JPS59127648A - Preparation of gas containing oxygen in low concentration - Google Patents

Preparation of gas containing oxygen in low concentration

Info

Publication number
JPS59127648A
JPS59127648A JP75883A JP75883A JPS59127648A JP S59127648 A JPS59127648 A JP S59127648A JP 75883 A JP75883 A JP 75883A JP 75883 A JP75883 A JP 75883A JP S59127648 A JPS59127648 A JP S59127648A
Authority
JP
Japan
Prior art keywords
gas
oxygen
oxygen concentration
raw material
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP75883A
Other languages
Japanese (ja)
Other versions
JPS6259972B2 (en
Inventor
Yasushi Fujita
藤田 恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP75883A priority Critical patent/JPS59127648A/en
Publication of JPS59127648A publication Critical patent/JPS59127648A/en
Publication of JPS6259972B2 publication Critical patent/JPS6259972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Industrial Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To prepare atmospheric gas containing oxygen in low concn., by passing a gaseous mixture of reducing fuel and oxygen-containing stock gas through an oxidizing catalyst while controlling the flow amounts of both components to perform catalytic combustion. CONSTITUTION:Reducing fuel 1 such as H or CO and stock gas 2 containing oxygen in predetermined concn. are introduced into a mixer 5 respectively through a flow controller 3 and a stock gas flow amount controller 4 and, after mixing, the gaseous mixture is introduced into an oxidizing catalyst zone 6 prepared by supporting a catalyst metal such as platinum or rhodium by a carrier to subject the reducing fuel 1 to catalytic combustion. On the other hand, the oxygen concn. in the formed combustion exhaust gas is detected by a detector 7 and the obtained signal is connected to the fuel flow amount controller 3 of the reducing fuel 1 and the stock gas flow amount controller 4 through a controller 8. Therefore, atmospheric gas containing a constant amount of oxygen can be produced.

Description

【発明の詳細な説明】 本発明は、低濃度の酸素を含有する雰囲気ガスの製造法
に関するものであり、さらに詳しくは酸素含肩゛童が5
0 U Oppm以下のほぼ一定濃度の酸素を含む低酸
素濃度含有ガスの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an atmospheric gas containing a low concentration of oxygen, and more specifically, the present invention relates to a method for producing an atmospheric gas containing a low concentration of oxygen.
The present invention relates to a method for producing a low oxygen concentration gas containing oxygen at a substantially constant concentration of 0 U Oppm or less.

従来、酸素の存在を嫌う金属等の処理を行う焼成炉や電
子部品等を扱う焼成炉においては、酸素を全く含まない
ガスあるいはわずかの酸素しか含まない低酸素濃度ガス
が不可欠のものである。
BACKGROUND ART Conventionally, in firing furnaces that process metals and the like that dislike the presence of oxygen, and in firing furnaces that handle electronic parts and the like, a gas containing no oxygen at all or a low oxygen concentration gas containing only a small amount of oxygen is indispensable.

このような雰囲気焼成炉に使用される低酸素濃度ガスを
得る方法としては、一般にチッ素ガスなどのイナートガ
スをガスボンベより供給するか、アンモニアガスを分解
したガスを用いるかあるいは液体チッ素などを気化して
得られたガスを用いる等の方法が知られている。
Generally speaking, the low oxygen concentration gas used in such an atmosphere firing furnace is obtained by supplying an inert gas such as nitrogen gas from a gas cylinder, using a gas obtained by decomposing ammonia gas, or using gas such as liquid nitrogen gas. Methods such as using a gas obtained by oxidation are known.

しかしながら、工業的な大型雰囲気焼成炉には大型のこ
のようなガスを使用するので、これらガスの維持管理に
大変な労力を要するとともに価格的にも極めて高価とな
る欠点があった。
However, since large scale gases of this kind are used in industrial large-scale atmosphere firing furnaces, they have the drawback that maintenance and management of these gases requires a great deal of effort and is extremely expensive.

本発明は従来のこのような欠点を解決した高純度の低酸
素濃度含有ガスを大量に安価に製造する方法−に関する
ものであり、低濃度の酸素を含有する雰囲気ガスの製造
法において、水素、−酸化炭素” n’2n T Cn
H2n+2 (但しn≦4)の少なくとも一柚より成る
還元燃料を所定濃度の酸素を含む原料ガスの存在下で触
媒燃焼させ、該触媒燃焼により生成するガス中の酸素濃
度を検出しその検出値に応じて前記還元燃料量を制御す
るか、あるいは還元燃料を一定量供和しつつ原料カス流
量を制御して酸素濃度が低濃度ではは一定の丞囲気カス
を生成することを特徴とする低敞累濃度含肩カスの製造
法である。
The present invention relates to a method for producing a high-purity, low-oxygen-containing gas in large quantities at low cost, which solves the above-mentioned drawbacks of the conventional methods. -Carbon oxide” n'2n T Cn
H2n+2 (however, n≦4) reduced fuel consisting of at least one citron is catalytically combusted in the presence of a raw material gas containing oxygen at a predetermined concentration, the oxygen concentration in the gas produced by the catalytic combustion is detected, and the detected value is The method is characterized in that the amount of reduced fuel is controlled accordingly, or the flow rate of raw material waste is controlled while supplying a constant amount of reduced fuel, so that a constant amount of ambient air waste is generated when the oxygen concentration is low. This is a method for producing scum with cumulative concentration.

なお、本発明における触媒燃焼とは空気をはじめとする
含酸素原料ガスと還元燃料の混合気を酸化触媒に通し、
触媒作用により還元燃料を燃焼することをいう。
In addition, catalytic combustion in the present invention refers to passing a mixture of oxygen-containing raw material gas such as air and reduced fuel through an oxidation catalyst,
This refers to the combustion of reduced fuel through catalytic action.

本発明の更に評しい構成を一具体例を示す第14.・図
に基づいて説明する。
Section 14 shows a specific example of a more favorable configuration of the present invention.・Explain based on diagrams.

H、Co等の還元燃料あるいはCnH2n l CnH
2n+4(但しn≦4)等で表わされるメタンガス、エ
タンカス、プロパンガス、ブタンカス等のW元ffi料
1の少なくとも1種と、好ましくは数%の酸素を含む原
料ガス2とをそれぞれ燃料゛流量調節計3および原料ガ
ス流風# Wb it 4を通じて混合器5中に導入し
、混合した後、白金、ロジウム、ニッケル。
Reducing fuel such as H, Co or CnH2n l CnH
At least one of the W source materials 1 such as methane gas, ethane gas, propane gas, and butane gas represented by 2n+4 (where n≦4), etc., and a raw material gas 2 preferably containing several percent of oxygen are adjusted in fuel flow rate. 3 and the raw material gas stream # Wbit 4 are introduced into the mixer 5 and mixed, and then platinum, rhodium, and nickel.

コバルト、鉄、銅等の触媒金属をハニカム状、ペレット
状、プレート状等の好ましくはセラミック質の触媒担体
に相持した酸化触媒帯6に導入して還元燃料lを触媒燃
焼させる。そしてその触媒燃gεにより生成した燃焼排
ガス中の酸素濃度を固体寛解貿あるいはその他の酸素濃
度検出器7で検出する。そして酸素濃度検出器7で検出
された排ガ1.。
A catalytic metal such as cobalt, iron, or copper is introduced into an oxidation catalyst zone 6 supported on a preferably ceramic catalyst carrier in the form of a honeycomb, pellet, plate, etc., and the reduced fuel 1 is catalytically combusted. Then, the oxygen concentration in the combustion exhaust gas generated by the catalytic fuel gε is detected by a solid-state gas detector or other oxygen concentration detector 7. Then, the exhaust gas 1 detected by the oxygen concentration detector 7. .

ス中の酸素濃度に対応する電気信号を調節器8を通じて
還元燃料1の燃料流量調節計8および原料ガス流量調節
計4に接続する。
An electric signal corresponding to the oxygen concentration in the gas is connected to the fuel flow rate controller 8 of the reduced fuel 1 and the raw material gas flow rate controller 4 through the regulator 8.

そして、触媒燃焼により生成した燃焼排ガス中の酸素#
度が所望の酸素濃度にほぼ一致するよう7.1調節計8
を通じて還元燃料lの流量を燃料流量調節計8で制御す
るか、又は還元燃料の流量を一定にしておいて原料ガス
の流量を原料ガス流量調節計4で制御することによって
、5oooppm好ましくは500 ppm以下のほぼ
一定の酸累を含有する雰囲気ガスを製造する低版紫濃度
含有カスの製造法である。
And oxygen # in the combustion exhaust gas generated by catalytic combustion
7.1 Controller 8 so that the oxygen concentration approximately matches the desired oxygen concentration.
By controlling the flow rate of the reduced fuel l with the fuel flow rate controller 8 or by keeping the flow rate of the reduced fuel constant and controlling the flow rate of the raw material gas with the raw material gas flow rate controller 4, it is possible to reduce the flow rate to 500 ppm, preferably 500 ppm. This is a method for producing a low-purple-containing scum by producing an atmospheric gas containing a substantially constant acid concentration as described below.

なお、第1図に示す例においては酸化触媒帯6は1個の
例を示したか、原料ガス中に含まれる酸素濃度が11%
以上あるいは原料ガスが空気の場合には、酸素濃度を5
000 ppm以下に低減ずべくyi、科ガス中に還元
燃料を添加した時・触媒の上流においてその九金気に増
大することがあり、酸素濃度の制御が不能になることか
あるので、燃焼用触媒を多段にし、段階的に酸素濃度を
低減させることが望ましく第2図に示すように酸化触媒
帯6は直列に複数個並べ、段階的に燃料の燃焼をくりか
えしガス中に含まれる酸素濃度を誠少し、最終的に所定
のr−jl!c素濃度全濃度ようにすることが好ましい
In addition, in the example shown in FIG. 1, the number of the oxidation catalyst zone 6 is one, or the oxygen concentration contained in the raw material gas is 11%.
or above, or if the raw material gas is air, the oxygen concentration is 5
However, when reducing fuel is added to the oxygen gas, the oxygen concentration may increase upstream of the catalyst, making it impossible to control the oxygen concentration. It is desirable to reduce the oxygen concentration in stages by using a multi-stage catalyst.As shown in Fig. 2, multiple oxidation catalyst zones 6 are arranged in series, and the combustion of fuel is repeated in stages to reduce the oxygen concentration in the gas. Makoto, finally the predetermined r-jl! It is preferable that the total c element concentration be the same.

なお、この場合は明示するように各種流量調節を計3,
4および四合楠5も同様に設け、還元燃料および原料ガ
スは1段目のものに接続する。また、第2図に示すよう
に触媒燃焼により得られた高温カスと酸素を含む原料カ
スとを熱交換器9で熱交う侠して、j京料カスを予熱す
ることも極めて有効なことである。なお、本5e明にお
いて原料ガス中に添加する還元燃料がCnH2n+2あ
るいはCnH2n (但しn≦4)て表わされる炭化水
素系燃料の場合、その炭素数か4を越えると原料ガス中
の酸素濃度1゛の変動に対して添加する還元燃料制御が
難しくなり安定した酸素濃度のガスを製造することが困
難となる。
In addition, in this case, as shown clearly, various flow rate adjustments are made in total 3,
4 and 5 are similarly provided, and the reducing fuel and raw material gas are connected to the first stage. In addition, as shown in Figure 2, it is extremely effective to preheat the raw material waste by exchanging heat with the high-temperature waste obtained by catalytic combustion and the raw material waste containing oxygen in a heat exchanger 9. It is. In addition, in this 5e specification, if the reducing fuel added to the raw material gas is a hydrocarbon fuel expressed as CnH2n+2 or CnH2n (however, n≦4), if the number of carbon atoms exceeds 4, the oxygen concentration in the raw material gas will be 1゛. It becomes difficult to control the amount of reducing fuel added in response to fluctuations in oxygen concentration, making it difficult to produce gas with a stable oxygen concentration.

また、本発明における原料カスとしてG1全気をはじめ
通′にのバーナー燃焼によって排出されるおト1゛カス
を用いることかできる。しかしながら、バーナー燃焼排
ガスは鴛累酸化物を多く含んでおり、大量のガスを扱う
場合には、公舎の問題が生じることもあり、このような
場合には原料カスとして空気を用いることか皇ましい。
Further, as the raw material waste in the present invention, waste gas discharged through regular burner combustion, including G1 whole gas, can be used. However, burner combustion exhaust gas contains a large amount of sulfur oxide, and when dealing with a large amount of gas, problems may arise in public buildings. stomach.

また、原料ガス、ダスト、塵などを含んでいる場合、本
、発明による製造ガスにもこれらダスト。
In addition, if the raw material gas contains dust, dust, etc., the produced gas according to the present invention also contains these dusts.

胎などが同伴されるが、ダスト、展などを含まない清浄
な雰囲気が要求される電子部品などの焼成炉gvJ3気
カスとして使用する場合にはあらかじめ原料ガス中のダ
スト、踏などを除去しておくことが望ましい。更に原料
ガス中に)is 、 C12が含まれる場合も、製造ガ
スの用途に応じ、あらかじめ除去しておくことが望まし
い。
If the furnace is used as a sintering furnace for electronic parts, etc., which requires a clean atmosphere free of dust and dirt, remove dust and dirt from the raw material gas in advance. It is desirable to leave it there. Furthermore, even if the raw material gas contains C12 and C12, it is desirable to remove them in advance depending on the intended use of the produced gas.

また、還元燃料を触媒燃焼させるためには、流入する原
料ガスと還元燃料の混合ガス温度が少なくとも200”
C以上になっていることか好ましく、従って第2図にボ
すとおり触媒燃焼した排カスの熱を熱交侠益9により回
収し、この熱を燃焼用触媒に流入する含酸素原料ガスの
予熱に利用することにより、本発明のカス製造法におけ
る熱効率を上げることができる。
In addition, in order to catalytically burn the reduced fuel, the temperature of the mixed gas of the inflowing raw material gas and reduced fuel must be at least 20".
It is preferable that the temperature is higher than C. Therefore, as shown in Fig. 2, the heat of the catalytically burned exhaust gas is recovered by the heat exchanger 9, and this heat is used to preheat the oxygen-containing raw material gas that flows into the combustion catalyst. By utilizing it, the thermal efficiency in the dregs production method of the present invention can be increased.

次に不発明の実施例について説明する。Next, a non-inventive embodiment will be described.

800°Cに予熱された空気を原料ガ、、スとし、これ
に還元燃料としてメタンガスおよびプロパンガスをそれ
ぞれ用い、第2図に示すように2基直列に並べた酸化触
媒@6,6を通過させて触媒燃焼させた。
Air preheated to 800°C is used as a raw material gas, and methane gas and propane gas are used as reducing fuels, respectively, and the mixture passes through two oxidation catalysts arranged in series as shown in Figure 2. This caused catalytic combustion.

この場合の触媒は、ハニカム状に成形されたムライト質
担体にアルミナ層を50μのN厚で拒持し、2旭嵐%の
白金を含浸し、た酸化触媒を使用した。そして触媒帯の
ガス流速Svを2 X 10”/Hrとした。
The catalyst used in this case was an oxidation catalyst prepared by impregnating a honeycomb-shaped mullite carrier with an alumina layer of 50 μm thick and impregnated with 2% Asahi Arashi platinum. The gas flow rate Sv in the catalyst zone was set to 2×10”/Hr.

また各々℃触媒における燃焼ガス中の酸素濃度を磁気ダ
ンベル式酸素検知器7にて検出し、同段触媒においては
燃焼ガス中酸累#度を10.5%に味つように還元燃料
の供鞄諷を第1枚の触媒帯6のロリの流風調節計8にて
制御し、続いて後段触媒において燃焼ガス中酸素濃度を
200 ppmに保つように還元燃料の供紛駕を第2段
の触媒帯6の削の混合体5にて混合するよう第2の流量
調節計3にて制御した。得られた製造カースの酸素濃度
とその安定性を調べた結果は第1衣の如くであった。
In addition, the oxygen concentration in the combustion gas at each °C catalyst is detected by a magnetic dumbbell oxygen detector 7, and reducing fuel is supplied to the catalyst at the same stage so that the acid concentration in the combustion gas is 10.5%. The flow rate is controlled by the air flow controller 8 of the first catalyst zone 6, and then the reduction fuel is supplied to the second stage so as to maintain the oxygen concentration in the combustion gas at 200 ppm in the second stage catalyst. The mixture was controlled by the second flow rate controller 3 so as to be mixed in the mixture 5 of the catalyst zone 6. The results of examining the oxygen concentration and stability of the obtained manufactured casta were similar to those of the first case.

、実施例 2 実施例1と同様に2基直列に並べた触媒反応帯6.6を
壽用いa o o ”cに予熱された空気よりなる原料
ガスと還元燃料としての一定量のプロパンガスとの混合
物を通過さ仕、原料ガスの流量を制御しながら触媒燃焼
を、行った。この場合、触媒としては実施例1と同じ触
媒を使用した。そして原料ガスである空気の流氷を20
〜a o Nm8/u□の範囲で変化させることができ
る螺節計を通して、その空気に11 N17gのプロパ
ンガスを添加混合して前段触媒帯に通しは砥jOVo/
%の酸素を含む燃焼ガスを作り、次いでこの燃焼ガスに
1 (I N17gのプロパンカスをか加して後段触媒
帯6より触媒燃焼させ、その燃焼1ス中の酸素濃度を磁
気ダンベル式酸素検知器にて検出し酸素濃度が200p
pmになるように後段の触媒帯の前の原料ガス流量調節
計の開度を変化させ原料ガス重を変化させた。このよう
に製造したガスの酸素濃度とその安定性を調べた結果は
第2表の如くであった。
, Example 2 As in Example 1, two catalytic reaction zones 6.6 were arranged in series, and a raw material gas consisting of air preheated to ao o "c, a certain amount of propane gas as a reducing fuel, and catalytic combustion was carried out while controlling the flow rate of the raw material gas. In this case, the same catalyst as in Example 1 was used as the catalyst.
11N17g of propane gas is added to the air through a screw meter that can be changed in the range of ~a o Nm8/u□, and the mixture is passed through the front catalyst zone using a grinder.
Next, 17g of propane gas was added to this combustion gas and catalytically burned from the rear catalyst zone 6, and the oxygen concentration in the combustion gas was measured using a magnetic dumbbell oxygen detector. The oxygen concentration was detected at 200p.
The raw material gas weight was changed by changing the opening degree of the raw material gas flow rate controller in front of the catalyst zone in the latter stage so that the raw material gas weight became pm. The results of examining the oxygen concentration and stability of the gas produced in this manner are shown in Table 2.

第2表 実施例 3 プロパンガスを通常のガスバーナーで燃焼した1〜11
 VOI%の酸素を含む温度が300“Cの排ガスを原
料ガスとし、還元燃料として水素、−酸化炭素、メタン
、エチレン、プロパン、ブチレン。
Table 2 Example 3 1 to 11 in which propane gas was burned with a normal gas burner
Exhaust gas containing VOI% oxygen and having a temperature of 300"C is used as a raw material gas, and hydrogen, carbon oxide, methane, ethylene, propane, and butylene are used as reducing fuel.

ブタンを各々別個に深謝して、ハニカム状に成形された
ムライト質担体にアルミナ増を50μの層厚で担持し、
2恵滅%の白金を含浸したn・化触媒を使用して第1図
に示すような装置を用いて5V−200001/)i□
 にて触媒燃焼させた。そして触媒・燃焼後の排ガス中
酸素濃度すなわち製造ガス中の酸素濃度をMi気ダンベ
ル式酸素検知体にて検出し、酸素濃度を300 ppm
に保つように遠九燃料供給鴬を流風F8節計にて制御し
得られる製造ガスの酸素濃度とその安定性を調べた結果
は第8表の如くであった。また比較例として通常のガス
量く一ナーを使用しプロパンガスと空気の燃焼比を1.
0にして低酸素濃度燃焼した場合に得られる排ガス中の
酸素濃度も比lX測定した。
Butane was separately added to each layer, and alumina was supported on a mullite carrier formed into a honeycomb shape with a layer thickness of 50 μm.
5V-200001/)i
catalytic combustion was carried out. Then, the oxygen concentration in the exhaust gas after catalyst/combustion, that is, the oxygen concentration in the manufactured gas, was detected using a Mi air dumbbell type oxygen detector, and the oxygen concentration was determined to be 300 ppm.
Table 8 shows the results of examining the oxygen concentration and stability of the produced gas obtained by controlling the Tonkyu fuel supply unit using a flow wind F8 meter so as to maintain the same temperature. As a comparative example, a normal gas volume regulator was used and the combustion ratio of propane gas and air was set to 1.
The oxygen concentration in the exhaust gas obtained when combustion was performed at a low oxygen concentration was also measured.

第3表 1.0    水   素   300     4〕
、〇  −酸化炭素   8004 1.0      メ  タ  ン      300
          41.0   プロパン  30
08 1.0   ブチレン  3003 1.0    ブ  タ  ン     300   
     35〜7 −酸化炭素   300    
 85〜7 エチレン  3006 5〜7 プロパン  8006 10〜11  プロパン  ’a o o     1
0、実施例 4 プロパンガスを通常のガスバーナーにて燃焼し、その排
ガス中の酸素濃度が1.VOZ%からavoz%まで周
期的に変化する熱交換によって予熱された温度がaoo
”cの排ガスを原料ガスとし、第1図に示すような燃焼
触媒を1個とした触姪帯に流し、触媒燃焼後の製造ガス
中赦累濃度か200 ppmになるように触媒に供祁す
るプロパンガス量を制御し、得られた製造ガス中の酸素
濃度とその安定性を調べた結果は第4表の如くであった
。ここで触媒は実施例3と同じ2電量%白金触媒をSV
 −20000141で使用した。また酸素濃度は磁器
ダンベル式酸素検知器を便用し、プロパンガス供紺猷は
酸素検知器と連動した原意藺節計にて行った。
Table 3 1.0 Hydrogen 300 4]
,〇 -Carbon oxide 8004 1.0 Methane 300
41.0 Propane 30
08 1.0 Butylene 3003 1.0 Butane 300
35-7 - carbon oxide 300
85~7 Ethylene 3006 5~7 Propane 8006 10~11 Propane 'a o o 1
0. Example 4 Propane gas is burned in a normal gas burner, and the oxygen concentration in the exhaust gas is 1. The temperature preheated by heat exchange which changes periodically from VOZ% to avoz% is aoo
The exhaust gas of ``c'' was used as a raw material gas, and was passed through a probe belt containing one combustion catalyst as shown in Figure 1, and fed to the catalyst so that the cumulative concentration in the produced gas after catalytic combustion was 200 ppm. The results of controlling the amount of propane gas and examining the oxygen concentration and stability in the produced gas are shown in Table 4.Here, the same 2 coul% platinum catalyst as in Example 3 was used as the catalyst. S.V.
-20000141 was used. Oxygen concentration was measured using a porcelain dumbbell oxygen detector, and propane gas was supplied using a meter linked to the oxygen detector.

第  4 表 1          2oo           
 105           200       
     830           2(+0  
          2以上説明したように、本発明に
よれは低酸素濃度でかつ酸素濃度が安定した雰囲気ガス
を容易に安価に製造することができる。
4th table 1 2oo
105 200
830 2 (+0
As explained above, according to the present invention, an atmospheric gas having a low oxygen concentration and a stable oxygen concentration can be easily and inexpensively produced.

そして木兄嬰により製濁されたガスは、各種焼成炉等の
雰囲気を形成するためのイナートカ゛スとして使用する
ことかでき、従来のガスボンベからガスを供給する方式
に比べて維持管理が容易となり小規模なシステムで大量
の低順なガスを安定に供給することができるので、工業
的に極めて有効なガス製造方法である。
The gas turbidly produced by Muen-Ying can be used as an inert gas to create the atmosphere in various firing furnaces, etc., and maintenance is easier compared to the conventional method of supplying gas from gas cylinders. It is an industrially extremely effective gas production method because it can stably supply a large amount of low-grade gas with a simple system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガス製造法の一興体例のフローを示す
説明図、第2図は本りわ明の異なる具体例のフローを示
す説明図である。 ■・・・還元燃料、2・・・含醗累原料ガス、3・・・
還元l)燃料流社調節計、4・・・原料ガス流量調節計
、5・・・混合器、6・・・酸化触W&帯、7・・・酸
素濃度検知器、8・・・調節器、9・・・熱交換益。
FIG. 1 is an explanatory diagram showing the flow of one example of the gas production method of the present invention, and FIG. 2 is an explanatory diagram showing the flow of a different specific example of the present invention. ■... Reducing fuel, 2... Enriched raw material gas, 3...
Reduction l) Fuel flow controller, 4... Raw material gas flow rate regulator, 5... Mixer, 6... Oxidation catalyst W&band, 7... Oxygen concentration detector, 8... Regulator , 9... Heat exchange gain.

Claims (1)

【特許請求の範囲】 1 低濃度の酸素を含有する雰囲気ガスの製造法におい
て、水素、−酸化炭素I CnH2111CnHsn+
g <但しn≦4)の少なくとも一種より成る還元燃料
を所定濃度の酸素を含む原料ガスの存在下で触媒燃焼さ
せ、該触媒燃焼により生成するガス中の酸素濃度を検出
しその検出値に応じて、酸素濃度が低濃度でほぼ一定の
範囲となるよう前記還元燃料量を制御するか、あるいは
還元燃料を一定量供紹しつつ原料ガス原意を制御して、
酸素濃度が所定範囲内でほぼ一定の雰囲気カスを生成す
ることを特徴とする低酸素濃度含有ガスの製造法。 2 還元燃料と原料ガスとを直列に並べられた複数の燃
焼触媒帯を通過させる特許請求の範囲第1項記載の低酸
素m曳含有ガスの製造法。 8、酸素を含む原料ガスを触媒燃焼により得られたガス
と熱交換して予熱する特許請求の範囲第1項又は第2項
記載の低酸素濃度含有ガスの製造法。
[Claims] 1. In a method for producing an atmospheric gas containing low concentration of oxygen, hydrogen, -carbon oxide I CnH2111CnHsn+
g <where n≦4) is catalytically combusted in the presence of a raw material gas containing oxygen at a predetermined concentration, the oxygen concentration in the gas produced by the catalytic combustion is detected, and according to the detected value. Then, the amount of the reducing fuel is controlled so that the oxygen concentration is in a low concentration and approximately constant range, or the source gas principle is controlled while supplying a certain amount of the reducing fuel,
A method for producing a gas containing a low oxygen concentration, which is characterized by generating atmospheric scum with a substantially constant oxygen concentration within a predetermined range. 2. The method for producing a low-oxygen-containing gas according to claim 1, wherein the reduced fuel and raw material gas are passed through a plurality of combustion catalyst zones arranged in series. 8. A method for producing a gas containing low oxygen concentration according to claim 1 or 2, wherein the raw material gas containing oxygen is preheated by heat exchange with gas obtained by catalytic combustion.
JP75883A 1983-01-08 1983-01-08 Preparation of gas containing oxygen in low concentration Granted JPS59127648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP75883A JPS59127648A (en) 1983-01-08 1983-01-08 Preparation of gas containing oxygen in low concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP75883A JPS59127648A (en) 1983-01-08 1983-01-08 Preparation of gas containing oxygen in low concentration

Publications (2)

Publication Number Publication Date
JPS59127648A true JPS59127648A (en) 1984-07-23
JPS6259972B2 JPS6259972B2 (en) 1987-12-14

Family

ID=11482587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP75883A Granted JPS59127648A (en) 1983-01-08 1983-01-08 Preparation of gas containing oxygen in low concentration

Country Status (1)

Country Link
JP (1) JPS59127648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181699A (en) * 2012-03-01 2013-09-12 Bridgestone Corp Method for manufacturing inert gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970893A (en) * 1972-09-22 1974-07-09
JPS58241A (en) * 1981-06-22 1983-01-05 Central Res Inst Of Electric Power Ind Production of inert gas by catalytic combustion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970893A (en) * 1972-09-22 1974-07-09
JPS58241A (en) * 1981-06-22 1983-01-05 Central Res Inst Of Electric Power Ind Production of inert gas by catalytic combustion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181699A (en) * 2012-03-01 2013-09-12 Bridgestone Corp Method for manufacturing inert gas

Also Published As

Publication number Publication date
JPS6259972B2 (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US11820653B2 (en) Method for oxidizing ammonia and system suitable therefor
JP3410582B2 (en) Method and apparatus for generating atmosphere for heat treatment
US20070049489A1 (en) Redox active mass for a chemical looping combustion process
EP2916947B1 (en) A method for the production of hydrogen from a h2s containing gas stream
JP2001517596A (en) Purification of hydrogen
EP2928819B1 (en) Process for sulphur recovery with simultaneous hydrogen production from nh3 and h2s containing feed gas
GB1571810A (en) Method of combusting nitrogen-containing fuels
JPS61283348A (en) Oxidizing catalyst
CN118022775A (en) Catalyst for catalytic oxidative cracking of hydrogen sulfide and simultaneous production of hydrogen
JPH01501139A (en) Dual combustion oxygen-enriched Claus sulfur plant
US3425803A (en) Nitric acid tail gas purification
EP1106239B1 (en) Method for purifying waste gas containing ammonia
EP0866141A1 (en) Process for the generation of a low dew-point, oxygen-free protective atmosphere for the performance of thermal treatments
JPS59127648A (en) Preparation of gas containing oxygen in low concentration
CN109114577B (en) Claus process H2S acid gas catalytic combustion method
KR900012866A (en) Metallization Method of Ceramic and Its Apparatus
JP2005520681A5 (en)
Chernyshov et al. Platinum metals catalytic systems in nitric acid production
KR100667051B1 (en) Two-step catalytic combustion apparatus, combined generation system and method thereof
KR101365799B1 (en) Two-stage prox system with single air injection
Kwon et al. Catalytic Oxidation of CO and CH4 as Well as Mixture of CO and CH4 with Nano and Micro Fe2O3
JPH0472576B2 (en)
CN114950466B (en) Non-noble metal catalyst and preparation method and application thereof
JPH05116915A (en) Production of gaseous nitrogen
US10722843B2 (en) Method and system for catalytic oxidation of a lean H2S stream