JP5752485B2 - Method for producing CO adsorption / desorption agent - Google Patents

Method for producing CO adsorption / desorption agent Download PDF

Info

Publication number
JP5752485B2
JP5752485B2 JP2011117379A JP2011117379A JP5752485B2 JP 5752485 B2 JP5752485 B2 JP 5752485B2 JP 2011117379 A JP2011117379 A JP 2011117379A JP 2011117379 A JP2011117379 A JP 2011117379A JP 5752485 B2 JP5752485 B2 JP 5752485B2
Authority
JP
Japan
Prior art keywords
copper
adsorption
carrier
porous carrier
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117379A
Other languages
Japanese (ja)
Other versions
JP2012245447A (en
Inventor
敦彦 中西
敦彦 中西
安丸 純一
純一 安丸
的場 直樹
直樹 的場
真一 三浦
真一 三浦
松岡 亮
亮 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2011117379A priority Critical patent/JP5752485B2/en
Publication of JP2012245447A publication Critical patent/JP2012245447A/en
Application granted granted Critical
Publication of JP5752485B2 publication Critical patent/JP5752485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、CO吸脱着剤の製造方法に関するものであり、より詳細には、CO吸着性能が高いCO分離回収用吸脱着剤の製造技術に関するものである。   The present invention relates to a method for producing a CO adsorbing / desorbing agent, and more particularly to a technique for producing an adsorbing / desorbing agent for CO separation and recovery having high CO adsorption performance.

従来、一酸化炭素(CO)は、ギ酸、酢酸等の合成原料、有機化合物の還元用等に有用であるため、製鉄所の転炉から得られる転炉ガス等のCO含有ガスから、分離回収されている。COの回収において、例えば、CO含有ガスの処理量が2000m3/h以上の設備ではコソーブ(COSORB)法等の吸収法、深冷分離法が採用され、2000m3/h未満の設備では圧力スウィング吸着法(PSA)又は温度スウィング吸着法(TSA)のような吸着法が採用されている。吸着法は、吸収法に比べて回収されるCOに不純物が含まれにくく、高純度の精製ガスが得られるという特徴がある。 Conventionally, carbon monoxide (CO) is useful for the reduction of organic compounds and synthetic raw materials such as formic acid and acetic acid. Therefore, it is separated and recovered from CO-containing gases such as converter gas obtained from converters in steelworks. Has been. In the recovery of CO, for example, an absorption method such as the COSORB method or a cryogenic separation method is adopted for equipment having a CO-containing gas throughput of 2000 m 3 / h or more, and pressure swing is used for equipment less than 2000 m 3 / h. Adsorption methods such as adsorption method (PSA) or temperature swing adsorption method (TSA) are employed. The adsorption method is characterized in that the recovered CO is less likely to contain impurities than the absorption method, and a purified gas with high purity can be obtained.

このような吸着法に使用し得るCO吸着剤が種々提案されている。例えば、特許文献1には、酸化アルミニウムと酸化亜鉛とからなる担体に銅を担持させたCO吸着剤が提案されている。この吸着剤は、銅密度、亜鉛/銅比を特定の範囲に制御することで、可逆的吸着能を向上させる技術である(特許文献1(段落[0050])参照)。また、特許文献2〜5には、シリカゲルに、ピリジン、ジアミン化合物等とハロゲン化銅(I)とからなる錯体を担持したCO吸着剤が提案されている。   Various CO adsorbents that can be used in such adsorption methods have been proposed. For example, Patent Document 1 proposes a CO adsorbent in which copper is supported on a carrier made of aluminum oxide and zinc oxide. This adsorbent is a technique for improving the reversible adsorption ability by controlling the copper density and the zinc / copper ratio to specific ranges (see Patent Document 1 (paragraph [0050])). Patent Documents 2 to 5 propose a CO adsorbent in which a complex composed of pyridine, a diamine compound, or the like and copper (I) halide is supported on silica gel.

また、CO吸着剤の製造方法として、特許文献6には、アルミナ担体に、銅(II)塩と還元剤を含む液を接触させ、溶媒を除去する方法が提案されている。特許文献7には、担体に塩化銅(II)及びカルボン酸銅(II)を担持させ、減圧下、不活性又は還元性ガス雰囲気下で加熱処理する方法が記載されている。また、特許文献8には、アルミナ担体に無機酸を含浸させてから、銅(II)塩と還元剤を含む液を接触させ、溶媒を除去する方法;アルミナ担体に、銅(II)塩、還元剤及び無機酸を含む液を接触させ、溶媒を除去する方法が提案されている。   As a method for producing a CO adsorbent, Patent Document 6 proposes a method of removing a solvent by bringing a liquid containing a copper (II) salt and a reducing agent into contact with an alumina support. Patent Document 7 describes a method in which copper (II) chloride and copper (II) carboxylate are supported on a carrier and heat-treated in an inert or reducing gas atmosphere under reduced pressure. Patent Document 8 discloses a method in which an alumina carrier is impregnated with an inorganic acid and then contacted with a liquid containing a copper (II) salt and a reducing agent to remove the solvent; There has been proposed a method of contacting a liquid containing a reducing agent and an inorganic acid to remove the solvent.

ところで、燃料電池車用のオンサイト型水素ステーションでは、都市ガスや液化石油ガス(LPG)を原料として、水蒸気改質、CO変性工程を経て製造された水素を、さらに高純度化(不純物濃度10ppm以下)する必要がある。特に燃料電池触媒の触媒毒となるCOの除去は重要となる。従来、水素ガス中のCOの除去には、当該ガスに酸素又は空気を添加し、酸化触媒を用いてCOをCO2に変換するCO選択酸化が行われてきた。しかし、CO選択酸化には高価な貴金属触媒が必要であり、また、添加した酸素により水素が消費されるという欠点があった。そのため、効率よくCOを除去する方法が要望されている。 By the way, in an on-site hydrogen station for a fuel cell vehicle, hydrogen produced through city steam or liquefied petroleum gas (LPG) as a raw material through steam reforming and CO modification processes is further purified (impurity concentration 10 ppm). Below) In particular, removal of CO, which is a catalyst poison of the fuel cell catalyst, is important. Conventionally, CO removal from CO in hydrogen gas has been performed by CO selective oxidation in which oxygen or air is added to the gas and CO is converted to CO 2 using an oxidation catalyst. However, CO selective oxidation requires an expensive noble metal catalyst, and has the disadvantages that hydrogen is consumed by the added oxygen. Therefore, a method for efficiently removing CO is desired.

特開平11−179197号公報JP 11-179197 A 特開平9−290149号公報JP-A-9-290149 特開平9−290150号公報JP-A-9-290150 特開平9−290152号公報JP-A-9-290152 特開平9−290153号公報JP-A-9-290153 特開平1−155945号公報JP-A-1-155945 特開2005−289761号公報JP 2005-289761 A 特開2010−269264号公報JP 2010-269264 A

PSAやTSAのような吸着法では、CO吸着剤を減圧再生、加熱再生する必要があるので、減圧や加熱を容易にする観点から、吸着剤充填塔の大きさには限界がある。そのため、吸着剤充填塔を拡大することなくCO回収効率を高めるべく、より可逆的吸着能に優れたCO吸着剤が求められている。また、水素ステーションにおいては、簡単な設備で効率よくCOを除去できる方法が求められている。   In the adsorption method such as PSA and TSA, the CO adsorbent needs to be regenerated under reduced pressure and heated, so that the size of the adsorbent packed column is limited from the viewpoint of facilitating reduced pressure and heating. For this reason, a CO adsorbent having a more reversible adsorption capacity is demanded in order to increase CO recovery efficiency without expanding the adsorbent packed tower. In addition, in a hydrogen station, a method capable of efficiently removing CO with simple equipment is required.

本発明は上記事情に鑑みてなされたものであり、COを含む混合ガスから高純度のCOを効率よく分離回収できるCO吸脱着性能の優れたCO吸脱着剤、特に水素ステーションのような小型設備でも実用できるCO吸脱着剤を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a CO adsorbing / desorbing agent having excellent CO adsorbing / desorbing performance, particularly a hydrogen station capable of efficiently separating and recovering high-purity CO from a mixed gas containing CO. However, an object is to provide a practical CO adsorption / desorption agent.

上記課題を解決することができた本発明のCO吸脱着剤の製造方法は、長周期型周期表の第3族及び第13族の金属元素よりなる群から選択される少なくとも1種の金属の塩である担体前駆体、銅(II)化合物、還元剤及び溶媒を含む液と、多孔質担体とを接触させた後、溶媒を除去し、焼成することを特徴とする。前記担体前駆体としては、120℃以上300℃以下の加熱により分解し酸化アルミニウムを生成する水溶性アルミニウム塩及び/又は120℃以上330℃以下の加熱により分解し酸化セリウムを生成する水溶性セリウム塩が好ましく、より好ましくは、硝酸アルミニウム、硝酸セリウム及び酢酸セリウムよりなる群から選択される少なくとも1種である。前記担体前駆体の使用量は、多孔質担体の体積1mlに対して、0.1mmol〜0.7mmolが好ましい。前記還元剤は、糖類、アルデヒド類、カルボン酸類及び低原子価状態の金属塩よりなる群から選択される少なくとも1種が好ましい。前記多孔質担体としては、アルミナからなる担体及び/又はシリカ−アルミナ複合物からなる担体が好ましい。   The method for producing a CO adsorbing / desorbing agent of the present invention that has solved the above-described problems is obtained by using at least one metal selected from the group consisting of Group 3 and Group 13 metal elements of the long-period periodic table. It is characterized by contacting a liquid containing a carrier precursor, which is a salt, a copper (II) compound, a reducing agent and a solvent, with a porous carrier, then removing the solvent and baking. Examples of the carrier precursor include a water-soluble aluminum salt that decomposes by heating at 120 ° C. to 300 ° C. and / or a water-soluble cerium salt that decomposes by heating at 120 ° C. and 330 ° C. to generate cerium oxide. Is more preferable, and at least one selected from the group consisting of aluminum nitrate, cerium nitrate, and cerium acetate is more preferable. The amount of the carrier precursor used is preferably 0.1 mmol to 0.7 mmol with respect to a volume of 1 ml of the porous carrier. The reducing agent is preferably at least one selected from the group consisting of saccharides, aldehydes, carboxylic acids and low-valent metal salts. The porous carrier is preferably a carrier made of alumina and / or a carrier made of silica-alumina composite.

本発明の製造方法によれば、CO吸脱着性能が高いCO吸脱着剤が得られる。   According to the production method of the present invention, a CO adsorption / desorption agent having high CO adsorption / desorption performance can be obtained.

本発明のCO吸脱着剤の製造方法は、特定の担体前駆体、銅(II)化合物、還元剤及び溶媒を含む液と、多孔質担体とを接触させた後、溶媒を除去することを特徴とする。本発明では、多孔質担体に担持された銅(II)化合物は、同時に担持された還元剤によって効率良く還元され、銅(I)化合物と銅(II)化合物との混合物、あるいは、I価とII価の中間の原子価を持つものになるものと推定される。また、多孔質担体に銅(II)化合物を担持させる際に、特定の担体前駆体を共存させることにより、銅(II)化合物が担体前駆体と混ざりあった状態で、多孔質担体に担持されるようになる。そのため、銅(II)化合物は、多孔質担体表面上に、より分散して担持されることとなる。よって、銅(II)化合物とCOとの接触面積が大きくなり、CO吸脱着性能が向上する。   The method for producing a CO adsorption / desorption agent of the present invention is characterized in that a solvent containing a specific carrier precursor, a copper (II) compound, a reducing agent and a solvent is contacted with a porous carrier, and then the solvent is removed. And In the present invention, the copper (II) compound supported on the porous carrier is efficiently reduced by the reducing agent simultaneously supported, and a mixture of the copper (I) compound and the copper (II) compound, or It is presumed that it will have an intermediate valence of II. In addition, when a copper (II) compound is supported on a porous carrier, a specific carrier precursor is allowed to coexist so that the copper (II) compound is supported on the porous carrier in a state of being mixed with the carrier precursor. Become so. Therefore, the copper (II) compound is supported in a more dispersed state on the porous carrier surface. Therefore, the contact area between the copper (II) compound and CO is increased, and the CO adsorption / desorption performance is improved.

前記担体前駆体としては、焼成により担体を形成し得るものであれば使用できる。前記担体前駆体としては、例えば、長周期型周期表の第3族及び第13族の金属元素よりなる群から選択される少なくとも1種の金属の塩が挙げられる。具体的には、スカンジウム、イットリウム、ランタノイド(ランタン、セリウム等)等の第3族の金属元素及びアルミニウム、ガリウム、インジウム、タリウム等の第13族の金属元素の硝酸塩、酢酸塩等が挙げられる。これらの担体前駆体は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、担体前駆体としては、120℃以上300℃以下の加熱により分解し酸化アルミニウムを生成する水溶性アルミニウム塩及び/又は120℃以上330℃以下の加熱により分解し酸化セリウムを生成する水溶性セリウム塩が好ましい。このような水溶性アルミニウム塩としては、例えば、硝酸アルミニウムが挙げられ、水溶性セリウム塩としては、硝酸セリウム、酢酸セリウム等が挙げられる。   Any carrier precursor can be used as long as it can form a carrier by firing. Examples of the carrier precursor include a salt of at least one metal selected from the group consisting of Group 3 and Group 13 metal elements of the long-period periodic table. Specifically, nitrates and acetates of Group 3 metal elements such as scandium, yttrium, and lanthanoids (lanthanum, cerium, etc.) and Group 13 metal elements such as aluminum, gallium, indium, and thallium are included. These carrier precursors may be used alone or in combination of two or more. Among these, as the carrier precursor, a water-soluble aluminum salt that decomposes by heating at 120 ° C. or higher and 300 ° C. or lower and / or water solution that decomposes by heating at 120 ° C. or higher and 330 ° C. or lower to generate cerium oxide. Cerium salt is preferred. Examples of such a water-soluble aluminum salt include aluminum nitrate, and examples of the water-soluble cerium salt include cerium nitrate and cerium acetate.

前記担体前駆体の使用量は、多孔質担体の体積1mlに対して、0.1mmol以上が好ましく、より好ましくは0.15mmol以上、さらに好ましくは0.2mmol以上であり、0.7mmol以下が好ましく、より好ましくは0.6mmol以下、さらに好ましくは0.5mmol以下である。ここで、多孔質担体の体積1mlに対する担体前駆体の使用量は、多孔質担体の嵩密度より下記式により求める。なお、多孔質担体の嵩密度は、市販の測定器を用いて測定するか、あるいは、以下のように求めることができる。具体的には、測定サンプルを100ml(又は1000ml)のメスシリンダーに充填し、バイブレーターを用いて振動させながら表面をならし、体積変化がなくなるまで振動を与える。体積変化がなくなった際の担体の体積を確認し、この体積値で充填した多孔質担体の質量を除することにより基準体積当りの質量(嵩密度)を算出する。   The amount of the carrier precursor used is preferably 0.1 mmol or more, more preferably 0.15 mmol or more, further preferably 0.2 mmol or more, and preferably 0.7 mmol or less with respect to 1 ml of the volume of the porous support. More preferably, it is 0.6 mmol or less, and further preferably 0.5 mmol or less. Here, the usage amount of the carrier precursor with respect to 1 ml of the volume of the porous carrier is determined by the following formula from the bulk density of the porous carrier. The bulk density of the porous carrier can be measured using a commercially available measuring instrument or can be determined as follows. Specifically, a measurement sample is filled into a 100 ml (or 1000 ml) measuring cylinder, and the surface is smoothed while vibrating using a vibrator, and vibration is applied until the volume change disappears. The volume of the carrier when the volume change disappears is confirmed, and the mass (bulk density) per reference volume is calculated by dividing the mass of the porous carrier filled with this volume value.

前記銅(II)化合物としては、例えば、塩化銅(II)、フッ化銅(II)、臭化銅(II)等のハロゲン化銅(II);酸化銅(II);シアン化銅(II);ギ酸銅(II)、酢酸銅(II)、シュウ酸銅(II)、硫酸銅(II)、硝酸銅(II)、リン酸銅(II)、炭酸銅(II)等の銅(II)の酸素酸塩又は有機酸塩;水酸化銅(II);硫化銅(II);トリフルオロ銅(II)酸塩、テトラフルオロ銅(II)酸塩、トリクロロ銅(II)酸塩、テトラクロロ銅(II)酸塩、テトラシアノ銅(II)酸塩、テトラヒドロオクソ銅(II)酸塩、ヘキサヒドロオクソ銅(II)酸塩、アンミン錯塩等の錯塩;等が例示される。前記銅(II)化合物は、単独若しくは2種以上を組合せて使用しても良い。これらの中でも、ハロゲン化銅(II)が好ましく、塩化銅(II)が最も実用的である。   Examples of the copper (II) compounds include copper (II) halides such as copper (II) chloride, copper (II) fluoride, and copper (II) bromide; copper (II) oxide; copper cyanide (II). ); Copper (II) such as copper (II) formate, copper (II) acetate, copper (II) oxalate, copper (II) sulfate, copper (II) nitrate, copper (II) phosphate, copper (II) carbonate ) Oxygenate or organic acid salt; Copper hydroxide (II); Copper sulfide (II); Trifluoro copper (II) acid salt, Tetrafluoro copper (II) acid salt, Trichloro copper (II) acid salt, Tetra Examples include chlorocopper (II) acid salt, tetracyano copper (II) acid salt, tetrahydrooxo copper (II) acid salt, hexahydrooxo copper (II) acid salt, and complex salts such as ammine complex salt. You may use the said copper (II) compound individually or in combination of 2 or more types. Among these, copper (II) halide is preferable, and copper (II) chloride is the most practical.

多孔質担体を接触させる液中の銅(II)化合物の濃度は、2mol/l以上が好ましく、より好ましくは3mol/l以上、さらに好ましくは3.5mol/l以上であり、9mol/l以下が好ましく、より好ましくは8mol/l以下、さらに好ましくは6mol/l以下である。銅(II)化合物の濃度を2mol/l以上とすることにより、溶媒を除去する際に必要なエネルギーをより減少させることができ、9mol/l以下とすることにより、溶媒に銅(II)化合物を溶解させる際の加温(加熱)エネルギーをより減少させることができる。   The concentration of the copper (II) compound in the liquid in contact with the porous carrier is preferably 2 mol / l or more, more preferably 3 mol / l or more, still more preferably 3.5 mol / l or more, and 9 mol / l or less. More preferably, it is 8 mol / l or less, More preferably, it is 6 mol / l or less. By setting the concentration of the copper (II) compound to 2 mol / l or more, the energy required for removing the solvent can be further reduced. By setting the concentration to 9 mol / l or less, the copper (II) compound is added to the solvent. The heating (heating) energy at the time of dissolving can be further reduced.

多孔質担体に対する銅(II)化合物の担持量は、0.5mmol/g以上が好ましく、より好ましくは1mmol/g以上、さらに好ましくは2mmol/g以上であり、10mmol/g以下が好ましく、より好ましくは7mmol/g以下、さらに好ましくは5mmol/g以下である。銅(II)化合物の担持量が余りに少ないとCO吸着能力が不足し、一方、その担持量が余りに多いとかえって分離効率が低下する。ここで、多孔質担体に対する銅(II)化合物の担持量は、多孔質担体及び銅(II)化合物の仕込み量より下記式により求める。
多孔質担体に対する銅(II)化合物の担持量=銅(II)化合物の仕込み量/多孔質担体の仕込み量
The supported amount of the copper (II) compound with respect to the porous carrier is preferably 0.5 mmol / g or more, more preferably 1 mmol / g or more, further preferably 2 mmol / g or more, preferably 10 mmol / g or less, more preferably. Is 7 mmol / g or less, more preferably 5 mmol / g or less. If the supported amount of the copper (II) compound is too small, the CO adsorption capacity is insufficient. On the other hand, if the supported amount is too large, the separation efficiency decreases. Here, the loading amount of the copper (II) compound on the porous carrier is determined by the following formula from the charged amounts of the porous carrier and the copper (II) compound.
The amount of copper (II) compound supported on the porous carrier = the amount of copper (II) compound charged / the amount of porous carrier charged

多孔質担体を接触させる液中の前記担体前駆体と銅(II)化合物とのモル比(担体前駆体/銅(II)化合物)は、0.05以上が好ましく、より好ましくは0.1以上、さらに好ましくは0.2以上であり、0.6以下が好ましく、より好ましくは0.5以下、さらに好ましくは0.4以下である。担体前駆体と銅(II)化合物とのモル比が上記範囲内であれば、得られるCO吸脱着剤の吸脱着性能がより向上する。   The molar ratio (carrier precursor / copper (II) compound) between the carrier precursor and the copper (II) compound in the liquid in contact with the porous carrier is preferably 0.05 or more, more preferably 0.1 or more. More preferably, it is 0.2 or more, 0.6 or less is preferable, More preferably, it is 0.5 or less, More preferably, it is 0.4 or less. When the molar ratio of the carrier precursor to the copper (II) compound is within the above range, the adsorption / desorption performance of the obtained CO adsorption / desorption agent is further improved.

本発明で使用する還元剤としては、低原子価状態にある金属の塩または酸化階程の低い有機化合物が用いられる。低原子価状態にある金属の塩としては、鉄(II)、スズ(II)、チタン(III)またはクロム(II)の塩などが挙げられる。前記酸化階程の低い有機化合物としては、スクロース、グルコース、フルクトース、ガラクトース、プシコース、マンノース、アロース、タガトース、リボース、デオキシリボース、キシロース、アラビノース、マルトース、ラクトース等の糖類;ホルムアルデヒド等のアルデヒド類;ギ酸、シュウ酸等のカルボン酸類;等が挙げられる。なお、スクロースも加水分解して還元性を発現するため、還元剤として使用できる。これらの還元剤は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、糖類が好ましく、スクロースがより好ましい。   As the reducing agent used in the present invention, a metal salt in a low valence state or an organic compound having a low oxidation stage is used. Examples of the metal salt in the low valence state include iron (II), tin (II), titanium (III), and chromium (II) salts. Examples of the organic compound having a low oxidation stage include sucrose, glucose, fructose, galactose, psicose, mannose, allose, tagatose, ribose, deoxyribose, xylose, arabinose, maltose, lactose and other saccharides; formaldehyde and other aldehydes; formic acid And carboxylic acids such as oxalic acid; In addition, since sucrose also hydrolyzes and expresses reducibility, it can be used as a reducing agent. These reducing agents may be used alone or in combination of two or more. Among these, saccharides are preferable and sucrose is more preferable.

前記還元剤の使用量は、多孔質担体に担持された銅(II)化合物1molに対して、0.01mol以上が好ましく、より好ましくは0.03mol以上、さらに好ましくは0.05mol以上であり、0.25mol以下が好ましく、より好ましくは0.20mol以下、さらに好ましくは0.18mol以下である。還元性有機物の使用量が上記範囲内であれば、効率よく銅(II)化合物を銅(I)化合物に変換させることができる。   The amount of the reducing agent used is preferably 0.01 mol or more, more preferably 0.03 mol or more, still more preferably 0.05 mol or more, with respect to 1 mol of the copper (II) compound supported on the porous carrier. The amount is preferably 0.25 mol or less, more preferably 0.20 mol or less, still more preferably 0.18 mol or less. If the amount of the reducing organic substance used is within the above range, the copper (II) compound can be efficiently converted to the copper (I) compound.

前記担体前駆体、銅(II)化合物を含む液としては、溶媒に担体前駆体及び銅(II)化合物を溶解させた溶液、溶媒に担体前駆体及び/又は銅(II)化合物を分散させた分散液のいずれでもよいが、溶液が好ましい。前記溶媒としては、例えば、水;アンモニア水;クロロホルム、四塩化炭素、二塩化エチレン、トリクロロエタン、テトラクロロエタン、テトラクロロエチレン、塩化メチレン、フッ素系溶剤等の含ハロゲン溶剤;ヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、シクロヘキサン、デカリン等の炭化水素;メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、イソホロン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸アミル、プロピオン酸メチル、プロピオン酸アミル等のエステル類;イソプロピルエーテル、ジオキサン等のエーテル類;セロソルブ、エチルセロソルブ、ブチルセロソルブ、セロソルアセテート等のセロソルブ類;カルビトール類;等が挙げられる。これらの中でも、水が好適に使用できる。   As the liquid containing the carrier precursor and the copper (II) compound, a solution in which the carrier precursor and the copper (II) compound are dissolved in a solvent, and the carrier precursor and / or the copper (II) compound are dispersed in the solvent. Any dispersion may be used, but a solution is preferred. Examples of the solvent include water; ammonia water; halogen-containing solvents such as chloroform, carbon tetrachloride, ethylene dichloride, trichloroethane, tetrachloroethane, tetrachloroethylene, methylene chloride, and fluorinated solvents; hexane, benzene, toluene, xylene, and ethylbenzene. , Hydrocarbons such as cyclohexane and decalin; alcohols such as methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, ethylene glycol and propylene glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, isophorone and cyclohexanone Esters such as methyl acetate, ethyl acetate, amyl acetate, methyl propionate, amyl propionate; isopropyl ether, dioxane Ethers; cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve such as cellosolve Sol acetate; carbitol; and the like. Among these, water can be preferably used.

前記多孔質担体の材料としては、例えば、アルミナ、シリカ又はこれらの複合物等の金属酸化物からなる多孔質担体又は活性炭等が挙げられる。これらの多孔質担体は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、金属酸化物からなる多孔質担体が好ましく、アルミナ又はシリカ−アルミナ複合物からなる多孔質担体が好適である。   Examples of the material for the porous carrier include a porous carrier made of a metal oxide such as alumina, silica, or a composite thereof, activated carbon, and the like. These porous carriers may be used alone or in combination of two or more. Among these, a porous carrier made of a metal oxide is preferable, and a porous carrier made of alumina or a silica-alumina composite is preferable.

前記アルミナからなる多孔質担体は、例えば可溶性のアルミニウム塩の水溶液から水酸化アルミニウムを沈澱させ、これをろ過により取出し、強熱することにより得られる。シリカ−アルミナ複合物からなる多孔質担体の製法としては、シリカとアルミナとを単に機械的混合する方法;シリカゲルとアルミナゲルとを湿った状態で練り合せる方法;シリカゲルにアルミニウム塩を浸漬する方法;シリカとアルミナとを水溶液から同時にゲル化させる方法;シリカゲル上にアルミナゲルを沈着させる方法;等が挙げられる。これらのアルミナからなる多孔質担体及びシリカ−アルミナ複合物からなる多孔質担体は、いずれも市販されており、本発明においては、これを必要に応じて乾燥してから使用することが好ましい。   The porous carrier made of alumina can be obtained, for example, by precipitating aluminum hydroxide from an aqueous solution of a soluble aluminum salt, removing it by filtration, and igniting it. As a method for producing a porous carrier composed of a silica-alumina composite, a method of simply mixing silica and alumina; a method of kneading silica gel and alumina gel in a wet state; a method of immersing an aluminum salt in silica gel; Examples thereof include a method of gelling silica and alumina simultaneously from an aqueous solution; a method of depositing alumina gel on silica gel; and the like. Both the porous carrier made of alumina and the porous carrier made of a silica-alumina composite are commercially available, and in the present invention, it is preferable to use them after drying if necessary.

前記多孔質担体の粒子径は0.3mm以上が好ましく、より好ましくは1mm以上、さらに好ましくは2mm以上であり、10mm以下が好ましく、より好ましくは6mm以下、さらに好ましくは4mm以下である。粒子径が上記範囲内である多孔質担体を用いることにより、吸脱着剤充填層の圧力損失を許容範囲に調節しやすくなり、容易に所望の吸脱着速度を得ることができる。なお、粒子径は光学顕微鏡等を用いて確認することができる。   The particle diameter of the porous carrier is preferably 0.3 mm or more, more preferably 1 mm or more, further preferably 2 mm or more, preferably 10 mm or less, more preferably 6 mm or less, and further preferably 4 mm or less. By using a porous carrier having a particle diameter within the above range, the pressure loss of the adsorbent / desorbent packed bed can be easily adjusted to an allowable range, and a desired adsorption / desorption rate can be easily obtained. The particle diameter can be confirmed using an optical microscope or the like.

前記多孔質担体の細孔容積は0.1cm3/g以上が好ましく、より好ましくは0.2cm3/g以上、さらに好ましくは0.3cm3/g以上であり、0.7cm3/g以下が好ましい。多孔質担体の細孔容積が0.1cm3/g以上であれば、銅(II)化合物等を含む溶液又は分散液の保持に有利であり、また、0.7cm3/g以下であれば、多孔質担体の物理的強度がより良好となる。 Pore volume of the porous carrier is preferably at least 0.1 cm 3 / g, more preferably 0.2 cm 3 / g or more, more preferably 0.3 cm 3 / g or more, 0.7 cm 3 / g or less Is preferred. If the pore volume of the porous carrier is 0.1 cm 3 / g or more, it is advantageous to hold the solution or dispersion containing a copper (II) compounds, also equal to or less than 0.7 cm 3 / g The physical strength of the porous carrier becomes better.

前記多孔質担体の比表面積は150m2/g以上が好ましく、より好ましくは250m2/g以上、さらに好ましくは300m2/g以上であり、1800m2/g以下が好ましく、より好ましくは1600m2/g以下、さらに好ましくは1300m2/g以下である。比表面積が上記範囲内である多孔質担体を用いることにより、銅(II)化合物の保持及び分散がより良好となる。 The specific surface area of the porous carrier is preferably at least 150 meters 2 / g, more preferably 250 meters 2 / g or more, still more preferably 300 meters 2 / g or more, preferably 1800 m 2 / g or less, more preferably 1600 m 2 / g or less, more preferably 1300 m 2 / g or less. By using a porous carrier having a specific surface area within the above range, retention and dispersion of the copper (II) compound become better.

担体前駆体等を含む液と多孔質担体とを接触させる方法としては、担体前駆体等を含む液に多孔質担体を含浸する方法;担体前駆体等を含む液を、多孔質担体にスプレーする方法;等が挙げられる。この場合、多孔質担体細孔に存在する気体を完全に液で置換するため、真空脱気した多孔質担体に液を接触させたり、多孔質担体に液を接触させた後、減圧条件下で脱気したりしてもよい。
多孔質担体を、担体前駆体等を含む液に含浸する場合、含浸時間は5分間以上が好ましく、より好ましくは10分間以上、さらに好ましくは30分間以上であり、100分間以下が好ましく、より好ましくは80分間以下、さらに好ましくは60分間以下である。
As a method of bringing the liquid containing the carrier precursor etc. into contact with the porous carrier, a method of impregnating the porous carrier with the liquid containing the carrier precursor etc .; spraying the liquid containing the carrier precursor etc. onto the porous carrier Method; and the like. In this case, in order to completely replace the gas present in the pores of the porous carrier with the liquid, the liquid is brought into contact with the porous carrier which has been degassed under vacuum, or the liquid is brought into contact with the porous carrier, and then the pressure is reduced You may deaerate.
When the porous carrier is impregnated with a liquid containing a carrier precursor or the like, the impregnation time is preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 30 minutes or more, and preferably 100 minutes or less. Is 80 minutes or less, more preferably 60 minutes or less.

多孔質担体と液とを接触させた後、溶媒を除去する。溶媒を除去することで、担体前駆体、銅(II)化合物を多孔質担体に担持させることができる。
溶媒を除去する方法は特に限定されず、加熱乾燥、減圧乾燥が挙げられる。これらの中でも、液と接触した多孔質担体の温度を下げることなく、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下に加熱乾燥することにより溶媒を留出除去することが好ましい。乾燥温度は、50℃以上が好ましく、より好ましくは100℃以上、さらに好ましくは120℃以上であり、330℃以下が好ましく、より好ましくは250℃以下、さらに好ましくは200℃以下である。乾燥時間は、1時間以上が好ましく、1.5時間以上がより好ましく、10時間以下が好ましく、5時間以下がより好ましい。乾燥は、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で行うことが好ましい。
After contacting the porous carrier with the liquid, the solvent is removed. By removing the solvent, the support precursor and the copper (II) compound can be supported on the porous support.
The method for removing the solvent is not particularly limited, and examples thereof include heat drying and vacuum drying. Among these, it is preferable to distill and remove the solvent by heating and drying in an inert gas atmosphere such as nitrogen, argon or helium without lowering the temperature of the porous carrier in contact with the liquid. The drying temperature is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, further preferably 120 ° C. or higher, 330 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower. The drying time is preferably 1 hour or longer, more preferably 1.5 hours or longer, preferably 10 hours or shorter, more preferably 5 hours or shorter. Drying is preferably performed in an inert gas atmosphere such as nitrogen, argon, or helium.

最後に、担体前駆体、銅(II)化合物、還元剤を担持させた多孔質担体を焼成する。焼成温度は、100℃以上が好ましく、より好ましくは150℃以上、さらに好ましくは180℃以上であり、500℃以下が好ましく、より好ましくは350℃以下、さらに好ましくは330℃以下である。焼成時間は、1時間以上が好ましく、より好ましくは2時間以上、さらに好ましくは3時間以上であり、12時間以下が好ましく、より好ましくは10時間以下、さらに好ましくは8時間以下である。   Finally, the porous carrier carrying the carrier precursor, the copper (II) compound, and the reducing agent is fired. The firing temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, further preferably 180 ° C. or higher, preferably 500 ° C. or lower, more preferably 350 ° C. or lower, still more preferably 330 ° C. or lower. The firing time is preferably 1 hour or longer, more preferably 2 hours or longer, further preferably 3 hours or longer, preferably 12 hours or shorter, more preferably 10 hours or shorter, still more preferably 8 hours or shorter.

焼成は、窒素、アルゴン、ヘリウム等の不活性ガス又はCO、H2等の還元性ガス雰囲気下で行うことが好ましい。このような雰囲気下で焼成することにより、上記還元剤では還元されていなかった銅(II)化合物を銅(I)化合物に変換でき、CO吸着能がより向上する。なお、上記の溶媒を除去するための乾燥処理と、乾燥後の吸着剤に対する加熱処理は、異なる熱処理装置を用いてもよいし、同一の熱処理装置を用いて乾燥処理と加熱処理とを連続して行ってもよい。 Firing is preferably performed in an inert gas such as nitrogen, argon or helium or in a reducing gas atmosphere such as CO or H 2 . By baking in such an atmosphere, the copper (II) compound that has not been reduced by the reducing agent can be converted into a copper (I) compound, and the CO adsorption capacity is further improved. Note that the drying treatment for removing the solvent and the heat treatment for the adsorbent after drying may use different heat treatment apparatuses, or the drying treatment and the heat treatment may be continuously performed using the same heat treatment apparatus. You may go.

上記のようにして得られた吸脱着剤は、吸着塔に充填され、PSA法又はTSA法により、COを含む混合ガスからのCOの分離回収が遂行される。CO含む混合ガスの処理量は、特に限定されるものではないが、2000m3/h以下が好ましく、1000m3/h以下がより好ましい。 The adsorption / desorption agent obtained as described above is packed in an adsorption tower, and separation and recovery of CO from a mixed gas containing CO are performed by the PSA method or the TSA method. Processing amount of CO containing gas mixture is not particularly limited, is preferably from 2000 m 3 / h, more preferably at most 1000 m 3 / h.

PSA法によりCOの分離回収を行う場合は、吸着工程における吸着圧力は大気圧以上、たとえば0kPa[gage]〜600kPa[gage]とすることが望ましく、脱気工程における脱気圧力は大気圧以下、例えば真空度を30kPa[abs]〜1.0kPa[abs]とすることが望ましい。TSA法によりCOの分離回収を行う場合は、吸着工程における吸着温度はたとえば0℃〜40℃程度、脱気工程における脱気温度はたとえば60℃〜180℃程度とすることが望ましい。また、PSA法とTSA法とを併用し、吸着を大気圧以上で低温条件下に行い、脱気を大気圧以下で高温条件下に行うこともできる。なお、TSA法はエネルギー消費の点でPSA法に比しては不利であるため、工業的にはPSA法を採用するか、PSA−TSA併用法を採用することが望ましい。   When CO is separated and recovered by the PSA method, the adsorption pressure in the adsorption process is preferably atmospheric pressure or higher, for example, 0 kPa [gage] to 600 kPa [gage], and the degassing pressure in the deaeration process is less than atmospheric pressure. For example, the degree of vacuum is desirably 30 kPa [abs] to 1.0 kPa [abs]. When CO is separated and recovered by the TSA method, it is desirable that the adsorption temperature in the adsorption step is, for example, about 0 ° C. to 40 ° C., and the deaeration temperature in the deaeration step is, for example, about 60 ° C. to 180 ° C. Further, the PSA method and the TSA method can be used in combination, and the adsorption can be performed at a low temperature under atmospheric pressure and the deaeration can be performed under a high temperature under atmospheric pressure. Since the TSA method is disadvantageous in terms of energy consumption compared to the PSA method, it is desirable to employ the PSA method industrially or the PSA-TSA combined method.

適用できるCOを含む混合ガスとしては、例えば、都市ガスや液化石油ガス(LPG)を原料として、水蒸気改質を経て製造されたCO含有水素ガス;製鉄所の転炉から発生する転炉ガスが用いられる。   As the mixed gas containing CO that can be applied, for example, CO-containing hydrogen gas produced through steam reforming using city gas or liquefied petroleum gas (LPG) as a raw material; converter gas generated from a converter at a steelworks Used.

本発明の方法により得られた固体吸脱着剤によるCO吸脱着現象は、主として担体に担持された銅(II)化合物が還元された銅化合物とCOとの可逆的な化学反応(錯体形成反応と解離反応)に基づくものであり(N2、CO2との化学反応は起こらない)、副次的に担体の細孔表面上へのCO等の物理的な吸着及びそこからの脱離に基づくものであると考えられる。 The CO adsorption / desorption phenomenon by the solid adsorbent / desorbent obtained by the method of the present invention is mainly caused by a reversible chemical reaction (complex formation reaction) between a copper compound obtained by reducing a copper (II) compound supported on a carrier and CO. Dissociation reaction) (no chemical reaction with N 2 and CO 2 takes place), and secondarily based on physical adsorption and desorption from CO on the pore surface of the support It is thought to be a thing.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

CO吸脱着剤中のCu含有量の測定方法
CO吸着剤を微粉砕後、硫酸と硝酸との混合液を添加し、350℃で炭素分を熱分解すると共に、銅化合物を溶解させた。この液を水で希釈後、ろ過し、ろ液についてICP(誘導結合プラズマ)発光分析により定量分析を行うことにより、CO吸着剤のCu含有量を求めた。
Method for Measuring Cu Content in CO Adsorbent / Desorbent After the CO adsorbent was finely pulverized, a mixed solution of sulfuric acid and nitric acid was added to thermally decompose carbon at 350 ° C. and to dissolve the copper compound. This solution was diluted with water and filtered, and the filtrate was subjected to quantitative analysis by ICP (inductively coupled plasma) emission analysis to determine the Cu content of the CO adsorbent.

CO可逆吸着性能の評価方法
高精度比表面積・細孔分布測定装置(日本ベル社製、「BELSORP−max」)を用いて、CO可逆吸着量を測定した。測定は、装置の専用セルに吸脱着剤を充填し、200℃で1時間真空排気(10-6Pa)した後に、40℃、10kPaでCOを吸着させ、その後排気減圧(約10-2kPa)することを繰返して、80kPa〜0.02kPa間、7kPa〜0.02kPa間の2通りのCO可逆吸着量を測定した。なお、これらの測定は、80kPa〜0.02kPa間が原料ガス中のCO濃度80体積%を想定しており、7kPa〜0.02kPa間が原料ガス中のCO濃度7体積%を想定したものである。
Evaluation Method of Reversible CO Adsorption Performance The amount of reversible CO adsorption was measured using a high-accuracy specific surface area / pore distribution measuring device (“BELSORP-max” manufactured by Nippon Bell Co., Ltd.). In the measurement, a dedicated cell of the apparatus is filled with an adsorption / desorption agent, and after evacuation (10 −6 Pa) at 200 ° C. for 1 hour, CO is adsorbed at 40 ° C. and 10 kPa, and then the exhaust pressure is reduced (about 10 −2 kPa). ) Was repeated, and two kinds of CO reversible adsorption amounts between 80 kPa and 0.02 kPa and between 7 kPa and 0.02 kPa were measured. In these measurements, the CO concentration in the raw material gas is assumed to be 80% by volume between 80 kPa and 0.02 kPa, and the CO concentration in the raw material gas is assumed to be 7% by volume between 7 kPa and 0.02 kPa. is there.

製造例1
200mLの三角フラスコに塩化銅(II)2水和物(キシダ化学社製、特級試薬)44.0g、硝酸アルミニウム・9水和物(キシダ化学社製、特級試薬)22.8g、スクロース(キシダ化学社製、特級試薬)10.4gを、40℃に加温した脱塩水32gに溶解させた溶液を調製した。この溶液に、予め120℃で4時間以上乾燥させた活性アルミナからなる多孔質担体(住友化学工業社製、活性アルミナ(品名「NKHD−24」、粒子径2mm〜4mm、細孔容積0.35cm3/g、比表面積300m2/g))を80.0g(体積122ml)入れ、60分間時々撹拌しながら液を含浸させた。それを1Lナス型フラスコに入れ、ロータリー・エバポレーターに取り付け、30rpmで回転させながら、N2−400mL/min流通下にこのフラスコを油浴加熱して乾燥させた。油浴の温度条件は、140℃(フラスコ内温120℃)まで1時間で昇温させ、140℃で5時間保持した後、自然冷却した。冷却後の吸着剤を磁性皿に移し外部加熱式管状炉に入れ、N2−400mL/min気流下で5℃/minで230℃まで昇温し、10時間保持後自然冷却して、CO吸脱着剤を得た。
Production Example 1
In a 200 mL Erlenmeyer flask, 44.0 g of copper (II) chloride dihydrate (manufactured by Kishida Chemical Co., Ltd., special grade reagent), 22.8 g of aluminum nitrate nonahydrate (manufactured by Kishida Chemical Co., Ltd., special grade reagent), sucrose (Kishida Chemical Co., Ltd.) A solution was prepared by dissolving 10.4 g (special grade reagent, manufactured by Kagakusha) in 32 g of demineralized water heated to 40 ° C. To this solution, a porous carrier made of activated alumina previously dried at 120 ° C. for 4 hours or more (manufactured by Sumitomo Chemical Co., Ltd., activated alumina (product name “NKHD-24”, particle diameter: 2 mm to 4 mm, pore volume: 0.35 cm) 3 / g, was placed a specific surface area of 300m 2 / g)) and 80.0 g (volume 122 ml), was impregnated with 60 minutes with occasional swirling liquid. The flask was put in a 1 L eggplant-shaped flask, attached to a rotary evaporator, and rotated by 30 rpm, and the flask was dried by heating in an oil bath under a flow of N 2 -400 mL / min. The temperature condition of the oil bath was raised to 140 ° C. (flask internal temperature 120 ° C.) over 1 hour, held at 140 ° C. for 5 hours, and then naturally cooled. The cooled adsorbent is transferred to a magnetic dish, placed in an externally heated tube furnace, heated to 230 ° C. at 5 ° C./min under an N 2 -400 mL / min air flow, held for 10 hours, and then naturally cooled to absorb CO A desorbent was obtained.

製造例2
硝酸アルミニウム・9水和物の使用量を11.4gに変更し、スクロースの使用量を5.2gに変更し、脱塩水の使用量を36gに変更したこと以外は製造例1と同様にしてCO吸脱着剤を製造した。
Production Example 2
The same procedure as in Production Example 1 except that the amount of aluminum nitrate nonahydrate was changed to 11.4 g, the amount of sucrose was changed to 5.2 g, and the amount of demineralized water was changed to 36 g. A CO adsorption / desorption agent was produced.

製造例3
硝酸アルミニウム・9水和物22.8gを硝酸セリウム・6水和物(キシダ化学社製、特級試薬)13.2gに変更し、スクロースの使用量を5.2g、脱塩水の使用量を39gに変更したこと以外は製造例1と同様にしてCO吸脱着剤を製造した。
Production Example 3
Aluminum nitrate 9hydrate 22.8 g was changed to cerium nitrate hexahydrate (Kishida Chemical Co., Ltd., special grade reagent) 13.2 g, sucrose usage 5.2 g, demineralized water usage 39 g A CO adsorbent / desorbent was produced in the same manner as in Production Example 1 except that

製造例4
200mLの三角フラスコに塩化銅(II)2水和物(キシダ化学社製特級試薬)44.0g、スクロース(キシダ化学社製特級試薬)10.4gを、40℃に加温した脱塩水42.2gに溶解させた溶液を調製した。この溶液に、予め120℃で4時間以上乾燥させた活性アルミナからなる多孔質担体(住友化学工業社製、活性アルミナ(品名「NKHD−24」、粒子径2mm〜4mm、細孔容積0.35cm3/g、比表面積300m2/g))を80.0g入れ、60分間時々撹拌しながら液を含浸させた。それを1Lナス型フラスコに入れ、ロータリー・エバポレーターに取り付け、30rpmで回転させながら、N2−200mL/min流通下にこのフラスコを油浴加熱して乾燥させた。油浴の温度条件は、140℃(フラスコ内温120℃)まで1時間で昇温させ、140℃で5時間保持した後、自然冷却した。冷却後の吸着剤を磁性皿に移し外部加熱式管状炉に入れ、N2−400mL/min気流下で5℃/minで230℃まで昇温し、10時間保持後自然冷却して、CO吸脱着剤を得た。
Production Example 4
In a 200 mL Erlenmeyer flask, 44.0 g of copper (II) chloride dihydrate (special grade reagent manufactured by Kishida Chemical Co., Ltd.) and 10.4 g of sucrose (special grade reagent manufactured by Kishida Chemical Co., Ltd.) were heated to 40 ° C. A solution dissolved in 2 g was prepared. To this solution, a porous carrier made of activated alumina previously dried at 120 ° C. for 4 hours or more (manufactured by Sumitomo Chemical Co., Ltd., activated alumina (product name “NKHD-24”, particle diameter: 2 mm to 4 mm, pore volume: 0.35 cm) 3 / g, were placed 80.0g specific surface area 300m 2 / g)), impregnated with 60 minutes with occasional swirling liquid. The flask was placed in a 1 L eggplant-shaped flask, attached to a rotary evaporator, and rotated at 30 rpm, and the flask was dried by heating in an oil bath under a flow of N 2 -200 mL / min. The temperature condition of the oil bath was raised to 140 ° C. (flask internal temperature 120 ° C.) over 1 hour, held at 140 ° C. for 5 hours, and then naturally cooled. The cooled adsorbent is transferred to a magnetic dish, placed in an externally heated tube furnace, heated to 230 ° C. at 5 ° C./min under an N 2 -400 mL / min air flow, held for 10 hours, and then naturally cooled to absorb CO A desorbent was obtained.

製造例5
硝酸アルミニウム・9水和物22.8gを硝酸ジルコニウム・2水和物(キシダ化学社製、特級試薬)8.1gに変更し、スクロースの使用量を5.2g、脱塩水の使用量を41gに変更したこと以外は製造例1と同様にしてCO吸脱着剤を製造した。
Production Example 5
Aluminum nitrate 9hydrate 22.8g was changed to zirconium nitrate dihydrate (special grade reagent manufactured by Kishida Chemical Co., Ltd.) 8.1g, sucrose usage 5.2g, demineralized water usage 41g A CO adsorbent / desorbent was produced in the same manner as in Production Example 1 except that

表1に示すように、製造例2、3で得られた吸脱着剤は、担体前駆体を使用していない製造例4で得られた吸脱着剤に比べて、CO濃度7体積%を想定したCO可逆吸着量試験及びCO濃度80体積%を想定したCO可逆吸着量試験のいずれにおいても銅1mol当りの吸着量が増加している。これらの結果より、担体前駆体を用いることにより銅塩の分散が促進され、銅の吸着性能が一層発揮されていることがわかる。
製造例1で得られた吸脱着剤では、CO濃度80体積%を想定したCO可逆吸着量試験においては製造例4よりも銅1mol当りの吸着量が増加している。なお、CO濃度7体積%を想定したCO可逆吸着量試験においては、銅1mol当りの吸着量が製造例4とほぼ同程度であった。これは、担体前駆体の使用により銅塩の分散と共に、還元剤の分散も促進され、結果として還元剤の熱分解生成物で銅塩表面が被覆されたためと考えられる。
製造例5は担体前駆体として硝酸ジルコニウムを用いた場合であるが、CO濃度80体積%を想定したCO可逆吸着量試験において、銅1mol当りの吸着量が製造例4よりも大きく劣る結果となった。これは、担体前駆体の多孔質担体への分散が不十分であるためと考えられる。
As shown in Table 1, the adsorption / desorption agent obtained in Production Examples 2 and 3 is assumed to have a CO concentration of 7% by volume as compared with the adsorption / desorption agent obtained in Production Example 4 in which no carrier precursor is used. In both the reversible CO adsorption test and the CO reversible adsorption test assuming a CO concentration of 80% by volume, the adsorption amount per 1 mol of copper is increased. From these results, it is understood that the dispersion of the copper salt is promoted by using the carrier precursor, and the copper adsorption performance is further exhibited.
In the adsorption / desorption agent obtained in Production Example 1, the amount of adsorption per 1 mol of copper is higher than that in Production Example 4 in the CO reversible adsorption amount test assuming a CO concentration of 80% by volume. In the CO reversible adsorption amount test assuming a CO concentration of 7% by volume, the adsorption amount per 1 mol of copper was almost the same as in Production Example 4. This is presumably because the use of the support precursor promoted the dispersion of the reducing agent as well as the copper salt, and as a result, the surface of the copper salt was coated with the thermal decomposition product of the reducing agent.
Production Example 5 is a case where zirconium nitrate was used as the carrier precursor. However, in the CO reversible adsorption amount test assuming a CO concentration of 80% by volume, the adsorption amount per 1 mol of copper was greatly inferior to that of Production Example 4. It was. This is presumably because the carrier precursor is not sufficiently dispersed in the porous carrier.

本発明は、CO分離回収吸脱着剤の製造方法として好適である。   The present invention is suitable as a method for producing a CO separation recovery adsorption / desorption agent.

Claims (4)

硝酸アルミニウム、硝酸セリウム及び酢酸セリウムよりなる群から選択される少なくとも1種である担体前駆体、銅(II)化合物、還元剤及び溶媒を含む液と、多孔質担体とを接触させた後、溶媒を除去し、焼成することを特徴とするCO吸脱着剤の製造方法。 Aluminum nitrate, support precursor is at least one selected from the group consisting of cerium nitrate and cerium acetate, copper (II) compound, a liquid containing a reducing agent and a solvent, after contacting the porous support, a solvent A method for producing a CO adsorbing and desorbing agent, characterized by removing the carbon and baking. 前記担体前駆体の使用量が、多孔質担体の体積1mlに対して、0.1mmol〜0.7mmolである請求項1に記載のCO吸脱着剤の製造方法。 The method for producing a CO adsorption / desorption agent according to claim 1, wherein the amount of the carrier precursor used is 0.1 mmol to 0.7 mmol with respect to 1 ml of the volume of the porous carrier. 前記還元剤が、糖類、アルデヒド類、カルボン酸類及び低原子価状態の金属塩よりなる群から選択される少なくとも1種である請求項1または2に記載のCO吸脱着剤の製造方法。 The method for producing a CO adsorption / desorption agent according to claim 1 or 2 , wherein the reducing agent is at least one selected from the group consisting of sugars, aldehydes, carboxylic acids, and metal salts in a low valence state. 前記多孔質担体が、アルミナからなる担体及び/又はシリカ−アルミナ複合物からなる担体である請求項1〜のいずれか1項に記載のCO吸脱着剤の製造方法。 The method for producing a CO adsorption / desorption agent according to any one of claims 1 to 3 , wherein the porous carrier is a carrier made of alumina and / or a carrier made of a silica-alumina composite.
JP2011117379A 2011-05-25 2011-05-25 Method for producing CO adsorption / desorption agent Active JP5752485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117379A JP5752485B2 (en) 2011-05-25 2011-05-25 Method for producing CO adsorption / desorption agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117379A JP5752485B2 (en) 2011-05-25 2011-05-25 Method for producing CO adsorption / desorption agent

Publications (2)

Publication Number Publication Date
JP2012245447A JP2012245447A (en) 2012-12-13
JP5752485B2 true JP5752485B2 (en) 2015-07-22

Family

ID=47466435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117379A Active JP5752485B2 (en) 2011-05-25 2011-05-25 Method for producing CO adsorption / desorption agent

Country Status (1)

Country Link
JP (1) JP5752485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020409A (en) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 High-dispersion CO adsorbent, preparation method thereof and CO adsorption method

Also Published As

Publication number Publication date
JP2012245447A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4153483B2 (en) Method for purifying hydride gas
KR102482605B1 (en) Cerium oxide particles and method for production thereof
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JPH01155945A (en) Production of adsorbent for separating and recovering co
CN111790350B (en) Preparation method of nitrogen-doped carbon material and application of nitrogen-doped carbon material in removal of sulfur-containing gas
JP5654872B2 (en) Method for purifying silicon tetrafluoride
JP2009119423A (en) Active b-c-n material and method of manufacturing the same
JP2005289761A (en) Manufacturing raw material and manufacturing method for copper chloride (i), and adsorbent of gas using the same, adsorption method, and recovery method
JP5752485B2 (en) Method for producing CO adsorption / desorption agent
JP5752484B2 (en) Method for producing CO adsorption / desorption agent
US20220184578A1 (en) Method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JP5256120B2 (en) Method for producing CO adsorption / desorption agent
JP5324369B2 (en) Method for producing alkene adsorption / desorption agent
JP3432687B2 (en) Carbon monoxide adsorbent and method for producing the same
CN108101081B (en) Preparation method of modified alumina
CN112206756A (en) Desorption method of adsorbent
KR102677862B1 (en) A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JP2010058056A (en) Method of manufacturing adsorbent, and adsorbent
JPH0699127B2 (en) Adsorbent for CO separation and recovery, method for producing the same, and method for separating and recovering CO using the same
CN114073987B (en) Catalyst for eliminating formaldehyde through storage-oxidation tandem connection and preparation and application thereof
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent
JPH0724762B2 (en) Method for producing adsorbent for CO separation and recovery
JPH0250770B2 (en)
JPH11137993A (en) Adsorbent for carbon monoxide and its production
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250