JPS62113710A - Production of adsorbent for separation and recovery of co - Google Patents

Production of adsorbent for separation and recovery of co

Info

Publication number
JPS62113710A
JPS62113710A JP60255464A JP25546485A JPS62113710A JP S62113710 A JPS62113710 A JP S62113710A JP 60255464 A JP60255464 A JP 60255464A JP 25546485 A JP25546485 A JP 25546485A JP S62113710 A JPS62113710 A JP S62113710A
Authority
JP
Japan
Prior art keywords
solution
carrier
adsorbent
copper
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60255464A
Other languages
Japanese (ja)
Other versions
JPH0724762B2 (en
Inventor
Jintaro Yokoe
横江 甚太郎
Tetsuo Nakano
哲夫 中野
Toshiaki Tsuji
辻 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP60255464A priority Critical patent/JPH0724762B2/en
Publication of JPS62113710A publication Critical patent/JPS62113710A/en
Publication of JPH0724762B2 publication Critical patent/JPH0724762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To produce the titled adsorbent having excellent adsorption and desorption performance of CO, by dissolving a Cu(I) compound in a solvent and contacting the solution with heated silica and/or alumina carrier under a specific condition. CONSTITUTION:A Cu(I) compound (e.g. cuprous chloride) is dissolved in a solvent such as water, hydrochloric acid, ammonia water, etc. The solution is optionally heated at 40-100 deg.C and sprayed to a silica and/or alumina carrier having particle diameter of 1-7mm and preliminarily heated at 50-150 deg.C. The saturated absorptivity of the solution to the carrier is adjusted to + or -10% during the above adsorption process. The adsorbed solution is dried by heating in an inert gas atmosphere and, if necessary, heated in an inert gas or reducing gas atmosphere at 100-300 deg.C to obtain an adsorbent for the separation and recovery of CO and containing 0.5-8m-mol/g of supported Cu(I) compound.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧力変動式吸着分離法(以下PSA法という
)または/および温度変動式吸着分離法(以下TSA法
という)によりCOを含む混合ガスから高純度のCOを
分離回収する目的に用いる固体吸着剤を製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for separating a mixed gas containing CO by a pressure fluctuation adsorption separation method (hereinafter referred to as PSA method) or/and a temperature fluctuation adsorption separation method (hereinafter referred to as TSA method). The present invention relates to a method for producing a solid adsorbent used for the purpose of separating and recovering high-purity CO.

従来の技術 COを主成分とするガスの代表的なものとして、製鉄所
の転炉から得られる転炉ガス、高炉から得られる高炉ガ
ス、電気炉から得られる電気炉ガス、コークスをガス化
して得られる発生炉ガスなどがある。これらのガスは通
常そのほとんどが燃料として使用されているが、これら
のガスの中にはCOがたとえば70vo1%前後あるい
はそれ以上も含まれているものもあるので、これらのガ
ス中に否まれるCOを高純度で分離回収することができ
れば、ギ酸、酢酸等の合成原料、有機化合物の還元用な
どとして用いることができ、化学工業上非常に有益であ
る。
Conventional technology Typical gases containing CO as a main component include converter gas obtained from converters in steel plants, blast furnace gas obtained from blast furnaces, electric furnace gas obtained from electric furnaces, and gasification of coke. There is a generator gas that can be obtained. Most of these gases are normally used as fuel, but some of these gases contain CO, for example, around 70 vol 1% or more, so these gases are rejected. If CO can be separated and recovered with high purity, it can be used as a raw material for synthesizing formic acid, acetic acid, etc., and for reducing organic compounds, which is extremely useful in the chemical industry.

従来、coを主成分とするガスからCOを分離回収する
方法として、深冷分離法、銅アンモニア法、コソーブ(
COSORB)法などが知られているが、これらの方法
は設備費がかさむ上、電力、蒸気等の熱エネルギーに要
する費用が大きいという問題があり、大容量のcoの分
離回収には適していても、中容量または小容量のCOの
分離回収には必ずしも適していなかった。さらに、これ
らの方法により分離して得られるCOにはo2.、co
2など有機合成反応上障害となるガス成分が混在してく
るため、そのままでは有機合成用には適用できないとい
う欠点があった。
Conventionally, methods for separating and recovering CO from gas whose main component is CO include cryogenic separation method, copper ammonia method, and cosorb (
The COSORB method is known, but these methods have the problem of high equipment costs and high costs for thermal energy such as electricity and steam, and are not suitable for separating and recovering large amounts of co. However, these methods were not necessarily suitable for the separation and recovery of medium or small volumes of CO. Furthermore, CO obtained by separation by these methods contains o2. ,co
It has the disadvantage that it cannot be used as it is for organic synthesis because it contains gas components such as 2 that are a hindrance to organic synthesis reactions.

ところで、中容量または小容量の原料ガスから特定ガス
を選択分離する方法としてPSA法およびTSA法が知
られている。
By the way, the PSA method and the TSA method are known as methods for selectively separating a specific gas from a medium or small volume of source gas.

PSA法とは、混合ガスから特定ガスを選択分離する方
法の一つであって、高い圧力で被吸着物を吸着剤に吸着
させ、ついで吸着系の圧力を下げることによって吸着剤
に吸着した被吸着物を脱離し、吸着物および非吸着物を
分離する方法であって、工業的には吸着剤を充填した塔
を複数個設け、それぞれの吸着塔において、昇圧→吸着
→洗浄→脱気の一連の操作を繰り返すことにより、装置
全体としては連続的に分離回収を行うことができるよう
にしたものである。
The PSA method is a method for selectively separating a specific gas from a mixed gas.The adsorbent is adsorbed onto an adsorbent at high pressure, and then the adsorbed material is removed by lowering the pressure of the adsorption system. This method desorbs adsorbed substances and separates adsorbed substances and non-adsorbed substances.Industrially, multiple towers filled with adsorbent are installed, and in each adsorption tower, the steps of pressurization → adsorption → washing → deaeration are performed. By repeating a series of operations, the entire device can perform continuous separation and recovery.

また、TSA法も上記PSA法と同様に混合ガスから特
定ガスを選択分離する方法の一つであって、低温で被吸
着物を吸着剤に吸着させ、ついで吸着系の温度を上げる
ことによって吸着剤に吸着した被吸着物を脱離し、吸着
物および非吸着物を分離する方法である。
Similarly to the PSA method, the TSA method is also a method for selectively separating a specific gas from a mixed gas.The TSA method is one of the methods for selectively separating a specific gas from a mixed gas. This is a method in which the adsorbed substances adsorbed to the agent are desorbed and the adsorbed substances and non-adsorbed substances are separated.

従来、このPSA法によりCOを含む混合ガスからCO
を分離回収する方法として、モルデナイト系ゼオライト
を吸着剤として用いる方法が提案されている。(特開昭
59−22fi25号公報、特開昭59−49818号
公報参照) また、PSA法またはTSA法によりCOを含む混合ガ
スからCOを分離回収する方法として、ハロゲン化銅(
I)、酸化銅(I)、銅(II )塩、酸化銅(II 
)などの銅化合物を活性炭に担持させたものを吸着剤と
して用いる方法が提案されている。(特開昭58−15
8517号公報、特開昭59−89414号公報、特開
昭59−105841号公報、特開昭59−13813
4号公報参照) 同様に、PSA法またはTSA法によりCOを含む混合
ガスからCOを分離回収するために用いるco吸吸収分
離剤製製造法して、ハロゲン化銅(I)およびハロゲン
化アルミニウム(III)の有機溶媒溶液をアルミナ、
シリカ、シリカ/アルミナなどの多孔性無機酸化物に接
触させ、ついで遊離有機溶媒を除去する方法が提案され
ている。(特開昭80−90038号公報、特開昭80
−90037号公報参照) また、水出罪人は、PSA法またはTSA法によりco
を含む混合ガスからCOを分離回収する方法として、シ
リカまたは/およびアルミナからなる担体に、銅(I)
化合物、銅(II )化合物またはその還元物を担持さ
せてなるCO分離回収用吸着剤を用いる方法について、
すでに特許出願を行っている。(特願昭80−8297
8号)発明が解決しようとする問題点 PSA法またはTSA法を実施するにあたり吸着塔に充
填する吸着剤に求められる性能としては、■共存成分に
対する着目成分の選択的吸着があること、■加圧または
低温時と減圧または高温時の着目成分の吸着量の差が大
きいこと、■吸着した着目成分の脱離が容易であること
、■着目成分以外は吸着されにくく、そして脱離しにく
いこと、(瑯)吸着剤の寿命が長いこと、などがあげら
れる。これらの性能は、製品ガスの純度および収率に大
きな影響を与えるため、PSA法またはTSA法では重
要な要素となる。
Conventionally, this PSA method was used to remove CO from a mixed gas containing CO.
A method using mordenite-based zeolite as an adsorbent has been proposed as a method for separating and recovering. (Refer to JP-A-59-22FI25 and JP-A-59-49818.) In addition, as a method for separating and recovering CO from a mixed gas containing CO by the PSA method or the TSA method, copper halide (
I), copper(I) oxide, copper(II) salt, copper(II) oxide
) and other copper compounds supported on activated carbon have been proposed. (Unexamined Japanese Patent Publication No. 58-15
8517, JP 59-89414, JP 59-105841, JP 59-13813
(Refer to Publication No. 4) Similarly, a manufacturing method for producing a co-absorbing and separating agent used for separating and recovering CO from a mixed gas containing CO by the PSA method or TSA method is used to produce copper (I) halide and aluminum halide ( III) organic solvent solution to alumina,
A method has been proposed in which the material is contacted with a porous inorganic oxide such as silica or silica/alumina, and then free organic solvent is removed. (Unexamined Japanese Patent Publication No. 80-90038, Unexamined Japanese Patent Publication No. 80-80
(Refer to Publication No. 90037) In addition, under the PSA Act or the TSA Act, criminals who have been released from the water are
As a method for separating and recovering CO from a mixed gas containing
Regarding a method using an adsorbent for CO separation and recovery that supports a compound, a copper (II) compound, or a reduced product thereof,
A patent application has already been filed. (Patent application 1980-8297
No. 8) Problems to be solved by the invention When carrying out the PSA method or the TSA method, the performance required of the adsorbent packed in the adsorption tower is: ■ selective adsorption of the component of interest relative to coexisting components; There is a large difference in the adsorption amount of the target component at low pressure or low temperature and at reduced pressure or high temperature; ■ The adsorbed target component is easily desorbed; ■ It is difficult for components other than the target component to be adsorbed and desorbed. (Glue) The long life of the adsorbent is one of the reasons. These performances are important factors in the PSA method or TSA method because they have a large impact on the purity and yield of the product gas.

しかるに、吸着剤の物理的な吸着脱離現象を利゛用する
上記モルデナイト系ゼオライトを吸着剤として用いる方
法にあっては、CO吸着量が比較的小さいため圧力スイ
ングの切替え頻度を多くしなければならず、操作の点で
も弁類の寿命の点でも不利となること、吸着操作に先立
ちC02を予め除去しておかなければならないこと、N
Zの共吸着を免かれないため、製品純度が低くなること
However, in the method of using mordenite-based zeolite as an adsorbent, which utilizes the physical adsorption/desorption phenomenon of the adsorbent, the amount of CO adsorbed is relatively small, so the pressure swing must be changed more frequently. However, it is disadvantageous both in terms of operation and the life of the valves, and that C02 must be removed in advance before the adsorption operation.
Since co-adsorption of Z cannot be avoided, the product purity will be low.

また吸着したN2.を除くために製品COガスを用いて
塔内洗浄を行うときの洗浄量が多く、製品coの回収率
が低くなることなどの問題がある。
Also, the adsorbed N2. When cleaning the inside of the tower using product CO gas to remove CO, the amount of cleaning is large, resulting in problems such as a low recovery rate of product CO.

一方、吸着剤の化学的な吸着脱離現象を利用する上記銅
化合物を活性炭に担持させた吸着剤を用いる方法にあっ
ては、Co、N2.、CO2,などを含む混合ガスから
COを分離しようとする場合、COと同時にCO2,な
ども共吸着する傾向があるため高純度のCOを分離回収
しがたいこと、また吸着剤のCO吸着量が必ずしも大き
くはないことなどの問題点があり、工業的規模において
採用しうるまでには至っていない。
On the other hand, in a method using an adsorbent in which the copper compound is supported on activated carbon, which utilizes the chemical adsorption/desorption phenomenon of the adsorbent, Co, N2. When attempting to separate CO from a mixed gas containing CO2, etc., it is difficult to separate and recover high-purity CO because CO2, etc., tend to co-adsorb at the same time as CO, and the amount of CO adsorbed by the adsorbent However, there are problems such as the fact that the size is not necessarily large, and it has not yet reached the point where it can be adopted on an industrial scale.

また、ハロゲン化銅(I)およびハロゲン化アルミニウ
ム(m)を多孔性無機酸化物に担持させた吸着剤を用い
る方法は、主としてCuAfLX千(Xはハロゲン)の
CO選択吸収性を利用するものであるが、COに対する
吸着力が強すぎるため吸着したCOが脱気時脱離しにく
く、特にPSA法には適していないこと、吸着剤製造時
の操作を乾燥した不活性ガス雰囲気中で行う必要がある
こと、一度活性が低下した吸着剤においては再び活性を
回復させることが困難であることなどの点で工業的には
なお改良を図る必要がある。
In addition, a method using an adsorbent in which copper (I) halide and aluminum halide (m) are supported on a porous inorganic oxide mainly utilizes the CO selective absorption property of CuAfLX 1,000 (X is a halogen). However, because the adsorption power for CO is too strong, the adsorbed CO is difficult to desorb during degassing, making it particularly unsuitable for the PSA method, and the adsorbent manufacturing operation must be performed in a dry inert gas atmosphere. There is still a need for improvement from an industrial standpoint, such as the fact that once the activity of an adsorbent has decreased, it is difficult to restore the activity again.

これに対し、本出願人が先に出願している方法、すなわ
ち、シリカまたは/およびアルミナからなる担体に、銅
(I)化合物、銅(II )化合物またはその還元物を
担持させてなるco分離回収用吸着剤を用いる方法は、
極めて高い純度のCOを分離回収できるという利点はあ
るが、工業的見地からはさらにCOの吸脱着性能を増大
させることが要請される。
In contrast, the present applicant has previously applied for a method for co-separation in which a copper (I) compound, a copper (II) compound, or a reduced product thereof is supported on a carrier made of silica and/or alumina. The method using a recovery adsorbent is
Although it has the advantage of being able to separate and recover CO of extremely high purity, from an industrial standpoint, it is required to further increase the CO adsorption/desorption performance.

本発明は、このような状況に鑑み、COを含む混合ガス
から高純度のCOを効率良く分離回収できるCO吸脱着
性能のすぐれた吸着剤を見出すべく鋭意研究を重ねた結
果到達したものである。
In view of these circumstances, the present invention was achieved as a result of intensive research to find an adsorbent with excellent CO adsorption/desorption performance that can efficiently separate and recover high-purity CO from a mixed gas containing CO. .

問題点を解決するための手段 本発明のco分離回収用吸着剤の製造方法は、シリカま
たは/およびアルミナよりなる担体(X)に、銅(I)
化合物を溶媒に溶解させた溶液(Y)を接触させた後、
溶媒を除去して吸着剤を製造するにあたり、溶液(Y)
をその担体(x)に対する飽和吸収率±10%の範囲の
事情用し、かつ担体(X)を予め50〜150℃に加熱
しておいた状態で、担体(X)と溶液(Y)との接触を
行うことを特徴とするものである。
Means for Solving the Problems The method for producing an adsorbent for CO separation and recovery according to the present invention includes adding copper (I) to a carrier (X) made of silica or/and alumina.
After contacting with a solution (Y) in which the compound is dissolved in a solvent,
When removing the solvent and producing an adsorbent, the solution (Y)
The carrier (X) and the solution (Y) are mixed with each other under conditions of a saturated absorption rate of ±10% for the carrier (x) and with the carrier (X) preheated to 50 to 150°C. It is characterized by making contact.

この場合、担体(X)を予め50〜150℃に加熱して
おくだけでなく、溶液(Y)の方も40〜100°Cに
加熱しておいた状態で、担体(X)と溶液(Y)との接
触を行うと、一段とCO吸脱着性能のすぐれた吸着剤が
得られる。
In this case, the carrier (X) and the solution ( By contacting with Y), an adsorbent with even better CO adsorption/desorption performance can be obtained.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、銅(I)化合物を担持させる担体と
して、シリカまたは/およびアルミナよりなる担体(X
)を用いる。
In the present invention, a carrier (X
) is used.

シリカは、たとえばケイ酸ナトリウム水溶液を塩酸など
の酸で中和して沈澱を析出させ、ついで水洗、乾燥し、
さらに必要に応じて減圧加熱により活性化し、粉粒状と
することにより取得される。アルミナは、たとえば可溶
性のアルミニウム塩の水溶液から水酸化アルミニウムを
沈澱させてろ過し、これを強熱することにより取得され
る。
Silica is produced by, for example, neutralizing an aqueous sodium silicate solution with an acid such as hydrochloric acid to precipitate it, then washing it with water and drying it.
Further, if necessary, it is activated by heating under reduced pressure and obtained by making it into powder. Alumina is obtained, for example, by precipitating aluminum hydroxide from an aqueous solution of a soluble aluminum salt, filtering it, and igniting it.

シリカとアルミナを併用するときは、シリカとアルミナ
との単なる機械的混合物のほか、シリカゲルとアルミナ
ゲルとを湿った状態で練り合せる方法、シリカゲルにア
ルミニウム塩を浸漬する方法、シリカとアルミナとを水
溶液から同時にゲル化させる方法、シリカゲル上にアル
ミナゲルを沈着させる方法などが採用される。
When using silica and alumina together, in addition to a simple mechanical mixture of silica and alumina, methods of kneading silica gel and alumina gel in a wet state, methods of soaking aluminum salt in silica gel, and methods of mixing silica and alumina in an aqueous solution are available. A method of simultaneously gelling the silica gel, a method of depositing alumina gel on silica gel, etc. are adopted.

これらのシリカ、アルミナおよびシリカ−アルミナは、
いずれも市販されており1本発明においては塔に充填し
たときの圧損等を考慮して粒径がたとえば1〜7mm程
度の粒状のものを選択し、これを必要に応じて乾燥して
から使用する。
These silica, alumina and silica-alumina are
All of these are commercially available.In the present invention, we select granular particles with a particle size of, for example, about 1 to 7 mm, taking into account the pressure loss when filling the column, and dry them as necessary before using them. do.

本発明においては、この担体(X)に、銅(I)化合物
を溶媒に溶解させた溶液(Y)を接触させた後、溶媒を
除去して吸着剤を製造する。
In the present invention, the carrier (X) is brought into contact with a solution (Y) in which a copper (I) compound is dissolved in a solvent, and then the solvent is removed to produce an adsorbent.

ここでm (I)化合物としては、塩化m(I)、フッ
化に4(I)、臭化#1(I)等のハロゲン化銅(1)
:酸化銅(I);シアン化銅(1);ギ酸銅(I)、酢
酸銅(1)、シュウ酸銅(1)、硫酸銅(1)、亜硫酸
銅(I)等の銅(I)の酸素酸塩または有機酸塩;硫化
銅(1);ジクロロ銅(I)酸塩、テトラクロロ銅(I
)酸塩、ジシアノ銅(I)酸塩、テトラシアノ銅(I)
酸塩等の錯塩などが例示される。特に塩化tli4(I
)が好適である。
Here, m(I) compounds include copper halides (1) such as m(I) chloride, 4(I) fluoride, and #1(I) bromide.
: Copper (I) oxide; Copper cyanide (1); Copper (I) such as copper (I) formate, copper acetate (1), copper oxalate (1), copper sulfate (1), copper sulfite (I), etc. oxyacid or organic acid salt; copper sulfide (1); dichlorocuprate (I), tetrachlorocopper (I)
) acid salt, dicyanocopper(I) acidate, tetracyanocopper(I)
Examples include complex salts such as acid salts. In particular, tli4(I chloride)
) is preferred.

溶媒としては、たとえば、水、塩酸、酢酸、ギ酸、アン
モニア性ギ酸水溶液、アンモニア水、含ハロゲン溶剤、
炭化水素、アルコール類、ケトン類、エステル類、エー
テル類、セロソルブ類、カルピトール類などが用いれる
が、工業的には特に塩酸が好適である。
Examples of the solvent include water, hydrochloric acid, acetic acid, formic acid, ammoniacal formic acid aqueous solution, aqueous ammonia, halogen-containing solvents,
Hydrocarbons, alcohols, ketones, esters, ethers, cellosolves, carpitols, etc. are used, but hydrochloric acid is particularly suitable from an industrial standpoint.

担体(x)と溶液(Y)との接触は、次の2条件を満足
するようにして行う。
The contact between the carrier (x) and the solution (Y) is carried out so that the following two conditions are satisfied.

まず第一に、溶液(Y)をその担体(X)に対する飽和
吸収率±10%の範囲の量、換言すれば溶液(Y)を担
体(X)に吸収される飽和量とほぼ過不足のない事情用
する。ここで飽和吸収率は温度によって変化するが、実
際の吸収操作時の温度における飽和吸収率を言うものと
する。この場合、溶液(Y)の使用量が不足すると、g
A(I)化合物の相持量がそれだけ減少して吸着剤のC
OO着量が少なくなる。一方、溶液(Y)の使用量を上
記範囲より多くしても、シリカまたは/およびアルミナ
よりなる担体(X)は活性炭など他の多孔質担体と比べ
て銅(I)化合物の吸着能力が小さいため、担体(X)
に対する銅(I)化合物の相持量は多くはならず、むし
ろ溶媒を必要以上に消費する点で工業的に不利になる。
First of all, the solution (Y) should be added in an amount within the range of saturated absorption rate of the carrier (X) ±10%, in other words, the solution (Y) should be added in an amount that is approximately in excess or deficiency of the saturated amount absorbed by the carrier (X). Use for circumstances that are not present. Although the saturated absorption rate varies depending on the temperature, it refers to the saturated absorption rate at the temperature during actual absorption operation. In this case, if the amount of solution (Y) used is insufficient, g
The amount of A(I) compound supported decreases accordingly, and the C of the adsorbent decreases accordingly.
The amount of OO deposited decreases. On the other hand, even if the amount of solution (Y) used is greater than the above range, the carrier (X) made of silica and/or alumina has a smaller adsorption capacity for copper (I) compounds than other porous carriers such as activated carbon. Therefore, carrier (X)
The amount of the copper(I) compound supported by the copper(I) compound is not large, but rather the solvent is consumed more than necessary, which is industrially disadvantageous.

そして、溶媒量を余りに多くしすぎると、溶媒を除去す
る工程で担体(X)内に含浸した銅CI)化合物が再び
溶媒中に溶出してしまい、かえって吸着剤のCO吸吸着
方力劣るようになる。従って、担体(X)に対する溶液
(Y)の飽和吸収量を予め測定しておき、溶液(Y)を
その飽和吸収率に見合った借用いて担体(X)と接触さ
せるのがよい。
If the amount of solvent is too large, the copper CI) compound impregnated into the carrier (X) will be eluted into the solvent again during the solvent removal process, and the adsorbent's ability to absorb and adsorb CO will become worse. become. Therefore, it is preferable to measure the saturated absorption amount of the solution (Y) with respect to the carrier (X) in advance, and bring the solution (Y) into contact with the carrier (X) in proportion to the saturated absorption rate.

第二ニ、担体(X) を予め50−150℃、好ましく
は80〜120℃に加熱しておいた状態で溶液(Y)と
の接触に供するようにする。このように担体(X)を予
め加熱しておくと、担体(X)に対するm (I)化合
物の担持量が増大し、COO着量の大きい吸着剤が得ら
れる。
Second, the carrier (X) is heated in advance to 50-150°C, preferably 80-120°C, before being brought into contact with the solution (Y). By heating the carrier (X) in advance in this manner, the amount of the m (I) compound supported on the carrier (X) increases, and an adsorbent with a large amount of COO deposited can be obtained.

そして、担体(X)に対するgA(I)化合物の相持量
をさらに増大させたいときは、担体(X)と溶液(Y)
との接触に先立ち、担体(X)だけでなく溶液(Y)の
方も予め40〜100℃、好ましくは50〜90℃に加
熱しておくと、一段とc o pa 税着性能のすぐれ
た吸着剤が得られる。
When it is desired to further increase the amount of the gA(I) compound supported on the carrier (X), the carrier (X) and the solution (Y)
If not only the carrier (X) but also the solution (Y) is heated to 40 to 100°C, preferably 50 to 90°C, before contact with agent is obtained.

担体(X)と溶液(Y)との接触は、通常、含浸または
スプレーにより行う、この場合、担体細孔に存在する気
体を完全に溶液(Y)で4換するため、真空脱気した担
体(X)に溶液(Y)を接触させたり、担体(X)に溶
液(Y)を接触させた後、減圧条件下に脱気したりして
もよい。
Contact between the carrier (X) and the solution (Y) is usually carried out by impregnation or spraying. In this case, in order to completely exchange the gas present in the pores of the carrier with the solution (Y), the carrier is vacuum degassed. (X) may be brought into contact with the solution (Y), or the carrier (X) may be brought into contact with the solution (Y) and then degassed under reduced pressure conditions.

担体(X)と溶液(Y)とを接触させた後は、望ましく
は系の温度を下げることなく、窒素、アルゴン、ヘリウ
ムなどの不活性ガス雰囲気下に加熱乾燥することにより
溶媒を留出除去する。溶媒の除去は単なる加熱乾燥のほ
か、減圧乾燥によってもなされる。このような方法によ
り、効率よく銅(I)化合物を担体(X)に担持させる
ことができる。
After the carrier (X) and the solution (Y) are brought into contact, the solvent is removed by distillation by heating and drying in an inert gas atmosphere such as nitrogen, argon, helium, etc., preferably without lowering the system temperature. do. The solvent can be removed not only by simple heat drying but also by vacuum drying. By such a method, the copper (I) compound can be efficiently supported on the carrier (X).

担体(X)に対する銅(I)化合物の担持量は、通常は
0.5〜8 m−mol/g、好ましくは1〜5層−m
ol/gの範囲から選択する。銅(I)化合物の担持量
が余りに少ないとco吸着能力が不足し、一方銅(I)
化合物相特級が余りに多いとかえって分離効率が低下す
る。
The amount of copper (I) compound supported on the carrier (X) is usually 0.5 to 8 m-mol/g, preferably 1 to 5 layers-m
Select from the range of ol/g. If the amount of copper (I) compound supported is too small, the co adsorption capacity will be insufficient;
If there are too many special grade compound phases, the separation efficiency will actually decrease.

上述の乾燥により十分なCOO着能を示す吸着剤が得ら
れるが、乾燥後さらにN2、アルゴン。
Although an adsorbent exhibiting sufficient COO adsorption ability is obtained by the above-mentioned drying, N2 and argon are added after drying.

ヘリウムなどの不活性ガスまたはCo、N2.などの覆
元性ガス雰囲気下に加熱処理を行えば、さらにすぐれた
COO着能を示す吸着剤が得られる。加熱処理温度は、
不活性ガスまたは還元性ガスのいずれを使用する場合も
、100〜300℃、好ましくは150〜250℃の範
囲から選択するのが適当である。
Inert gas such as helium or Co, N2. If heat treatment is performed in an atmosphere of an invertible gas such as, an adsorbent exhibiting even better COO adsorption ability can be obtained. The heat treatment temperature is
When using either an inert gas or a reducing gas, it is appropriate to select it from the range of 100 to 300°C, preferably 150 to 250°C.

上記のようにして得られた吸着剤ti、吸着塔に充填さ
れ、PSA法またはTSA法により、COを含む混合ガ
スからのcoの分離回収が遂行される。
The adsorbent ti obtained as described above is packed into an adsorption tower, and CO is separated and recovered from a mixed gas containing CO by a PSA method or a TSA method.

PSA法によりcoの分離回収を行う場合は、吸着工程
における吸着“圧力は大気圧以上、たとえCキO〜6 
Kg/ cmZGとすることが望ましく、真空脱7、一
工程における真空度は大気圧以下、たとえば200〜1
0Tarrとすることが望ましい。
When separating and recovering CO using the PSA method, the adsorption pressure in the adsorption process must be above atmospheric pressure, even if CO is
It is desirable to set it to Kg/cmZG, and the degree of vacuum in vacuum desorption 7 and one step is below atmospheric pressure, for example, 200 to 1
It is desirable to set it to 0 Tarr.

TSA法によりCOの分離回収を行う場合は、吸着工程
における吸着温度はたとえばO〜40℃程度、脱気工程
における脱気温度はたとえば60〜180℃程度とする
ことが望ましい。
When separating and recovering CO by the TSA method, it is desirable that the adsorption temperature in the adsorption step is, for example, about 0 to 40°C, and the degassing temperature in the degassing step is, for example, about 60 to 180°C.

また、PSA法とTSA法とを併用し、吸着を大気圧以
上で低温条件下に行い、脱気を大気圧以下で高温条件下
に行うこともできる。
It is also possible to use the PSA method and the TSA method in combination, performing adsorption at atmospheric pressure or higher under low temperature conditions and degassing at atmospheric pressure or lower under high temperature conditions.

なお、TSA法はエネルギー消費の点でPSA法に比し
ては不利であるため、工業的にはPSA法を採用するか
、PSA−TSA併用法を採用することが望ましい。
In addition, since the TSA method is disadvantageous compared to the PSA method in terms of energy consumption, it is desirable to adopt the PSA method or a combined PSA-TSA method from an industrial perspective.

適用できるCOを含む混合ガスとしては、たとえば、製
鉄所の転炉から発生する転炉ガスが用いられる。転炉ガ
スは、通常、主成分としてのCOのほか、02、メタン
その他の炭化水素、水および少量のHzS、NH3等を
含んでいる。転炉ガス以外に、高炉ガス、電気炉ガス、
発生炉ガスなども原料ガスとして用いることができる。
As the applicable mixed gas containing CO, for example, converter gas generated from a converter in a steel mill is used. Converter gas usually contains CO as a main component, as well as 02, methane and other hydrocarbons, water, and small amounts of HzS, NH3, and the like. In addition to converter gas, blast furnace gas, electric furnace gas,
Generator gas and the like can also be used as raw material gas.

この場合、CO分分団回収工程先立ち、上記吸着剤を被
毒し、あるいはその寿命を縮めるおそれのある成分、す
なわちイオウ化合物、NH>等の不純物の吸着除去工程
、水分除去工程および02除去工程を設けることが望ま
しい、ただし、CO1O去工程やN2.除去工程は設け
るには及ばない。
In this case, prior to the CO fraction collection step, a step of adsorption and removal of impurities such as sulfur compounds and NH>, a moisture removal step and an 02 removal step are carried out which may poison the adsorbent or shorten its lifespan. However, it is desirable to provide CO1O removal process and N2. There is no need to provide a removal process.

作   用 本発明においては、吸着剤を製造するにあたり、溶液(
Y)をその担体(x)に対する飽和吸収率とほぼ見合い
の事情用し、かつ担体(X)あるいはこれと溶液(Y)
とを予め加熱しておいた状態で、担体(X)と溶液(Y
)との接触を行うようにしたため、担体(x)に対する
溶液(Y)の吸収岱が大になり、その結果担体(X)の
細孔内部にまで8(I)化合物が担持され、COの吸脱
着が最も・効率的になされるようになる。
Function In the present invention, when producing an adsorbent, a solution (
Y) is used in a manner that is approximately commensurate with the saturation absorption rate for the carrier (x), and the carrier (X) or a solution thereof (Y) is used.
The carrier (X) and the solution (Y) are heated in advance.
), the absorption of the solution (Y) into the carrier (x) is increased, and as a result, the compound 8(I) is supported even inside the pores of the carrier (X), and the CO Adsorption and desorption will be carried out most efficiently.

本発明の方法により得られた固体吸着剤にょるCOO脱
着現象は、主として担体(X)に担持された銅(I)化
合物とCOとの可逆的な化学反応(錯体形成反応と解離
反応)に基づくものであり(8%、CO2,との化学反
応は起こらない)、副次的に担体(X)の細孔表面上へ
のCOの物理的な吸着およびそこからの脱離に基〈もの
であると考えられる。
The COO desorption phenomenon by the solid adsorbent obtained by the method of the present invention is mainly due to the reversible chemical reaction (complex formation reaction and dissociation reaction) between the copper (I) compound supported on the carrier (X) and CO. (8%, no chemical reaction occurs with CO2,) and secondary to the physical adsorption of CO onto the pore surface of the carrier (X) and desorption from it. It is thought that.

実  施  例 次に、実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained by giving examples.

実施例1 吸lし乳ぶり飢造 200ccの三角フラスコ中で塩化銅(I)  8.9
gを室温で18ccの塩酸に溶解することにより、塩化
銅(I)溶液(Y)を調製した。
Example 1 Copper (I) chloride 8.9 in a 200 cc Erlenmeyer flask
A copper(I) chloride solution (Y) was prepared by dissolving g in 18 cc of hydrochloric acid at room temperature.

この室温の溶液(Y)中に、予め110℃で約4時間乾
燥した平均粒径3mmのアルミナ(不二見研磨材工業株
式会社製Al−5it ’)  (X) 20gを 1
10°Cの加熱状態で加えて1時間かくはんした後、マ
ントルヒーターで200℃に加熱しつつ、N2気流中で
溶媒を留去した。その後室温まで冷却し、co分離回収
用の固体吸着剤を得た。
Into this solution (Y) at room temperature, 1 20 g of alumina (Al-5it' manufactured by Fujimi Abrasives Industry Co., Ltd.) (X) with an average particle size of 3 mm that had been previously dried at 110°C for about 4 hours was added.
After adding the mixture under heating at 10°C and stirring for 1 hour, the solvent was distilled off in a N2 stream while heating to 200°C with a mantle heater. Thereafter, it was cooled to room temperature to obtain a solid adsorbent for co separation and recovery.

なお、上記における担体(X)と溶液(Y)との混合割
合は、溶液(Y)の担体(X)に対する飽和吸収率と同
一である。
Note that the mixing ratio of the carrier (X) and the solution (Y) in the above is the same as the saturated absorption rate of the solution (Y) to the carrier (X).

CO分離回収 上記で得た吸着剤を吸着塔(15■φX300mmH)
に充填し、この吸着塔に Co  :  71.4 vat% Nλ :  12.7701% CO2,:  15.9 vo1% よりなる組成の1気圧の混合ガスを供給して20℃でC
Oを吸着させた。このときのCOO着量は17.3 c
c/ccであった。
CO separation and recovery The adsorbent obtained above was transferred to an adsorption tower (15 φ x 300 mmH)
A mixed gas of 1 atm with a composition of Co: 71.4 vat% Nλ: 12.7701% CO2,: 15.9 vol% was supplied to this adsorption tower, and carbon was heated at 20°C.
O was adsorbed. The amount of COO deposited at this time was 17.3 c
It was c/cc.

吸着操作後真空ポンプを用いて圧力25Torrで5分
間脱気を行い、吸着されているガスを放出させた。この
ときのCo放出量は13.8 cc/ccであり、放出
ガス組成は、 C’O:  95.8 vo1% Nλ :1.6マo1% COl :   2.Et vo1% であった。
After the adsorption operation, deaeration was performed using a vacuum pump at a pressure of 25 Torr for 5 minutes to release the adsorbed gas. The amount of Co released at this time was 13.8 cc/cc, and the released gas composition was as follows: C'O: 95.8 vo1% Nλ: 1.6 mao1% COl: 2. Etvo1%.

再び上記と同じ条件で吸着させると、放出したCO量と
同じ量のcoが吸着された。
When adsorption was performed again under the same conditions as above, the same amount of co as released was adsorbed.

さらに同操作を繰り返しても、COの吸脱着量は変らな
かった。
Even if the same operation was repeated, the amount of adsorption and desorption of CO did not change.

なお、上記第1回目の吸着操作後C090ccで塔内を
洗浄してから真空脱気すると、放出ガス組成は、 Co  :  99.9 vo1% Nz   :  trace CO2,:   0.1 vat% となる。
After the first adsorption operation, the inside of the column is cleaned with 90 cc of CO and then vacuum degassed, resulting in a released gas composition of Co: 99.9 vol% Nz: trace CO2,: 0.1 vat%.

実施例2 アルミナ担体(X)を 110°Cの加熱状7gで70
°Cに加温した塩化銅(I)溶液(Y)に加え、系を7
0℃を保持した状態で15分間かくはんした以外は実施
例1と同様の操作を行った。
Example 2 Alumina carrier (X) was heated at 110°C for 70 g.
Copper(I) chloride solution (Y) warmed to °C was added to the system.
The same operation as in Example 1 was performed except that the mixture was stirred for 15 minutes while maintaining the temperature at 0°C.

このときのCO吸着量は18.41jc/cc、 Co
放出量は10.9 cc/ccであり、実施例1に比し
さらにすぐれた結果が得られた。
The amount of CO adsorption at this time was 18.41jc/cc, Co
The release amount was 10.9 cc/cc, which was an even better result than in Example 1.

実施例3 担体(X)として、実施例1および実施例2で使用した
アルミナ(不二見研磨材工業株式会社製AH−Sll 
)に代えて触媒化成工業株式会社製のアルミナACBM
−1を用いたほかは、実施例2と同様の操作を行った。
Example 3 Alumina used in Example 1 and Example 2 (AH-Sll manufactured by Fujimi Abrasives Industry Co., Ltd.) was used as the carrier (X).
) instead of alumina ACBM manufactured by Catalysts & Chemicals Co., Ltd.
The same operation as in Example 2 was performed except that -1 was used.

結果は次の通りであった。The results were as follows.

CO吸着量  19.7 cc/cc CO放出量  9J cc/cc 実施例4 アルミナに代えて粒径3!1mのシリカ−アルミナ(日
揮化学株式会社製N831L) 18.3gを用いたほ
かは実施例2と同様の操作を行った。ただし、塩酸量は
13cc、塩化銅(I)は5gとした。なお、この場合
の担体(X)と溶液(Y)との混合割合は、溶液(Y)
の担体(X)に対する飽和吸収率と同一である。
CO adsorption amount 19.7 cc/cc CO release amount 9J cc/cc Example 4 Example except that 18.3 g of silica-alumina (N831L manufactured by JGC Chemical Co., Ltd.) with a particle size of 3.1 m was used instead of alumina. The same operation as in 2 was performed. However, the amount of hydrochloric acid was 13 cc, and the amount of copper (I) chloride was 5 g. In this case, the mixing ratio of carrier (X) and solution (Y) is
is the same as the saturated absorption rate for carrier (X).

結果は次の通りもあった。The results were as follows.

CO@着−16,3cc/cc CO放出量  4.1 cc/cc 比較例1 塩化銅(I)L9gを30ccの塩酸に溶解した室温の
塩化銅(I)溶液(Y)に、実施例1で用いたアルミナ
担体(X)20gを室温で加えたほかは、実施例1と同
様の操作を行った。
CO @ Arrival - 16.3 cc/cc CO release amount 4.1 cc/cc Comparative Example 1 Example 1 was added to a copper chloride (I) solution (Y) at room temperature in which 9 g of copper chloride (I) L was dissolved in 30 cc of hydrochloric acid. The same operation as in Example 1 was performed except that 20 g of the alumina carrier (X) used in Example 1 was added at room temperature.

結果は次の通りであり、実施例1および実施例2に比し
劣っていた。
The results were as follows, and were inferior to Examples 1 and 2.

CO吸着量  13.9 cc/cc CO放出−針f3.o cc/cc 比較例2 塩化銅(I)8.9gを30ccの塩酸に溶解した室温
の塩化銅(I)溶液(Y)に、実施例4で用いたシリカ
−アルミナ押体(X)18.3gを室温で加えたほかは
実施例1と同様の操作を行った。
CO adsorption amount 13.9 cc/cc CO release-needle f3. o cc/cc Comparative Example 2 The silica-alumina extrusion (X) 18 used in Example 4 was added to a copper chloride (I) solution (Y) at room temperature in which 8.9 g of copper chloride (I) was dissolved in 30 cc of hydrochloric acid. The same operation as in Example 1 was performed except that .3 g was added at room temperature.

結果は次の通りであり、実施例4に比し劣っていた。The results were as follows, and were inferior to Example 4.

CO吸着!   5.8 cc/cc CO放出量   3.8 cc/cc 発明の効果 シリカまたは/およびアルミナからなる担体は、一般的
には活性炭その他の多孔質担体に比し銅(I)化合物の
吸着能力が小さいという弱点を有しているが、本発明に
よればその弱点が克服されて担体(X)の細孔内部にま
で銅(I)化合物が効率的に担持され、その結果CO吸
脱着能力のすぐれた吸着剤を得ることができ、しかも吸
着剤製造に際しての溶媒量も少なくてすむ。
CO adsorption! 5.8 cc/cc CO emission amount 3.8 cc/cc Effects of the invention A carrier made of silica and/or alumina generally has a higher ability to adsorb copper (I) compounds than activated carbon or other porous carriers. However, according to the present invention, this weakness is overcome and the copper (I) compound is efficiently supported even inside the pores of the carrier (X), and as a result, the CO adsorption and desorption capacity is improved. An excellent adsorbent can be obtained, and the amount of solvent required for producing the adsorbent can be small.

よって、本発明は、転炉ガスその他COを含むガスから
高純度のCOを工業的規模で分離回収するための吸着剤
の製造方法として、化学工業上有用である。
Therefore, the present invention is useful in the chemical industry as a method for producing an adsorbent for separating and recovering high-purity CO from converter gas and other CO-containing gases on an industrial scale.

Claims (1)

【特許請求の範囲】 1、シリカまたは/およびアルミナよりなる担体(X)
に、銅( I )化合物を溶媒に溶解させた溶液(Y)を
接触させた後、溶媒を除去して吸着剤を製造するにあた
り、溶液(Y)をその担体(X)に対する飽和吸収率±
10%の範囲の量使用し、かつ担体(X)を予め50〜
150℃に加熱しておいた状態で、担体(X)と溶液(
Y)との接触を行うことを特徴とするCO分離回収用吸
着剤の製造方法。 2、溶液(Y)をその担体(X)に対する飽和吸収率±
10%の範囲の量使用し、かつ担体(X)を予め50〜
150℃に加熱しておくと共に、溶液(Y)を40〜1
00℃に加熱しておいた状態で、担体(X)と溶液(Y
)との接触を行うことを特徴とする特許請求の範囲第1
項記載の製造方法。 3、溶媒除去後、さらに不活性ガスまたは還元性ガス雰
囲気下に加熱処理することを特徴とする特許請求の範囲
第1項記載の製造方法。 4、溶媒が塩酸である特許請求の範囲第1項記載の製造
方法。
[Claims] 1. Support (X) made of silica or/and alumina
After contacting a solution (Y) in which a copper (I) compound is dissolved in a solvent, the solvent is removed to produce an adsorbent.
Use an amount in the range of 10% and carrier (X) in advance from 50% to
While heating to 150°C, carrier (X) and solution (
A method for producing an adsorbent for CO separation and recovery, characterized by contacting with Y). 2. The saturated absorption rate of the solution (Y) to its carrier (X) ±
Use an amount in the range of 10% and carrier (X) in advance from 50% to
While heating to 150℃, the solution (Y) is heated to 40~1
While heating to 00°C, carrier (X) and solution (Y
) Claim 1 characterized in that contact is made with
Manufacturing method described in section. 3. The manufacturing method according to claim 1, further comprising heat treatment under an inert gas or reducing gas atmosphere after removing the solvent. 4. The manufacturing method according to claim 1, wherein the solvent is hydrochloric acid.
JP60255464A 1985-11-13 1985-11-13 Method for producing adsorbent for CO separation and recovery Expired - Fee Related JPH0724762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255464A JPH0724762B2 (en) 1985-11-13 1985-11-13 Method for producing adsorbent for CO separation and recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255464A JPH0724762B2 (en) 1985-11-13 1985-11-13 Method for producing adsorbent for CO separation and recovery

Publications (2)

Publication Number Publication Date
JPS62113710A true JPS62113710A (en) 1987-05-25
JPH0724762B2 JPH0724762B2 (en) 1995-03-22

Family

ID=17279125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255464A Expired - Fee Related JPH0724762B2 (en) 1985-11-13 1985-11-13 Method for producing adsorbent for CO separation and recovery

Country Status (1)

Country Link
JP (1) JPH0724762B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922640A (en) * 1996-02-29 1999-07-13 Mitsubishi Gas Chemical Company, Inc. Adsorbent for carbon monoxide
CN107787249A (en) * 2015-06-05 2018-03-09 庄信万丰股份有限公司 The method for preparing sorbent
CN114471441A (en) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 CO adsorbent and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922640A (en) * 1996-02-29 1999-07-13 Mitsubishi Gas Chemical Company, Inc. Adsorbent for carbon monoxide
CN107787249A (en) * 2015-06-05 2018-03-09 庄信万丰股份有限公司 The method for preparing sorbent
CN107787249B (en) * 2015-06-05 2021-06-11 庄信万丰股份有限公司 Method for preparing sorbent
CN114471441A (en) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 CO adsorbent and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0724762B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JPH01155945A (en) Production of adsorbent for separating and recovering co
JPH0157045B2 (en)
FI111245B (en) A process for separating ammonia from a gas mixture and using an adsorbent composition for this separation
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
JP4612323B2 (en) Carbon monoxide gas adsorbent, adsorption method, and recovery method
JPS62113710A (en) Production of adsorbent for separation and recovery of co
JP3410121B2 (en) Ammonia purification method
JPH0250770B2 (en)
JPS62113711A (en) Adsorbent for separation and recovery of co, production thereof and separation and recovery of co using same
JP5256120B2 (en) Method for producing CO adsorption / desorption agent
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
KR102677862B1 (en) A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JPH05124813A (en) Refining method of gaseous ammonia
JPS61242909A (en) Production of adsorbent for separating and recovering co
JPH0421539B2 (en)
CN219290992U (en) Gas purification device and glove box
CN116554492B (en) Ion hybridization hierarchical pore metal organic framework material with wly topological structure and preparation and application thereof
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent
JP5752485B2 (en) Method for producing CO adsorption / desorption agent
JP5752484B2 (en) Method for producing CO adsorption / desorption agent
JPH0149643B2 (en)
JPS6265920A (en) Method for separating and recovering carbon mon-oxide from mixed gas containing carbon monoxide
JPH0631354B2 (en) Method for producing high calorie gas
JPS63139991A (en) Manufacture of high-calorie gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees