JPH0114806B2 - - Google Patents

Info

Publication number
JPH0114806B2
JPH0114806B2 JP9636681A JP9636681A JPH0114806B2 JP H0114806 B2 JPH0114806 B2 JP H0114806B2 JP 9636681 A JP9636681 A JP 9636681A JP 9636681 A JP9636681 A JP 9636681A JP H0114806 B2 JPH0114806 B2 JP H0114806B2
Authority
JP
Japan
Prior art keywords
combustion
gas
fuel
catalytic
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9636681A
Other languages
Japanese (ja)
Other versions
JPS58241A (en
Inventor
Hisashi Fukuzawa
Yoshimi Ishihara
Yoshikazu Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP9636681A priority Critical patent/JPS58241A/en
Publication of JPS58241A publication Critical patent/JPS58241A/en
Publication of JPH0114806B2 publication Critical patent/JPH0114806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は効率よく熱エネルギーを回収しながら
燃焼ガスを良質な不活性ガスとして利用できるよ
うにした、接触燃焼による不活性ガス製造方法に
関するものである。 LPGなどの気体状燃料を使用する発電プラン
トなどにおいては、排出燃焼ガス中に含有される
窒素酸化物などによる公害防止の見地から、燃焼
ガスを不活性ガスとして取出しうるようにして、
熱エネルギーを得ながら需要の多い不活性ガスを
空気中の窒素分を利用して製造しようとする考え
がある。 しかし現在におけるようなバーナによる燃焼方
法即ち気体状燃料例えばLPG、LNG、ナフサ、
灯油、液化石炭などのように、使用時気体状とな
る燃料を、燃料濃度が爆発限界内即ち有炎燃焼を
生ずるように空気と混合して燃焼させて、所要の
熱エネルギーを得ながら燃焼ガスを得る方法で
は、不活性ガスとして利用できないばかりか、熱
エネルギーの回収に当つて効率の低下を生ずるの
をまぬがれることができない。即ち上記のように
有炎燃焼させた場合には、よく知られるように炎
の温度が均一とならず局部的に高温部を生じて、
空気中の酸素と窒素とから多量の窒素酸化物が生
成される。また不純物である酸素の含有量を少な
くしようとして、燃焼ガス中の酸素濃度を小さく
(例えば1%以下)して燃焼させた場合には、不
完全燃焼となつて未然炭化水素の残存を招くと同
時に不完全燃焼生成物である一酸化炭素や水素の
生成を招く。このため例えばLPGを燃料とした
場合、燃焼ガスの組成は例えば次の第1表の如く
なり、
The present invention relates to a method for producing an inert gas by catalytic combustion, which makes it possible to utilize combustion gas as a high-quality inert gas while efficiently recovering thermal energy. In power generation plants that use gaseous fuels such as LPG, in order to prevent pollution caused by nitrogen oxides contained in the exhaust combustion gas, the combustion gas can be extracted as an inert gas.
There is an idea to use nitrogen in the air to produce inert gas, which is in high demand, while obtaining heat energy. However, the current combustion method using a burner, i.e. gaseous fuel such as LPG, LNG, naphtha, etc.
Fuels that are in a gaseous state during use, such as kerosene and liquefied coal, are mixed with air and burned so that the fuel concentration is within the explosive limit, that is, flammable combustion occurs, and the combustion gas is produced while obtaining the required thermal energy. In the method of obtaining , not only cannot it be used as an inert gas, but it is also impossible to avoid a decrease in efficiency in recovering thermal energy. That is, in the case of flaming combustion as described above, as is well known, the temperature of the flame is not uniform and locally high temperature areas are generated.
Large amounts of nitrogen oxides are produced from oxygen and nitrogen in the air. In addition, if the oxygen concentration in the combustion gas is reduced (for example, 1% or less) in an attempt to reduce the content of oxygen, which is an impurity, combustion is performed, incomplete combustion may occur, resulting in residual hydrocarbons. At the same time, incomplete combustion products such as carbon monoxide and hydrogen are produced. Therefore, for example, when LPG is used as fuel, the composition of the combustion gas is as shown in Table 1 below.

【表】【table】

【表】【table】

【表】 このまゝでは燃焼ガスを不活性ガスとして利用で
きにくい。そこで例えばこの燃焼ガスを水中に通
して一酸化炭素など水溶性ガスを除去する方法も
試みられているが、それでも不活性ガスとしての
利用には程遠いものがある。しかもこれに加えて
バーナによる方法では、不完全燃焼させることな
く燃焼ガス温度を調節することは困難である。従
つて必要な温度の燃焼ガスを得て必要な温度の熱
エネルギーを回収することは難かしく、熱効率の
低下をまぬがれ得ない。 本発明は効率よく必要な温度の熱エネルギーを
燃焼ガスから回収しながら燃焼排ガスを酸素など
の不純ガスの含有の少ない不活性ガスとして取出
しうる製造方法を提供し、窒素酸化物などにもと
づく公害防止を図りながら熱エネルギーの有効活
用を図りうるようにしたものである。次に図面を
用いてその詳細を説明する。 本発明の特徴とするところは次の点にある。即
ちその第1は燃料濃度を爆発限界外(爆発限界は
燃焼限界と呼ばれることがあり、この表現によれ
ばバーナ法の場合には燃焼限界内となる)とし
て、これを触媒を備えた接触燃焼装置に通して酸
化反応を促進させるに充分な高温例えば1000℃以
上で燃焼させることを第1の特徴とするものであ
る。第2には接触燃焼装置を複数段設け、第2段
においては前段の燃焼排ガスに燃料を混合して同
一要領の接触燃焼を繰返し行わせるようにしたこ
とを特徴とし、これらにより次のような作用効果
が得られるようにして、熱エネルギーを効率よく
回収しながら不純ガスの少ない不活性ガスを取出
しうるようにしたものである。即ちその第1は燃
料濃度を爆発限界外として触媒との接触により、
高温例えば1000℃以上の温度で無炎燃焼させるこ
とにより、前記バーナによる有炎燃焼のように窒
素酸化物を作り易い燃焼環境が作られるのを阻止
して、窒素酸化物の生成を抑制するようにしたも
のである。また第2には接触燃焼においては、空
気と燃料の混合比の調節により容易に接触燃焼温
度を調節できる。従つて接触燃焼の利用によりバ
ーナ法のように不完全燃焼とすることなく、必要
な温度の燃焼ガスを得て、所要の温度の熱エネル
ギーを回収できるので熱効率を向上でき、またこ
れと合せて高温の燃焼により不完全燃焼にもとづ
く未燃炭化水素の残存や一酸化炭素、水素などの
不純ガスの生成を抑制するようにしたものであ
る。また第3には複数台の接触燃焼装置を使用
し、前段の燃焼排ガス中に燃料を混合して高温で
無炎燃焼を繰返し行わせることにより、初段の燃
焼により消費された空気中の酸素量より少ない酸
素量の燃焼排ガスを用いて次段の接触燃焼が行わ
れ、また更にその次段の接触燃焼が更に少ない酸
素量の燃焼排ガスを用いて行われるようにして、
最終的に不活性ガスとして利用される燃焼排ガス
中の酸素量を零に近づけるようにしたものであ
る。またこれに加えて繰返し行われる燃焼排ガス
の燃焼により未燃成分の燃焼が行われるようにし
て、不純物の少ない不活性ガスを得るようにした
ものである。即ち空気中の含有酸素を1箇の接触
燃焼装置により全量消費されるように燃料を供給
したときには、燃焼装置内が高温になり過ぎて破
損し、また触媒も温度的に耐えられなくなると同
時に、燃料濃度が爆発限界内に入つて炎燃焼とな
り、窒素酸化物などの燃焼生成物が生成される
が、前段の燃焼排ガスを用いて繰返し燃焼させる
ようにすれば、上記のような各種の悪条件を克服
して不活性ガスとして利用される燃焼ガス中の酸
素量、その他の不純物を零に近づけうる効果があ
る。第2表はLPGを燃料として3段の接触燃焼
により得られた燃焼排ガスの組成を示す一例であ
つて、第1表と対比して明らかなように、2酸化
炭素、水が稍増すのみで酸素その他の不純ガスは
零、または大巾に減少し不活性ガスとして充分利
用できることを示している。 次に第1図に示す実施例図を用いて本発明を具
体的に説明する。第1図においてAは第1接触燃
焼装置、1はその第1混合器で、ブロワー1aに
より空気導入管1bを介して送り込まれる燃料と
を濃度が爆発限界外となるように完全に混合す
る。この場合接触燃焼に当つては予熱しておくこ
とが望ましく、その熱源として例えば以下に説明
する熱交換器を利用するのがよい。またこの場合
予熱温度が600℃以上になると、局部的に燃料濃
度が爆発限界内に入つて、窒素酸化物のような撚
焼生成物を生成するので、600℃以下にすること
が望ましい。2は第1接触燃焼器であつて例えば
第2図に示す断面図のように、格子状断面をもつ
触媒が内蔵され、こゝを予熱混合気が通過すると
き無炎の接触燃焼が行われ、かつ1000℃以上の温
度で燃焼が行われる。3は第1熱交換気であつ
て、燃焼ガスから熱エネルギーを回収する。Bは
第2接触燃焼装置、4はその第2混合器であつ
て、第1熱交換器3を通過した燃焼ガスと燃料導
入管4cによる燃料とを爆発限界外となるように
混合し、また混合気を600℃以下の温度になるよ
う第1熱交換器3で調節する。5は第2接触燃焼
器、6は第2熱交換器で、接触燃焼により得られ
た燃焼ガスの熱エネルギーを回収する。Cは第3
接触燃焼装置、7は第3混合器で燃料導入管7a
による燃料と前段の第2熱交換器6を通つた燃焼
排ガスとを爆発限界外となるように混合し、また
600℃以下の温度になるよう第2熱交換器6にて
調節する。8は第3接触燃焼器、9は第3熱交換
器で、その燃焼ガスは取出管10に送られる。 以上の説明から明らかなように、本発明によれ
ば必要な温度の不活性ガスを容易に得ることがで
き、しかも必要な温度の熱エネルギーの回収が容
易である。
[Table] At this rate, it is difficult to use combustion gas as an inert gas. For example, attempts have been made to pass this combustion gas through water to remove water-soluble gases such as carbon monoxide, but this method is still far from being useful as an inert gas. In addition, in the method using a burner, it is difficult to adjust the combustion gas temperature without causing incomplete combustion. Therefore, it is difficult to obtain combustion gas at the required temperature and recover thermal energy at the required temperature, and a decrease in thermal efficiency cannot be avoided. The present invention provides a manufacturing method that can efficiently recover thermal energy at the required temperature from combustion gas while extracting combustion exhaust gas as an inert gas containing little impurity gas such as oxygen, thereby preventing pollution based on nitrogen oxides, etc. This design allows for effective use of thermal energy. Next, the details will be explained using the drawings. The features of the present invention are as follows. The first method is to set the fuel concentration outside the explosion limit (the explosion limit is sometimes called the flammability limit, and according to this expression, it is within the flammability limit in the case of the burner method), and to conduct catalytic combustion using a catalyst. The first feature is that it is passed through an apparatus and burned at a high enough temperature, for example, 1000° C. or higher, to promote the oxidation reaction. The second feature is that catalytic combustion devices are installed in multiple stages, and in the second stage, fuel is mixed with the combustion exhaust gas from the previous stage to repeatedly perform catalytic combustion in the same manner. This system is designed to provide the desired effect and to extract inert gas with less impurity gas while efficiently recovering thermal energy. That is, the first is that by keeping the fuel concentration outside the explosive limit and contacting the catalyst,
By performing flameless combustion at a high temperature, for example, 1000°C or higher, it is possible to prevent the creation of a combustion environment where nitrogen oxides are easily produced, as in the case of flaming combustion using the burner, and to suppress the production of nitrogen oxides. This is what I did. Secondly, in catalytic combustion, the catalytic combustion temperature can be easily adjusted by adjusting the mixture ratio of air and fuel. Therefore, by using catalytic combustion, it is possible to obtain combustion gas at the required temperature and recover thermal energy at the required temperature without causing incomplete combustion as in the burner method, improving thermal efficiency. The high-temperature combustion suppresses the remaining unburned hydrocarbons and the generation of impure gases such as carbon monoxide and hydrogen due to incomplete combustion. Thirdly, by using multiple catalytic combustion devices and mixing fuel into the combustion exhaust gas from the first stage to repeatedly perform flameless combustion at high temperatures, the amount of oxygen in the air consumed by the first stage combustion can be reduced. The next stage of catalytic combustion is performed using a combustion exhaust gas with a smaller amount of oxygen, and the next stage of catalytic combustion is performed using a combustion exhaust gas with an even smaller amount of oxygen,
This is designed to bring the amount of oxygen in the combustion exhaust gas, which is ultimately used as an inert gas, close to zero. In addition to this, unburned components are combusted by repeated combustion of the combustion exhaust gas, thereby obtaining an inert gas with less impurities. In other words, when fuel is supplied so that all the oxygen contained in the air is consumed by one catalytic combustion device, the inside of the combustion device becomes too high and is damaged, and at the same time, the catalyst becomes unable to withstand the temperature. When the fuel concentration falls within the explosive limit, flame combustion occurs and combustion products such as nitrogen oxides are produced. However, if the combustion exhaust gas from the previous stage is used for repeated combustion, various adverse conditions such as those mentioned above can be avoided. This has the effect of overcoming this and bringing the amount of oxygen and other impurities in the combustion gas used as an inert gas close to zero. Table 2 shows an example of the composition of combustion exhaust gas obtained by three-stage catalytic combustion using LPG as fuel.As is clear from Table 1, carbon dioxide and water only slightly increase. Oxygen and other impurity gases are reduced to zero or significantly, indicating that they can be fully utilized as inert gases. Next, the present invention will be specifically explained using the embodiment diagram shown in FIG. In FIG. 1, A is a first catalytic combustion device, and 1 is its first mixer, which completely mixes the fuel fed by a blower 1a through an air introduction pipe 1b so that the concentration is outside the explosion limit. In this case, it is desirable to preheat the catalytic combustion, and it is preferable to use, for example, a heat exchanger as described below as the heat source. In this case, if the preheating temperature exceeds 600°C, the fuel concentration will locally fall within the explosion limit and produce twisting products such as nitrogen oxides, so it is desirable to keep the preheating temperature below 600°C. Reference numeral 2 denotes a first catalytic combustor, which has a built-in catalyst with a lattice-like cross section, as shown in the cross-sectional view of FIG. 2, and flameless catalytic combustion occurs when the preheated mixture passes through this. , and combustion takes place at a temperature of 1000℃ or higher. 3 is the first heat exchange gas, which recovers thermal energy from the combustion gas. B is a second catalytic combustion device, and 4 is its second mixer, which mixes the combustion gas that has passed through the first heat exchanger 3 and the fuel from the fuel inlet pipe 4c so as to be outside the explosion limit; The first heat exchanger 3 adjusts the air-fuel mixture to a temperature of 600°C or less. 5 is a second catalytic combustor, and 6 is a second heat exchanger, which recovers the thermal energy of the combustion gas obtained by catalytic combustion. C is the third
Catalytic combustion device, 7 is a third mixer and a fuel introduction pipe 7a
The fuel produced by
The second heat exchanger 6 adjusts the temperature to 600°C or less. 8 is a third contact combustor, 9 is a third heat exchanger, and the combustion gas thereof is sent to an extraction pipe 10. As is clear from the above description, according to the present invention, inert gas at a required temperature can be easily obtained, and thermal energy at a required temperature can be easily recovered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例系統図、第2図は触
媒の一例を示す断面図である。 A……第1接触燃焼装置、1……第1混合器、
1a……空気ブロワー、1b……空気導入管、1
c……燃料導入管、2……第1接触燃焼器、3…
…第1熱交換器、B……第2接触燃焼器、4……
第2混合器、4a……燃料導入管、5……第2接
触燃焼器、6……第2熱交換器、C……第3接触
燃焼装置、7……第3混合器、7a……燃料導入
管、8……第3接触燃焼器、9……第3熱交換
器、10……不活性ガス取出管。
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a catalyst. A...first catalytic combustion device, 1...first mixer,
1a...Air blower, 1b...Air introduction pipe, 1
c... Fuel introduction pipe, 2... First contact combustor, 3...
...First heat exchanger, B...Second catalytic combustor, 4...
Second mixer, 4a...Fuel introduction pipe, 5...Second catalytic combustor, 6...Second heat exchanger, C...Third catalytic combustion device, 7...Third mixer, 7a... Fuel introduction pipe, 8...Third contact combustor, 9...Third heat exchanger, 10...Inert gas extraction pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒を備えた接触燃焼装置を複数段設け、第
1段の接触燃焼装置には燃料濃度が爆発限界外と
なるように含酸素気体と燃料との混合気を通して
無炎燃焼させ、第2段以下の接触燃焼装置におい
てはそれぞれ前段の燃焼排ガスに爆発限界外とな
るように燃料を混合した混合気による無炎燃焼を
順次行わせて、燃焼排ガス中の含有酸素量を順次
減少させ、燃焼排ガスを含有酸素量の少ない不活
性ガスとして取出しうるようにしたことを特徴と
する接触燃焼による不活性ガス製造方法。
1 Multiple stages of catalytic combustion devices equipped with catalysts are provided, and a mixture of oxygen-containing gas and fuel is passed through the first stage catalytic combustion device so that the fuel concentration is outside the explosive limit, and flameless combustion is performed. In each of the following catalytic combustion devices, flameless combustion is performed sequentially using a mixture of fuel mixed with the combustion exhaust gas in the previous stage so that it is outside the explosion limit, and the amount of oxygen contained in the combustion exhaust gas is gradually reduced. A method for producing an inert gas by catalytic combustion, characterized in that it can be extracted as an inert gas with a low oxygen content.
JP9636681A 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion Granted JPS58241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9636681A JPS58241A (en) 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9636681A JPS58241A (en) 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion

Publications (2)

Publication Number Publication Date
JPS58241A JPS58241A (en) 1983-01-05
JPH0114806B2 true JPH0114806B2 (en) 1989-03-14

Family

ID=14162974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9636681A Granted JPS58241A (en) 1981-06-22 1981-06-22 Production of inert gas by catalytic combustion

Country Status (1)

Country Link
JP (1) JPS58241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975717A (en) * 2010-10-18 2011-02-16 南京工业大学 Combustible gas explosion limit test system in non-standard state

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127648A (en) * 1983-01-08 1984-07-23 Ngk Insulators Ltd Preparation of gas containing oxygen in low concentration
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon
CN109323443B (en) * 2017-07-31 2024-04-12 芜湖美的厨卫电器制造有限公司 Gas water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975717A (en) * 2010-10-18 2011-02-16 南京工业大学 Combustible gas explosion limit test system in non-standard state

Also Published As

Publication number Publication date
JPS58241A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
JP6257724B2 (en) Multistage combustor and method for starting a fuel cell system
JP5051974B2 (en) System and method for simultaneously generating hydrogen and electricity
RU2436974C2 (en) IMPROVED SYSTEMS AND PROCEDURES FOR REDUCED EMISSIONS OF NOx
CA1100179A (en) Fuel cell power plant and method for operating the same
US5224334A (en) Low NOx cogeneration process and system
EP0281144B1 (en) Oxygen enriched combustion
KR100260461B1 (en) Method for combined generation of synthesis gas and power
US4197701A (en) Method and apparatus for combusting carbonaceous fuel
JPH06507957A (en) Methods and systems for burning hydrocarbon fuels
JP2001509878A (en) Power generation process including combustion process
EP0611433A1 (en) LOW NO x? COMBUSTION PILOTED BY LOW NO x? PILOTS.
EP1269006A1 (en) Gas powered engine having improved emissions
JPH0114806B2 (en)
US9957888B2 (en) System for generating syngas and an associated method thereof
JP2019528418A (en) Thermochemical heat storage with fuel addition
GB1571809A (en) Method and apparatus for combusting cabronaceous fuel
JPH0151722B2 (en)
EP4310397A1 (en) Furnace operation method
RU2794914C1 (en) Method of obtaining thermal energy
EP4361095A1 (en) Method and apparatus for providing heat
WO2024039828A1 (en) Method for heating a reformer with an ammonia-fired burner producing a stable flame
JPH04268108A (en) Multiple-stage catalytic combustion apparatus with built-in start-up means
JPH0674125B2 (en) CO Rich Gas Production Method
JP2005325322A (en) Energy recovery method of reducing gasified wood biomass
RU2078284C1 (en) Method of burning fuel