JPS63162509A - Removing of oxygen from innert gas - Google Patents

Removing of oxygen from innert gas

Info

Publication number
JPS63162509A
JPS63162509A JP61308558A JP30855886A JPS63162509A JP S63162509 A JPS63162509 A JP S63162509A JP 61308558 A JP61308558 A JP 61308558A JP 30855886 A JP30855886 A JP 30855886A JP S63162509 A JPS63162509 A JP S63162509A
Authority
JP
Japan
Prior art keywords
oxygen
carbon monoxide
gas
methanol
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61308558A
Other languages
Japanese (ja)
Other versions
JPH0579601B2 (en
Inventor
Masahiro Kawano
昌弘 川野
Koichi Fujie
藤江 宏一
Tsutomu Toida
戸井田 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP61308558A priority Critical patent/JPS63162509A/en
Publication of JPS63162509A publication Critical patent/JPS63162509A/en
Publication of JPH0579601B2 publication Critical patent/JPH0579601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To simply remove the oxygen mixed in the inert gas at low temp., by utilizing a catalytic oxidation added with methanol or carbon monoxide. CONSTITUTION:The oxygen mixed in the inert gas is transformed to carbon monoxide and/or carbon dioxide by adding methanol or carbon monoxide and allowing to cause the catalytic oxidation and then removed by absorption. The catalytic oxidation of the methanol with oxygen is carried at about the ordinary temp. -200 deg.C in the presence of a palladium-base catalyst or platinum- base catalyst. Then the catalytic oxidation of carbon monoxide with oxygen is carried at about the ordinary temp. -400 deg.C in the presence of the platinum- base catalyst, copper-base catalyst or palladium-base catalyst.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は不活性ガス中の酸素を除去する方法に関し、詳
しくは不活性ガスにメタノールまたはm一酸化炭素を添
加することによって、酸素を低温で二酸化炭素等に変換
して吸着除去する不活性ガス中の酸素を除去する方法に
関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for removing oxygen from an inert gas, and more specifically, by adding methanol or carbon monoxide to an inert gas, oxygen is removed at a low temperature. This invention relates to a method for removing oxygen from an inert gas by converting it into carbon dioxide or the like and removing it by adsorption.

[従来の技術] 従来、不活性ガス中に混入している酸素を除去する方法
として、精留して分離する方法があるが、不活性ガスと
酸素の沸点が非常に近接しているので精留塔が大型化す
るという欠点があった。
[Prior Art] Conventionally, a method for removing oxygen mixed in inert gas is to separate it by rectification, but since the boiling points of inert gas and oxygen are very close to each other, refinement is difficult. The drawback was that the tower became larger.

また、酸素を含有する不活性ガス中に、メタンガス等の
炭化水素を添加して触媒層で酸化反応ざせた後、吸着剤
によって一酸化炭素(GO)、二酸化炭素(CO2)、
水(H2O)などの酸化反応生成物および過剰の炭化水
素を除去して精製する方法が、特開昭61−40807
号公報に開示されている。
In addition, hydrocarbons such as methane gas are added to an inert gas containing oxygen to cause an oxidation reaction in the catalyst layer, and then carbon monoxide (GO), carbon dioxide (CO2),
A method of purification by removing oxidation reaction products such as water (H2O) and excess hydrocarbons was disclosed in Japanese Patent Application Laid-Open No. 61-40807.
It is disclosed in the publication No.

しかしながら、炭化水素ガスと酸素との反応は、触媒を
用いても600℃程度にならないと完全に反応は終了し
ない。従って、僅かの不純物除去のために大量のガスを
高温にしなければならず、他方、吸着は低温であるほど
効率がよいので、高温のガスを常温まで冷却しなければ
ならないという問題がある。また、炭化水素には、不純
物として硫黄化合物等が混在する可能性が多いので接触
酸化触媒に悪影響を与える可能性もある。
However, even if a catalyst is used, the reaction between hydrocarbon gas and oxygen does not complete until the temperature reaches about 600°C. Therefore, there is a problem in that a large amount of gas must be heated to a high temperature in order to remove a small amount of impurities, and on the other hand, since adsorption is more efficient at lower temperatures, the high temperature gas must be cooled to room temperature. In addition, hydrocarbons are likely to contain impurities such as sulfur compounds, which may have an adverse effect on the catalytic oxidation catalyst.

[発明が解決しようとする問題点] 本発明は、上記従来技術の問題点に鑑みてなされたちの
で、不活性ガス中の酸素を低温で簡便に吸着分離して除
去する方法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems of the prior art.It is therefore an object of the present invention to provide a method for easily adsorbing and separating oxygen from an inert gas at low temperatures. be.

[問題点を解決するための手段および作用]本発明者ら
は、上記目的を達成するために鋭意検討した結果、触媒
の存在下で、メタノールまたは一酸化炭素を添加して低
温で接触酸化反応を起させることにより、高純度の不活
性ガスが得られることを見い出し本発明に到達した。
[Means and effects for solving the problem] As a result of intensive studies to achieve the above object, the present inventors conducted a catalytic oxidation reaction at low temperature by adding methanol or carbon monoxide in the presence of a catalyst. The present invention was achieved by discovering that a highly purified inert gas can be obtained by causing this to occur.

すなわら本発明は、不活性ガス中に混入している酸素を
、メタノールまたは一酸化炭素を添加して接触酸化反応
をさせ、一酸化炭素および/または二酸化炭素等に変換
して吸着除去することを特徴とする不活性ガス中の酸素
を除去する方法にある。
That is, in the present invention, methanol or carbon monoxide is added to cause a catalytic oxidation reaction of oxygen mixed in an inert gas, converting it into carbon monoxide and/or carbon dioxide, etc., and removing it by adsorption. A method for removing oxygen from an inert gas, characterized by:

本発明に用いられる不活性ガスとは、アルゴンガス、ヘ
リウムガス、窒素ガス等が挙げられるが、特にアルゴン
ガスが好適に用いられる。不活性ガスは、例えば排ガス
中から精製されるが、この精製においては不活性ガス中
に含まれる水素等の可燃成分を酸素により燃焼除去する
。この燃焼除去に際し、不活性ガス中に多聞の残留酸素
が混入することとなる。また、不活性ガスの使用時に、
空気中の酸素が混入することも少なくない。
Examples of the inert gas used in the present invention include argon gas, helium gas, nitrogen gas, etc., and argon gas is particularly preferably used. The inert gas is purified, for example, from exhaust gas, and in this purification, combustible components such as hydrogen contained in the inert gas are removed by combustion with oxygen. During this combustion removal, a large amount of residual oxygen will be mixed into the inert gas. Also, when using inert gas,
Oxygen from the air often gets mixed in.

本発明においては、上述のように、これら不活性ガス中
の残留酸素を除去するのに、メタノールまたは一酸化炭
素を添加して接触酸化反応を生起させ、一酸化炭素およ
び/または二酸化炭素に変換させる。なお、メタノール
を添加した場合にtよ、H20も生成する。
In the present invention, as described above, in order to remove residual oxygen in these inert gases, methanol or carbon monoxide is added to cause a catalytic oxidation reaction, and the residual oxygen is converted into carbon monoxide and/or carbon dioxide. let Note that when methanol is added, H20 is also produced.

この接触反応に用いられる接触酸化触媒としては、メタ
ノールを用いた場合には、パラジウム系触媒および白金
系触媒等が用いられる。また一酸化炭素を用いた場合に
は、銅系触媒、白金系触媒およびパラジウム系触媒が用
いられるが、パラジウム系触媒を用いた場合においては
、若干反応温度を高めて行なう必要がある。
As the catalytic oxidation catalyst used in this catalytic reaction, when methanol is used, a palladium-based catalyst, a platinum-based catalyst, etc. are used. Further, when carbon monoxide is used, a copper-based catalyst, a platinum-based catalyst, and a palladium-based catalyst are used, but when a palladium-based catalyst is used, it is necessary to conduct the reaction at a slightly higher temperature.

この接触反応は、メタノールを用いた場合には、常温〜
200℃、一酸化炭素を用いた場合には、常温〜400
℃で行なわれ、メタン等の炭化水素を用いた場合と比較
して低温で反応が行なわれ、しかもメタノールまたは一
酸化炭素には、メタン等の炭化水素のように硫黄化合物
等の不純物が含有されることがないので、触媒に悪影響
を与えることがない。
This contact reaction can be carried out at room temperature to
200℃, room temperature to 400℃ when using carbon monoxide
The reaction takes place at a lower temperature than when using hydrocarbons such as methane, and unlike hydrocarbons such as methane, methanol or carbon monoxide does not contain impurities such as sulfur compounds. There is no adverse effect on the catalyst.

この不活性ガス中へのメタノールの好適な添加量として
は、メタノールの酸素に対するモル比で1/ 1.5以
上であることが好ましい。また、一酸化炭素の添加量は
、不活性ガス中の酸素の還元に必要な理論一酸化炭素量
より多くなるように加えることが必要Cある。
A suitable amount of methanol to be added to this inert gas is preferably a molar ratio of methanol to oxygen of 1/1.5 or more. Further, the amount of carbon monoxide added needs to be greater than the theoretical amount of carbon monoxide required to reduce oxygen in the inert gas.

これらメタノールまたは一酸化炭素の添加、混合方法と
しては、不活性ガス中に一度に金遣を加えてもよいが、
不活性ガス中にメタノールまたは一酸化炭素を微mしか
注入しないので、不活性ガスの一部に、メタノールまた
は一酸化炭素を加えた後、残余不活性ガスを加えて混合
してもよく、このように2段階に添加、混合するのみな
らず、3段階以上に分けて添加、混合してもよい。
The method of adding and mixing methanol or carbon monoxide may be to add it all at once to an inert gas.
Since methanol or carbon monoxide is injected into the inert gas in only a small amount, methanol or carbon monoxide may be added to a portion of the inert gas, and then the remaining inert gas may be added and mixed. It is not only possible to add and mix in two stages, but also to add and mix in three or more stages.

このようなメタノールまたは一酸化炭素の接触酸化反応
によって得られた一酸化炭素および/または二酸化炭素
と820は、活性炭、ゼオライト等の吸着塔(層)で除
去され、不活性ガスは精製される。また、過剰のメタノ
ールも吸着塔で併せて吸着される。
Carbon monoxide and/or carbon dioxide and 820 obtained by such a catalytic oxidation reaction of methanol or carbon monoxide are removed in an adsorption column (layer) of activated carbon, zeolite, etc., and the inert gas is purified. In addition, excess methanol is also adsorbed in the adsorption tower.

なお、不活性ガス中に!W索含有吊が多く、温度上昇が
大きい時は、吸着塔との間に冷却器を設けることが好ま
しい。この際、H20は凝縮水として分離除去されるの
で、吸着塔の負担を軽減することができる。
In addition, in inert gas! When there is a large number of wire-containing suspensions and the temperature rise is large, it is preferable to provide a cooler between the adsorption tower and the adsorption tower. At this time, since H20 is separated and removed as condensed water, the load on the adsorption tower can be reduced.

[実施例] 以下、実施例および比較例に基づいて本発明をさらに具
体的に説明する。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples.

1i九二 フルミt (A J 203 ) 100g、活性炭1
509、合成ゼオライト(モレキュラーシーブ5A )
 70(]を充填した吸着塔に高純度アルゴンガスを流
し、圧力を5ka/cd−Gに保持した。
1i 92 Flumit (A J 203) 100g, activated carbon 1
509, synthetic zeolite (molecular sieve 5A)
High purity argon gas was flowed through the adsorption tower filled with 70 (), and the pressure was maintained at 5 ka/cd-G.

次に、酸素を200ppm含有するアルゴンガスを用意
し、このアルゴンガス20ON J / hrに対して
メタノール1.0 g/hrを添加して混合した後、ア
ルミナにパラジウム0.5重量%担持した触媒60gを
充填した常温の接触酸化塔に流し、これを高純度アルゴ
ンガスと切り替えて吸着塔へ供給し、出口ガスの酸素分
析をしたところ40rR間経過しても酸素は検出されな
かった。また、接触酸化塔出口ガスを分析したところ酸
素は検出されず二酸化炭素が130ppHl検出された
(残りの酸素はH20となっていた)。
Next, prepare argon gas containing 200 ppm of oxygen, add and mix 1.0 g/hr of methanol to 20 ON J/hr of this argon gas, and then add a catalyst containing 0.5% by weight of palladium supported on alumina. The gas was passed through a catalytic oxidation tower at normal temperature filled with 60 g, and this was switched to high-purity argon gas and supplied to the adsorption tower. When the outlet gas was analyzed for oxygen, no oxygen was detected even after 40 rR. Further, when the gas at the outlet of the catalytic oxidation tower was analyzed, no oxygen was detected, but 130 ppHl of carbon dioxide was detected (the remaining oxygen was H20).

比較例1 実施例1と同様の状態に保持されている吸着塔に、接触
酸化塔を通さずに実施例1と全く同様の、酸素を200
ppm含有するアルゴンガスを用意し、高純度アルゴン
ガスに切り替え、このアルゴンガスを20ON J /
hrで流し、吸着塔の出口ガスの酸素分析を行なったと
ころ14秒後に酸素が200ppm検出された。
Comparative Example 1 200% of oxygen was added to an adsorption tower maintained in the same state as in Example 1 without passing through the catalytic oxidation tower.
Prepare argon gas containing ppm, switch to high purity argon gas, and infuse this argon gas at 20 ON J/
When the gas at the outlet of the adsorption tower was analyzed for oxygen, 200 ppm of oxygen was detected after 14 seconds.

よ1」LL メタノール0,1 a/hrに代えてノルマルヘキサン
(n −C8HI4 )  0.:J] /hrヲ用イ
タLX外ハ、実施例1と同様に行ない、出口ガスについ
て酸素分析をしたところ14秒後に酸素が200ppm
検出された。
methanol 0.1 a/hr Normal hexane (n-C8HI4) 0. :J] /hrwo use Ita LX outside c) The same procedure as in Example 1 was carried out, and the oxygen analysis of the outlet gas revealed that the oxygen content was 200 ppm after 14 seconds.
was detected.

土1」LL 接触酸化塔を600℃に加熱した他は、比較例2と同様
に実験したところ、吸着塔出口ガス中の酸素は40時間
経過しても検出されなかった。接触酸化塔出口ガスを分
析したところ酸素は検出されず、二酸化炭素が1200
1)m検出された(残りの酸素はH20となっていた)
Soil 1''LL An experiment was carried out in the same manner as in Comparative Example 2, except that the contact oxidation tower was heated to 600°C, and no oxygen was detected in the adsorption tower outlet gas even after 40 hours. When the gas at the outlet of the catalytic oxidation tower was analyzed, no oxygen was detected, and carbon dioxide was detected at 1,200 ml.
1)m was detected (the remaining oxygen was H20)
.

実施例2 NaOH7,4重量%水溶液2ノにケイソウ士160g
を懸濁させ、硝酸鋼(Cu  (NO3)2  ・3H
20) 19.5重量%水溶液2Jヲ滴下シ、生成した
沈澱物を濾過した。これを710℃で乾燥させた後50
0℃で焼成して酸化銅(CIO)50重刊%の触媒を得
た。
Example 2 160 g of diaphragm in 2 parts of 7.4% by weight NaOH aqueous solution
Suspended, nitric acid steel (Cu (NO3)2 ・3H
20) 2J of a 19.5% by weight aqueous solution was added dropwise, and the resulting precipitate was filtered. After drying this at 710℃,
The catalyst was calcined at 0°C to obtain a catalyst containing 50% copper oxide (CIO).

接触酸化塔に、この触媒10(lを充填して、酸素20
0ppI11を含有したアルゴンガスに一酸化炭素を4
50ppIllになるように添加して1000if /
 l1lin供給し、100℃、5に9/cd−Gに保
持して反応させた。
A catalytic oxidation tower was filled with 10 (l) of this catalyst and 20 (l) of oxygen was charged.
Carbon monoxide was added to argon gas containing 0ppI11.
Add to 50ppIll and add 1000if/
11lin was supplied and the reaction was carried out at 100° C. and maintained at 5 to 9/cd-G.

接触酸化塔出口ガスを30℃に冷却した後、ゼオライト
吸着剤120すを充填した吸着塔に供給して吸着塔出口
ガスを分析した。吸着塔にガスを供給してから5分後に
一酸化炭素が検出されるようになったが、酸素は検出さ
れなかった。吸着塔入口のガス分析では、二酸化炭素、
一酸化炭素が検出されたが酸素は検出できなかった。
After the gas at the outlet of the catalytic oxidation tower was cooled to 30° C., it was supplied to an adsorption tower filled with 120 ml of zeolite adsorbent, and the gas at the exit of the adsorption tower was analyzed. Carbon monoxide began to be detected 5 minutes after gas was supplied to the adsorption tower, but oxygen was not detected. In the gas analysis at the inlet of the adsorption tower, carbon dioxide,
Carbon monoxide was detected, but no oxygen.

実施例3 市販の銅系触媒(8揮化学製N 201)を用いて、実
施例2と同様に実験したところ、同様に吸着塔入口では
二酸化炭素、一酸化炭素が検出されたが、酸素は検出さ
れなかった。吸着塔にガスを供給してから5分後に吸着
塔出口ガスに一酸化炭素が検出された。
Example 3 When an experiment was conducted in the same manner as in Example 2 using a commercially available copper-based catalyst (N 201 manufactured by 8Ki Kagaku Co., Ltd.), carbon dioxide and carbon monoxide were similarly detected at the entrance of the adsorption tower, but oxygen was not detected. Not detected. Five minutes after gas was supplied to the adsorption tower, carbon monoxide was detected in the adsorption tower outlet gas.

実施例4 市販の白金触媒(エンゲルハルト社製)を用いて実施例
2と同様に実験したところ、吸着塔入口ガス中には二酸
化炭素、一酸化炭素が検出されたが酸素は検出されなか
った。吸着塔にガスを送ってから5分後に吸着塔出口ガ
ス中に一酸化炭素が検出された。
Example 4 When an experiment was conducted in the same manner as in Example 2 using a commercially available platinum catalyst (manufactured by Engelhard), carbon dioxide and carbon monoxide were detected in the gas at the entrance of the adsorption tower, but no oxygen was detected. . Five minutes after the gas was sent to the adsorption tower, carbon monoxide was detected in the gas at the outlet of the adsorption tower.

匿±IM4 市販のパラジウム触媒(エンゲルハルト社製)を用いて
一酸化炭素の代りに水素を450ppm添加して実施例
2と同様に実験をした。吸着塔入口ガス中には水素、H
20が検出されたが酸素は検出されなかった。吸着塔に
ガスを送ってから1分後の分析で既に水素が検出された
An experiment was conducted in the same manner as in Example 2 using a commercially available palladium catalyst (manufactured by Engelhard) and adding 450 ppm of hydrogen instead of carbon monoxide. Hydrogen, H
20 was detected, but no oxygen was detected. Hydrogen was already detected in the analysis one minute after the gas was sent to the adsorption tower.

実施例5 市販のパラジウム触媒(エングルハルト社製)を用いて
実施例2と同様に実験を行ない、接触酸化塔出口ガスの
分析を行なったところ、酸素が検出されたので、反応温
度を350℃まで上げたところ、二酸化炭素、一酸化炭
素が検出されたが酸素は検出できなくなった。
Example 5 An experiment was carried out in the same manner as in Example 2 using a commercially available palladium catalyst (manufactured by Englehard). When the gas at the outlet of the catalytic oxidation tower was analyzed, oxygen was detected, so the reaction temperature was changed to 350°C. When the temperature was raised to 100%, carbon dioxide and carbon monoxide were detected, but oxygen could no longer be detected.

[発明の効果] 以上説明したように、本発明においては、下記に示す効
果を秦する。
[Effects of the Invention] As explained above, the present invention provides the following effects.

■ 不活性ガスと酸素とを吸着剤で分離するのは困難で
あるが、本発明によれば不活性ガス中の酸素は一酸化炭
素および/または二酸化炭素とH20になっているので
吸着分離が容易となる。
■ It is difficult to separate inert gas and oxygen using an adsorbent, but according to the present invention, since the oxygen in the inert gas has become carbon monoxide and/or carbon dioxide and H20, adsorption separation is possible. It becomes easier.

■ 炭化水素ガスを用いて酸素を一酸化炭素および/ま
たは二酸化炭素とH20にする場合に比べて、低温で反
応できるので反応前の予熱や吸着前の過度の冷」が不要
になる。また、メタノールまたは一酸化炭素には、硫黄
化合物等が含有されていないので、接触酸化触媒に悪影
響を与えることがない。
(2) Compared to the case where oxygen is converted to H20 with carbon monoxide and/or carbon dioxide using hydrocarbon gas, the reaction can be performed at a lower temperature, so preheating before reaction and excessive cooling before adsorption are not necessary. Furthermore, since methanol or carbon monoxide does not contain sulfur compounds or the like, it does not have an adverse effect on the catalytic oxidation catalyst.

従って、本発明の方法は、不活性ガス中の酸素の除去方
法として好適である。
Therefore, the method of the present invention is suitable as a method for removing oxygen from an inert gas.

Claims (1)

【特許請求の範囲】 1、不活性ガス中に混入している酸素を、メタノールま
たは一酸化炭素を添加して接触酸化反応をさせ、一酸化
炭素および/または二酸化炭素に変換して吸着除去する
ことを特徴とする不活性ガス中の酸素を除去する方法。 2、前記酸素とメタノールの接触酸化反応が、常温〜2
00℃で行なわれる特許請求の範囲第1項に記載の方法
。 3、前記酸素とメタノールの接触反応が、パラジウム系
触媒または白金系触媒の存在下で行なわれる特許請求の
範囲第1項または第2項に記載の方法。 4、前記メタノールの添加量がメタノールの酸素に対す
るモル比で1/1.5以上である特許請求の範囲第1項
、第2項または第3項に記載の方法。 5、前記酸素と一酸化炭素との接触酸化反応が常温〜4
00℃で行なわれる特許請求の範囲第1項に記載の方法
。 6、前記酸素と一酸化炭素との接触酸化反応が白金系触
媒、銅系触媒またはパラジウム系触媒の存在下で行なわ
れる特許請求の範囲第1項または第5項に記載の方法。
[Claims] 1. Oxygen mixed in an inert gas is subjected to a catalytic oxidation reaction by adding methanol or carbon monoxide, converting it into carbon monoxide and/or carbon dioxide, and removing it by adsorption. A method for removing oxygen from an inert gas, characterized by: 2. The catalytic oxidation reaction of oxygen and methanol is carried out at room temperature to 2.
A method according to claim 1, which is carried out at 00°C. 3. The method according to claim 1 or 2, wherein the catalytic reaction between oxygen and methanol is carried out in the presence of a palladium-based catalyst or a platinum-based catalyst. 4. The method according to claim 1, 2, or 3, wherein the amount of methanol added is 1/1.5 or more in molar ratio of methanol to oxygen. 5. The catalytic oxidation reaction between oxygen and carbon monoxide occurs at room temperature to 4
A method according to claim 1, which is carried out at 00°C. 6. The method according to claim 1 or 5, wherein the catalytic oxidation reaction between oxygen and carbon monoxide is carried out in the presence of a platinum-based catalyst, a copper-based catalyst, or a palladium-based catalyst.
JP61308558A 1986-12-26 1986-12-26 Removing of oxygen from innert gas Granted JPS63162509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308558A JPS63162509A (en) 1986-12-26 1986-12-26 Removing of oxygen from innert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308558A JPS63162509A (en) 1986-12-26 1986-12-26 Removing of oxygen from innert gas

Publications (2)

Publication Number Publication Date
JPS63162509A true JPS63162509A (en) 1988-07-06
JPH0579601B2 JPH0579601B2 (en) 1993-11-04

Family

ID=17982476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308558A Granted JPS63162509A (en) 1986-12-26 1986-12-26 Removing of oxygen from innert gas

Country Status (1)

Country Link
JP (1) JPS63162509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116915A (en) * 1991-10-30 1993-05-14 Mitsui Eng & Shipbuild Co Ltd Production of gaseous nitrogen
CN1069550C (en) * 1995-03-07 2001-08-15 中国科学院山西煤炭化学研究所 Deoxidation method for inert gas
JP2011111369A (en) * 2009-11-27 2011-06-09 Bridgestone Corp Method for producing inert gas, and method for manufacturing tire
JP2011173769A (en) * 2010-02-25 2011-09-08 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116915A (en) * 1991-10-30 1993-05-14 Mitsui Eng & Shipbuild Co Ltd Production of gaseous nitrogen
CN1069550C (en) * 1995-03-07 2001-08-15 中国科学院山西煤炭化学研究所 Deoxidation method for inert gas
JP2011111369A (en) * 2009-11-27 2011-06-09 Bridgestone Corp Method for producing inert gas, and method for manufacturing tire
JP2011173769A (en) * 2010-02-25 2011-09-08 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Also Published As

Publication number Publication date
JPH0579601B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
KR960002190B1 (en) Process for the purification of the inert gases
JP5566815B2 (en) Gas purification method and gas purification apparatus
CA2291388C (en) Purification of gases
KR101301805B1 (en) Method of removing impurities from a gas
JP2003500323A (en) Nitrous oxide purification method
JPH0313161B2 (en)
JPH11100203A (en) Treatment of gas flow and device therefor
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
KR100363179B1 (en) Process for the production of hydrocarbon partial oxidaton products
JP2640513B2 (en) Inert gas purification equipment
JPH06234511A (en) Method and apparatus for purification using compression heat
JPS63162509A (en) Removing of oxygen from innert gas
KR920002205A (en) Method for Purifying Inert Gas Streams
JP2935969B2 (en) Method for removing impurities contained in composite gas
KR960029226A (en) Method for removing impurities contained in a composite gas
US4859435A (en) Deoxygenation of inert gas streams with methanol
EP1060774A1 (en) Purification of gases
JP2000211904A (en) Purification of gas
JP3977501B2 (en) Method and apparatus for purifying oxygen gas
JPH04265217A (en) Method for purifying gas consisting of mainly carbon monoxide
JPS61242638A (en) Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it
SU1369772A1 (en) Method of cleaning hydrogen-containing gases from nitrogen oxides
JP2003146638A (en) Method of increasing recovery of carbon dioxide from sulfuric acid plant furnace
JP2902317B2 (en) Room temperature purification method and apparatus for inert gas
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent