JPS58241A - Production of inert gas by catalytic combustion - Google Patents

Production of inert gas by catalytic combustion

Info

Publication number
JPS58241A
JPS58241A JP9636681A JP9636681A JPS58241A JP S58241 A JPS58241 A JP S58241A JP 9636681 A JP9636681 A JP 9636681A JP 9636681 A JP9636681 A JP 9636681A JP S58241 A JPS58241 A JP S58241A
Authority
JP
Japan
Prior art keywords
combustion
fuel
gas
inert gas
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9636681A
Other languages
Japanese (ja)
Other versions
JPH0114806B2 (en
Inventor
Hisashi Fukuzawa
福沢 久
Yoshimi Ishihara
石原 義見
Yoshikazu Hasegawa
長谷川 好和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP9636681A priority Critical patent/JPS58241A/en
Publication of JPS58241A publication Critical patent/JPS58241A/en
Publication of JPH0114806B2 publication Critical patent/JPH0114806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To produce an inert gas while recovering heat energy with good efficiency in plural catalytic burners provided with catalysts by repeating catalytic combustion wherein the concn. of fuel is kept out of the explosion limit. CONSTITUTION:Plural catalytic burners A-C provided with catalysts are provided. First, a gaseous mixture of an oxygen-contg. gas and fuel is subjected to flameless combustion out of the explosion limit, and after heat exchanging, the waste combustion gas is fed to the catalytic combustion device of the next stage where it is mixed with fuel to the concn. outside the explosion limit in the same manner and is subjected to flameless combustion. In this way, the amts. of the oxygen contained are decreased successively and the inert gas is produced.

Description

【発明の詳細な説明】 本発明は効率よく熱エネルギーを回収しながら燃焼ガス
を良質な不活性ガスとして利用できるようにした、接触
燃焼による不活性ガス製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an inert gas by catalytic combustion, which makes it possible to utilize combustion gas as a high-quality inert gas while efficiently recovering thermal energy.

LPGなどの気体状燃料を使用する発電プラントなどに
おいては、排出燃焼ガス中に含有される窒素酸化物など
による公害防止の見地から、燃焼ガスを不活性ガスとし
て取出しうるよう(二して、熱エネルギーを得ながら需
要の多い不活性ガスを空気中の窒素分を利用して製造し
ようとする考えがある。
In power generation plants that use gaseous fuels such as LPG, in order to prevent pollution caused by nitrogen oxides contained in the exhaust combustion gas, it is necessary to extract the combustion gas as an inert gas (secondly, to prevent heat generation). There is an idea to use nitrogen in the air to produce inert gas, which is in high demand while also obtaining energy.

しかし現在におけるようなバーナによる燃焼方法即ち気
体状燃料例えばLPG、LNG、ナフサ、灯油、液化石
炭などのように、使用時気体状となる燃料を、燃料濃度
が爆発限界内即ち有炎燃焼を生ずるように空気と混合し
て燃焼させて、所要の熱エネルギーを得ながら燃焼ガス
を得る方法では、不活性ガスとして利用できないばかり
か、熱エネルギーの回収に当って効率の低下を生ずるの
をまぬがれることができない。即ち上記のように有炎燃
焼させた場合には、よく知られるように炎の温度が均一
とならず局部的に高温部を生じて、空気中の酸素と窒素
とから多量の窒素酸化物が生成される。また不純物であ
る酸素の含有量を少なくしようとして、燃焼ガス中の酸
素濃度を小さく(例えばlヂ以下)して燃焼させた場合
には、不完−全燃焼となって未然炭化水素の残存を招く
と同時に不完全燃焼生成物である一酸化炭素や水素の生
成を招く。このため例えばLPGを燃料とした場合、燃
焼ガスの組成は例えば次の第1表の如くなり、−第 1
 表 第   2   表 このまヌでは燃焼ガスを不活性ガスとして利用できにく
い。そこで例えばこの燃焼ガスを水中に通して一酸化炭
素など水溶性ガスを除去する方法も試みられているが、
それでも不活性ガスとしての利用には程遠いものがある
。しかもこれに加えてバーナによる方法では、不完全燃
焼させることなく燃焼ガス温度を調節することは困難で
ある。従って必要な温度の燃焼ガスを得て必要な温度の
熱エネルギーを回収することは難かしく、熱効率の低下
をまぬがれ得ない。
However, the current combustion method using a burner, i.e., gaseous fuel such as LPG, LNG, naphtha, kerosene, liquefied coal, etc., is a fuel that becomes gaseous when used, but the fuel concentration is within the explosive limit, that is, flammable combustion occurs. By mixing it with air and burning it to obtain combustion gas while obtaining the required thermal energy, not only can it not be used as an inert gas, but it is also possible to avoid a decrease in efficiency when recovering thermal energy. I can't. In other words, when flaming combustion is carried out as described above, as is well known, the temperature of the flame is not uniform and locally high-temperature areas occur, resulting in a large amount of nitrogen oxides being produced from the oxygen and nitrogen in the air. generated. In addition, if the oxygen concentration in the combustion gas is reduced (for example, less than 1) in an attempt to reduce the content of oxygen, which is an impurity, combustion will occur, resulting in incomplete combustion and the remaining hydrocarbons. At the same time, it also leads to the production of carbon monoxide and hydrogen, which are incomplete combustion products. Therefore, for example, when LPG is used as fuel, the composition of the combustion gas is as shown in Table 1 below.
Table 2 In this case, it is difficult to use combustion gas as an inert gas. Therefore, attempts have been made to remove water-soluble gases such as carbon monoxide by passing the combustion gas through water.
However, it is still far from being used as an inert gas. In addition, in the method using a burner, it is difficult to adjust the combustion gas temperature without causing incomplete combustion. Therefore, it is difficult to obtain combustion gas at the required temperature and recover thermal energy at the required temperature, and a decrease in thermal efficiency cannot be avoided.

本発明は効率よく必要な温度の熱エネルギーを燃焼ガス
から回収しながら燃焼排ガスを酸素などの不純ガスの含
有の少ない不活性ガスとして取出しうる製造方法を提供
し、窒素酸化物などにもとづく公害防止を図りんが′ら
熱エネルギーの有効活用を図りうるようにしたものであ
る。次に図面を用いてその詳細を説明する。
The present invention provides a manufacturing method that can efficiently recover thermal energy at the required temperature from combustion gas while extracting combustion exhaust gas as an inert gas containing little impurity gas such as oxygen, thereby preventing pollution based on nitrogen oxides, etc. This design allows for effective use of thermal energy. Next, the details will be explained using the drawings.

本発明の特徴とするところは次の点にある。即ちその第
1は燃料濃度を爆発限界外(爆発限界は燃焼限界と呼ば
れることがあり、この表現によればバーナ法の場合には
燃焼限界内となる)として、これを触媒を備えた接触燃
焼装置に通して酸化反応を促進させるに充分な高温例え
ば1000℃以上で燃焼させることを第1の特徴とする
もので′ある。第2には接触燃焼装置を複゛数段設け、
第2段においては前段の燃焼排ガスに燃料を混合して同
一要領の接触燃焼を繰返し行わせるようにしたことを特
徴とし、これらにより次のような作用効果が得られるよ
うにして、熱エネルギーを効率よく回収しながら不純ガ
スの少ない不活性ガスを取出しうるようにしたものであ
る。即ちその第1は燃料濃度を爆発゛限界外として触媒
との接触により、高温例えば1000℃以上の温度で無
炎燃焼させることにより、前記バーナによる有炎燃焼の
ように窒素酸化物を作り易い燃焼環境が作られるのを阻
止して、窒素酸化物の生成を抑制するようにしたもので
ある。また第2には接触燃焼においては、空気と燃料の
混合比の調節により容易に接触燃焼温度を調節できる。
The features of the present invention are as follows. The first method is to set the fuel concentration outside the explosion limit (the explosion limit is sometimes called the flammability limit, and according to this expression, it is within the flammability limit in the case of the burner method), and to conduct catalytic combustion using a catalyst. The first feature is that it is passed through an apparatus and burned at a high enough temperature, for example, 1000° C. or higher, to promote the oxidation reaction. Second, multiple stages of catalytic combustion equipment are installed,
The second stage is characterized by the fact that fuel is mixed with the combustion exhaust gas from the previous stage and the same catalytic combustion is repeated repeatedly, thereby achieving the following effects and converting thermal energy. This makes it possible to extract inert gas with less impurity gas while efficiently recovering it. The first is combustion that facilitates the production of nitrogen oxides, such as flaming combustion using a burner, by setting the fuel concentration outside the explosive limit and causing flameless combustion at a high temperature, for example, 1000°C or higher, through contact with a catalyst. This prevents the formation of an environment and suppresses the production of nitrogen oxides. Secondly, in catalytic combustion, the catalytic combustion temperature can be easily adjusted by adjusting the mixture ratio of air and fuel.

従って接触燃焼の利用によりバーナ法のように不完全燃
焼とすることなく、必要な温度の燃焼ガスを得て、所要
の温度の熱エネルギーを回収できるのセ熱効率を向上で
き、またこれと合せて高温の燃焼(=より不完全燃焼に
もとづく未燃炭化水素の残存や一酸化炭素、水素などの
不純ガスの生成を抑制するようにしたものである。また
第3には複数台の接触燃焼装置を使用し、前段の燃焼排
ガス中に燃料を混合して高温で無炎燃焼を繰返し行わせ
ることにより、初段の燃焼により消費された空気中の酸
素量より少ない酸素量の燃焼排ガスを用いて次段の接触
燃焼が行われ、また更にその次段の接触燃焼が更に少な
い酸素量の燃焼排ガスを用いて行われるようにして、最
終的に不活性ガスとして利用される燃焼排ガス中の酸素
量を零に近づけるようにしたものである。またこれに加
えて繰返し行われる燃焼排ガスの燃焼により未燃成分の
燃焼が行われるようにして、不純物の少ない不活性ガス
を得るようにしたものである。即ち空気中の含有酸素を
1箇の接触燃焼装置により全量消費されるように燃料を
供給したときには、燃焼装置内が高温になり過ぎて破損
し、また触媒も温度的に耐えられなくなると同時に、燃
料濃度が爆発限界内に人って炎燃焼となり、窒素酸化物
などの燃焼生成物が生成されるが、前段の燃焼排ガスを
用いて繰返し燃焼させるようにすれば、上記のような各
種の悪条件を克服して不活性ガスとして利用される燃焼
ガス中の酸素量、その他の不純物を零に近づけうる効果
がある。第2表はLPGを燃料として3段の接触燃焼に
より得られた燃焼排ガスの組成を示す一例であって、第
1表と対比して明らかなように、2酸化炭素、水が稍増
すのみで酸素その他の不純ガスは零、または大巾に減少
し不活性ガスとして充分利用できることを示している。
Therefore, by using catalytic combustion, it is possible to obtain combustion gas at the required temperature and recover thermal energy at the required temperature without causing incomplete combustion as in the burner method, improving the thermal efficiency. High-temperature combustion (= more incomplete combustion that suppresses the remaining unburned hydrocarbons and the generation of impurity gases such as carbon monoxide and hydrogen. Thirdly, multiple catalytic combustion devices are used. By mixing fuel into the combustion exhaust gas of the first stage and repeatedly performing flameless combustion at high temperature, the combustion exhaust gas with an amount of oxygen less than the amount of oxygen in the air consumed in the first stage combustion is used to generate the next combustion. The catalytic combustion of one stage is carried out, and the catalytic combustion of the next stage is carried out using a combustion exhaust gas with an even smaller amount of oxygen, thereby reducing the amount of oxygen in the combustion exhaust gas that is finally used as an inert gas. In addition to this, unburned components are combusted by repeated combustion of the flue gas, thereby obtaining an inert gas with few impurities. In other words, when fuel is supplied so that all the oxygen contained in the air is consumed by one catalytic combustion device, the inside of the combustion device becomes too high and is damaged, and at the same time, the catalyst becomes unable to withstand the temperature. When the fuel concentration is within the explosive limit, flame combustion occurs and combustion products such as nitrogen oxides are produced, but if the combustion exhaust gas from the previous stage is used for repeated combustion, the various evils mentioned above can be avoided. This has the effect of overcoming the above conditions and bringing the amount of oxygen and other impurities in the combustion gas used as an inert gas close to zero.Table 2 shows the combustion exhaust gas obtained by three-stage catalytic combustion using LPG as fuel. As is clear from Table 1, carbon dioxide and water only increase slightly, while oxygen and other impurity gases decrease to zero or to a large extent, which is sufficient as an inert gas. It shows that it is available.

次に第1図に示す実施例図を用いて本発明を具体的に説
明する。第1図においてAは第1接触燃焼装置、(1)
はその第1混合器で、ブロワ−(la)により空気導入
管(lb)を介して送り込まれる燃料とを濃度が爆発限
界外となるように完全に混合する。この場合接触燃焼に
当っては予熱しておくことが望ましく、その熱源として
例えば以下に説明する熱交換器を利用するのがよい。ま
たこの場合予熱温度が600℃以上になると、局部的に
燃料濃度が爆発限界内に人って、窒素酸化物のような燃
焼生成物を生成するので、600℃以下にすることが望
ましい。(2)は第1接触燃焼器であって例えば第2図
に示す断面図のように、格子状断面をもつ触媒が内蔵さ
れ、こ\を予熱混合気が通過するとき無炎の接触燃焼が
行われ、かつ1000°C以上の温度で燃焼が行われる
。(3)は第1熱交換気であって、燃焼ガスから熱エネ
ルギーを回収する。Bは第2接触燃焼装置、(4)はそ
の第2混合器であって、第1熱交換器(3)を通過した
燃焼ガスと燃料導入管(4C)による燃料とを爆発限界
外となるように混合し、また混合気を600℃以下の温
度になるよう第1熱交換器(8)で調節する。(5)は
第2接触燃焼器、(6)は第2熱交換器で、接触燃焼に
より得られた燃焼ガスの熱エネルギーを回収する。
Next, the present invention will be specifically explained using the embodiment diagram shown in FIG. In FIG. 1, A is the first catalytic combustion device, (1)
In the first mixer, the fuel is completely mixed with the fuel fed by the blower (la) through the air introduction pipe (lb) so that the concentration is outside the explosion limit. In this case, it is desirable to preheat the catalytic combustion, and it is preferable to use, for example, a heat exchanger as described below as the heat source. In this case, if the preheating temperature exceeds 600°C, the local fuel concentration will reach the explosive limit and combustion products such as nitrogen oxides will be produced, so it is desirable to keep the preheating temperature below 600°C. (2) is the first catalytic combustor, which has a built-in catalyst with a lattice-like cross section, as shown in the cross-sectional view in Fig. 2, and when the preheated air-fuel mixture passes through this, flameless catalytic combustion occurs. and the combustion takes place at a temperature of 1000°C or higher. (3) is the first heat exchange air, which recovers thermal energy from the combustion gas. B is a second catalytic combustion device, and (4) is its second mixer, which makes the combustion gas that has passed through the first heat exchanger (3) and the fuel that flows through the fuel introduction pipe (4C) out of the explosion limit. The mixture is mixed in such a way that the temperature of the mixture is 600° C. or less, and the first heat exchanger (8) is used to adjust the temperature of the mixture. (5) is a second catalytic combustor, and (6) is a second heat exchanger, which recovers the thermal energy of the combustion gas obtained by catalytic combustion.

Cは第3接触燃焼装置、(7)は第3混合器で燃料導入
管(7a)による燃料と前段の第2熱交換器(6)を通
った燃焼排ガスとを爆発限界外となるように混合し、ま
た600°C以下の温度になるよう第2熱交換器(6)
にて調節する。(8)は第8接触燃焼器、(9)は第8
熱交換器で、その燃焼ガスは取出管Qlに送られる。
C is the third catalytic combustion device, and (7) is the third mixer, which mixes the fuel from the fuel introduction pipe (7a) and the combustion exhaust gas that has passed through the second heat exchanger (6) in the preceding stage so that it is outside the explosion limit. A second heat exchanger (6) to mix and maintain the temperature below 600°C.
Adjust with. (8) is the 8th catalytic combustor, (9) is the 8th catalytic combustor
In the heat exchanger, the combustion gas is sent to the take-off pipe Ql.

以上の説明から明らかなように、本発明によれば必要な
温度の不活性ガスを容易に得ることができ、しかも必要
な温度の熱エネルギーの回収が容易である。
As is clear from the above description, according to the present invention, inert gas at a required temperature can be easily obtained, and thermal energy at a required temperature can be easily recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例系統図、第2図は触媒の一例
を示す断面図である。 A・・・・第1接触燃焼装置、 (1)・・・・第1混
合器、(la)・・・・空気ブロワ−1(1b)・・・
・空気導入管、(lc)・・・・燃料導入管、 (2)
・・・・第1接触燃焼器、(3)−・・第1熱交換器、
 B・・・・第2接触燃焼器、(4)・・・・第2混合
器、  (4a)・φ・・燃料導入管、(5)・・・・
第2接触燃焼器、 (6)・・・・第2熱交換器、C・
・・・第8接触燃焼装置、 (7)・・・・第8混合器
、(7a)・・・・燃料導入管、 (8)・・・・第3
接触燃焼器、(9)・・・・第8熱交換器、 α1・・
・・不活性ガス取出管。 特許出願人  財団法人 電力中央研究所代理人弁理士
  大 塚   学 外1名
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a catalyst. A...First catalytic combustion device, (1)...First mixer, (la)...Air blower 1 (1b)...
・Air introduction pipe, (lc)...Fuel introduction pipe, (2)
...first contact combustor, (3)--first heat exchanger,
B...Second contact combustor, (4)...Second mixer, (4a)...Fuel introduction pipe, (5)...
Second contact combustor, (6)...Second heat exchanger, C.
...Eighth catalytic combustion device, (7)...Eighth mixer, (7a)...Fuel introduction pipe, (8)...Third
Contact combustor, (9)...8th heat exchanger, α1...
...Inert gas extraction pipe. Patent applicant: Patent attorney, Central Research Institute of Electric Power Industry, Otsuka, 1 external person

Claims (1)

【特許請求の範囲】[Claims] 触媒を備えた接触燃焼装置を複数段設け、第1させ、第
2段以下の接触燃焼装置においてはそれぞれ前段の燃焼
排ガスに爆発限界外となるように燃料を混合した混合気
による無炎燃焼を順次行わせて、燃焼排ガス中の含有酸
素量を順次減少させ、燃焼排ガスを含有酸素量の少ない
不活性ガスとして取出しうるようにしたことを特徴とす
る接触燃焼による不活性ガス製造方法。
A plurality of stages of catalytic combustion devices equipped with catalysts are installed, and each of the second and subsequent stages of catalytic combustion devices performs flameless combustion using a mixture of fuel mixed with the combustion exhaust gas of the previous stage so as to be outside the explosion limit. A method for producing an inert gas by catalytic combustion, characterized in that the steps are performed sequentially to gradually reduce the amount of oxygen contained in the combustion exhaust gas, so that the combustion exhaust gas can be extracted as an inert gas containing a small amount of oxygen.
JP9636681A 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion Granted JPS58241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9636681A JPS58241A (en) 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9636681A JPS58241A (en) 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion

Publications (2)

Publication Number Publication Date
JPS58241A true JPS58241A (en) 1983-01-05
JPH0114806B2 JPH0114806B2 (en) 1989-03-14

Family

ID=14162974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9636681A Granted JPS58241A (en) 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion

Country Status (1)

Country Link
JP (1) JPS58241A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127648A (en) * 1983-01-08 1984-07-23 Ngk Insulators Ltd Preparation of gas containing oxygen in low concentration
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon
CN109323443A (en) * 2017-07-31 2019-02-12 芜湖美的厨卫电器制造有限公司 Gas heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975717B (en) * 2010-10-18 2011-11-09 南京工业大学 Combustible gas explosion limit test system in non-standard state

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127648A (en) * 1983-01-08 1984-07-23 Ngk Insulators Ltd Preparation of gas containing oxygen in low concentration
JPS6259972B2 (en) * 1983-01-08 1987-12-14 Ngk Insulators Ltd
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon
CN109323443A (en) * 2017-07-31 2019-02-12 芜湖美的厨卫电器制造有限公司 Gas heater
CN109323443B (en) * 2017-07-31 2024-04-12 芜湖美的厨卫电器制造有限公司 Gas water heater

Also Published As

Publication number Publication date
JPH0114806B2 (en) 1989-03-14

Similar Documents

Publication Publication Date Title
US6345495B1 (en) Gas turbine system for flameless combustion of fuel gases
RU2436974C2 (en) IMPROVED SYSTEMS AND PROCEDURES FOR REDUCED EMISSIONS OF NOx
JP5051974B2 (en) System and method for simultaneously generating hydrogen and electricity
CA1100179A (en) Fuel cell power plant and method for operating the same
US5224334A (en) Low NOx cogeneration process and system
US4054407A (en) Method of combusting nitrogen-containing fuels
JP2000506255A (en) High heat transfer low NOx combustion system
JPH06507957A (en) Methods and systems for burning hydrocarbon fuels
JP2001509878A (en) Power generation process including combustion process
KR100260461B1 (en) Method for combined generation of synthesis gas and power
US3914090A (en) Method and furnace apparatus
EP1269006A1 (en) Gas powered engine having improved emissions
CN1045277C (en) Production of NO from N2O
JPS58241A (en) Production of inert gas by catalytic combustion
JPH0151722B2 (en)
RU2794914C1 (en) Method of obtaining thermal energy
CN220951181U (en) Apparatus for producing hydrogen by ammonothermal reforming
CN108105801A (en) A kind of soft combustion method of new catalysis
JPS582508A (en) Heating method by means of catalytic combustion
JP2005325322A (en) Energy recovery method of reducing gasified wood biomass
CN117433313A (en) Furnace operating method
CA1113380A (en) Method for the recovery of power from lhv gas
JPS59185906A (en) Combustion device
RU2209369C2 (en) Method for combusting liquid fuel
CN115307140A (en) Porous medium combustion device with double-stage flue gas circulation