間使用するとゼオライトが窒素
ばかりでなく次第にメタンガスをも吸着するようになる
ので賦活する必要がある。吸着使用した後の失活したモ
ルデナイト型ゼオライトの賦活処理法としては、慣用の
真空又は不活性ガス(ヘリウム)雰囲気中での加熱処理
を施すことにより賦活することができる。加熱温度は15
0℃以上、好ましくは200〜300℃程度がよい。
In the method in which pure methane is introduced after the pressure in the tower is reduced by once sucking with a pump, the consumption of pure methane gas is small, and therefore the methane gas recovery rate can be kept high.
However, depending on the scale or structure of the device, there is a risk of air inflow when the pressure inside the adsorption tower is reduced to vacuum, so caution is required. When used for a long time, the zeolite gradually adsorbs not only nitrogen but also methane gas, so it is necessary to activate it. As a method for activating the deactivated mordenite-type zeolite after adsorption and use, heat treatment in a conventional vacuum or inert gas (helium) atmosphere can be performed for activation. The heating temperature is 15
The temperature is 0 ° C or higher, preferably about 200 to 300 ° C.

賦活処理を施したモルデナイト型ゼオライトに窒素を含
有したメタンガスを通すとメタンガスを吸着せず、窒素
だけを選択的に吸着するので再び使用が可能になる。
When methane gas containing nitrogen is passed through the activated mordenite-type zeolite, methane gas is not adsorbed and only nitrogen is selectively adsorbed, so that it can be used again.

次に本発明の代表的実施態様を第1図に従い説明する。Next, a typical embodiment of the present invention will be described with reference to FIG.

吸着塔1には、イオン交換したモルデナイト型ゼオライ
トを充填する。精製すべき原料ガスは供給弁9で流量調
節しながら三方切替弁14、流量計8、及び予熱器2、を
経て吸着塔1に送入される。予熱器2、及び吸着塔1
は、恒温槽3で一定温度に保持される。
The adsorption tower 1 is filled with ion-exchanged mordenite type zeolite. The raw material gas to be purified is fed into the adsorption tower 1 through the three-way switching valve 14, the flow meter 8 and the preheater 2 while controlling the flow rate with the supply valve 9. Preheater 2 and adsorption tower 1
Is kept at a constant temperature in the constant temperature bath 3.

原料ガス中の窒素は、充填したモルデナイト型ゼオライ
トで選択的に吸着され、窒素を含まない精製メタンガス
は弁13から抜き出す。
Nitrogen in the raw material gas is selectively adsorbed by the filled mordenite-type zeolite, and the purified methane gas containing no nitrogen is extracted from the valve 13.

原料ガス及び精製メタンガスの品質チェックは、原料ガ
スサンプル弁11、精製メタンガスサンプル弁12で分析確
認をする。吸着塔の脱着、賦活処理は原料ガス供給弁
9、及び精製メタンガス抜出し弁13を閉止し、吸着塔を
150〜300℃に昇温する。
For the quality check of the raw material gas and the purified methane gas, the raw material gas sample valve 11 and the purified methane gas sample valve 12 are used for analysis and confirmation. For desorption and activation of the adsorption tower, the raw material gas supply valve 9 and the purified methane gas extraction valve 13 are closed, and the adsorption tower is closed.
Raise the temperature to 150-300 ℃.

脱離した窒素は、三方切替弁15、及びシールタンク6を
経て系外に放出される。循環方法を用いる場合は吸着塔
の昇温に伴ない吸着剤より脱離したガスは、ガス留4に
留まり循環ポンプ5で循環する。脱離した窒素が系内に
残存している場合、吸引ポンプ7により吸引し塔外へこ
れを排出する。又パージ方法としては、純メタンガスを
送入弁10より送入し、塔内ガスを押し流す。
The desorbed nitrogen is discharged to the outside of the system via the three-way switching valve 15 and the seal tank 6. When the circulation method is used, the gas desorbed from the adsorbent accompanying the temperature rise in the adsorption tower remains in the gas fraction 4 and is circulated by the circulation pump 5. When the desorbed nitrogen remains in the system, it is sucked by the suction pump 7 and discharged to the outside of the tower. As a purging method, pure methane gas is fed through the feed valve 10 and the gas in the tower is flushed out.

(実施例) 以下実施例を掲げて本発明をより詳細に説明するが、こ
れに限定されるものではない。
(Examples) The present invention will be described in more detail with reference to examples below, but the invention is not limited thereto.

実施例1〜5 イオン交換モルデナイト型ゼオライト(1.6mmφ×5〜7
mm押出円柱品)を吸着塔に充填し空気を純ヘリウムで置
換し、300℃で3時間加熱し活性化した。この活性化さ
れたモルデナイト型ゼオライトの吸着塔を−80℃に保持
しながら、窒素分が検出限界以下になっていることを確
認後、これに1000ppmの窒素を含むメタン原料ガスを一
定流量で通した。通気を継続しながら精製ガス中の窒素
を測定し精製効果を比較した。
Examples 1 to 5 Ion exchange mordenite type zeolite (1.6 mmφ × 5 to 7)
mm extruded column product) was filled in the adsorption tower, the air was replaced with pure helium, and heated at 300 ° C. for 3 hours for activation. While maintaining the adsorption tower of this activated mordenite type zeolite at −80 ° C., after confirming that the nitrogen content was below the detection limit, methane raw material gas containing 1000 ppm nitrogen was passed through this at a constant flow rate. did. Nitrogen in the purified gas was measured while continuing ventilation, and the purification effects were compared.

共通条件; 原料ガス組成とガス流速 メタン中の窒素含有量;1000ppm ガス流速;70ml/min 圧力;常圧 吸着塔;内径6mmφのSUS管長さ2mに吸着剤を56ml充填 吸着温度;−80℃ ナトリウム−モルデナイト型ゼオライトとナトリウムを
イオン交換したモルデナイト型ゼオライトの各種吸着剤
に原料ガスを連続通気し、吸着塔出口ガス中の窒素濃度
が1ppmを超えるまでの精製メタンガス量と吸着された窒
素を第1表に示す。
Common conditions; Raw material gas composition and gas flow rate Nitrogen content in methane; 1000ppm Gas flow rate; 70ml / min Pressure; Normal pressure Adsorption tower; SUS tube length 2m with inner diameter 6mmφ filled with adsorbent 56ml Adsorption temperature -80 ℃ Sodium -The raw material gas is continuously aerated through various adsorbents of mordenite type zeolite in which mordenite type zeolite and sodium are ion-exchanged, and the purified methane gas amount and the adsorbed nitrogen until the nitrogen concentration in the adsorption tower outlet gas exceeds 1 ppm Shown in the table.

実施例6 実施例1〜5に使用した吸着剤を再生し、再現性を確認
したが、精製ガス中の窒素含有量は1ppm以下であり、す
べて再使用可能であった。
Example 6 The adsorbents used in Examples 1 to 5 were regenerated and their reproducibility was confirmed, but the nitrogen content in the purified gas was 1 ppm or less, and they were all reusable.

比較例1〜2 吸着剤を天然クリノプチライト及び、モレキュラーシー
ブ3Aに代え、モルデナイト型ゼオライトと比較した。吸
着条件は実施例1〜5と同様の操作で第2表の結果を得
た。
Comparative Examples 1 and 2 The adsorbent was replaced with natural clinoptite and molecular sieve 3A and compared with mordenite type zeolite. The adsorption conditions were the same as in Examples 1 to 5, and the results shown in Table 2 were obtained.

比較例1〜2で明らかな様にモレキュラーシーブ3Aは、
窒素吸着量が極めて小さく吸着塔出口ガス中の窒素含有
量が高い、すなわちメタンガス精製用吸着剤としては、
モルデナイト型ゼオライト、特にカルシウム型モルデナ
イトのゼオライトに勝るものはない。
As is clear from Comparative Examples 1 and 2, the molecular sieve 3A is
The nitrogen adsorption amount is extremely small and the nitrogen content in the outlet gas of the adsorption tower is high, that is, as an adsorbent for methane gas purification,
There is no substitute for mordenite type zeolite, especially calcium type mordenite zeolite.

<発明の効果> 本発明のイオン交換モルデナイト型ゼオライトによる
吸着法はメタンガス中の窒素を極微量まで吸着除去し、
工業的に高純度のメタンガスを精製することが可能であ
る。
<Advantages of the Invention> The adsorption method using the ion-exchange mordenite type zeolite of the present invention absorbs and removes a very small amount of nitrogen in methane gas,
It is possible to industrially purify high-purity methane gas.

イオン交換モルデナイト型ゼオライト吸着剤はメタン
ガスを吸着せず窒素を選択的に吸着する。吸着速度、容
量共に大きく、且つ、再生して繰り返し使用することが
でき経済的で実用性が高い。
The ion-exchange mordenite-type zeolite adsorbent does not adsorb methane gas but adsorbs nitrogen selectively. Both adsorption rate and capacity are large, and it can be regenerated and reused repeatedly, which is economical and highly practical.

本発明のイオン交換モルデナイト型ゼオライトによる
吸着法は、蒸留による精製法に比較して繁雑な操作、複
雑な装置を必要としないため、操作、装置共に簡単であ
るので、工業的に有利に高純度メタンガスを得ることが
できる。
The adsorption method using the ion-exchange mordenite-type zeolite of the present invention is complicated in operation as compared with the purification method by distillation and does not require a complicated device, so that both the operation and the device are simple and industrially advantageous in high purity. Methane gas can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様の1例を示す工程図である。 FIG. 1 is a process chart showing an example of an embodiment of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】吸着法によりメタンガス中の窒素を除去し
て高純度メタンガスを得る精製法において、モルデナイ
ト型ゼオライトを用いてメタンガス中の窒素を吸着除去
することを特徴とするメタンガスの精製法。
1. A method for purifying methane gas, which comprises adsorbing and removing nitrogen in methane gas by using a mordenite type zeolite in a purification method for removing nitrogen in methane gas by adsorption method to obtain high-purity methane gas.
【請求項2】モルデナイト型ゼオライトがナトリウム塩
型である特許請求の範囲(1)記載の方法。
2. The method according to claim 1, wherein the mordenite type zeolite is a sodium salt type.
【請求項3】モルデナイト型ゼオライトのカチオンの一
部または全部が2価のカチオンでイオン交換されたゼオ
ライトである特許請求の範囲(1)記載の方法。
3. The method according to claim 1, wherein a part or all of the cations of the mordenite type zeolite are ion-exchanged with divalent cations.
【請求項4】2価のカチオンがカルシウムである特許請
求の範囲(3)記載の方法。
4. The method according to claim 3, wherein the divalent cation is calcium.
【請求項5】2価のカチオンがバリウムである特許請求
の範囲(3)記載の方法。
5. The method according to claim 3, wherein the divalent cation is barium.
【請求項6】2価のカチオンが鉄である特許請求の範囲
(3)記載の方法。
6. The method according to claim 3, wherein the divalent cation is iron.
【請求項7】メタンガス中の窒素が1容量%以下である
特許請求の範囲(1)記載の方法。
7. The method according to claim 1, wherein nitrogen in methane gas is 1% by volume or less.
【請求項8】吸着温度が−20℃〜−150℃である特許請
求範囲(1)記載の方法。
8. The method according to claim 1, wherein the adsorption temperature is −20 ° C. to −150 ° C.
JP61270520A 1986-11-12 1986-11-12 Methane gas purification method Expired - Lifetime JPH0732857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270520A JPH0732857B2 (en) 1986-11-12 1986-11-12 Methane gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270520A JPH0732857B2 (en) 1986-11-12 1986-11-12 Methane gas purification method

Publications (2)

Publication Number Publication Date
JPS63123417A JPS63123417A (en) 1988-05-27
JPH0732857B2 true JPH0732857B2 (en) 1995-04-12

Family

ID=17487369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270520A Expired - Lifetime JPH0732857B2 (en) 1986-11-12 1986-11-12 Methane gas purification method

Country Status (1)

Country Link
JP (1) JPH0732857B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000042032A (en) * 1998-12-24 2000-07-15 이구택 Method for removing methane gas using zeolite
JP4492764B2 (en) * 1999-05-24 2010-06-30 日本ゼオン株式会社 Plasma reaction gas and method for producing the same
JP5603614B2 (en) * 2010-02-23 2014-10-08 大阪瓦斯株式会社 Methane purification method

Also Published As

Publication number Publication date
JPS63123417A (en) 1988-05-27

Similar Documents

Publication Publication Date Title
EP0349655B1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
EP0205582B1 (en) Bulk removal of water from organic liquids
US4917711A (en) Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
CA1130021A (en) Oxygen recycle type ozonizing apparatus
US4874525A (en) Purification of fluid streams containing mercury
EP0128580B1 (en) Process for drying gas streams
KR102278991B1 (en) Purification of argon through liquid phase cryogenic adsorption
JPH10263392A (en) Adsorption of carbon dioxide and water and adsorbent
JP2003246606A (en) Syngas purifying method
JPH08266844A (en) Method for removing carbon dioxide from gas flow
JPH0244569B2 (en)
JPH11226335A (en) Method for refining inert fluid by adsorption on lsx zeolite
US5354357A (en) Removal of mercury from process streams
US4746332A (en) Process for producing high purity nitrogen
RU2707767C1 (en) Cryogenic adsorption process for xenon extracting
JPS58109117A (en) Adsorption for separating hydrocarbon
JP2008537720A (en) Purification of nitrogen trifluoride
KR20030070836A (en) Method of purifying gaseous nitrogen trifluoride
JP2000317246A (en) Method and device for recovering ammonia
JPS62119104A (en) Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
JPH0732857B2 (en) Methane gas purification method
JP4031293B2 (en) Nitrous oxide recovery and purification method and recovery and purification equipment
JPH0379288B2 (en)
JP4070399B2 (en) Helium gas purification method
JP6196434B2 (en) Nitric oxide purification method