JPH0149643B2 - - Google Patents

Info

Publication number
JPH0149643B2
JPH0149643B2 JP59267789A JP26778984A JPH0149643B2 JP H0149643 B2 JPH0149643 B2 JP H0149643B2 JP 59267789 A JP59267789 A JP 59267789A JP 26778984 A JP26778984 A JP 26778984A JP H0149643 B2 JPH0149643 B2 JP H0149643B2
Authority
JP
Japan
Prior art keywords
gas
adsorption
pressure
carbon monoxide
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59267789A
Other languages
Japanese (ja)
Other versions
JPS61146705A (en
Inventor
Yasuo Nishizawa
Masami Takeuchi
Toshiaki Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP59267789A priority Critical patent/JPS61146705A/en
Publication of JPS61146705A publication Critical patent/JPS61146705A/en
Publication of JPH0149643B2 publication Critical patent/JPH0149643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、一酸化炭素(CO)を含む混合ガス
から、特定の吸着剤を使用して圧力スイング法に
より高純度COを分離回収する方法に関するもの
である。 従来の技術 COを主成分とするガスの代表的なものとして、
製鉄所の転炉から得られる転炉ガス、高炉から得
られる高炉ガス、電気炉から得られる電気炉ガ
ス、コークスをガス化して得られる発生炉ガスな
どがある。これらのガスは通常そのほとんどが燃
料として使用されているが、これらのガスの中に
はCOがたとえば70vol%前後あるいはそれ以上も
含まれているものもあるので、これらのガス中に
含まれるCOを高純度で得ることができれば、ギ
酸、酢酸等の合成原料、有機化合物の還元用など
として用いることができ、化学工業上非常に有益
である。 従来、COを主成分とするガスからCOを分離回
収する方法として、深冷分離法、銅アンモニア
法、コソーブ(COSORB)法などが知られてい
るが、これらの方法は設備費がかさむ上、電力、
蒸気等の熱エネルギーに要する費用が大きいとい
う問題があり、大容量のCOの分離回収には適し
ていても、中容量または小容量のCOの分離回収
には必ずしも適していなかつた。さらに、これら
の方法により分離して得られるCOには酸素、二
酸化炭素など有機合成反応上障害となるガス成分
が混在してくるため、そのままでは有機合成用に
は適用できないという欠点があつた。 ところで、中容量または小容量の原料ガスから
特定ガスを選択分離する方法として圧力スイング
法が知られている。圧力スイング法とは、混合ガ
スから特定ガスを選択分離する方法の一つであつ
て、高い圧力で被吸着物を吸着剤に吸着させ、つ
いで吸着系の圧力を下げることによつて吸着剤に
吸着した被吸着物を脱離し、吸着物および非吸着
物を分離する方法であり、従来、このような圧力
スイング法として、 モルデナイト系ゼオライトを吸着剤として用
いる方法(特開昭59−22625号公報、特開昭59
−49818号公報)、 ハロゲン化銅()またはこれとハロゲン化
アルミニウム()とを活性炭やポリスチレン
系粒子に担持させたものを吸着剤として用いる
方法(特開昭58−49436号公報、特開昭58−
104009号公報、特開昭58−124516号公報、特開
昭58−156517号公報など) が提案されている。 発明が解決しようとする問題点 しかしながら、のモルデナイト系ゼオライト
を吸着剤として用いる方法は、物理的な吸着脱離
現象を利用するものであつて、CO吸着量が比較
的小さいため圧力スイングの切替え頻度を多くし
なければならず、操作の点でも弁類の寿命の点で
も不利となること、吸着操作に先立ちCO2を予め
除去しておかなければならないこと、窒素(N2
の吸着を免かれないため、純度が低くなり、また
吸着したN2を除くため製品COガスを用いて塔内
洗浄を行うときの洗浄量が多く、製品COの回収
率が低くなることなどの問題があつた。 また、上記のハロゲン化銅()またはこれ
とハロゲン化アルミニウム()とを担持させた
担体を用いる方法は、二酸化炭素(CO2)やN2
が共存する系においてもCOの分離回収ができる
点で上記モルデナイト系ゼオライトを吸着剤とし
て用いる方法に比し有効であると考えられるが、
この方法を工業的規模において採用しうるシステ
ムにまでは到達していなかつた。 本発明は、COを主成分とする混合ガスから高
純度のCOを圧力スイング法により分離回収する
方法につき検討を加えたものであつて、有機合成
用に適した高純度COを工業的に効率良く取得す
る方法を提供することを目的とするものである。 問題点を解決するための手段 本発明は、 「吸着剤を充填した複数の吸着塔を用いて一酸
化炭素を含む混合ガスから圧力スイング法により
高純度一酸化炭素を分離回収するにあたり、上記
吸着剤として、ハロゲン化銅()またはこれと
ハロゲン化アルミニウム()とを分子ふるい作
用を有しない担体に担持させた一酸化炭素選択吸
着的固体吸着剤を用いること、および、上記複数
の吸着塔の操作を、それぞれの吸着塔において、 (1) 原料ガスを吸着塔に流して一酸化炭素ガスを
吸着する工程、および、排出ガス中一酸化炭素
の濃度が原料ガス中の一酸化炭素ガス濃度と等
しくなる少し前に、排出ガスを他塔の昇圧
()に用いる工程、 (2) 吸着工程終了後、その吸着塔と真空脱気が終
つた吸着塔とを連絡し、前者吸着塔の圧力を大
気圧付近まで並流に減圧させる減圧工程、およ
びそれに対応して後者吸着塔を昇圧()する
工程、 (3) 減圧した吸着塔に製品ガスの一部を並流に導
入して、塔内部残留不純物ガスを洗浄する洗浄
工程、および、このとき排出されるガスを他塔
の昇圧()に用いる工程、 (4) 真空減圧して、吸着剤に吸着されている一酸
化炭素ガスを吸着剤から向流に脱気させ、製品
ガスを回収する製品回収工程、 (5) 製品回収が終つた吸着塔と吸着工程が終つた
吸着塔とを連絡して、前者吸着塔を並流に昇圧
する昇圧()工程、 (6) 他の吸着塔の洗浄排ガスにより並流に昇圧す
る昇圧()工程、 (7) 他の吸着塔の吸着工程終了間際の排ガスによ
り昇圧する昇圧()工程、 を順次繰返して行うことを特徴とする一酸化炭素
を含む混合ガスから高純度一酸化炭素を分離回収
する方法。」 をその要旨とするものであり、このように圧力ス
イング工程において特定のCO選択吸着的固体吸
着剤を用い、かつ、その圧力スイング工程を特定
の工程に従つて行うことにより、上記のような従
来の問題点を完全に解決するに至つた。特に、吸
着工程の終了間際の排出ガスを他の塔の昇圧に用
いているためプロセス全体の圧力バランスが乱れ
にくくなつた上、排出ガスを捨てないで使用して
いるため回収率が高くなることおよび排出ガスの
圧力を有効に利用できることが、本発明の特長の
一つとなつている。 本発明の方法に適用できるCOを含む混合ガス
としては、たとえば、製鉄所の転炉から発生する
転炉ガスが用いられる。転炉ガスは、通常、主成
分としてのCOのほか、酸素(O2)、メタンその
他の炭化水素、水および少量の硫化水素(H2S)、
アンモニア(NH3)等を含んでいる。転炉ガス
以外に、高炉ガス、電気炉ガス、発生炉ガスなど
も原料ガスとして用いることができる。 CO選択吸着的固体吸着剤としては、ハロゲン
化銅()またはこれとハロゲン化アルミニウム
()とを分子ふるい作用を有しない担体に担持
させたものが用いられる。ハロゲン化銅()と
しては、塩化銅()、フツ化銅()、臭化銅
()などがあげられ、銅()化合物を還元性
ガスで処理したものも用いられる。ハロゲン化ア
ルミニウム()としては、塩化アルミニウム、
フツ化アルミニウム、臭化アルミニウムなどがあ
げられる。 担体としては、活性炭やポリスチレン系粒子な
どが好適に使用されるが、シリカまたは/および
アルミナなどの無機質担体も用いることができ
る。ただし、ゼオライトなど分子ふるい作用を有
する多孔質体は本発明の目的には適当でない。 上記CO選択吸着的固体吸着剤による吸着現象
は、主として担体に担持されたハロゲン化銅
()またはこれとハロゲン化アルミニウム()
とCOとの可逆的な化学反応に基くものであり
(N2、CO2との化学反応は起こらない)、副次的
に担体の細孔表面上への物理的な吸着およびそこ
からの脱離に基くものである。すなわち、基本的
には、 CO+ハロゲン化銅() CO・ハロゲン化銅() なる化学反応、つまり、COとハロゲン化銅()
との錯体形成反応と解離反応が反応圧力を変える
ことにより可逆的に進行することを利用するもの
である。 上記CO選択吸着的固体吸着剤を用いて、下記
の吸着サイクルを遂行することにより、高純度の
COを極めて効率的に分離回収することができた。 なお、本発明においては、以下詳述するような
圧力スイングによるCO分離回収工程に先立ち、
上記CO選択吸着的固体吸着剤を被毒し、あるい
はその寿命を縮めるおそれのある成分、すなわち
イオウ化合物、NH3等の不純物の吸着除去工程、
水分除去工程およびO2除去工程を設けることが
特に好ましい。ただし、CO2除去工程やN2除去
工程は設けるには及ばない。 吸着サイクル 第1図は、4基の吸着塔を用いて、COを含む
混合ガスから連続的にCOを分離回収する装置図
を示したものであり、A,B,C,Dは吸着塔、
1A…5A,1B…5B,1C…5C,1D…5
D,6はいずれもバルブ、Eは真空ポンプ、Fは
製品COタンクである。 吸着サイクルの一例を次の第1表に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for separating and recovering high-purity CO from a mixed gas containing carbon monoxide (CO) by a pressure swing method using a specific adsorbent. Conventional technology As a typical gas whose main component is CO,
Examples include converter gas obtained from a converter in a steel mill, blast furnace gas obtained from a blast furnace, electric furnace gas obtained from an electric furnace, and generator gas obtained by gasifying coke. Most of these gases are normally used as fuel, but some of these gases contain around 70 vol% or more of CO, so the CO contained in these gases is If it can be obtained in high purity, it can be used as a raw material for the synthesis of formic acid, acetic acid, etc., and for the reduction of organic compounds, and is very useful in the chemical industry. Conventionally, cryogenic separation methods, copper ammonia methods, and COSORB methods are known as methods for separating and recovering CO from a gas whose main component is CO, but these methods require high equipment costs and electricity,
There is a problem in that the cost of thermal energy such as steam is high, and although it is suitable for separating and recovering large volumes of CO, it is not necessarily suitable for separating and recovering medium or small volumes of CO. Furthermore, the CO obtained by separation by these methods contains gas components such as oxygen and carbon dioxide that are a hindrance to organic synthesis reactions, so they have the disadvantage that they cannot be used as they are for organic synthesis. Incidentally, a pressure swing method is known as a method for selectively separating a specific gas from a medium or small volume of source gas. The pressure swing method is one of the methods for selectively separating a specific gas from a mixed gas.It adsorbs the adsorbent onto an adsorbent at high pressure, and then lowers the pressure of the adsorption system to release the adsorbent into the adsorbent. This is a method of desorbing adsorbed substances and separating adsorbed substances and non-adsorbed substances. Conventionally, such a pressure swing method uses a mordenite-based zeolite as an adsorbent (Japanese Patent Laid-Open No. 59-22625) , Japanese Patent Publication No. 1983
-49818 Publication), a method using copper halide () or copper halide and aluminum halide () supported on activated carbon or polystyrene particles as an adsorbent (Japanese Unexamined Patent Publication No. 58-49436, 58−
104009, JP-A-58-124516, JP-A-58-156517, etc.) have been proposed. Problems to be Solved by the Invention However, the method using mordenite-based zeolite as an adsorbent utilizes physical adsorption/desorption phenomena, and because the amount of CO adsorption is relatively small, the pressure swing is switched frequently. This is disadvantageous in terms of operation and valve life; CO 2 must be removed before adsorption operation; and nitrogen (N 2 )
The purity is low because of the adsorption of N2, and when cleaning the inside of the tower using product CO gas to remove the adsorbed N2 , the amount of cleaning is large, resulting in a low recovery rate of product CO. There was a problem. In addition, the method using a carrier on which copper halide () or copper halide and aluminum halide () are supported is a method that uses carbon dioxide (CO 2 ) or N 2
This method is considered to be more effective than the method using mordenite-based zeolite as an adsorbent in that CO can be separated and recovered even in systems where CO coexists.
A system in which this method can be applied on an industrial scale has not yet been achieved. The present invention is an investigation into a method for separating and recovering high-purity CO from a mixed gas containing CO as a main component using a pressure swing method, and it is an industrially efficient method for producing high-purity CO suitable for organic synthesis. The purpose of this is to provide a method for obtaining the desired information. Means for Solving the Problems The present invention provides a method for separating and recovering high-purity carbon monoxide from a mixed gas containing carbon monoxide by a pressure swing method using a plurality of adsorption towers filled with adsorbents. As an agent, a carbon monoxide selective adsorption solid adsorbent in which copper halide () or copper halide and aluminum halide () are supported on a carrier that does not have a molecular sieving action is used; The operation is carried out in each adsorption tower by: (1) flowing the raw material gas into the adsorption tower to adsorb carbon monoxide gas; and determining whether the concentration of carbon monoxide in the exhaust gas is equal to the concentration of carbon monoxide gas in the raw material gas. (2) After the adsorption process is completed, the adsorption tower is connected to the adsorption tower that has completed vacuum deaeration, and the pressure in the former adsorption tower is increased. (3) A part of the product gas is introduced cocurrently into the depressurized adsorption tower to reduce the pressure inside the tower. A cleaning process to clean residual impurity gas, and a process to use the gas discharged at this time to boost pressure in other columns (4) Vacuum depressurization to remove carbon monoxide gas adsorbed by the adsorbent. (5) Connecting the adsorption tower that has completed product recovery with the adsorption tower that has completed the adsorption process, and pressurizing the former adsorption tower to parallel flow. Pressurization () step, (6) Pressurization () step in which the pressure is increased in parallel flow using the washed exhaust gas from other adsorption towers, (7) Pressure raising () step in which the pressure is increased by the exhaust gas near the end of the adsorption process from other adsorption towers, in sequence. A method for separating and recovering high-purity carbon monoxide from a mixed gas containing carbon monoxide, which is characterized by repeated steps. By using a solid adsorbent and performing the pressure swing process according to a specific process, the above-mentioned conventional problems have been completely solved. In particular, the exhaust gas near the end of the adsorption process is used to boost the pressure of other columns, making it less likely that the pressure balance of the entire process will be disrupted, and the recovery rate is high because the exhaust gas is used without being discarded. One of the features of the present invention is that the exhaust gas pressure can be used effectively. As the mixed gas containing CO that can be applied to the method of the present invention, for example, converter gas generated from a converter in a steel mill is used. Converter gas usually contains CO as its main component, as well as oxygen (O 2 ), methane and other hydrocarbons, water, and small amounts of hydrogen sulfide (H 2 S).
Contains ammonia (NH 3 ), etc. In addition to converter gas, blast furnace gas, electric furnace gas, generator gas, etc. can also be used as raw material gas. As the CO selective adsorption solid adsorbent, copper halide (2) or aluminum halide (2) supported on a carrier having no molecular sieving action is used. Examples of copper halides include copper chloride (), copper fluoride (), copper bromide (), and copper () compounds treated with reducing gases are also used. Aluminum halides () include aluminum chloride,
Examples include aluminum fluoride and aluminum bromide. Activated carbon and polystyrene particles are preferably used as the carrier, but inorganic carriers such as silica and/or alumina can also be used. However, porous materials having a molecular sieving action such as zeolite are not suitable for the purpose of the present invention. The adsorption phenomenon caused by the CO selective adsorption solid adsorbent mentioned above is mainly caused by copper halide () supported on a carrier or aluminum halide (aluminum halide) supported on the carrier.
It is based on a reversible chemical reaction between N 2 and CO 2 (chemical reaction with N 2 and CO 2 does not occur), and secondary physical adsorption onto the pore surface of the carrier and desorption from there. It is based on separation. In other words, basically, the chemical reaction is CO + copper halide () CO / copper halide (), that is, CO and copper halide ()
This method takes advantage of the fact that the complex formation reaction and dissociation reaction with the molecule proceed reversibly by changing the reaction pressure. By performing the following adsorption cycle using the above CO selective adsorption solid adsorbent, high purity can be obtained.
CO could be separated and recovered extremely efficiently. In addition, in the present invention, prior to the CO separation and recovery process by pressure swing as detailed below,
Adsorption and removal step of impurities such as sulfur compounds and NH3 , which may poison the CO selective adsorption solid adsorbent or shorten its lifespan;
It is particularly preferred to provide a moisture removal step and an O 2 removal step. However, it is not enough to provide a CO 2 removal process or a N 2 removal process. Adsorption cycle Figure 1 shows a diagram of a device that continuously separates and recovers CO from a mixed gas containing CO using four adsorption towers, where A, B, C, and D are the adsorption towers,
1A...5A, 1B...5B, 1C...5C, 1D...5
D and 6 are both valves, E is a vacuum pump, and F is a product CO tank. An example of an adsorption cycle is shown in Table 1 below.

【表】 * 「脱気製回」とあるのは、「脱気(製品回
収)」の意。 吸着塔A,B,C,Dには、CO選択吸着的固
体吸着剤が充填されている。 吸着塔Aには、バルブ1Aを通して、脱湿、脱
イオウ化合物および脱アンモニアした転炉ガスが
大気圧ないし6Kg/cm2G、好ましくは1〜6Kg/cm2
Gの圧力で供給されており、CO吸着工程が行わ
れている。なお、吸着圧力については、6Kg/cm2
G付近で CO+ハロゲン化銅() →CO・ハロゲン化銅() の反応が化学量論的に平衡点に達するので、これ
以上圧力を高めると不純ガス(CO2、N2など)
の物理吸着のみが増大し、高純度COを得ること
が困難になる。このときバルブ2Aは開で、吸着
されないガスが排出されている。バルブ3A,4
A,5Aは閉である。塔Aの吸着工程終了間際の
出口ガスは、バルブ6,3Cを通して塔Cに供給
することにより塔Cの昇圧()に用い、塔Cの
次の吸着工程に備える。 吸着塔Bにおいては、真空ポンプEでバルブ5
Bを通して吸着しているCOガスを脱気する製品
回収工程が行われている。このときの真空度は、
200〜10Torr、好ましくは100〜50Torrに設定す
るのが好ましい。COの脱離、すなわち、 CO・CuCl→CO+CuCl の解離反応は、大気圧以下で急激に進むからであ
る。バルブ1B,2B,3B,4Bは、このとき
閉である。 吸着塔Cにおいては、製品回収が終つた後、塔
Bの減圧工程のガスがバルブ3Cを通して塔Cに
供給されて昇圧()され、さらに塔Dの洗浄工
程で排出されるガスもバルブ3Cを通して供給さ
れて昇圧()される。このときバルブ1C,2
C,4C,5Cは閉である。さらに吸着塔Aの吸
着工程終了間際の出口ガスがバルブ6,3Cを通
して塔Cに供給されて昇圧()され、次の吸着
工程の備えができる。 吸着塔Dは、吸着工程の終つた後に大気圧付近
まで並流減圧され、この減圧したガスはバルブ3
Cを通して塔Cの昇圧()に用いられる。さら
に、製品の一部がバルブ4Dを通して供給され、
塔内部残留不純物ガスが排出される。このとき排
出されるガスもバルブ3Cを通して塔Cの昇圧
()に用いられる。上記減圧工程においては、
物理吸着されているN2、CO2などの不純ガスが
脱離し、また同時に脱離してくるCOガスにより
不純ガスの脱離が促進され、洗浄工程での製品ガ
スの使用量が大幅に節減できる。 上記操作をそれぞれの吸着塔において順次繰返
して行うことによつて、連続的に高純度のCOガ
スを高い回収率で分離回収することができる。 次に、実施例をあげて本発明をさらに説明す
る。 実施例 実施例 1 塩化アルミニウム()39m−mol、塩化銅
()39m−molおよび粒子状のポリスチレン樹
脂(三菱化成株式会社製ダイヤイオンHP−20)
30c.c.を100mlの三角フラスコに入れ、これに二硫
化炭素45mlを加え、ドライN2雰囲気中で磁気撹
拌器を用いてかきまぜつつ約6時間加熱還流し
た。その後、ドライN2中で二硫化炭素を蒸発さ
せ、さらに温度50℃、圧力5torrの減圧下で約12
時間乾燥を行い、CO選択吸着的固体吸着剤を得
た。 第1図に示した4塔式圧力スイング装置を用
い、その吸着塔A,B,C,D(共に34m/mφ×
300m/m)に上記で得たCO選択吸着的固体吸着
剤各150c.c.を充填し、 CO:70vol% N2:14vol% CO2:16vol% よりなる組成の混合ガス500N−c.c./minを0〜
5Kg/cm2Gの加圧下で導入し、破過点に達する直
前でガス導入を停止させた。次に、並流に大気圧
まで減圧させた後に、製品COガスによる塔内洗
浄を行つた。そして、真空ポンプで50torrまで脱
気し、製品COを得た。破過点間際の出口ガス、
減圧時のパージガス、洗浄時の排出ガスは、他の
塔の昇圧に用いた。これらの操作を各塔順次繰返
して行つた。詳しい吸着サイクルを先の第1表に
示した。また、この結果を次の第2表に示す。
[Table] * "Deaeration process" means "deaeration (product recovery)." Adsorption towers A, B, C, and D are filled with a CO selective adsorption solid adsorbent. The dehumidified, desulfurized compound and deammoniated converter gas is supplied to the adsorption tower A through the valve 1A at atmospheric pressure to 6 Kg/cm 2 G, preferably 1 to 6 Kg/cm 2
The gas is supplied at a pressure of G, and the CO adsorption process is carried out. The adsorption pressure is 6Kg/cm 2
Near G, the reaction of CO + copper halide () → CO and copper halide () reaches a stoichiometric equilibrium point, so if the pressure is increased any further, impure gases (CO 2 , N 2 , etc.)
Only the physical adsorption of CO increases, making it difficult to obtain high purity CO. At this time, the valve 2A is open and unadsorbed gas is being discharged. Valve 3A, 4
A, 5A is closed. The outlet gas of the column A just before the end of the adsorption step is supplied to the column C through valves 6 and 3C, and is used to raise the pressure of the column C ( ), in preparation for the next adsorption step of the column C. In adsorption tower B, vacuum pump E operates valve 5.
A product recovery process is carried out to degas the CO gas adsorbed through B. The degree of vacuum at this time is
It is preferable to set it at 200 to 10 Torr, preferably 100 to 50 Torr. This is because the desorption of CO, that is, the dissociation reaction of CO・CuCl→CO+CuCl, proceeds rapidly below atmospheric pressure. Valves 1B, 2B, 3B, and 4B are closed at this time. In adsorption tower C, after product recovery is completed, the gas from the depressurization process in tower B is supplied to tower C through valve 3C and pressurized (), and the gas discharged from the cleaning process in tower D is also fed through valve 3C. It is supplied and boosted (). At this time, valves 1C and 2
C, 4C, and 5C are closed. Further, the outlet gas of the adsorption tower A just before the end of the adsorption step is supplied to the tower C through valves 6 and 3C, and is pressurized ( ), thereby preparing for the next adsorption step. After the adsorption process is completed, the adsorption tower D is depressurized to near atmospheric pressure, and this depressurized gas is passed through valve 3.
C is used for pressurization of column C (). Additionally, a portion of the product is supplied through valve 4D;
The residual impurity gas inside the column is discharged. The gas discharged at this time is also used to raise the pressure of column C through valve 3C. In the above pressure reduction step,
Physically adsorbed impurity gases such as N 2 and CO 2 are desorbed, and the desorption of impurity gases is promoted by the simultaneously desorbed CO gas, resulting in a significant reduction in the amount of product gas used in the cleaning process. . By sequentially repeating the above operations in each adsorption tower, highly pure CO gas can be continuously separated and recovered at a high recovery rate. Next, the present invention will be further explained by giving examples. Examples Example 1 Aluminum chloride () 39 m-mol, copper chloride () 39 m-mol and particulate polystyrene resin (Diaion HP-20 manufactured by Mitsubishi Kasei Corporation)
was placed in a 100 ml Erlenmeyer flask, 45 ml of carbon disulfide was added thereto, and the mixture was heated under reflux for about 6 hours while stirring using a magnetic stirrer in a dry N 2 atmosphere. Then, the carbon disulfide was evaporated in dry N2 and further under reduced pressure at a temperature of 50 °C and a pressure of 5 torr for about 12
After drying for several hours, a CO selective adsorption solid adsorbent was obtained. Using the four-column pressure swing device shown in Figure 1, the adsorption towers A, B, C, and D (all 34 m/mφ×
300 m/m) was filled with 150 c.c. of each of the CO selective adsorption solid adsorbents obtained above, and a mixed gas with a composition of CO: 70 vol% N 2 : 14 vol% CO 2 : 16 vol% was applied at 500 N-cc/min. 0~
The gas was introduced under a pressure of 5 Kg/cm 2 G, and the gas introduction was stopped just before reaching the breakthrough point. Next, after reducing the pressure to atmospheric pressure in parallel flow, the inside of the tower was washed with product CO gas. Then, the product was degassed to 50 torr using a vacuum pump to obtain CO. Exit gas near breakthrough point,
Purge gas during pressure reduction and exhaust gas during cleaning were used to increase pressure in other columns. These operations were repeated for each column in sequence. The detailed adsorption cycle is shown in Table 1 above. The results are also shown in Table 2 below.

【表】 実施例 2 塩化銅()100m−molと塩酸(3N)30c.c.と
を100mlの三角フラスコに入れて溶解させた後、
これに活性炭(クラレケミカル株式会社製
4GSA2)30c.c.を含浸させ、約1時間静置した。
その後、ドライN2雰囲気中にて約100℃で水分を
蒸発させ、さらに約180℃で熱処理を行い、CO選
択吸着的固体吸着剤を得た。 上記で得たCO選択吸着的固体吸着剤を用い、
実施例1と同様の操作を行つた。結果を第3表に
示す。
[Table] Example 2 After dissolving 100 mmol of copper chloride () and 30 c.c. of hydrochloric acid (3N) in a 100 ml Erlenmeyer flask,
Add activated carbon (manufactured by Kuraray Chemical Co., Ltd.) to this.
It was impregnated with 30 c.c. of 4GSA 2 ) and allowed to stand for about 1 hour.
Thereafter, moisture was evaporated at about 100°C in a dry N 2 atmosphere, and heat treatment was further performed at about 180°C to obtain a CO selective adsorption solid adsorbent. Using the CO selective adsorption solid adsorbent obtained above,
The same operation as in Example 1 was performed. The results are shown in Table 3.

【表】 実施例 3 担体として粒子状のポリスチレン樹脂(三菱化
成株式会社製ダイヤイオンHP−50)を用いたほ
かは実施例1と同様にしてCO選択吸着的固体吸
着剤を得た。 この吸着剤を用い、実施例1と同様の操作を行
つた。なお吸着圧力は2Kg/cm2Gに設定した。 結果を第4表に示す。 比較例 1 実施例3で得た吸着剤を用い、第1表に示した
ステツプにおいて、吸着工程終了間際の出口ガス
による他の塔の昇圧「昇圧()」工程をとりや
め、吸着工程までの昇圧()工程を原料ガスに
よる昇圧()としたほかは実施例3と同様の操
作を行つた。 結果を第4表に示す。
[Table] Example 3 A CO selective adsorption solid adsorbent was obtained in the same manner as in Example 1, except that particulate polystyrene resin (Diaion HP-50 manufactured by Mitsubishi Kasei Corporation) was used as a carrier. Using this adsorbent, the same operation as in Example 1 was performed. Note that the adsorption pressure was set at 2 Kg/cm 2 G. The results are shown in Table 4. Comparative Example 1 Using the adsorbent obtained in Example 3, in the steps shown in Table 1, the "pressurization ()" step of pressurizing other columns using the outlet gas just before the end of the adsorption step was canceled, and the pressure was increased until the adsorption step. The same operation as in Example 3 was carried out, except that the step () was replaced by pressurization () using the raw material gas. The results are shown in Table 4.

【表】【table】

【表】 第4表に見られるように、吸着工程終了間際の
出口ガスを他の塔の昇圧に用いることにより、高
純度のCOが得られ、なおかつ極めて高いCO回収
率を確保できることがわかる。 発明の効果 本発明は、ハロゲン化銅()またはこれとハ
ロゲン化アルミニウム()とを分子ふるい作用
を有しない担体に担持させた一酸化炭素選択吸着
的固体吸着剤を用いているため、原料ガス中の
CO濃度に関係なく高純度のCOが得られ、しか
も、このような固体吸着剤を充填した複数の吸着
塔を用いて圧力スイング工程を上述のように行う
ものである。吸着工程終了間際の出口ガスが他の
塔の昇圧に用いられてプロセス全体の圧力バラン
スが乱れにくくなる上、その排出ガスおよびその
圧力が効率的に利用され、さらに減圧時の排出ガ
スおよび洗浄時の排出ガスも効率的に利用され、
極めて高いCO回収率を確保することができる。 よつて、本発明の方法を実施することにより、
転炉ガスその他COを含むガスから高純度のCOを
工業的規模で分離回収することができ、化学工業
上の意義が大きい。
[Table] As shown in Table 4, by using the outlet gas near the end of the adsorption process to boost pressure in other columns, it is possible to obtain highly pure CO and also ensure an extremely high CO recovery rate. Effects of the Invention The present invention uses a carbon monoxide selective adsorption solid adsorbent in which copper halide () or copper halide and aluminum halide () are supported on a carrier that does not have a molecular sieving action. In
High purity CO can be obtained regardless of the CO concentration, and the pressure swing process is performed as described above using a plurality of adsorption towers filled with such solid adsorbents. The outlet gas near the end of the adsorption process is used to boost pressure in other columns, making it difficult to disturb the pressure balance of the entire process, and the exhaust gas and its pressure are efficiently used, and the exhaust gas during depressurization and cleaning exhaust gas is also efficiently used,
An extremely high CO recovery rate can be ensured. Therefore, by carrying out the method of the present invention,
Highly purified CO can be separated and recovered from converter gas and other CO-containing gases on an industrial scale, and is of great significance in the chemical industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、4基の吸着塔を用いてCOを分離回
収する装置図を示したものである。 A,B,C,D……吸着塔、1A…5A,1B
…5B,1C…5C,1D…5D,6……バル
ブ、E……真空ポンプ、F……製品COタンク。
FIG. 1 shows a diagram of an apparatus for separating and recovering CO using four adsorption towers. A, B, C, D...Adsorption tower, 1A...5A, 1B
...5B, 1C...5C, 1D...5D, 6...Valve, E...Vacuum pump, F...Product CO tank.

Claims (1)

【特許請求の範囲】 1 吸着剤を充填した複数の吸着塔を用いて一酸
化炭素を含む混合ガスから圧力スイング法により
高純度一酸化炭素を分離回収するにあたり、上記
吸着剤として、ハロゲン化銅()またはこれと
ハロゲン化アルミニウム()とを分子ふるい作
用を有しない担体に担持させた一酸化炭素選択吸
着的固体吸着剤を用いること、および、上記複数
の吸着塔操作を、それぞれの吸着塔において、 (1) 原料ガスを吸着塔に流して一酸化炭素ガスを
吸着する工程、および、排出ガス中一酸化炭素
の濃度が原料ガス中の一酸化炭素ガス濃度と等
しくなる少し前に、排出ガスを他塔の昇圧
()に用いる工程、 (2) 吸着工程終了後、その吸着塔と真空脱気が終
つた吸着塔とを連絡し、前者吸着塔の圧力を大
気圧付近まで並流に減圧させる減圧工程、およ
びそれに対応して後者吸着塔を昇圧()する
工程、 (3) 減圧した吸着塔に製品ガスの一部を並流に導
入して、塔内部残留不純物ガスを洗浄する洗浄
工程、および、このとき排出されるガスを他塔
の昇圧()に用いる工程、 (4) 真空減圧して、吸着剤に吸着されている一酸
化炭素ガスを吸着剤から向流に脱気させ、製品
ガスを回収する製品回収工程、 (5) 製品回収が終つた吸着塔と吸着工程が終つた
吸着塔とを連絡して、前者吸着塔を並流に昇圧
する昇圧()工程、 (6) 他の吸着塔の洗浄排ガスにより並流に昇圧す
る昇圧()工程、 (7) 他の吸着塔の吸着工程終了間際の排ガスによ
り昇圧する昇圧()工程、 を順次繰返して行うことを特徴とする一酸化炭素
を含む混合ガスから高純度一酸化炭素を分離回収
する方法。 2 吸着塔に流す原料ガスとして、予めイオウ化
合物・アンモニア等の不純物、水分および酸素を
除去した原料ガスを用いることを特徴とする特許
請求の範囲第1項記載の方法。
[Claims] 1. In separating and recovering high-purity carbon monoxide from a mixed gas containing carbon monoxide by a pressure swing method using a plurality of adsorption towers filled with adsorbents, copper halide is used as the adsorbent. () or aluminum halide () supported on a carrier that does not have a molecular sieving action. (1) In the step of flowing the raw material gas into an adsorption tower to adsorb carbon monoxide gas, and shortly before the concentration of carbon monoxide in the exhaust gas becomes equal to the concentration of carbon monoxide gas in the raw material gas, (2) After the adsorption process is completed, the adsorption tower is connected to the adsorption tower that has undergone vacuum deaeration, and the pressure in the former adsorption tower is brought to a level close to atmospheric pressure in parallel flow. A depressurization step to reduce the pressure, and a corresponding step to increase the pressure of the latter adsorption tower (3) A cleaning step in which a part of the product gas is introduced in parallel flow into the depressurized adsorption tower to clean any impurity gas remaining inside the tower. (4) A step in which the gas discharged at this time is used to raise the pressure of another column (4) The pressure is reduced to vacuum, and the carbon monoxide gas adsorbed on the adsorbent is degassed from the adsorbent in a countercurrent manner. , a product recovery process for recovering product gas; (5) a pressurization () process for connecting the adsorption tower where product recovery has been completed and the adsorption tower where the adsorption process has been completed to raise the pressure of the former adsorption tower to parallel flow; (6) ) step of pressurization () in which the pressure is increased in parallel flow with the cleaning exhaust gas from other adsorption towers; and (7) step () in which the pressure is increased by the exhaust gas near the end of the adsorption step of other adsorption towers, which are sequentially repeated. A method for separating and recovering high-purity carbon monoxide from a mixed gas containing carbon monoxide. 2. The method according to claim 1, wherein a raw material gas from which impurities such as sulfur compounds and ammonia, moisture, and oxygen have been removed is used as the raw material gas to be fed to the adsorption tower.
JP59267789A 1984-12-18 1984-12-18 Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide Granted JPS61146705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267789A JPS61146705A (en) 1984-12-18 1984-12-18 Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267789A JPS61146705A (en) 1984-12-18 1984-12-18 Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide

Publications (2)

Publication Number Publication Date
JPS61146705A JPS61146705A (en) 1986-07-04
JPH0149643B2 true JPH0149643B2 (en) 1989-10-25

Family

ID=17449610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267789A Granted JPS61146705A (en) 1984-12-18 1984-12-18 Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide

Country Status (1)

Country Link
JP (1) JPS61146705A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205613A (en) * 1985-03-07 1986-09-11 Chiyoda Chem Eng & Constr Co Ltd Separation and production of high-purity co
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55334A (en) * 1978-06-16 1980-01-05 Agency Of Ind Science & Technol Benzoic acid derivative having metastable state
JPS5849436A (en) * 1981-08-31 1983-03-23 Hidefumi Hirai Separation of carbon monoxide
JPS5949818A (en) * 1982-09-13 1984-03-22 Osaka Oxgen Ind Ltd Method for concentrating carbon monoxide in gaseous mixture containing carbon monoxide by using adsorption method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55334A (en) * 1978-06-16 1980-01-05 Agency Of Ind Science & Technol Benzoic acid derivative having metastable state
JPS5849436A (en) * 1981-08-31 1983-03-23 Hidefumi Hirai Separation of carbon monoxide
JPS5949818A (en) * 1982-09-13 1984-03-22 Osaka Oxgen Ind Ltd Method for concentrating carbon monoxide in gaseous mixture containing carbon monoxide by using adsorption method

Also Published As

Publication number Publication date
JPS61146705A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
US5531809A (en) Pretreatment layer for CO-VSA
KR100966064B1 (en) Syngas purification process
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
KR100896455B1 (en) Pressure swing adsorption apparatus and method for hydrogen purification using the same
TWI521056B (en) Methane recovery method and methane recovery unit
EP0489555A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US4025321A (en) Purification of natural gas streams containing oxygen
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JPH10114508A (en) Method for purifying flow of inert gas
JPS6137968B2 (en)
JPH0688768B2 (en) Selective adsorption method of CO 2) by zeolite
JPH01155945A (en) Production of adsorbent for separating and recovering co
US5518527A (en) Method for recovering ethylene from vent gas from ethylene oxide plant vent gas
US3029575A (en) Chlorine separation process
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JPH0149643B2 (en)
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JPS621766B2 (en)
JP2587334B2 (en) Method of separating CO gas not containing CH4
CN115947949B (en) Porous metal organic framework material and synthesis method thereof, adsorbent and method for purifying ethylene
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent
JPS61242638A (en) Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it
JPS6265920A (en) Method for separating and recovering carbon mon-oxide from mixed gas containing carbon monoxide
JPH0112529B2 (en)
KR101824771B1 (en) Method for adsorptively separating carbon dioxide using activated carbons modified by surface reforming