JPS6265919A - Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent - Google Patents

Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent

Info

Publication number
JPS6265919A
JPS6265919A JP60205973A JP20597385A JPS6265919A JP S6265919 A JPS6265919 A JP S6265919A JP 60205973 A JP60205973 A JP 60205973A JP 20597385 A JP20597385 A JP 20597385A JP S6265919 A JPS6265919 A JP S6265919A
Authority
JP
Japan
Prior art keywords
adsorbent
copper
zeolite
gas
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205973A
Other languages
Japanese (ja)
Inventor
Jintaro Yokoe
横江 甚太郎
Masami Takeuchi
正己 武内
Toshiaki Tsuji
辻 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP60205973A priority Critical patent/JPS6265919A/en
Publication of JPS6265919A publication Critical patent/JPS6265919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate and recover high-purity CO by using an adsorbent obtained by depositing Cu(II) halide or its reduction product on zeolite wherein the molar ratio of Si/Al is regulated within specified limits. CONSTITUTION:Copper(II) halide or its reduction product is dissolved or dispersed in an org. solvent such as a lower alcohol, the soln. is brought into contact with zeolite wherein the molar ratio of Si/Al is regulated to 1-5 and then the solvent is removed. The obtained material is further heated in an inert gas or a reducing gas atmosphere to deposit the copper(II) halide or its reduction product and an adsorbent is obtained. The adsorbent is used and high-purity CO is separated and recovered from a mixed gas contg. CO by a pressure-fluctuation adsorptive separation method and/or a temp.-fluctuation adsorptive separation method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧力変動式吸着分離法(以下PSA法という
)または/および温度変動式吸着分離法(以下TSA法
という)によりCOを含む混合ガスからCOを分離回収
する目的に用いる吸着剤に関するものであり、さらには
その吸着剤を製造する方法、およびその吸着剤を用いて
COを分離回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for separating a mixed gas containing CO by a pressure fluctuation adsorption separation method (hereinafter referred to as PSA method) or/and a temperature fluctuation adsorption separation method (hereinafter referred to as TSA method). The present invention relates to an adsorbent used for the purpose of separating and recovering CO, and further relates to a method of manufacturing the adsorbent and a method of separating and recovering CO using the adsorbent.

従来の技術 COを主成分とするガスの代表的なものとして、製鉄所
の転炉から得られる転炉ガス、高炉から得られる高炉ガ
ス、電気炉から得られる電気炉ガス、コークスをガス化
して得られる発生炉ガスなどがある。これらのガスは通
常そのほとんどが燃料として使用されているが、これら
のガスの中にはCOがたとえば70vo1%前後あるい
はそれ以上も含まれているものもあるので、これらのガ
ス中に含まれるCOを高純度で分離回収することができ
れば、ギ酸、酢酸等の合成原料、有機化合物の還元用な
どとして用いることができ、化学工業上非常に有益であ
る。
Conventional technology Typical gases containing CO as a main component include converter gas obtained from converters in steel plants, blast furnace gas obtained from blast furnaces, electric furnace gas obtained from electric furnaces, and gasification of coke. There is a generator gas that can be obtained. Most of these gases are normally used as fuel, but some of these gases contain CO, for example, around 70 vol 1% or more, so the CO contained in these gases is If it can be separated and recovered with high purity, it can be used as a raw material for the synthesis of formic acid, acetic acid, etc., and for the reduction of organic compounds, and is extremely useful in the chemical industry.

従来、COを主成分とするガスからCOを分離回収する
方法として、深冷分離法、銅アンモニア法、コンーブ(
COS ORB)法などが知られているが、これらの方
法は設備費がかさむ上、電力、汰気等の熱エネルギーに
要する費用が大きいという問題があり、大容量のCOの
分離回収には適していても、中容量または小容量のCO
の分離回収には必ずしも適していなかった。さらに、こ
れらの方法により分離して得られるCOには02、、C
O2,など有機合成反応上障害となるガス成分が混在し
てくるため、そのままでは有機合成用には適用できない
という欠点があった。
Conventionally, methods for separating and recovering CO from gas whose main component is CO include cryogenic separation method, copper ammonia method, and kelp (
COS ORB) method is known, but these methods have the problem of high equipment costs and large costs for thermal energy such as electricity and steam, making them unsuitable for separating and recovering large volumes of CO. medium or small volume CO
was not necessarily suitable for separation and recovery. Furthermore, CO obtained by separation by these methods contains 02, C
It has the disadvantage that it cannot be used as it is for organic synthesis because it contains gas components such as O2 that are a hindrance to organic synthesis reactions.

ところで、中容量または小容量の原料ガスから特定ガス
を選択分離する方法としてPSA法およびTSA法が知
られている。
By the way, the PSA method and the TSA method are known as methods for selectively separating a specific gas from a medium or small volume of source gas.

PSA法とは、混合ガスから特定ガスを選択分離する方
法の一つであって、高い圧力で被吸着物を吸着剤に吸着
させ、ついで吸着系の圧力を下げることによって吸着剤
に吸着した被吸着物を脱離し、吸着物および非吸着物を
分離する方法であり、工業的には吸着剤を充填した塔を
複数個設け、それぞれの吸着塔において、昇圧→吸着→
洗浄→脱気の一連の操作を繰り返すことにより、装置全
体としては連続的に分離回収を行うことができるように
したものである。
The PSA method is a method for selectively separating a specific gas from a mixed gas.The adsorbent is adsorbed onto an adsorbent at high pressure, and then the adsorbed material is removed by lowering the pressure of the adsorption system. This is a method of desorbing adsorbed matter and separating adsorbed matter and non-adsorbed matter.Industrially, multiple towers filled with adsorbent are installed, and in each adsorption tower, pressure is increased → adsorption →
By repeating a series of washing and degassing operations, the entire device can perform continuous separation and recovery.

また、TSA法も上記PSA法と同様に混合ガスから特
定ガスを選択分離する方法の一つであって、低温で被吸
着物を吸着剤に吸着させ、ついで吸着系の温度を上げる
ことによって吸着剤に吸着した被吸着物を脱離し、吸着
物および非吸着物を分離する方法である。
Similarly to the PSA method, the TSA method is also a method for selectively separating a specific gas from a mixed gas.The TSA method is one of the methods for selectively separating a specific gas from a mixed gas. This is a method in which the adsorbed substances adsorbed to the agent are desorbed and the adsorbed substances and non-adsorbed substances are separated.

従来、このPSA法によりCOを含む混合ガスからCO
を分離回収する方法として、モルデナイト系ゼオライト
を吸着剤として用いる方法が提案されている。(特開昭
59−22825号公報、特開昭59−49818号公
報参照) また、PSA法またはTSA法によりCOを含むIf−
1合ガスからCOを分離回収する方法として、ハロゲン
化銅(■)、酸化銅(1)、銅(II )塩、酸化銅(
II )などの銅化合物を活性炭に担持させたものを吸
着剤として用いる方法が提案されている。(特開昭58
−158517号公報、特開昭59−69414号公報
、特開昭59−105841号公報、特開昭59−13
8134号公報参照) さらに、COを含む混合ガスからCOを除去する方法と
して、S i Oz / A文λO)のモル比が20〜
200のゼオライトに工師の銅イオンを担持させた吸着
剤を用いる方法も知られている。(米国特許第4,01
9,879号明細書参照)発明が解決しようとする問題
点 PS’A法またはTSA法を実施するにあたり吸着塔に
充填する吸着剤に求められる性能としては、■共存成分
に対する着目成分の選択的吸着があること、■加圧また
は低温時と減圧または高温時の着目成分の吸着量の差が
大きいこと、■吸着した着目成分の脱離が容易であるこ
と、■着目成分以外は吸着されにくく、そして脱離しに
くいこと、などがあげられる。これらの性能は、製品ガ
スの純度および収率に大きな影響を与えるため、PSA
法またはTSA法では重要な要素となる。
Conventionally, this PSA method was used to remove CO from a mixed gas containing CO.
A method using mordenite-based zeolite as an adsorbent has been proposed as a method for separating and recovering. (Refer to JP-A-59-22825 and JP-A-59-49818.) If-
1 As a method for separating and recovering CO from combined gas, copper halide (■), copper oxide (1), copper (II) salt, copper oxide (
A method has been proposed in which a copper compound such as II) supported on activated carbon is used as an adsorbent. (Unexamined Japanese Patent Publication No. 58
-158517, JP 59-69414, JP 59-105841, JP 59-13
(Refer to Publication No. 8134) Furthermore, as a method for removing CO from a mixed gas containing CO, the molar ratio of SiOz/A (λO) is 20 to
A method using an adsorbent in which 200% zeolite supports copper ions is also known. (U.S. Patent No. 4,01
(See Specification No. 9,879) Problems to be Solved by the Invention When implementing the PS'A method or the TSA method, the performance required of the adsorbent packed in the adsorption tower is: ■ Selectivity of the target component with respect to coexisting components ■ There is a large difference in the adsorption amount of the target component under pressure or low temperature and under reduced pressure or high temperature. ■ The adsorbed target component must be easily desorbed. ■ It is difficult for components other than the target component to be adsorbed. , and that it is difficult to detach. These performances have a significant impact on product gas purity and yield, so PSA
Act or TSA Act is an important element.

しかるに、吸着剤の物理的な吸着脱離現象を利用する上
記モルデナイト系ゼオライトを吸着剤として用いる方法
にあっては、C○吸着量が比較的小さいため圧力スイン
グの切替え頻度を多くしなければならず、操作の点でも
弁類の寿命の点でも不利となること、吸着操作に先立ち
CO2,を予め除去しておかなければならないこと、N
、の非吸着を免かれないため、製品純度が低くなること
、また吸着したN2.を除くために製品COガスを用い
て塔内洗浄を行うときの洗浄量が多く、製品COの回収
率が低くなることなどの問題がある。
However, in the method of using mordenite-based zeolite as an adsorbent, which utilizes the physical adsorption/desorption phenomenon of the adsorbent, the pressure swing must be switched more frequently because the amount of C○ adsorption is relatively small. First, there are disadvantages in terms of operation and valve life, and the fact that CO2 must be removed in advance before adsorption operation.
, the purity of the product decreases, and the adsorbed N2. When cleaning the inside of the tower using product CO gas to remove CO, the amount of cleaning is large, resulting in problems such as a low recovery rate of product CO.

一方、吸着剤の化学的な吸着脱離現象を利用する」−記
銅化合物を活性炭に担持させた吸着剤を用いる方法にあ
っては、CO,N2.、CO,などを含む混合ガスから
COを分離しようとする場合、COと同時にCO2,な
ども共吸着する傾向があるため高純度のCOを分離回収
しがたいこと、また吸着剤のCOO着量が必ずしも犬き
くはないことなどの問題点があり、工業的規模において
採用しうるまでには至っていない。
On the other hand, in a method using an adsorbent in which a copper compound is supported on activated carbon, CO, N2. When attempting to separate CO from a mixed gas containing CO, CO, etc., it is difficult to separate and recover high-purity CO because CO2, etc., tend to be co-adsorbed at the same time as CO, and the amount of CO adsorbed on the adsorbent is also high. However, there are problems with this method, such as the fact that it is not always reliable, and it has not yet reached the point where it can be adopted on an industrial scale.

さらに、5iOb/Aflz05のモル比が20〜20
0のゼオライトに1価の銅イオンを担持させた吸着剤を
用いる方法は、COの含有量が比較的少ない混合ガスか
らCOを除去する方法としては採用できても、COがた
とえば70701%前後あるいはそれ以上も含まれてい
る混合ガスからCOを選択分離する目的には、COO着
量が少なく、しかも製品COガスの純度および収率が劣
るため、工業的には採用し難い。
Furthermore, the molar ratio of 5iOb/Aflz05 is 20 to 20
Although the method of using an adsorbent in which monovalent copper ions are supported on zero zeolite can be adopted as a method for removing CO from a mixed gas with a relatively low CO content, if the CO content is around 70,701% or For the purpose of selectively separating CO from a mixed gas containing more than that amount, it is difficult to adopt it industrially because the amount of COO deposited is small and the purity and yield of the product CO gas are poor.

本発明は、このような状況に鑑み、COを含む混合ガス
からCOを効率良く分離回収する工業的に右利な吸着剤
を見出すべく鋭意研究を重ねた結果到達したものである
In view of this situation, the present invention was achieved as a result of intensive research to find an industrially advantageous adsorbent that can efficiently separate and recover CO from a mixed gas containing CO.

問題点を解決するための手段 本発明のCOO離回収用吸着剤は、S i / A文の
モル比が1〜5であるゼオライトに、ハロゲン化銅(I
I )またはその還元物を担持させてなるものである。
Means for Solving the Problems The adsorbent for COO separation and recovery of the present invention contains copper halide (I
I) or a reduced product thereof.

また、本発明のCOd@回収用吸着剤の製造法は、ハロ
ゲン化銅(II )の有機溶剤溶液をSi/Anのモル
比が1〜5であるゼオライトに接触させた後、有機溶剤
を除去することを特徴とするものである。この場合、有
機溶剤除去後にさらに不活性ガスまたは還元性ガス雰囲
気下に加熱処理することが好ましく、また有機溶剤とし
ては低級アルコールを用いることが特に好ましい。
In addition, the method for producing the adsorbent for COd@ recovery of the present invention involves contacting an organic solvent solution of copper(II) halide with zeolite having a Si/An molar ratio of 1 to 5, and then removing the organic solvent. It is characterized by: In this case, it is preferable to further heat-treat in an inert gas or reducing gas atmosphere after removing the organic solvent, and it is particularly preferable to use a lower alcohol as the organic solvent.

さらにまた、本発明のCOを分離回収する方法は、PS
A法または/およびTSA法によりCOを含む混合ガス
からCOを分離回収するにあたり、吸着剤として、S 
i / A Qのモル比が1〜5であるゼオライトにハ
ロゲン化銅(II )またはその還元物を担持させてな
るCO分分団回収用吸着剤用いることを特徴とするもの
である。
Furthermore, the method for separating and recovering CO of the present invention includes PS
When separating and recovering CO from a mixed gas containing CO by method A or/and TSA method, S is used as an adsorbent.
The present invention is characterized by using an adsorbent for recovering CO fractions, which is made by supporting copper (II) halide or its reduced product on zeolite having an i/AQ molar ratio of 1 to 5.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

l11 未発明のCOO離回収用吸着剤は、S i / A文の
モル比が1〜5であるゼオライトに、ハロゲン化8(t
I)またはその還元物を担持させてなるものである。
l11 An uninvented COO separation and recovery adsorbent is a zeolite with a Si/A molar ratio of 1 to 5, and a halogenated 8 (t)
I) or a reduced product thereof.

ゼオライトはSi/AQのモル比が1〜5と小さい天然
または合成ゼオライトが使用される。
As the zeolite, a natural or synthetic zeolite having a small Si/AQ molar ratio of 1 to 5 is used.

Si/Aiのモル比が1未満のゼオライトは通常存在せ
ず、一方Si/Alのモル比が5を越えると、製品CO
ガスの純度および収率が劣るようになり、所期の目的を
果たしえなくなる。
Zeolites with a Si/Al molar ratio of less than 1 usually do not exist, whereas when the Si/Al molar ratio exceeds 5, the product CO
The purity and yield of the gas will be poor and it will no longer serve the intended purpose.

上記ゼオライトの粒径は特に限定はないが、塔に充填し
たときの圧損等を考慮してたとえば1〜7mm程度の範
囲から選択することが有利である。
The particle size of the zeolite is not particularly limited, but it is advantageous to select it from a range of, for example, about 1 to 7 mm, taking into account pressure loss when packed in a column.

上記ゼオライトからなる担体に担持させるハロゲン化銅
(II )またはその還元物としては、塩化銅(II)
、フッ化銅(II)、臭化銅(II )またはこれらの
還元物があげられる。これらの中では塩化銅(II )
またはその還元物が最も重要性が大きい。上記中、還元
物は、銅(I)化合物と銅(II)化合物との混合物、
あるいは1価とII価の中間の原子価を持つ化合物であ
ると推定される。
Copper (II) halide or its reduced product to be supported on the carrier made of zeolite is copper (II) chloride.
, copper(II) fluoride, copper(II) bromide, or reduced products thereof. Among these are copper(II) chloride;
or its reduced products are of greatest importance. Among the above, the reduced product is a mixture of a copper (I) compound and a copper (II) compound,
Alternatively, it is presumed to be a compound with a valence between monovalent and II-valent.

ゼオライトに対するハロゲン化銅(TI )またはその
還元物の担持量は特に限定はないが、通常は0.5〜l
 Om−mat/g、好ましくは1〜6 m−mal/
gの範囲から選択する。担持量が余りに少ないとCOO
着能力が不足し、一方担持量が余りに多いとかえって分
離効率が低下する。
The amount of copper halide (TI) or its reduced product supported on zeolite is not particularly limited, but is usually 0.5 to 1
Om-mat/g, preferably 1-6 m-mal/
Select from the range of g. If the supported amount is too small, COO
If the loading capacity is insufficient, and on the other hand, the amount supported is too large, the separation efficiency will be reduced.

LL皿立Mj7jrユ 上述の吸着剤は、ハロゲン化銅(II )の有機溶剤溶
液をS i / A文のモル比が1〜5であるゼオライ
トに接触させた後、有機溶剤を除去することにより製造
される。有機溶剤除去後にさらに不活性ガスまたは還元
性ガス雰囲気下に加熱処理することも有利であり、この
場合、加熱処理条件を厳しくすると、担持されたハロゲ
ン化m(II)は一部還元されて還元物となる。
The above-mentioned adsorbent is produced by bringing an organic solvent solution of copper(II) halide into contact with zeolite having a Si/A molar ratio of 1 to 5, and then removing the organic solvent. Manufactured. It is also advantageous to further heat-treat in an inert gas or reducing gas atmosphere after removing the organic solvent; in this case, if the heat-treating conditions are severe, the supported halide m(II) is partially reduced and reduced. Become a thing.

有機溶剤としてはケトン類、エステル類、二一チル類な
ども使用可能であるが、低級アルコールを用いた場合に
最もすぐれたCO分離効果が奏されるので、工業的には
低級アルコールを用いることが特に望ましい。ここで低
級アルコールとしては、メタノール、エタノール、n−
プロパツール、インプロパツール、n−ブタノール、イ
ンブタノール、 5ec−ブタノール、tert−ブタ
ノールなどがあげられる。有機溶剤に代えて水を用いた
場合は、C○吸着能は発現しない。
As organic solvents, ketones, esters, 21-methyls, etc. can be used, but the best CO separation effect is achieved when lower alcohols are used, so it is preferable to use lower alcohols industrially. is particularly desirable. Here, the lower alcohols include methanol, ethanol, n-
Propertool, impropertool, n-butanol, inbutanol, 5ec-butanol, tert-butanol and the like can be mentioned. When water is used instead of the organic solvent, C○ adsorption ability is not developed.

有機溶剤溶液の接触は、含浸、スプレーなどによりなさ
れる。この際単に接触させるだけでなく、真空脱気した
ゼオライトに/\ロゲン化銅(II)の有機溶剤溶液を
接触させたり、ゼオライトにハロゲン化銅(II )の
有機溶剤溶液を接触させた後、減圧条件下に脱気したり
してもよい。
Contact with the organic solvent solution is carried out by impregnation, spraying, etc. At this time, in addition to simply contacting the zeolite, the zeolite may be brought into contact with an organic solvent solution of copper (II) halide, or the zeolite may be brought into contact with an organic solvent solution of copper (II) halide. Deaeration may be performed under reduced pressure conditions.

ゼオライトにハロゲン化銅(II )の有機溶剤溶液を
接触させた後の有機溶剤の除去方法としては、常温また
は/および70〜100℃の加熱処理をしながら減圧条
件下で有機溶剤を除去する方法、70〜loo’oの加
熱処理により有機溶剤を除去する方法などが採用される
The method for removing the organic solvent after contacting the zeolite with an organic solvent solution of copper (II) halide is to remove the organic solvent under reduced pressure conditions while performing heat treatment at room temperature or/and 70 to 100°C. , a method in which the organic solvent is removed by heat treatment at 70 to 100°C is employed.

そして、−上記のようにして有機溶剤を除去した後、さ
らに不活性ガス(N?、、アルゴンなど)または還元性
ガス(CO、H2,など)雰囲気下において100〜3
00℃、好ましくは150〜250°Cで加熱処理する
ことにより活性化を図ることが好ましい。この加熱処理
により、担体に担持された銅(II )化合物は部分的
に還元されて、銅(I)化合物と銅(II )化合物と
の混合物、あるいは1価とII価の中間の原子価を持つ
化合物になるものと推定される。
- After removing the organic solvent as described above, the organic solvent is further removed under an inert gas (N?, argon, etc.) or reducing gas (CO, H2, etc.) atmosphere to
Activation is preferably carried out by heat treatment at 00°C, preferably 150 to 250°C. Through this heat treatment, the copper (II) compound supported on the carrier is partially reduced, resulting in a mixture of copper (I) and copper (II) compounds, or a valence intermediate between monovalent and II valence. It is estimated that this compound will have the following properties:

以広立立亙旦鷹 上記のようにして得られた吸着剤は、吸着塔に充填され
、PSA法またはTSA法により、C0を含む混合ガス
からのCOの分離回収が遂行される。
The adsorbent obtained as described above is packed into an adsorption tower, and CO is separated and recovered from a mixed gas containing CO by the PSA method or the TSA method.

PSA法によりCOの分離回収を行う場合は、吸着工程
における吸着圧力は大気圧以上、たとえばO〜6 Kg
/ cm′LGとすることが望ましく、真空脱気工程に
おける真空度は大気圧以下、たとえば200〜1OTo
rrとすることが望ましい。
When separating and recovering CO by the PSA method, the adsorption pressure in the adsorption step is atmospheric pressure or higher, for example 0~6 kg.
/ cm'LG, and the degree of vacuum in the vacuum degassing step is below atmospheric pressure, for example 200 to 1 OTo.
It is desirable to set it to rr.

TSA法によりCOの分離回収を行う場合は、吸着工程
における吸着温度はたとえばO〜40℃程度、脱気工程
における脱気温度はたとえば60〜180’C程度とす
ることが望ましい。
When separating and recovering CO by the TSA method, it is desirable that the adsorption temperature in the adsorption step is, for example, about 0 to 40°C, and the degassing temperature in the degassing step is, for example, about 60 to 180'C.

また、PSA法とTSA法とを併用し、吸着を大気圧以
北で低温条件下に行い、脱気を大気圧以下で高温条件下
に行うこともできる。
It is also possible to use the PSA method and the TSA method in combination, performing adsorption under low temperature conditions north of atmospheric pressure and performing deaeration under high temperature conditions below atmospheric pressure.

なお、TSA法はエネルギー消費の点でPSA法に比し
ては不利であるため、工業的にはPSA法を採用するか
、PSA−TSA併用法を採用することが望ましい。
In addition, since the TSA method is disadvantageous compared to the PSA method in terms of energy consumption, it is desirable to adopt the PSA method or a combined PSA-TSA method from an industrial perspective.

本発明の方法に適用できるCOを含む混合ガスとしては
、たとえば、製鉄所の転炉から発生する転炉ガスが用い
られる。転炉ガスは、通常、主成分としてのCOのほか
、0ス、メタンその他の炭化水素、水および少量のHル
S、NH3等を含んでいる。転炉ガス以外に、高炉ガス
、電気炉ガス、発生炉ガスなども原料ガスとして用いる
ことができる。
As the mixed gas containing CO that can be applied to the method of the present invention, for example, converter gas generated from a converter in a steel mill is used. Converter gas usually contains CO as a main component, as well as carbon dioxide, methane and other hydrocarbons, water, and small amounts of H, S, NH3, and the like. In addition to converter gas, blast furnace gas, electric furnace gas, generator gas, etc. can also be used as raw material gas.

なお、本発明においては、CO分離回収工程に先立ち、
上記吸着剤を被毒し、あるいはその寿命を縮めるおそれ
のある成分、すなわちイオウ化合物、N H3等の不純
物の吸着除去工程、水分除去工程およびO2除去工程を
設けることが望ましい。ただし、CO2,除去工程やN
z除去工程は設けるには及ばない。
In addition, in the present invention, prior to the CO separation and recovery step,
It is desirable to provide a step for adsorption and removal of impurities such as sulfur compounds and NH3, a moisture removal step, and an O2 removal step, which may poison the adsorbent or shorten its lifespan. However, CO2, removal process and N
It is not necessary to provide a z removal process.

PSA法を採用した場合の操作は、工業的には、上記吸
着剤を充填した複数の吸着塔を用い、次の各操作をそれ
ぞれの吸着塔において、(1)原料ガスを吸着塔に流し
てCOを吸着する工程、および、排出ガス中CO濃度が
原料ガス中のCO濃度と等しくなる少し前に、排出ガス
を他塔の昇圧(m)に用いる工程、 (2)吸着工程終了後、その吸着塔と真空脱気が終った
吸着塔とを連絡し、前者吸着塔の圧力を大気圧付近まで
並流に減圧させる減圧工程、およびそれに対応して後者
吸着塔を昇圧(1)する工程、 (3)減圧した吸着塔に製品ガスの一部を並流に導入し
て、塔内部残留不純物ガスを洗浄する洗浄工程、および
、このとき排出されるガスを他塔の昇圧(II )に用
いる工程、 (4)真空減圧して、吸着剤に吸着されているCOを吸
着剤から向流に脱気させ、製品ガスを回収する製品回収
工程、 (5)製品回収が終った吸着塔と吸着工程が終った吸着
塔とを連絡して、前者吸着塔を並流に昇圧する昇圧(I
)工程、 (6)他の吸着塔の洗浄排ガスにより並流に昇圧する昇
圧(II )工程、 (7)他の吸着塔の吸着工程終了間際の排ガスにより昇
圧する昇圧(DI)工程、 を順次繰返して行えばよい。
In industrial operations, when the PSA method is adopted, multiple adsorption towers filled with the above-mentioned adsorbent are used, and the following operations are performed in each adsorption tower: (1) Feedstock gas is passed through the adsorption tower. A process of adsorbing CO, and a process of using the exhaust gas to raise the pressure (m) of another column shortly before the CO concentration in the exhaust gas becomes equal to the CO concentration in the raw material gas. (2) After the adsorption process is completed, the A depressurization step in which the adsorption tower and the adsorption tower after vacuum deaeration are connected, and the pressure in the former adsorption tower is reduced to near atmospheric pressure in parallel flow, and a corresponding step in which the pressure in the latter adsorption tower is increased (1); (3) A cleaning step in which a part of the product gas is introduced in parallel flow into the depressurized adsorption tower to clean the residual impurity gas inside the tower, and the gas discharged at this time is used for pressurization (II) of other towers. (4) A product recovery step in which the CO adsorbed on the adsorbent is degassed in a countercurrent flow from the adsorbent by reducing the pressure in vacuum to recover the product gas; (5) The adsorption column and adsorption after product recovery have been completed. Pressure increasing (I
) step, (6) pressurization (II) step in which the pressure is increased in parallel flow with the scrubbing exhaust gas from another adsorption tower, (7) pressurization (DI) step in which the pressure is increased by the exhaust gas near the end of the adsorption step in another adsorption tower, in sequence. Just do it repeatedly.

このように上記操作をそれぞれの吸着塔において順次繰
返して行うことによって、連続的にCOガスを高い回収
率で分離回収することができる。
By sequentially repeating the above operations in each adsorption tower in this manner, CO gas can be continuously separated and recovered at a high recovery rate.

作   用 本発明の固体吸着剤による吸着脱離現象は、主として担
体に担持されたハロゲン化m(II)またはその還元物
とCOとの可逆的な化学反応(錯体形成反応と解離反応
)に基づくものであり(N2.COzとの化学反応は起
こらない)、副次的にゼオライトの細孔表面上への物理
的な吸着およびそこからの脱離に基くものであると考え
られる。
The adsorption/desorption phenomenon by the solid adsorbent of the present invention is mainly based on a reversible chemical reaction (complex formation reaction and dissociation reaction) between halide m(II) or its reduced product supported on a carrier and CO. (no chemical reaction with N2.COz occurs), and is thought to be secondary to physical adsorption onto the pore surface of the zeolite and desorption therefrom.

実  施  例 次に、実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained by giving examples.

実施例1 200111(7)三角フラスコ中−c4化t@ (I
I ) 13gを40ccのエタノールに溶解すること
により、塩化銅(II )溶液を調製した。この溶液中
に、予め 110℃で約4時間乾燥したSi/、AJI
のモル比が1.25の1.5φ柱状のゼオライト(東洋
曹達工業株式会社製ゼオラムF−9)19gを加え、ア
スピレータ−で10分間脱気した後、4時間静置した。
Example 1 200111 (7) -c4 t@(I
I) A copper(II) chloride solution was prepared by dissolving 13 g in 40 cc of ethanol. In this solution, Si/AJI, which had been previously dried at 110°C for about 4 hours, was added.
19 g of 1.5φ columnar zeolite (Zeolum F-9 manufactured by Toyo Soda Kogyo Co., Ltd.) with a molar ratio of 1.25 was added, and after degassing with an aspirator for 10 minutes, the mixture was allowed to stand for 4 hours.

ついで、マントルヒーターで200℃に加熱しつつ、N
2.気流中でエタノールを留去した後、室温まで冷却し
、CO分離回収用の吸着剤を得た。
Next, while heating to 200℃ with a mantle heater, N
2. After ethanol was distilled off in an air stream, the mixture was cooled to room temperature to obtain an adsorbent for CO separation and recovery.

と記で得た吸着剤を吸着塔(15mmφX300111
!IH)に充填し、この吸着塔に CO:  71.4 vo1% NL  :  12.7vo1% CO2,:  15.9 vat% よりなる組成の1気圧の混合ガスを供給して50°Cで
COを吸着させた。このときのCO吸着量は20.0c
c/ccであった。
The adsorbent obtained in
! A mixed gas of 1 atm with a composition of CO: 71.4 vol% NL: 12.7 vol% CO2: 15.9 vat% was supplied to this adsorption tower, and CO was removed at 50°C. It was adsorbed. The amount of CO adsorption at this time is 20.0c
It was c/cc.

吸着操作後CO180ccで塔内を洗浄し、ついで真空
ポンプを用いて圧力50Torrで5分間脱気を行い、
吸着されているガスを放出させた。このときのCO放出
量は8.9cc/ccであり、回収ガス組成は、 CO  :  95.4 vo1% COz +   4.2i vo1% N−L:  trace であった。
After the adsorption operation, the inside of the column was washed with 180 cc of CO, and then degassed for 5 minutes at a pressure of 50 Torr using a vacuum pump.
The adsorbed gas was released. The amount of CO released at this time was 8.9 cc/cc, and the recovered gas composition was CO: 95.4 vo1% COz + 4.2i vo1% NL: trace.

実施例? 吸着操作温度を80°Cとしたほかは実施例1と同じ条
件で吸着分離を行った。結果は次の通りであった。
Example? Adsorption separation was carried out under the same conditions as in Example 1, except that the adsorption operation temperature was 80°C. The results were as follows.

CO吸着量   14.0 cc/cc、C○放出量 
  7.4 cc/cc回収ガス組成 CO  :   98.1vo1% CO2,+    1.9 vo1% Nz  :   trace 実施例3 担体としてSi/AJIのモル比が1.25の 1.E
i11mφ柱状のゼオライト(ユニオン争カーバイド社
製モレギュラーシーブス13X)19gを用いたほかは
実施例1と同じ条件で実験を行った。結果は次の通りで
あった。
CO adsorption amount 14.0 cc/cc, C○ release amount
7.4 cc/cc Recovery gas composition CO: 98.1 vo1% CO2, + 1.9 vo1% Nz: trace Example 3 A carrier with a molar ratio of Si/AJI of 1.25 1. E
An experiment was conducted under the same conditions as in Example 1, except that 19 g of 11 mφ columnar zeolite (Morregular Sieves 13X manufactured by Union Carbide Co., Ltd.) was used. The results were as follows.

CO吸着量   23.2 cc/ccCO放出iH7
,3cc/cc 回収ガス組成 CO:   94.3 vo1% CO2,:    5.7 vo1% Nz  :   trace 実施例4 エタノールに代えてメタノールを用いたほかは実施例1
と同じ条件で実験を行ったところ、実施例1とほぼ同じ
結果が得られた。
CO adsorption amount 23.2 cc/ccCO release iH7
, 3cc/cc Recovery gas composition CO: 94.3 vo1% CO2,: 5.7 vo1% Nz: trace Example 4 Example 1 except that methanol was used instead of ethanol.
When an experiment was conducted under the same conditions as in Example 1, almost the same results as in Example 1 were obtained.

実施例5 実施例1において、混合ガスの吸着操作を2kg/am
”Gの加圧下に行い、吸着操作後は大気圧まで減圧して
CO180ccで塔内を洗浄し、ついで真空ポンプを用
いて圧力50Torrで5分間脱気を行い、吸着されて
いるガスを放出させた。結果は次の通りであった。
Example 5 In Example 1, the mixed gas adsorption operation was performed at 2 kg/am.
After the adsorption operation, the pressure was reduced to atmospheric pressure and the inside of the column was washed with 180 cc of CO. Then, degassing was performed using a vacuum pump at a pressure of 50 Torr for 5 minutes to release the adsorbed gas. The results were as follows.

CO吸着量   25.1 cc/ccC○放出量  
 10.1 cc/cc回収ガス組成 CO  :   9B、1マロ1% CO2:    3.9 vo1% N2.:   trace 比較例1 エタノールに代えてノに留水を用いたほかは実施例1と
同じ条件で実験を行った。その結果、溶媒を、I入留水
としたことによりC○吸着能は発現せず、CO吸着剤と
しては不適当であることがわかった− 比較例2 Si/Alのモル比が16のゼオライトを用いたほかは
実施例1と同様の条件で実験を行ったが、回収ガス中の
CO濃度がかなり大きく、このゼオライトは工業的なC
O選択分離方法としては使用しえないことがわかった。
CO adsorption amount 25.1 cc/ccC○ release amount
10.1 cc/cc recovered gas composition CO: 9B, 1 malo 1% CO2: 3.9 vo1% N2. : trace Comparative Example 1 An experiment was conducted under the same conditions as in Example 1 except that distilled water was used instead of ethanol. As a result, it was found that by using I distilled water as the solvent, C○ adsorption ability was not expressed and it was found to be unsuitable as a CO adsorbent - Comparative Example 2 Zeolite with a Si/Al molar ratio of 16 The experiment was conducted under the same conditions as in Example 1 except that zeolite was used, but the CO concentration in the recovered gas was quite high, and this zeolite was
It was found that this method cannot be used as an O selective separation method.

発明の効果 本発明のC○吸着剤は、■安価な原材料を用い容易に製
造できること、■熱に対して安定である上、硬さもあり
、吸着塔に充填した場合長期にわたり耐久性を持つこと
、■混合ガス中のCO以外のガスの吸着が少ないため、
高純度のCOを分離回収できること、などのすぐれた利
点を有している。
Effects of the Invention The C○ adsorbent of the present invention: ■ can be easily produced using inexpensive raw materials; ■ is stable against heat and has hardness, and has long-term durability when packed in an adsorption tower. , ■Because there is little adsorption of gases other than CO in the mixed gas,
It has excellent advantages such as being able to separate and recover high-purity CO.

よって、本発明により、転炉ガスその他COを含むガス
から高純度のCOを工業的規模で分離回収することでき
、化学工業上の意義が大きい。
Therefore, the present invention allows highly purified CO to be separated and recovered from converter gas and other CO-containing gases on an industrial scale, and is of great significance in the chemical industry.

Claims (1)

【特許請求の範囲】 1、Si/Alのモル比が1〜5であるゼオライトに、
ハロゲン化銅(II)またはその還元物を担持させてなる
CO分離回収用吸着剤。 2、ハロゲン化銅(II)の有機溶剤溶液をSi/Alの
モル比が1〜5であるゼオライトに接触させた後、有機
溶剤を除去することを特徴とするCO分離回収用吸着剤
の製造法。 3、ハロゲン化銅(II)の有機溶剤溶液をSi/Alの
モル比が1〜5であるゼオライトに接触させた後、有機
溶剤を除去し、さらに不活性ガスまたは還元性ガス雰囲
気下に加熱処理することを特徴とする特許請求の範囲第
2項記載の製造法。 4、有機溶剤が低級アルコールである特許請求の範囲第
2項または第3項記載の製造法。 5、圧力変動式吸着分離法または/および温度変動式吸
着分離法によりCOを含む混合ガスからCOを分離回収
するにあたり、吸着剤として、Si/Alのモル比が1
〜5であるゼオライトにハロゲン化銅(II)またはその
還元物を担持させてなるCO分離回収用吸着剤を用いる
ことを特徴とするCOを分離回収する方法。
[Claims] 1. Zeolite with a Si/Al molar ratio of 1 to 5,
An adsorbent for CO separation and recovery, which supports copper (II) halide or its reduced product. 2. Production of an adsorbent for CO separation and recovery, characterized in that the organic solvent solution of copper (II) halide is brought into contact with zeolite having a Si/Al molar ratio of 1 to 5, and then the organic solvent is removed. Law. 3. After bringing an organic solvent solution of copper(II) halide into contact with a zeolite having a Si/Al molar ratio of 1 to 5, the organic solvent is removed and further heated under an inert gas or reducing gas atmosphere. The manufacturing method according to claim 2, characterized in that the method comprises: 4. The manufacturing method according to claim 2 or 3, wherein the organic solvent is a lower alcohol. 5. When separating and recovering CO from a mixed gas containing CO by pressure fluctuation type adsorption separation method and/or temperature fluctuation type adsorption separation method, as an adsorbent, the molar ratio of Si/Al is 1.
A method for separating and recovering CO, characterized by using an adsorbent for separating and recovering CO, which is made by supporting copper (II) halide or a reduced product thereof on a zeolite according to 5.
JP60205973A 1985-09-17 1985-09-17 Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent Pending JPS6265919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205973A JPS6265919A (en) 1985-09-17 1985-09-17 Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205973A JPS6265919A (en) 1985-09-17 1985-09-17 Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent

Publications (1)

Publication Number Publication Date
JPS6265919A true JPS6265919A (en) 1987-03-25

Family

ID=16515779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205973A Pending JPS6265919A (en) 1985-09-17 1985-09-17 Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent

Country Status (1)

Country Link
JP (1) JPS6265919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529970A (en) * 1994-04-29 1996-06-25 Air Products And Chemicals, Inc. CO adsorbents with hysteresis
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas
US9382031B2 (en) 2014-08-25 2016-07-05 International Paper Company Wraparound-style container with reclosable feature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529970A (en) * 1994-04-29 1996-06-25 Air Products And Chemicals, Inc. CO adsorbents with hysteresis
US5529763A (en) * 1994-04-29 1996-06-25 Air Products And Chemicals, Inc. CO adsorbents with hysteresis
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas
US9382031B2 (en) 2014-08-25 2016-07-05 International Paper Company Wraparound-style container with reclosable feature

Similar Documents

Publication Publication Date Title
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
US4914076A (en) Method of producing an adsorbent for separation and recovery of CO
KR100966064B1 (en) Syngas purification process
US4025321A (en) Purification of natural gas streams containing oxygen
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
WO1999046031A9 (en) Decarbonating gas streams using zeolite adsorbents
JPH0313161B2 (en)
US3029575A (en) Chlorine separation process
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JPS61242638A (en) Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it
EP1076633A1 (en) Reactive matrix for removing moisture from a fluorine containing gas and process
JP5256120B2 (en) Method for producing CO adsorption / desorption agent
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JPH0421539B2 (en)
JPH0149643B2 (en)
JPS62113710A (en) Production of adsorbent for separation and recovery of co
JPH0699127B2 (en) Adsorbent for CO separation and recovery, method for producing the same, and method for separating and recovering CO using the same
JPS6265920A (en) Method for separating and recovering carbon mon-oxide from mixed gas containing carbon monoxide
SU1443943A1 (en) Method of cleaning hydrogen-containing gas
JPS61242909A (en) Production of adsorbent for separating and recovering co
JP4205347B2 (en) Method for purifying trifluoromethyl hypofluorite
JPH0631354B2 (en) Method for producing high calorie gas
JPH0465301A (en) Production of pure hydrogen