JPS61242908A - Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent - Google Patents

Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent

Info

Publication number
JPS61242908A
JPS61242908A JP60084724A JP8472485A JPS61242908A JP S61242908 A JPS61242908 A JP S61242908A JP 60084724 A JP60084724 A JP 60084724A JP 8472485 A JP8472485 A JP 8472485A JP S61242908 A JPS61242908 A JP S61242908A
Authority
JP
Japan
Prior art keywords
copper
adsorbent
pore
compound
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084724A
Other languages
Japanese (ja)
Inventor
Masami Takeuchi
正己 武内
Toshiaki Tsuji
辻 利明
Mamoru Shiraishi
白石 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP60084724A priority Critical patent/JPS61242908A/en
Publication of JPS61242908A publication Critical patent/JPS61242908A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:The titled adsorbent, obtained by supporting a copper compound on a carrier consisting of activated carbon having a specified pore diameter and specific surface area, and capable of separating and recovering CO of high purity from a mixed gas containing the CO. CONSTITUTION:A copper compound is supported on a carrier consisting of activated carbon having a pore distribution of <=0.33ml/g, particularly <=0.20ml/g pore volume having <=10Angstrom diameter and >=0.35ml/g, particularly >=0.40ml/g pore volume having 20-300Angstrom pore diameter and >=1,300m<2>/g specific surface area. A copper (I) compound, e.g. copper (I) chloride, copper (II) compound, e.g. copper (II) chloride or reduced copper (II) compound, is used as the copper compound. The copper compound is supported on the carrier by a method for bringing a solution or dispersion prepared by dissolving or dispersing the compound in a solvent into contact with the carrier, and removing the solvent, etc. The resultant adsorbent is filled in an adsorption column and capable of efficiently separating and recovering CO from a mixed gas containing the CO by the PSA or TSA method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧力変動式吸着分離法(以下PSA法という
)または/および温度変動式吸着分離法(以下TSA法
という)によりCOを含む混合ガスから高純度のCOを
分離回収する目的に用いる吸着剤に関するものであり、
さらにはその吸着剤を製造する方法、およびその吸着剤
を用いて高純度COを分離回収する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for separating a mixed gas containing CO by a pressure fluctuation adsorption separation method (hereinafter referred to as PSA method) or/and a temperature fluctuation adsorption separation method (hereinafter referred to as TSA method). It relates to an adsorbent used for the purpose of separating and recovering high-purity CO,
Furthermore, the present invention relates to a method of manufacturing the adsorbent and a method of separating and recovering high-purity CO using the adsorbent.

従来の技術 COを主成分とするガスの代表的なものとして、製鉄所
の転炉から得られる転炉ガス、高炉から得られる高炉ガ
ス、電気炉から得られる電気炉ガス、コークスをガス化
して得られる発生炉ガスなどがある。これらのガスは通
常そのほとんどが燃料として使用されているが、これら
のガスの中にはCOがたとえば70マo1%前後あるい
はそれ以上も含まれているものもあるので、これらのガ
ス中に含まれるCOを高純度で分離回収することができ
れば、ギ酸、酢酸等の合成原料、有機化合物の還元用な
どとして用いることができ、化学工業上非常に有益であ
る。
Conventional technology Typical gases containing CO as a main component include converter gas obtained from converters in steel plants, blast furnace gas obtained from blast furnaces, electric furnace gas obtained from electric furnaces, and gasification of coke. There is a generator gas that can be obtained. Most of these gases are normally used as fuel, but some of these gases contain CO, for example, around 70 MaO1% or more. If CO can be separated and recovered with high purity, it can be used as a raw material for synthesizing formic acid, acetic acid, etc., and for reducing organic compounds, which is extremely useful in the chemical industry.

従来、COを主成分とするガスからCOを分離回収する
方法として、深冷分離法、銅アンモニア法、コソーブ(
CO3ORB)法などが知られているが、これらの方法
は設備費がかさむ上、電力、蒸気等の熱エネルギーに要
する費用が大きいという問題があり、大容量のCOの分
離回収には適していても、中容量または小容量のCOの
分離回収には必ずしも適していなかった。さらに、これ
らの方法により分離して得られるCOには0、、COZ
など有機合成反応上障害となるガス成分が混在してくる
ため、そのままでは有機合成用には適用できないという
欠点があった。
Conventionally, methods for separating and recovering CO from gas whose main component is CO include cryogenic separation method, copper ammonia method, and Cosorb (
The CO3ORB method is known, but these methods have the problem of high equipment costs and high costs for thermal energy such as electricity and steam, and are not suitable for separating and recovering large amounts of CO. However, these methods were not necessarily suitable for the separation and recovery of medium or small volumes of CO. Furthermore, the CO obtained by separation by these methods contains 0, COZ
It has the disadvantage that it cannot be used as it is for organic synthesis because it contains gas components that can be a hindrance to organic synthesis reactions.

ところで、中容量または小容量の原料ガスから特定ガス
を選択分離する方法としてPSA法およびTSA法が知
られている。
By the way, the PSA method and the TSA method are known as methods for selectively separating a specific gas from a medium or small volume of source gas.

PSA法とは、混合ガスから特定ガスを選択分離する方
法の一つであって、高い圧力で被吸着物を吸着剤に吸着
させ、ついで吸着系の圧力を下げることによって吸着剤
に吸着した被吸着物を脱離し、吸着物および非吸着物を
分離する方法であって、工業的には吸着剤を充填した塔
を複数個設け、それぞれの吸着塔において、昇圧→吸着
→洗浄→脱気の一連の操作を繰り返すことにより、装置
全体としては連続的に分離回収を行うことができるよう
にしたものである。
The PSA method is a method for selectively separating a specific gas from a mixed gas.The adsorbent is adsorbed onto an adsorbent at high pressure, and then the adsorbed material is removed by lowering the pressure of the adsorption system. This method desorbs adsorbed substances and separates adsorbed substances and non-adsorbed substances.Industrially, multiple towers filled with adsorbent are installed, and in each adsorption tower, the steps of pressurization → adsorption → washing → deaeration are performed. By repeating a series of operations, the entire device can perform continuous separation and recovery.

また、TSA法も上記PSA法と同様に混合ガスから特
定ガスを選択分離する方法の一つであって、低温で被吸
着物を吸着剤に吸着させ、ついで吸着系の温度上げるこ
とによって吸着剤に吸着した被吸着物を脱離し、吸着物
および非吸着物を分離する方法である。
Similarly to the above-mentioned PSA method, the TSA method is also a method for selectively separating a specific gas from a mixed gas.The adsorbent is adsorbed onto an adsorbent at a low temperature, and then the temperature of the adsorption system is raised. In this method, the adsorbed substances are desorbed and the adsorbed substances and non-adsorbed substances are separated.

従来、このPSA法によりCOを含む混合ガスからCO
を分離回収する方法として、モルデナイト系ゼオライト
を吸着剤として用いる方法が提案されている。(#開開
59−22825号公報、特開昭58−4H18号公報
参照) また、PSA法またはTSA法によりCOを含む混合ガ
スからCOを分離回収°する方法として、ハロゲン化銅
(1)、酸化銅(I)、銅(II)塩、酸化銅(II 
)などの銅化合物を活性炭に担持させたものを吸着剤と
して用いる方法が提案されている。(特開昭58−15
8517号公報、特開昭59−89414号公報、特開
昭59−105841号公報、特開昭59−13813
4号公報参照) 発明が解決しようとする問題点 PSA法またはTSA法を実施するにあたり吸着塔に充
填する吸着剤に求められる性能としては、■共存成分に
対する着目成分の選択的吸着があること、■加圧または
低温時と減圧または高温時の着目成分の吸着量の差が大
きいこと、■吸着した着目成分の脱離が容易であること
、■着目成分以外は吸着されにくく、そして脱離しにく
いこと、などがあげられる、これらの性能は、製品ガス
の純度および収率に大きな影響を与えるため、PSA法
またはTSA法では重要な要素となる。
Conventionally, this PSA method was used to remove CO from a mixed gas containing CO.
A method using mordenite-based zeolite as an adsorbent has been proposed as a method for separating and recovering. (Refer to #Kokai No. 59-22825 and JP-A No. 58-4H18) In addition, as a method for separating and recovering CO from a mixed gas containing CO by the PSA method or the TSA method, copper halide (1), Copper (I) oxide, copper (II) salt, copper (II) oxide
) and other copper compounds supported on activated carbon have been proposed. (Unexamined Japanese Patent Publication No. 58-15
8517, JP 59-89414, JP 59-105841, JP 59-13813
(Refer to Publication No. 4) Problems to be Solved by the Invention When carrying out the PSA method or the TSA method, the performance required of the adsorbent packed in the adsorption tower is: (1) selective adsorption of the component of interest relative to coexisting components; ■There is a large difference in the adsorption amount of the target component under pressure or low temperature and under reduced pressure or high temperature.■The adsorbed target component is easily desorbed.■It is difficult for components other than the target component to be adsorbed and desorbed. These performances have a great influence on the purity and yield of the product gas, and are therefore important factors in the PSA method or TSA method.

しかるに、吸着剤の物理的な吸着脱離現象を利用する上
記モルデナイト系ゼオライトを吸着剤として用いる方法
にあっては、CO吸着量が比較的小さいため圧力スイン
グの切替え頻度を多くしなければならず、操作の点でも
弁類の寿命の点でも不利となること、吸着操作に先立ち
C02,を予め除去しておかなければならないこと、N
2.の共吸着を免かれないため、製品純度が低くなるこ
と、また吸着したN、を除くために製品COガスを用い
て塔内洗浄を行うときの洗浄量が多く、製品Goの回収
率が低くなることなどの問題がある。
However, in the method of using mordenite-based zeolite as an adsorbent, which utilizes the physical adsorption/desorption phenomenon of the adsorbent, the amount of CO adsorbed is relatively small, so the pressure swing must be switched more frequently. , there are disadvantages in terms of operation and valve life; C02 must be removed in advance before adsorption operation;
2. Co-adsorption of Go is unavoidable, resulting in low product purity, and a large amount of cleaning is required to clean the inside of the tower using product CO gas to remove adsorbed N, resulting in a low recovery rate of Go product. There are issues such as what happens.

一方、吸着剤の化学的な吸着脱離現象を利用する上記銅
化合物を活性炭に担持させた吸着剤を用いる方法にあっ
ては、C01N2.、CO,などを含む混合ガスからC
Oを分離しようとする場合、COと同時に002.など
も共吸着する傾向があるため、有機合成用に使用しうる
ほど純度の高いCOを分離回収しがたいこと、また吸着
剤のCO吸着量が必ずしも大きくはないことなどの問題
点があり、工業的規模において採用しうるまでには至っ
ていない。
On the other hand, in a method using an adsorbent in which the copper compound is supported on activated carbon, which utilizes the chemical adsorption/desorption phenomenon of the adsorbent, C01N2. , CO, etc. from a mixed gas containing
When attempting to separate O, 002. There are problems such as the fact that it is difficult to separate and recover CO with a high purity that can be used for organic synthesis, and the amount of CO adsorbed by the adsorbent is not necessarily large. It has not yet reached the point where it can be adopted on an industrial scale.

本発明は、このような状況に鑑み、COを含む混合ガス
から高純度のCOを効率良く分離回収する工業的に有利
な吸着剤を見出すべく鋭意研究を重ねた結果到達したも
のである。
In view of this situation, the present invention was achieved as a result of intensive research to find an industrially advantageous adsorbent that can efficiently separate and recover high-purity CO from a mixed gas containing CO.

問題点を解決するための手段 本発明のCO分離回収用吸着剤は、細孔直径10λ以下
の細孔容積が0.33ml/g以下で、細孔直径20Å
〜300人の細孔容積が0.35sl/g以上である細
孔分布を有し、かつ1300m″/g以上の比表面積を
有する活性炭からなる担体に銅化合物を相持させてなる
ものである。
Means for Solving the Problems The adsorbent for CO separation and recovery of the present invention has a pore diameter of 10λ or less, a pore volume of 0.33ml/g or less, and a pore diameter of 20Å.
A copper compound is supported on a carrier made of activated carbon having a pore distribution with a pore volume of 0.35 sl/g or more and a specific surface area of 1300 m''/g or more.

また、本発明のCO分離回収用吸着剤の製造法は、細孔
直径10Å以下の細孔容積が0.33ml/g以下で、
細孔直径20Å〜300人の細孔容積が0.35ml/
g以上である細孔分布を有し、かつ1300m″/g以
上の比表面積を有する活性炭からなる担体に、銅化合物
を溶媒に溶解または分散した溶液または分散液を接触さ
せた後、溶媒を除去することを特徴とするものである。
In addition, the method for producing the adsorbent for CO separation and recovery of the present invention has a pore diameter of 10 Å or less and a pore volume of 0.33 ml/g or less,
Pore diameter 20Å~300 people pore volume 0.35ml/
A solution or dispersion in which a copper compound is dissolved or dispersed in a solvent is brought into contact with a carrier made of activated carbon having a pore distribution of 1,300 m''/g or more and a specific surface area of 1,300 m''/g or more, and then the solvent is removed. It is characterized by:

さらにまた、本発明の高純度COを分離回収する方法は
、PSA法または/およびTSA法によすCOを含む混
合ガスから高純度COを分離回収するにあたり、吸着剤
として、細孔直径lO五以下の細孔容積が0.33ml
/g以下で、細孔直径20Å〜300人の細孔容積が0
.35ml/g以上である細孔分布を有し、かつ130
0m’/g以上の比表面積を有する活性炭からなる担体
に銅化合物を相持させてなるCO分離回収用吸着剤を用
いることを特徴とするものである。
Furthermore, in the method for separating and recovering high-purity CO of the present invention, when separating and recovering high-purity CO from a mixed gas containing CO by the PSA method and/or TSA method, the method uses an adsorbent with a pore diameter of 1O5. The pore volume below is 0.33ml
/g or less, the pore diameter is 20 Å to 300 people, and the pore volume is 0.
.. has a pore distribution of 35 ml/g or more, and 130 ml/g or more;
The present invention is characterized by using an adsorbent for CO separation and recovery, which is made by supporting a copper compound on a carrier made of activated carbon having a specific surface area of 0 m'/g or more.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

Lat! 本発明のCO分離回収用吸着剤は、一般の活性炭とは異
なり、特殊な細孔分布および比表面積を有する活性炭を
担体として用い、これに銅化合物を担持させてなるもの
である。
Lat! The adsorbent for CO separation and recovery of the present invention uses activated carbon as a carrier, which has a special pore distribution and specific surface area, unlike general activated carbon, and supports a copper compound thereon.

すなわち、本発明においては、担体として、細孔直径1
0λ以下の細孔容積が0.33ml/g以下で、細孔直
径20Å〜300人の細孔容積が0.35tl/、g以
上である細孔分布を有し、かつ1300m’/g以上の
比表面積を有する活性炭を用いる。特に好ましい細孔分
布は、細孔直径10λ以下の細孔容積が0.20ml/
g以下で、細孔直径20Å〜300人の細孔容積が0.
4011/g以上である。また、比表面積も1400m
″/g以上である方がより望ましい、細孔分布または比
表面積が上記範囲をはずれる活性炭を用いて吸着剤を製
造しても、有機合成用にそのまま使用できるほど純度の
高いCOを分離回収することができない。
That is, in the present invention, the carrier has a pore diameter of 1
The pore volume of 0λ or less is 0.33 ml/g or less, the pore diameter is 20 Å to 300 people, and the pore volume is 0.35 tl/g or more, and the pore size is 1300 m'/g or more. Activated carbon with a specific surface area is used. A particularly preferable pore distribution is that the pore volume with a pore diameter of 10λ or less is 0.20 ml/
g or less, the pore diameter is 20 Å to 300 people, and the pore volume is 0.
It is 4011/g or more. Also, the specific surface area is 1400m
Even if an adsorbent is manufactured using activated carbon with a pore distribution or specific surface area outside the above range, it is more desirable to have a value of 100% or more than 100% of the above range. I can't.

先に「従来の技術」の項で述べた特開昭58−1565
17号公報、特開昭59−[414号公報、特開昭59
−105841号公報、特開昭5!3−138134号
公報で実施例にあげられているような一般の活性炭は、
細孔直径10λ以下の細孔容積がたとえば0,34〜0
.70ml/g程度、細孔直径20Å〜300人の細孔
容積かたとえば0.34〜0.10ml/g程度であり
、また比表面積は1300前後〜1100ゴ/g程度で
あるから、本発明において担体として用いる活性炭は、
これら一般の活性炭に比し、直径の大きい細孔が多いも
のであるということができる。このような活性炭は、原
   ”斜度素材の種類、バインダーの種類および量、
賦活条件などを適宜選ぶことにより取得される。
Japanese Patent Application Laid-Open No. 1565-1983 mentioned earlier in the section of "Prior Art"
Publication No. 17, Japanese Unexamined Patent Application Publication No. 1983- [No. 414, Japanese Unexamined Patent Publication No. 1983
General activated carbon, such as those listed in Examples in Publication No. 105841 and Japanese Unexamined Patent Application Publication No. 53-138134,
The pore volume with a pore diameter of 10λ or less is, for example, 0.34 to 0.
.. The pore diameter is about 70 ml/g, the pore volume is about 20 Å to 300 ml/g, for example, about 0.34 to 0.10 ml/g, and the specific surface area is about 1300 to 1100 ng/g, so in the present invention The activated carbon used as a carrier is
It can be said that it has more pores with larger diameters than these general activated carbons. Such activated carbon can be used depending on the type of raw material, type and amount of binder
It is obtained by selecting activation conditions etc. appropriately.

ここで、細孔容積とは、液体窒素温度における窒素ガス
測定法で廁定し、各等温線において、相対圧p/p、 
 対吸着量Xとの関係が相対圧軸に対し水平になる点x
sをとり、毛管凝縮による細孔充満が完成するとして、
細孔容積vs=xs/ρとして求めたものである。ρは
吸着ガスの密度である。また、比表面積とは、液体窒素
温度における窒素ガス吸着法で測定し、BET式を用い
て求めたものである。
Here, the pore volume is determined by the nitrogen gas measurement method at liquid nitrogen temperature, and in each isotherm, the relative pressure p/p,
Point x where the relationship with adsorption amount X becomes horizontal to the relative pressure axis
s and assuming that pore filling is completed by capillary condensation,
It was determined as pore volume vs=xs/ρ. ρ is the density of adsorbed gas. Further, the specific surface area is measured by a nitrogen gas adsorption method at liquid nitrogen temperature and determined using the BET formula.

上記特定の細孔分布および比表面積を有する活性炭の形
状、粒径は特に限定はないが、塔に充填したときの圧損
等を考慮して粒径がたとえば1〜7■程度の粒状のもの
を選択することが望ましく、これを必要に応じて乾燥し
てから使用する。
The shape and particle size of the activated carbon having the above-mentioned specific pore distribution and specific surface area are not particularly limited; It is preferable to use the selected one after drying it if necessary.

上記特定の活性炭からなる担体に担持させる銅化合物と
しては、銅(I)化合物、銅(II)化合物または銅(
II)化合物の還元物が用いられる。
The copper compound supported on the above-mentioned specific activated carbon carrier may be a copper(I) compound, a copper(II) compound or a copper(
II) A reduced product of the compound is used.

なお、場合により−1これらの銅化合物と共に、塩化ア
ルミニウム、フッ化アルミニウム、臭化アルミニウムな
どのハロゲン化アルミニウムを混合使用することできる
Note that, in some cases, aluminum halides such as aluminum chloride, aluminum fluoride, and aluminum bromide may be used in combination with these copper compounds.

ここで銅(I)化合物としては、塩化銅(1)、フッ化
銅(1)、臭化銅(I)等のハロゲン化銅(1);酸化
銅(1);シアン化銅(1);ギ酸銅(1)、酢酸銅(
1)、シュウ鍛鋼(1)、硫酸銅(1)、亜硫鍛鋼(I
)等の銅(I)の酸素酸塩または有arI11塩;硫化
銅(1);ジクロロ銅(I)酸塩、テトラクロロ銅(I
) 酸塩、ジシアノ銅(I)酸塩、テトラシアノ銅(I
)酸塩等の錯塩;などが例示される。特に塩化銅(1)
が好適である。
Here, copper (I) compounds include copper halides (1) such as copper chloride (1), copper fluoride (1), copper bromide (I); copper oxide (1); copper cyanide (1); ; Copper formate (1), copper acetate (
1), Shu forged steel (1), copper sulfate (1), sulfur forged steel (I
), copper(I) oxyacid or arI11 salt; copper(1) sulfide; dichlorocopper(I) salt, tetrachlorocopper(I)
) acid salt, dicyanocopper(I) acidate, tetracyanocopper(I)
) Complex salts such as acid salts; etc. are exemplified. Especially copper chloride (1)
is suitable.

銅(II)化合物としては、塩化銅(■)、フッ化銅(
II)、臭化銅(II)等のハロゲン化銅(■);酸化
銅(■);シアン化銅(■):ギ酸銅(II)、酢酸銅
(■)、シュウ鍛鋼(■)、硫酸銅(II)、硝酸銅(
II)、リン鍛鋼(■)、炭酸銅(II )等の銅(I
I)の酸素酸塩または有機酸塩;水酸化銅(■);硫化
銅(II) ; )リフルオロ銅(II )酸塩、テト
ラフルオロ銅(■)#塩、トリクロロ銅(II)酸塩、
テトラクロロ銅(rI)酸塩、テトラシアノ銅(II)
 酸塩、デトラヒドロオクソ銅(II)酸塩、ヘキサヒ
ドロオクン銅(II)酸塩、アンミン錯塩等の錯塩:な
どが例示される。
Copper(II) compounds include copper chloride (■) and copper fluoride (■).
II), copper halides (■) such as copper bromide (■); copper oxide (■); copper cyanide (■): copper formate (II), copper acetate (■), Shu-forged steel (■), sulfuric acid Copper (II), copper nitrate (
Copper (I), such as phosphorus forged steel (■), copper carbonate (II)
I) oxyacid or organic acid salt; copper hydroxide (■); copper (II) sulfide; ) refluorocopper (II) salt, tetrafluorocopper (■) # salt, trichlorocopper (II) salt,
Tetrachlorocopper(rI) salt, tetracyanocopper(II)
Examples include complex salts such as acid salts, detrahydrooxocuprate(II) salts, hexahydroocune cuprate(II) salts, and ammine complex salts.

銅(II)化合物を担体に担持させた場合は、これを還
元した還元物も用いられる。この還元物は、銅CI)化
合物と銅(IT)化合物との混合物、あるいは1価とI
I価の中間の原子価を持つ化合物であると推定される。
When a copper (II) compound is supported on a carrier, a reduced product of the copper (II) compound may also be used. This reduced product is a mixture of a copper (CI) compound and a copper (IT) compound, or a monovalent and I
It is presumed to be a compound with an atomic valence between I and I.

担体に対する銅化合物の担持量は広い範囲から選ばられ
るが、通常は1〜15 m−mol/g、好ましくは2
〜10 m−mol/gの範囲から選択する。担持量が
余りに少ないとCO吸着能力が不足し、一方担持量が余
りに多いとかえって分離効率が低下する傾向がある。
The amount of copper compound supported on the carrier is selected from a wide range, but is usually 1 to 15 mmol/g, preferably 2
-10 m-mol/g. If the supported amount is too small, the CO adsorption capacity will be insufficient, while if the supported amount is too large, the separation efficiency will tend to decrease.

il息二lL1 上述の吸着剤は、上記特定の活性炭からなる担体に、銅
化合物を溶媒に溶解または分散させた溶液または分散液
を接触させた後、溶媒を除去することにより製造される
The above-mentioned adsorbent is produced by contacting a carrier made of the specific activated carbon with a solution or dispersion in which a copper compound is dissolved or dispersed in a solvent, and then removing the solvent.

溶液または分散液の接触は、含浸、スプレーなどにより
なされる。この際、担体に銅化合物の溶液または分散液
を含浸またはスプレーなどの手段により単に接触させる
だけでなく、真空脱気した担体に銅化合物の溶液または
分散液を接触させたり、担体に銅化合物の溶液または分
散液を接触させた後、減圧条件下に脱気したりしてもよ
い。
The solution or dispersion is brought into contact by impregnation, spraying, or the like. At this time, in addition to simply contacting the carrier with a solution or dispersion of a copper compound by means such as impregnation or spraying, the solution or dispersion of a copper compound may be brought into contact with a vacuum-degassed carrier, or After the solution or dispersion is brought into contact, it may be degassed under reduced pressure conditions.

溶媒としては、たとえば、水、塩酸、酢酸、ギ酸、アン
モニア性ギ酸水溶液、アンモニア水、含ハロゲン溶剤(
クロロホルム、四塩化炭素、二塩化エチレン、トリクロ
ロエタン、テトラクロロエタン、テトラクロロエチレン
、塩化メチレン、フッ素系溶剤等)、含イオウ溶剤(二
硫化炭素、ジメチルスルホキシド等)、含窒素溶剤(プ
ロピオニトリル、アセトニトリル、ジエチルアミン、ジ
メチルホルムアミド、N−メチルピロリドン等)、炭化
水素(ヘキサン、ベンゼン、トルエン、キシレン、エチ
ルベンゼン、シクロヘキサン、デカリン等)、アルコー
ル類(メタノール、エタノール、プロパツール、ブタノ
ール、アミルアルコール、シクロヘキサノール、エチレ
ングリコール、プロピレングリコール等)、ケトン類(
アセトン、メチルエチルケトン、メチルイソブチルケト
ン、アセトフェノン、イソホロン、シクロヘキサノン等
)、エステル類(酢酸メチル、酢酸エチル、酢酸アミル
、プロピオン酸メチル、プロピオン酸アミル等)、エー
テル類(イソプロピルエーテル、ジオキサン等)、セロ
ソルブ類(セロソルブ、エチルセロソルブ、ブチルセロ
ソルブ、セロソルブアセテート等)、カルピトール類な
どが用いられる。
Examples of solvents include water, hydrochloric acid, acetic acid, formic acid, ammoniacal formic acid aqueous solution, aqueous ammonia, and halogen-containing solvents (
Chloroform, carbon tetrachloride, ethylene dichloride, trichloroethane, tetrachloroethane, tetrachloroethylene, methylene chloride, fluorinated solvents, etc.), sulfur-containing solvents (carbon disulfide, dimethyl sulfoxide, etc.), nitrogen-containing solvents (propionitrile, acetonitrile, diethylamine, etc.) , dimethylformamide, N-methylpyrrolidone, etc.), hydrocarbons (hexane, benzene, toluene, xylene, ethylbenzene, cyclohexane, decalin, etc.), alcohols (methanol, ethanol, propatool, butanol, amyl alcohol, cyclohexanol, ethylene glycol) , propylene glycol, etc.), ketones (
Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, isophorone, cyclohexanone, etc.), esters (methyl acetate, ethyl acetate, amyl acetate, methyl propionate, amyl propionate, etc.), ethers (isopropyl ether, dioxane, etc.), cellosolves (cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate, etc.), carpitols, etc. are used.

担体に銅化合物の溶液または分散液を接触させた後は、
空気雰囲気下または窒素、アルゴンなどの不活性ガス雰
囲気下に溶媒を除去する。溶媒の除去は単なる加熱乾燥
のほか、減圧乾燥によってもなされる。
After contacting the carrier with the solution or dispersion of the copper compound,
Remove the solvent under an air atmosphere or an inert gas atmosphere such as nitrogen or argon. The solvent can be removed not only by simple heat drying but also by vacuum drying.

銅(I)化合物を用いた場合は、この乾燥により十分な
CO吸着能を示す吸着剤が得られるが、さらに不活性ガ
スまたは還元性ガス雰囲気下に加熱処理を行ってもよい
When a copper (I) compound is used, an adsorbent exhibiting sufficient CO adsorption ability can be obtained by this drying, but a heat treatment may be further performed in an inert gas or reducing gas atmosphere.

これに対し銅(II )化合物を用いた場合は、上記乾
燥だけではCO吸着能が不足する場合が多い。そこで銅
(II )化合物を用いた場合には、乾燥後の吸着剤を
さらに空気、不活性ガスまたは還元性ガス雰囲気下に加
熱処理することにより活性化を行うことが望ましい。特
に不活性ガスまたは還元性ガス雰囲気下に加熱処理する
ことが好ましい。加熱温度は、空気中においては100
〜200°C1窒素、アルゴンなどの不活性ガス中にお
いては280〜500℃、CO、H,などの還元性ガス
中においては150〜250℃とするのが適当であり、
この温度範囲以外では所期の活性化が十分には達成でき
ない。
On the other hand, when a copper (II) compound is used, the CO adsorption capacity is often insufficient just by the above-mentioned drying. Therefore, when a copper (II) compound is used, it is desirable to activate the adsorbent after drying by further heat-treating it in an atmosphere of air, inert gas, or reducing gas. In particular, it is preferable to carry out the heat treatment under an inert gas or reducing gas atmosphere. The heating temperature is 100℃ in air.
~200°C1 It is appropriate to set the temperature to 280 to 500°C in an inert gas such as nitrogen or argon, and 150 to 250°C in a reducing gas such as CO, H, etc.
The desired activation cannot be achieved sufficiently outside this temperature range.

この加熱処理により、担体に担持された銅(■)化合物
は部分的に還元されて、銅(I)化合物と銅(II)化
合物との混合物、あるいは1価と■価の中間の原子価を
持つ化合物になるものと推定される。
Through this heat treatment, the copper (■) compound supported on the carrier is partially reduced, resulting in a mixture of copper (I) and copper (II) compounds, or a valence intermediate between monovalent and ■ valence. It is estimated that this compound will have the following properties:

旦より1分1u匪双 上記のようにして得られた吸着剤は、吸着塔に充填され
、PSA法またはTSA法により、C0を含む混合ガス
からのCOの分離回収が遂行される。
The adsorbent obtained in the above manner is packed into an adsorption tower, and CO is separated and recovered from a mixed gas containing CO by the PSA method or the TSA method.

PSA法によりCOの分離回収を行う場合は、吸着工程
における吸着圧力は大気圧以上、たとえばO〜6 Kg
/ cm2′Gとすることが望ましく、真空脱気工程に
おける真空度は大気圧以下、たとえば200〜10To
rrとすることが望ましい。
When separating and recovering CO by the PSA method, the adsorption pressure in the adsorption step is atmospheric pressure or higher, for example 0~6 kg.
/cm2'G, and the degree of vacuum in the vacuum degassing step is below atmospheric pressure, for example 200 to 10 To
It is desirable to set it to rr.

TSA法によりCOの分離回収を行う場合は、吸着工程
における吸着温度はたとえばO〜40℃程度、脱気工程
における脱気温度はたとえば60〜180℃程度とする
ことが望ましい。
When separating and recovering CO by the TSA method, it is desirable that the adsorption temperature in the adsorption step is, for example, about 0 to 40°C, and the degassing temperature in the degassing step is, for example, about 60 to 180°C.

また、PSA法とTSA法とを併用し、吸着を大気圧以
上で低温条件下に行い、脱気を大気圧以下で高温条件下
に行うこともできる。
It is also possible to use the PSA method and the TSA method in combination, performing adsorption at atmospheric pressure or higher under low temperature conditions and degassing at atmospheric pressure or lower under high temperature conditions.

なお、TSA法はエネルギー消費の点でPSA法に比し
ては不利であるため、工業的にはPSA法を採用するか
、PSA−TSA併用法を採用することが望ましい。
In addition, since the TSA method is disadvantageous compared to the PSA method in terms of energy consumption, it is desirable to adopt the PSA method or a combined PSA-TSA method from an industrial perspective.

本発明の方法に適用できるCOを含む混合ガスとしては
、たとえば、製鉄所の転炉から発生する転炉ガスが用い
られる。転炉ガスは、通常、主成分としてのCOのほか
、02.、メタンその他の炭化水素、水および少量のN
2.S、NH5等を含んでいる。転炉ガス以外に、高炉
ガス、電気炉ガス、発生炉ガスなども原料ガスとして用
いることができる。
As the mixed gas containing CO that can be applied to the method of the present invention, for example, converter gas generated from a converter in a steel mill is used. Converter gas usually contains CO as the main component, as well as 02. , methane and other hydrocarbons, water and small amounts of N
2. Contains S, NH5, etc. In addition to converter gas, blast furnace gas, electric furnace gas, generator gas, etc. can also be used as raw material gas.

なお、本発明においては、CO分離回収工程に先立ち、
上記吸着剤を被毒し、あるいはその寿命を縮めるおそれ
のある成分、すなわちイオウ化合物、NH5等の不純物
の吸着除去工程、水分除去工程および02除去工程を設
けることが望ましい。ただし、CO2除去工程やN2除
去工程は設けるには及ばない。
In addition, in the present invention, prior to the CO separation and recovery step,
It is desirable to provide a step for adsorption and removal of impurities such as sulfur compounds and NH5, a moisture removal step and an 02 removal step, which may poison the adsorbent or shorten its lifespan. However, it is not enough to provide a CO2 removal process or a N2 removal process.

PSA法を採用した場合の操作は、工業的には、上記吸
着剤を充填した複数の吸着塔を用い、次に例示する各操
作をそれぞれの吸着塔において順次繰り返して行えばよ
い。
For industrial operations when the PSA method is employed, a plurality of adsorption towers filled with the above-mentioned adsorbent may be used, and each operation illustrated below may be sequentially repeated in each adsorption tower.

(イ)原料ガスを吸着塔に流してCOを吸着する工程、
および、排出ガス中CO濃度が原料ガス中のCO濃度と
等しくなる少し前に、排出ガスを他塔の昇圧(m)に用
いる工程、 (ロ)吸着工程終了後、その吸着塔と真空脱気が終った
吸着塔とを連絡し、前者吸着塔の圧力を大気圧付近まで
並流に減圧させる減圧工程、およびそれに対応して後者
吸着塔を昇圧(1)する工程、 (ハ)減圧した吸着塔に製品ガスの一部を並流に導入し
て、塔内部残留不純物ガスを洗浄する洗浄工程、および
、このとき排出されるガスを他塔の昇圧(II)に用い
る工程、 (ニ)真空減圧して、吸着剤に吸着されているCOを吸
着剤から向流に脱気させ、製品ガスを回収する製品回収
工程。
(a) A step of flowing the raw material gas into an adsorption tower to adsorb CO;
and a step in which the exhaust gas is used for pressurization (m) of another column shortly before the CO concentration in the exhaust gas becomes equal to the CO concentration in the raw material gas; (b) after the adsorption step, the adsorption column and vacuum deaeration are performed; A depressurization step in which the pressure in the former adsorption tower is reduced to near atmospheric pressure in parallel flow, and a corresponding step (1) in which the pressure in the latter adsorption tower is increased (1); A cleaning step in which a part of the product gas is introduced into the column in parallel flow to clean the remaining impurity gas inside the column, and a step in which the gas discharged at this time is used for pressurization (II) in another column; (d) Vacuum A product recovery process in which the CO adsorbed on the adsorbent is degassed in a countercurrent flow from the adsorbent by reducing the pressure, and the product gas is recovered.

(ホ)製品回収が終った吸着塔と吸着工程が終った吸着
塔とを連絡して、前者吸着塔を並流に昇圧する昇圧(I
)工程、 (へ)他の吸着塔の洗浄排ガスにより並流に昇圧する昇
圧(II)工程、 (ト)他の吸着塔の吸着工程終了間際の排ガスにより昇
圧する昇圧(m)工程、 を順次繰返して行えばよい。
(e) Pressure increasing (I
) step, (f) pressurization step (II) in which the pressure is increased in parallel flow using the washed exhaust gas from another adsorption tower, (g) step (m) in which the pressure is increased by the exhaust gas near the end of the adsorption step in another adsorption tower, in sequence. Just do it repeatedly.

このように上記操作をそれぞれの吸着塔において順次繰
返して行うことによって、連続的に高純度のCOガスを
高い回収率で分離回収することができる。
By sequentially repeating the above operations in each adsorption tower in this way, highly pure CO gas can be continuously separated and recovered at a high recovery rate.

作   用 本発明の固体吸着剤による吸着脱離現象は、主として担
体に担持された銅化合物とCOとの可逆的な化学反応(
錯体形成反応と解離反応)に基づくものであり(N、、
CO2,との化学反応は起こらない)、副次的に活性炭
担体の細孔表面上への物理的な吸着およびそこからの脱
離に基づくものである。
Effect The adsorption/desorption phenomenon caused by the solid adsorbent of the present invention is mainly caused by a reversible chemical reaction between the copper compound supported on the carrier and CO (
complex formation reaction and dissociation reaction).
(no chemical reaction with CO2 takes place), which is secondarily based on physical adsorption onto the pore surfaces of the activated carbon support and desorption therefrom.

そして本発明において担体として用いる活性炭は、一般
の活性炭に比し直径の大きい細孔が多いため、原料ガス
がCO2やN、を含んでいても、吸着工程において担体
細孔へのCO、やNLの物理的吸着量が少なく、また担
体細孔に物理的に吸着したこれらの不純物は、洗浄ガス
により容易に脱離されるものと考えられる。
The activated carbon used as a carrier in the present invention has many pores with larger diameters than general activated carbon, so even if the raw material gas contains CO2 and N, CO and NL will not enter the carrier pores during the adsorption process. It is thought that the amount of physically adsorbed impurities is small, and that these impurities physically adsorbed in the pores of the carrier are easily desorbed by the cleaning gas.

実  施  例 次に、実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained by giving examples.

COの分離回収は、第1図にフローシートを示した装置
を用いて行った。
Separation and recovery of CO was performed using an apparatus whose flow sheet is shown in FIG.

第1図中、(1)は吸着塔、  (2a)、(2b) 
 。
In Figure 1, (1) is an adsorption tower, (2a), (2b)
.

(2c) 、 (2d)はバルブ、(3)は真空ポンプ
、(4)は製品タンク、(a)は原料ガス、(b)は製
品COガス、(C)はパージガスである。
(2c) and (2d) are valves, (3) is a vacuum pump, (4) is a product tank, (a) is a raw material gas, (b) is a product CO gas, and (C) is a purge gas.

実施例1 細孔直径10λ以下の細孔容積が0.12ml/gで、
細孔直径20Å〜300人の細孔容積が0.47ml/
gである細孔分布を有し、かつ1500rn”/gの比
表面積を有する活性炭を準備し、大気中110℃で6時
間乾燥した。
Example 1 The pore volume with a pore diameter of 10λ or less is 0.12 ml/g,
Pore diameter 20Å~300 people pore volume 0.47ml/
Activated carbon having a pore distribution of 1,500 rn''/g and a specific surface area of 1,500 rn''/g was prepared and dried in the air at 110° C. for 6 hours.

5θ01の三角フラスコ中に上記の乾燥活性炭50gを
入れ、さらにそこに1501のエタノールに塩化銅(I
I)87gを溶解した溶液を加え、アスピレータ−で1
分間脱気した後、4時間静置した。ついで、マントルヒ
ーターで100℃に加熱しつつ、N、気流中で溶媒を留
去し、さらに電気炉でN。
Put 50 g of the above dry activated carbon into a 5θ01 Erlenmeyer flask, and add copper chloride (I) to 1501 ethanol.
Add a solution in which 87 g of I) was dissolved, and use an aspirator to
After degassing for a minute, it was left to stand for 4 hours. Next, while heating to 100°C with a mantle heater, the solvent was distilled off in a N gas stream, and further N was added in an electric furnace.

気流中にて350℃、2時間の条件で熱処理を行ってか
ら、室温まで冷却してCO分離回収用の吸着剤を得た。
After heat treatment was performed at 350° C. for 2 hours in an air stream, the mixture was cooled to room temperature to obtain an adsorbent for CO separation and recovery.

上記で得た活性炭を吸着塔(26■φX 300 mm
H)に充填し、 CO  :  71,4 vo1% N2  :  12.7 vo1% COZ :  15,13 vo1% よりなる組成の2 kg/cm′LGの原料ガスを供給
して20 ’OでCOを吸着させた。このときのCO吸
着量は28.8cc/ccであった・ その後大気圧まで減圧した後、Go 900mlで塔内
を洗浄し、ついで真空ポンプにより圧力50Torrで
5分間脱気を行い、吸着されているガスを放出させた。
The activated carbon obtained above was placed in an adsorption tower (26 φ x 300 mm
H), and supplying a raw material gas of 2 kg/cm'LG with a composition of CO: 71.4 vo1% N2: 12.7 vo1% COZ: 15.13 vo1%, and CO at 20'O. It was adsorbed. The amount of CO adsorbed at this time was 28.8 cc/cc.Then, after reducing the pressure to atmospheric pressure, the inside of the column was washed with 900 ml of Go, and then degassed for 5 minutes at a pressure of 50 Torr using a vacuum pump. The gas was released.

このときのCO放出量は14.7cc/ccであり、回
収ガス組成は、 CO:  f99.93vo1% COz :   0.07vo1% Nz  :  trace であった。
The amount of CO released at this time was 14.7 cc/cc, and the recovered gas composition was as follows: CO: f99.93vo1% COz: 0.07vo1% Nz: trace.

再び上記と同じ条件で吸着させると、放出したCO’l
lと同じ量のcdが吸着された。以後、この吸着−脱気
を繰り返しても、COの吸着量、放出量、純度は変らな
かった。
When adsorbed again under the same conditions as above, the released CO'l
The same amount of cd as l was adsorbed. Thereafter, even if this adsorption-degassing process was repeated, the adsorption amount, release amount, and purity of CO did not change.

比較例! 担体として、細孔直径10A以下の細孔容積が0.4:
2ml/gで、細孔直径20Å〜300Aの細孔容積が
0.21ml/gである細孔分布を有し、かつ1300
rn’ /gc7)比表面積を有する市販の活性炭(A
社製)を用いたほかは実施例1と同様にして吸着剤を製
造し。
Comparative example! As a carrier, the pore diameter is 10A or less and the pore volume is 0.4:
2 ml/g, pore diameter 20 Å to 300 A, pore volume 0.21 ml/g, and 1300 Å
Commercially available activated carbon (A
An adsorbent was produced in the same manner as in Example 1, except that the adsorbent was used (manufactured by Alumni Co., Ltd.).

この吸着剤を塔に充填して実施例1と同じ条件で実験を
行った。結果は次の通りであった。
This adsorbent was packed into a column and an experiment was conducted under the same conditions as in Example 1. The results were as follows.

CO吸着Ik24.13 cc/cc CO放出量   14.0 cc/cc回収ガス組成 CO  :   E18.0vo1% CO2,:    1.9 vo1% N2.  :    Q、1vo1% 比較例2 担体として、細孔直径10λ以下の細孔容積が0.13
09 ml/gで、細孔直径20Å〜300人゛の細孔
容積が0.173 ml/gテある細孔分布を有し、か
つ132 G−m”7gの比表面積を有する市販の活性
炭(B社製)を 。
CO adsorption Ik24.13 cc/cc CO release amount 14.0 cc/cc Recovery gas composition CO: E18.0vo1% CO2: 1.9 vo1% N2. : Q, 1vo1% Comparative Example 2 As a carrier, the pore volume with a pore diameter of 10λ or less is 0.13
A commercially available activated carbon having a pore distribution with a pore diameter of 20 Å to 300 ml/g, a pore volume of 0.173 ml/g, and a specific surface area of 132 G-m"7 g. manufactured by Company B).

用いたほかは実施例1と同様にして吸着剤を製造し、こ
の吸着剤を塔に充填して実施例1と同じ条件で実験を行
った。結果は次の通りであった。
An adsorbent was produced in the same manner as in Example 1 except for the use of the adsorbent, and the adsorbent was packed into a column and an experiment was conducted under the same conditions as in Example 1. The results were as follows.

CO吸着ft    213.5 cc/ccCO放出
fil    15.3 cc/cc回収ガス組成 CO  :   97.2vo1% CO2,,:    2.7 vo1%N2.:0.1
マロ1% 比較例3 担体として、細孔直径10λ以下の細孔容積が0.34
9 ml/gテ、細孔直径20Å〜300人の細孔容積
がO,1ft3 ml/gであ為細孔分布を有し、かつ
1150m”7gの比表面積を有する市販の活性炭(C
社製)を用いたほかは実施例1と同様にして吸着剤を製
造し、この吸着剤を塔に充填して実施例1と同じ条件で
実験を行った。結果は次の通りであった。
CO adsorption ft 213.5 cc/cc CO release fil 15.3 cc/cc Recovery gas composition CO: 97.2 vo1% CO2,: 2.7 vo1% N2. :0.1
Malo 1% Comparative Example 3 As a carrier, the pore volume with a pore diameter of 10λ or less is 0.34
Commercially available activated carbon (C
An adsorbent was produced in the same manner as in Example 1, except that the adsorbent was used (manufactured by J.D. Co., Ltd.), and the adsorbent was packed into a column and an experiment was conducted under the same conditions as in Example 1. The results were as follows.

CO吸着量   22.4 cc/ccCO放出量  
 12.θcc/cc 回収ガス組成 CO  :   98.5vo1% CO2:    1.4マ01% Nz  :    0.1vo1% 上記比較例1〜3と実施例1におけるCO純度を比較す
ると、 実施例1  9943vo1% 比較例1  98.0マロ1% 比較例2   fl17.2 vo1%比較例3   
H,5va1% であり、CO純度の点で一見それほどの差はないように
見えるが、製品ガス中への不純物混入率から見ると、 実施例1   0.07マ01% 比較例1 2.0マロ1% 比較例2 2.8マロ1% 比較例3  1.5マ01% というように比較例1〜3においては実施例1に比しそ
れぞれ29倍、40倍、21倍もの不純物を含んでいる
ことを示している。この差は製品COが有機合成用に使
用できるか否かに直接影響を及ぼすもので、あり、実施
例1が如何にすぐれているかが理解できる。
CO adsorption amount 22.4 cc/ccCO release amount
12. θcc/cc Recovery gas composition CO: 98.5vo1% CO2: 1.4ma01% Nz: 0.1vo1% Comparing the CO purity in Comparative Examples 1 to 3 above and Example 1, Example 1 9943vo1% Comparative example 1 98.0 Malo 1% Comparative Example 2 fl17.2 vo1% Comparative Example 3
H, 5 va 1%, and at first glance there does not seem to be much difference in terms of CO purity, but from the perspective of the impurity mixing rate in the product gas, Example 1: 0.07 va 1% Comparative Example 1: 2.0 Malo 1% Comparative Example 2 2.8 Malo 1% Comparative Example 3 1.5 Malo 01% Comparative Examples 1 to 3 contain 29 times, 40 times, and 21 times more impurities than Example 1, respectively. It shows that it is. This difference directly affects whether or not the product CO can be used for organic synthesis, and it can be seen how excellent Example 1 is.

実施例2 溶奴に水、熱処理温度を400℃としたほかは実施例1
と同様にしてCO吸着剤を製造し、以下実施例1と同じ
条件で吸着操作を行った。結果は次の通りであった。
Example 2 Example 1 except that water was used in the melt and the heat treatment temperature was 400°C.
A CO adsorbent was produced in the same manner as in Example 1, and the adsorption operation was performed under the same conditions as in Example 1. The results were as follows.

CO吸着量   30.0 cc/ccCO放出fl 
   12.9cc/cc回収ガス組成 CO:   99.48vo1% CO2,:    0.54vo1% N2.  :   trace 実施例3 熱処理をH2,気流中にて250°C11時間の条件で
行ったほかは実施例1と同様にしてCO吸着剤を製造し
、以下実施例1と同じ条件で吸着操作を行った。結果は
次の通りであった・ CO吸着量   24.4 cc/ccCO放出量  
 12.5 cc/cc回収ガス組成 CO  :   99.9vol% COz :    0.1 vo1% NZ  :   trace 実施例4 活性炭として、細孔直径lOλ以下の細孔容積が0.3
2ml/gで、細孔直径20Å〜300人の細孔容積が
0.3E1ml/gである細孔分布を有し、かつ135
0m’ /Hの比表面積を有する活性炭を用いたほかは
実施例1と同様にしてCO吸着剤を製造し、以下実施例
1と同じ条件で吸着操作を行った。結果は次の通りであ
った。
CO adsorption amount 30.0 cc/ccCO release fl
12.9cc/cc Recovery gas composition CO: 99.48vo1% CO2,: 0.54vo1% N2. : trace Example 3 A CO adsorbent was produced in the same manner as in Example 1, except that the heat treatment was carried out at 250°C for 11 hours in H2 air flow, and the adsorption operation was carried out under the same conditions as in Example 1. Ta. The results were as follows: CO adsorption amount 24.4 cc/cc CO release amount
12.5 cc/cc recovered gas composition CO: 99.9 vol% COz: 0.1 vol% NZ: trace Example 4 As activated carbon, the pore volume with a pore diameter of lOλ or less is 0.3
2 ml/g, pore diameter 20 Å to 300 pore volume is 0.3E1 ml/g, and 135
A CO adsorbent was produced in the same manner as in Example 1, except that activated carbon having a specific surface area of 0 m' /H was used, and the adsorption operation was carried out under the same conditions as in Example 1. The results were as follows.

CO吸着量   22.8 cc/ccCO放出量  
 9.8 cc/cc 回収ガス組成 CO:   99.81vol% CO2:     0.19vol% N2.   :     trace 実施例5 細孔直径10Å以下の細孔容積が0.12ml/gで、
細孔直径20Å〜300人の細孔容積が0.47ml/
gである細孔分布を有し、かつ1500m″/gの比表
面積を有する活性炭を準備し、大気中110℃で6時間
乾燥した。
CO adsorption amount 22.8 cc/ccCO release amount
9.8 cc/cc Recovery gas composition CO: 99.81vol% CO2: 0.19vol% N2. : trace Example 5 The pore volume with a pore diameter of 10 Å or less is 0.12 ml/g,
Pore diameter 20Å~300 people pore volume 0.47ml/
Activated carbon having a pore size distribution of 1500 m''/g and a specific surface area of 1500 m''/g was prepared and dried in the atmosphere at 110° C. for 6 hours.

5001の三角フラスコ中に上記の乾燥活性炭50gを
入れ、さらにそこに150 mlの塩酸に塩化鋼(I)
40gを溶解した溶液を加え、アスピレータ−で1分間
脱気した後、4時間静置した。ついで、マントルヒータ
ーで200℃に加熱しつつ、N2.気流中で溶媒を留去
した後、室温まで冷却し、CO分離回収用の吸着剤を得
た。
Put 50 g of the above dry activated carbon into a 5001 Erlenmeyer flask, and add chlorinated steel (I) to 150 ml of hydrochloric acid.
A solution containing 40 g of the solution was added, and the mixture was degassed using an aspirator for 1 minute, and then allowed to stand for 4 hours. Next, while heating to 200°C with a mantle heater, N2. After distilling off the solvent in a gas stream, the mixture was cooled to room temperature to obtain an adsorbent for CO separation and recovery.

上記で得た吸着剤を吸着塔に充填し、以下実施例1と同
じ条件で吸着操作を行った。結果は次の通りであった。
The adsorbent obtained above was packed into an adsorption tower, and adsorption operation was performed under the same conditions as in Example 1. The results were as follows.

CO吸着量   25.2 cc/ccCO放出量  
 13.2 cc/cc回収ガス組成 CO  :   99.89マO1% CO、、 :    0.11vol%N2.  : 
  trace 実施例6 塩化銅(I)に代えて酸化銅(I)30gを用いた以外
は実施例5と同じ条件で実験を行った。結果は次の通り
であった。
CO adsorption amount 25.2 cc/ccCO release amount
13.2 cc/cc Recovered gas composition CO: 99.89% CO, 0.11vol% N2. :
trace Example 6 An experiment was conducted under the same conditions as Example 5 except that 30 g of copper (I) oxide was used in place of copper (I) chloride. The results were as follows.

CO吸着量   28.3 cc/ccCO放出量  
 11.5 cc/cc回収ガス組成 CO    二     99.9vol %CO2,
:    0.1 vo1% NIL:   trace 発明の効果 本発明においては、COと共にN2やCOzを含む混合
ガスにあっても、Nzの共吸着が小さいことはもとより
CO2の共吸着も抑制され、また共吸着したN2やC0
2,などの不純物は少量の洗浄ガスの供給により容易に
除去されるので、そのままで有機合成用に使用しうるほ
ど純度の高い製品COを得ることができる。そして、吸
着工程におけるCOの吸着量、脱気工程におけるCOの
放出量も大きいという特長を有する。
CO adsorption amount 28.3 cc/ccCO release amount
11.5 cc/cc recovered gas composition CO2 99.9vol %CO2,
: 0.1 vo1% NIL: trace Effects of the Invention In the present invention, even in a mixed gas containing CO as well as N2 and COz, not only the co-adsorption of Nz is small but also the co-adsorption of CO2 is suppressed. Adsorbed N2 and C0
Since impurities such as 2 and 2 are easily removed by supplying a small amount of cleaning gas, it is possible to obtain product CO with a high enough purity that it can be used for organic synthesis as it is. It also has the feature that the amount of CO adsorbed in the adsorption step and the amount of CO released in the degassing step are large.

よって、本発明により、転炉ガスその他COを含むガス
から高純度のCOを工業的規模で分離回収することでき
、化学工業上の意義が大きい。
Therefore, the present invention allows highly purified CO to be separated and recovered from converter gas and other CO-containing gases on an industrial scale, and is of great significance in the chemical industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、CO分離回収装置の一例を示したしフローシ
ートである。 (1) ・・・吸着塔、(2a)、(2b)  、 C
20)、  (2d)・・・バルブ、(3)・・・・真
空ポンプ、(4)・・・製品タンク、(a)・・・原料
ガス、(b)・・・製品COガス、(C)・・・パージ
ガス
FIG. 1 is a flow sheet showing an example of a CO separation and recovery device. (1) ... adsorption tower, (2a), (2b), C
20), (2d)... Valve, (3)... Vacuum pump, (4)... Product tank, (a)... Raw material gas, (b)... Product CO gas, ( C)...Purge gas

Claims (1)

【特許請求の範囲】 1、細孔直径10Å以下の細孔容積が0.33ml/g
以下で、細孔直径20Å〜300Åの細孔容積が0.3
5ml/g以上である細孔分布を有し、かつ1300m
^2/g以上の比表面積を有する活性炭からなる担体に
銅化合物を担持させてなるCO分離回収用吸着剤。 2、活性炭が、細孔直径10Å以下の細孔容積が0.2
0ml/g以下で、細孔直径20Å〜300Åの細孔容
積が0.40ml/g以上である細孔分布を有し、かつ
1300m^2/g以上の比表面積を有する活性炭であ
る特許請求の範囲第1項記載の吸着剤。 3、銅化合物が、銅( I )化合物である特許請求の範
囲第1項記載の吸着剤。 4、銅化合物が、銅(II)化合物またはその還元物であ
る特許請求の範囲第1項記載の吸着剤。 5、細孔直径10Å以下の細孔容積が0.33ml/g
以下で、細孔直径20Å〜300Åの細孔容積が0.3
5ml/g以上である細孔分布を有し、かつ1300m
^2/g以上の比表面積を有する活性炭からなる担体に
、銅化合物を溶媒に溶解または分散した溶液または分散
液を接触させた後、溶媒を除去することを特徴とするC
O分離回収用吸着剤の製造法。 6、銅化合物を溶媒に溶解または分散した溶液または分
散液を担体に接触させた後、溶媒を除去し、さらに空気
、不活性ガスまたは還元性ガス雰囲気下に加熱処理する
ことを特徴とする特許請求の範囲第5項記載の製造法。 7、圧力変動式吸着分離法または/および温度変動式吸
着分離法によりCOを含む混合ガスから高純度COを分
離回収するにあたり、吸着剤として、細孔直径10Å以
下の細孔容積が0.33ml/g以下で、細孔直径20
Å〜300Åの細孔容積が0.35ml/g以上である
細孔分布を有し、かつ1300m^2/g以上の比表面
積を有する活性炭からなる担体に銅化合物を担持させて
なるCO分離回収用吸着剤を用いることを特徴とする高
純度COを分離回収する方法。
[Claims] 1. Pore volume with pore diameter of 10 Å or less is 0.33 ml/g
Below, the pore volume with a pore diameter of 20 Å to 300 Å is 0.3
has a pore distribution of 5 ml/g or more and 1300 m
An adsorbent for CO separation and recovery, which is made by supporting a copper compound on a carrier made of activated carbon having a specific surface area of ^2/g or more. 2. Activated carbon has a pore diameter of 10 Å or less and a pore volume of 0.2
0 ml/g or less, the pore volume of the pore diameter is 20 Å to 300 Å is 0.40 ml/g or more, and the activated carbon has a specific surface area of 1300 m^2/g or more. The adsorbent according to scope 1. 3. The adsorbent according to claim 1, wherein the copper compound is a copper (I) compound. 4. The adsorbent according to claim 1, wherein the copper compound is a copper (II) compound or a reduced product thereof. 5. Pore volume with pore diameter of 10 Å or less is 0.33 ml/g
Below, the pore volume with a pore diameter of 20 Å to 300 Å is 0.3
has a pore distribution of 5 ml/g or more and 1300 m
C, characterized in that a solution or dispersion of a copper compound dissolved or dispersed in a solvent is brought into contact with a carrier made of activated carbon having a specific surface area of ^2/g or more, and then the solvent is removed.
A method for producing an adsorbent for O separation and recovery. 6. A patent characterized in that a solution or dispersion in which a copper compound is dissolved or dispersed in a solvent is brought into contact with a carrier, the solvent is removed, and further heat treatment is performed in an atmosphere of air, an inert gas, or a reducing gas. The manufacturing method according to claim 5. 7. When separating and recovering high-purity CO from a mixed gas containing CO by pressure fluctuation type adsorption separation method and/or temperature fluctuation type adsorption separation method, as an adsorbent, pore volume of 0.33 ml with pore diameter of 10 Å or less is used. /g or less, pore diameter 20
CO separation and recovery in which a copper compound is supported on a carrier made of activated carbon, which has a pore distribution of 0.35 ml/g or more with a pore volume of Å to 300 Å and a specific surface area of 1300 m^2/g or more. A method for separating and recovering high-purity CO, characterized by using a commercially available adsorbent.
JP60084724A 1985-04-19 1985-04-19 Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent Pending JPS61242908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084724A JPS61242908A (en) 1985-04-19 1985-04-19 Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084724A JPS61242908A (en) 1985-04-19 1985-04-19 Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent

Publications (1)

Publication Number Publication Date
JPS61242908A true JPS61242908A (en) 1986-10-29

Family

ID=13838630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084724A Pending JPS61242908A (en) 1985-04-19 1985-04-19 Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent

Country Status (1)

Country Link
JP (1) JPS61242908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489555A1 (en) 1990-12-05 1992-06-10 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
CN110198775A (en) * 2017-01-19 2019-09-03 杰富意钢铁株式会社 Gas separation and recovery method and equipment
CN111375374A (en) * 2018-12-29 2020-07-07 中国石油化工股份有限公司 Load type copper-based adsorbent and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489555A1 (en) 1990-12-05 1992-06-10 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
CN110198775A (en) * 2017-01-19 2019-09-03 杰富意钢铁株式会社 Gas separation and recovery method and equipment
US11083990B2 (en) 2017-01-19 2021-08-10 Jfe Steel Corporation Gas separation and recovery method and facility
CN111375374A (en) * 2018-12-29 2020-07-07 中国石油化工股份有限公司 Load type copper-based adsorbent and preparation method thereof
CN111375374B (en) * 2018-12-29 2022-08-12 中国石油化工股份有限公司 Load type copper-based adsorbent and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
US5626650A (en) Process for separating components from gaseous streams
TWI312292B (en) Purification of hydride gases
TWI494302B (en) Processes for purification of acetylene
TWI261573B (en) Syngas purification process
TWI521056B (en) Methane recovery method and methane recovery unit
US4863493A (en) High purity acetylene gas
JPH01155945A (en) Production of adsorbent for separating and recovering co
TW200536786A (en) Ingredient and process for producing copper (I) chloride, adsorbent and adsorbing method for reductive gas each with the use of copper (I) chloride, and recovering method of carbon monoxide gas
EP0662595B1 (en) Process and apparatus for the preparation of high purity liquid nitrogen
US5518527A (en) Method for recovering ethylene from vent gas from ethylene oxide plant vent gas
JP2017226562A (en) Hydrogen gas manufacturing method and hydrogen gas manufacturing device
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent
US20220184578A1 (en) Method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JPS61242638A (en) Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JP5256120B2 (en) Method for producing CO adsorption / desorption agent
JPH0699127B2 (en) Adsorbent for CO separation and recovery, method for producing the same, and method for separating and recovering CO using the same
CN115947949B (en) Porous metal organic framework material and synthesis method thereof, adsorbent and method for purifying ethylene
KR102677862B1 (en) A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JP5752485B2 (en) Method for producing CO adsorption / desorption agent
JPH0149643B2 (en)
JPS62113710A (en) Production of adsorbent for separation and recovery of co
JPS6265920A (en) Method for separating and recovering carbon mon-oxide from mixed gas containing carbon monoxide
JP5324369B2 (en) Method for producing alkene adsorption / desorption agent