JP2009119423A - Active b-c-n material and method of manufacturing the same - Google Patents

Active b-c-n material and method of manufacturing the same Download PDF

Info

Publication number
JP2009119423A
JP2009119423A JP2007298778A JP2007298778A JP2009119423A JP 2009119423 A JP2009119423 A JP 2009119423A JP 2007298778 A JP2007298778 A JP 2007298778A JP 2007298778 A JP2007298778 A JP 2007298778A JP 2009119423 A JP2009119423 A JP 2009119423A
Authority
JP
Japan
Prior art keywords
active
catalyst
boron
production example
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007298778A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Keizo Tomokuni
敬三 友国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Institute
Original Assignee
Asahi Kasei Corp
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Institute filed Critical Asahi Kasei Corp
Priority to JP2007298778A priority Critical patent/JP2009119423A/en
Publication of JP2009119423A publication Critical patent/JP2009119423A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a B-C-N material as an adsorbent for adsorption-removal of a harmful substance, in particular, cleaning of an exhaust gas, although the material is not considerted heretofore as an adsorbent. <P>SOLUTION: The active B-C-N material comprises carbon, nitrogen and boron. In the active B-C-N material, a specific surface area is 100-3,000 m<SP>2</SP>/g, an average thin pore diameter is 0.4-50 nm, and the oxygen content of the B-C-N material is 1-20 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素、窒素、及びホウ素からなる活性B−C−N材料、及びその製造方法に関するものであり、詳しくは大気汚染物質や水質汚染物質を吸着除去するための、特に、排ガスに含まれる有害物質を効率的に吸着除去するための活性B−C−N材料及びその製造方法に関する。   The present invention relates to an active B—C—N material composed of carbon, nitrogen, and boron, and a method for producing the same, and more specifically, for adsorbing and removing air pollutants and water pollutants, particularly in exhaust gas. The present invention relates to an active B—C—N material for efficiently adsorbing and removing harmful substances and a method for producing the same.

従来、ディーゼル車が排出する排ガスは酸素濃度が高く、かつ、NOx含有量に比べて相対的にプロピレンなどの還元性炭化水素の含有量が低いので(通常、酸素濃度は10%以上であり、酸素濃度が1%以上である排ガスはリーンバーン排ガスと呼ばれている)、NOをNOに酸化する能力が高いとされる白金触媒でもNOx浄化率は非常に低い。そのため、触媒にNOx吸収剤を添加し、排ガス中に含まれるNOxを補助的に吸収除去することが行われており、例えば、特許文献1に開示されているようなアルカリ金属やアルカリ土類金属からなる塩基性物質を含有したNOx吸蔵還元型触媒が一般的に使用されている。しかし、これらの塩基性NOx吸収剤は、NOxやSOxの酸性酸化物と容易に化合するので吸収能力の経時的な低下が起きるという問題がある。吸収能力を復元するために高温下(通常750℃以上)での焼成再生処理が提案されているが、白金等の触媒活性成分のエージング(触媒性能の熱的老化)を生じるので好ましくない。また、ディーゼル車が排出する過渡走行時の低温排ガス(通常、120℃〜200℃)を効率的に浄化するための触媒材料は現在でも未開発であるので、優れた新材料の開発が期待されている。
活性炭の比表面積は通常1000m/g以上であり、吸着力が大きく、多くの種類の吸着サイトを有することから、従来、大気汚染物質や水質汚染物質を吸着除去するための一般的な吸着剤として使用されている。しかし、可燃性物質であるために自動車等の内燃機関が排出する排ガス中に含まれるNOx、SOx、炭化水素、PM(パティキュレート)等の有害物質の吸着除去の目的には通常、使用されていない。
Conventionally, exhaust gas emitted from diesel vehicles has a high oxygen concentration and a relatively low content of reducing hydrocarbons such as propylene compared to the NOx content (usually the oxygen concentration is 10% or more, An exhaust gas having an oxygen concentration of 1% or more is called a lean burn exhaust gas), and even a platinum catalyst having a high ability to oxidize NO to NO 2 has a very low NOx purification rate. Therefore, a NOx absorbent is added to the catalyst, and NOx contained in the exhaust gas is supplementarily absorbed and removed. For example, alkali metals and alkaline earth metals disclosed in Patent Document 1 are used. In general, a NOx occlusion reduction type catalyst containing a basic substance consisting of is used. However, since these basic NOx absorbents easily combine with the acidic oxides of NOx and SOx, there is a problem that the absorption capacity is lowered over time. In order to restore the absorption capacity, a calcination regeneration treatment at a high temperature (usually 750 ° C. or higher) has been proposed, but it is not preferable because aging of catalyst active components such as platinum (thermal aging of catalyst performance) occurs. In addition, catalyst materials for efficiently purifying low-temperature exhaust gas (typically 120 ° C to 200 ° C) during transient running emitted by diesel vehicles are still undeveloped, so the development of excellent new materials is expected. ing.
The specific surface area of activated carbon is usually 1000 m 2 / g or more, has a large adsorbing power, and has many kinds of adsorption sites. Conventional adsorbents for adsorbing and removing air pollutants and water pollutants have been used. It is used as However, since it is a flammable substance, it is usually used for the purpose of adsorption removal of harmful substances such as NOx, SOx, hydrocarbons, PM (particulates) contained in exhaust gas discharged from internal combustion engines such as automobiles. Absent.

一方、1970年頃、炭素、窒素、及びホウ素からなる耐熱性の黒鉛類似構造B−C−N(炭窒化ホウ素、boron carbide nitride、又はsolid solution of carbon and boron nitrideと呼ばれている)材料がロシアで研究され、この成果が非特許文献1に報告された。その後、近年に至って、高硬度物質及びその前駆物質、リチウム電池の電極材料、半導体材料、等の目的のために、多くの種類のB−C−N材料が開発された。B−C−N材料には、大別して黒鉛類似構造のものと立方晶構造のものが知られている。黒鉛類似構造のものは、例えば、特許文献2に開示されているような不活性気流下、アミン、ニトリルなどの含窒素有機物の蒸気とハロゲン化ホウ素のガスを高温帯域で反応させる方法(熱CVD法)、特許文献3に開示されているようなアミン、ニトリルなどの含窒素有機物をハロゲン化ホウ素と反応後に不活性気流下で加熱処理する方法(化学反応法)、特許文献4に開示されているような揮発性の有機物、窒素ガス、及びジボランをプラズマCVD法によって反応させる方法(プラズマCVD法)、特許文献5に開示されているような炭素源、窒素源、及びホウ素源を高周波加熱することによって基板上に薄膜状の炭窒化ホウ素を形成させる方法(高周波加熱法)、特許文献6に開示されているような炭素と窒化ホウ素を高温高圧処理する方法(高温高圧処理法)、等によって製造されることが報告されている。立方晶構造のものは、例えば、特許文献7に開示されているような黒鉛類似構造のB−C−N材料を衝撃圧縮することによって製造されることが報告されている(衝撃圧縮法)。また、黒鉛類似構造B−C−N材料には、例えば、非特許文献2に開示されているように黒鉛よりも耐熱性が改善された材料も知られている。しかし、一般的に、これらの黒鉛類似B−C−N材料及び立方晶B−C−N材料は比表面積が非常に小さく(通常、数m/g〜数10m/g程度)、吸着力も非常に小さいので活性炭のような吸着剤としての利用は殆ど期待できないことから、上記に述べたような自動車排ガス浄化用の吸着除去剤としての利用は殆ど困難である。 On the other hand, around 1970, a heat-resistant graphite-like structure B-C-N (referred to as boron carbon nitride or solid solution of carbon and boron nitride) made of carbon, nitrogen and boron was used in Russia. This result was reported in Non-Patent Document 1. Since then, many types of B—C—N materials have been developed for purposes such as high hardness materials and their precursors, lithium battery electrode materials, semiconductor materials, and the like. B-C-N materials are roughly classified into graphite-like structures and cubic structures. A graphite-like structure is, for example, a method in which a vapor of a nitrogen-containing organic substance such as amine or nitrile and a boron halide gas are reacted in a high-temperature zone under an inert air flow as disclosed in Patent Document 2 (thermal CVD). Method), a method (chemical reaction method) in which nitrogen-containing organic substances such as amines and nitrites such as those disclosed in Patent Document 3 are reacted with boron halides under an inert gas stream, and disclosed in Patent Document 4 A method in which a volatile organic substance, nitrogen gas, and diborane are reacted by a plasma CVD method (plasma CVD method), and a carbon source, a nitrogen source, and a boron source as disclosed in Patent Document 5 are heated at high frequency A thin film-like boron carbonitride on the substrate (high-frequency heating method), high temperature and high pressure treatment of carbon and boron nitride as disclosed in Patent Document 6 That method (high-temperature high-pressure method), has been reported to be produced by such. It has been reported that the cubic structure is produced, for example, by impact compression of a B—C—N material having a graphite-like structure as disclosed in Patent Document 7 (impact compression method). Further, as a graphite-like structure BCN material, for example, a material having improved heat resistance as compared with graphite as disclosed in Non-Patent Document 2 is also known. However, in general, these graphite-like B-C-N materials and cubic B-C-N materials specific surface area very small (typically a few m 2 / g to speed 10 m 2 / g or so), adsorption Since the force is very small, it is hardly expected to be used as an adsorbent such as activated carbon. Therefore, it is almost difficult to use it as an adsorbent removal agent for automobile exhaust gas purification as described above.

また、最近、特許文献8に開示されているように、メソポーラスカーボンと酸化ホウ素、ホウ素、又はBC等のホウ素原料との混合物を窒素気流中1300−1800℃で加熱することによって多孔性の炭窒化ホウ素材料を製造する方法が報告された。しかし、上記非特許文献1に報告されているように、炭素、ホウ素、及び窒素からの直接合成は1800−2000℃での加熱条件が最適であり、これ以下の温度ではB−C−N材料以外に炭素とBCが副生すると述べられているので、特許文献8の方法で作られる材料が、炭素、窒素、ホウ素が化合した単一物質であるということには疑問が残る。いずれにしても、特許文献8の方法で作られる材料は、表面積が大きく多くの細孔が存在するものと推定されるが、吸着力を示すような官能基を生成するための製造方法ではないので、この方法で作られる材料は吸着剤としての利用は殆ど期待できない。 Recently, as disclosed in Patent Document 8, a mixture of mesoporous carbon and a boron raw material such as boron oxide, boron, or B 4 C is heated by heating at 1300-1800 ° C. in a nitrogen stream. A method for producing boron carbonitride materials has been reported. However, as reported in Non-Patent Document 1 above, direct synthesis from carbon, boron, and nitrogen is optimal under heating conditions at 1800-2000 ° C., and B—C—N materials at temperatures below this temperature. In addition, since carbon and B 4 C are described as by-products, there remains a question that the material produced by the method of Patent Document 8 is a single substance in which carbon, nitrogen, and boron are combined. In any case, the material produced by the method of Patent Document 8 is presumed to have a large surface area and a large number of pores, but it is not a production method for generating a functional group that exhibits an adsorptive power. Therefore, the material produced by this method is hardly expected to be used as an adsorbent.

特表平06−509374号公報Japanese National Patent Publication No. 06-509374 特開平06−219730号公報Japanese Patent Laid-Open No. 06-219730 特開2003−081615号公報Japanese Patent Laid-Open No. 2003-081615 特開2002−293516号公報JP 2002-293516 A 特開2002−19597号公報JP 2002-19597 A 特開平04−161240号公報JP 04-161240 A 特開平06−316411号公報Japanese Patent Laid-Open No. 06-316411 特開2007−031170号公報JP 2007-031170 A Poroshkovaya Metallurgiya, 1971, 1, 27-33.Poroshkovaya Metallurgiya, 1971, 1, 27-33. J. Chem. Soc., Faraday Trans., 1996, 92(24), 5067-5071.J. Chem. Soc., Faraday Trans., 1996, 92 (24), 5067-5071.

本発明は、上記の事情に鑑み、大気汚染物質や水質汚染物質を効率的に吸着除去するための、特に、自動車の排ガスに含まれる有害物質を効率的に吸着除去するための活性B−C−N材料及びその製造方法を提供することである。   In view of the above circumstances, the present invention is an active BC for efficiently adsorbing and removing air pollutants and water pollutants, particularly for efficiently adsorbing and removing harmful substances contained in automobile exhaust gas. -N material and its manufacturing method.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、賦活処理を行ったB−C−N材料が排ガス中のNOx等の有害物質の除去に非常に有効であることを見いだし、この知見に基づいて本発明を完成させるに至った。
すなわち、本発明は、
(1)炭素、窒素、及びホウ素からなる活性B−C−N材料であって、比表面積が100〜3000m/g、平均細孔径が0.4〜50nm、及び酸素含有量が1〜20質量%であることを特徴とする活性B−C−N材料、
(2)比表面積が0.1〜50m/gであるB−C−N材料を酸化剤によって賦活処理することを特徴とする上記(1)に記載の活性B−C−N材料の製造方法、
(3)酸化剤が強塩基性物質であることを特徴とする上記(2)に記載の活性B−C−N材料の製造方法、
(4)酸化剤がオキソ酸、又はオキソ酸塩であることを特徴とする上記(2)に記載の活性B−C−N材料の製造方法、
(5)酸化剤が超臨界水であることを特徴とする上記(2)に記載の活性B−C−N材料の製造方法、
(6)上記(1)に記載の活性B−C−N材料を排ガス浄化に用いることを特徴とする排ガス浄化方法、に関する。
As a result of intensive studies to achieve the above object, the present inventors have found that the activated BCN material is very effective in removing harmful substances such as NOx in exhaust gas. As a result, the present invention has been completed based on this finding.
That is, the present invention
(1) An active B—C—N material composed of carbon, nitrogen, and boron, having a specific surface area of 100 to 3000 m 2 / g, an average pore diameter of 0.4 to 50 nm, and an oxygen content of 1 to 20 Active B—C—N material, characterized in that it is by weight,
(2) The production of an active BCN material as described in (1) above, wherein a BCN material having a specific surface area of 0.1 to 50 m 2 / g is activated with an oxidizing agent. Method,
(3) The method for producing an active BCN material as described in (2) above, wherein the oxidizing agent is a strongly basic substance,
(4) The method for producing an active B—C—N material according to (2), wherein the oxidizing agent is an oxo acid or an oxo acid salt;
(5) The method for producing an active BCN material as described in (2) above, wherein the oxidizing agent is supercritical water;
(6) An exhaust gas purification method characterized by using the active B—C—N material described in (1) above for exhaust gas purification.

本発明活性B−C−N材料を排ガス浄化のために用いることによって、これまで浄化困難であったリーンバーン排NOxを低温領域から中温領域に渡って極めて効率よく浄化することができる。例えば、酸素濃度10%の一酸化窒素含有有害ガスを触媒上で還元剤としてプロピレンを用いて浄化したとき、触媒としてアルカリ土類金属の酸化物(NOx吸蔵剤)を含有したNOx吸蔵還元型触媒を使用した場合には250℃付近から反応が開始しNOx浄化率は最大でも40%程度であるが、本発明活性化炭窒化ホウ素材料をNOx吸着剤として含有した白金触媒の場合には150℃付近から反応が始まり、160℃〜400℃の広い温度範囲において90%以上のNOx浄化率が達成できる。   By using the active B—C—N material of the present invention for exhaust gas purification, the lean burn exhaust NOx, which has been difficult to purify so far, can be purified extremely efficiently from the low temperature region to the intermediate temperature region. For example, a NOx occlusion reduction type catalyst containing an alkaline earth metal oxide (NOx occlusion agent) as a catalyst when a nitrogen monoxide-containing harmful gas having an oxygen concentration of 10% is purified on the catalyst using propylene as a reducing agent. Is used, the reaction starts at around 250 ° C. and the NOx purification rate is about 40% at the maximum, but in the case of a platinum catalyst containing the activated boron carbonitride material of the present invention as a NOx adsorbent, it is 150 ° C. The reaction starts from the vicinity, and a NOx purification rate of 90% or more can be achieved in a wide temperature range of 160 ° C to 400 ° C.

以下、本発明を詳細に説明する。
本発明におけるB−C−N材料とは、炭素原子、ホウ素原子、及び、窒素原子からなる炭窒化ホウ素(boron carbide nitride)材料のことである。それぞれの原子は化学結合によって相互に結合しており、別名、炭素と窒化ホウ素の固溶体(a solid solution of carbon and boron nitride)とも呼ばれている。炭素、窒素、及びホウ素が化合してできた単一物質であり、炭素と窒化ホウ素の混合物とは異なる。
該B−C−N材料の化学式BxCyNzにおける組成比x:y:zは特に限定するものではない。含有するホウ素原子は、該材料の耐熱酸化性を向上させる上で重要な成分である。窒素原子は、ホウ素原子を窒化ホウ素として固定化する上で重要な成分である。炭素原子と窒素原子は、吸着活性点を形成する上で重要な成分である。したがって、本発明では組成比x:y:zを特定するものではないが、吸着性能及び耐久性の観点からy=(0.1〜100)xでありx≒Zであるような炭窒化ホウ素材料が好ましく、y=(1〜20)xでありx≒zであるような炭窒化ホウ素材料がさらに好ましいことがわかった。炭素の成分比率がホウ素又は窒素の100倍を超える場合でも高い吸着性能を有するが、耐熱性が活性炭の性質に近づくので、100倍以下であるのが好ましい。また、炭素の成分比率がホウ素又は窒素の10分の1未満になると吸着サイトの性質が親水性から親油性になってくるので、10分の1以上であるのが好ましい。
Hereinafter, the present invention will be described in detail.
The B—C—N material in the present invention is a boron carbide nitride material composed of carbon atoms, boron atoms, and nitrogen atoms. Each atom is bonded to each other by chemical bonds, also known as a solid solution of carbon and boron nitride. It is a single substance formed by combining carbon, nitrogen, and boron, and is different from a mixture of carbon and boron nitride.
The composition ratio x: y: z in the chemical formula BxCyNz of the B—C—N material is not particularly limited. The boron atom to be contained is an important component for improving the heat oxidation resistance of the material. The nitrogen atom is an important component for fixing the boron atom as boron nitride. A carbon atom and a nitrogen atom are important components for forming an adsorption active site. Therefore, although the composition ratio x: y: z is not specified in the present invention, boron carbonitride such that y = (0.1-100) x and x≈Z from the viewpoint of adsorption performance and durability. It has been found that materials are preferred, and boron carbonitride materials such that y = (1-20) x and x≈z are more preferred. Even when the carbon component ratio exceeds 100 times that of boron or nitrogen, it has a high adsorption performance, but since the heat resistance approaches the properties of activated carbon, it is preferably 100 times or less. Further, when the carbon component ratio is less than one-tenth of boron or nitrogen, the property of the adsorption site is changed from hydrophilic to oleophilic, so that it is preferably at least one-tenth.

本発明活性B−C−N材料は、吸着性の乏しい通常のB−C−N材料に賦活処理を施すことによって製造するので、使用するB−C−N材料の物理的性状(例えば、比表面積とか結晶構造など)がどのようなものであっても賦活処理は可能であるが、吸着性の乏しいB−C−N材料に共通した性質は、表面官能基がほとんどないこと、細孔が実質的に存在しないか、あるいはあったとしても非常に少ないこと、であるのでこのようなB−C−N材料が賦活処理の対象となる。細孔量は、比表面積とも直接関係しており、細孔が少ないということは比表面積が小さいことでもある。従来、B−C−N材料の比表面積に関する知見は非常に少ないので、おおよその数値を推定すると、膜状のものは0.1〜1m/gの範囲にあり、粒子状のものは1〜50m/gの範囲にあるものと推定される。従って、本発明において原料として用いるB−C−N材料の比表面積は、通常、0.1〜50m/gの範囲にあるが、一般的には、薄膜状の材料よりも粒子状の材料を賦活処理するほうが生産的に有利であるので、好ましい比表面積は1〜50m/gである。また、細孔の量的尺度は、一般的に、細孔容積で表すことができる。細孔が実質的に存在しないかあるいはあったとしても非常に少ないということを厳密に数値表現することは困難であるが、従来の吸着性の乏しいB−C−N材料の殆どは、その細孔容積が0.1cm/g以下である。 Since the active BCN material of the present invention is produced by subjecting a normal BCN material having poor adsorptivity to an activation treatment, the physical properties of the BCN material used (for example, the ratio) The activation process is possible regardless of the surface area or crystal structure), but the properties common to B—C—N materials with poor adsorptivity are that there are almost no surface functional groups and no pores. Such B—C—N materials are subject to activation treatment because they are not substantially present or very little, if any. The amount of pores is also directly related to the specific surface area, and the small number of pores means that the specific surface area is small. Conventionally, knowledge about the specific surface area of the B—C—N material is very small. Therefore, when approximate values are estimated, the film-like material is in the range of 0.1 to 1 m 2 / g, and the particulate material is 1 It is estimated to be in the range of ˜50 m 2 / g. Therefore, the specific surface area of the B—C—N material used as a raw material in the present invention is usually in the range of 0.1 to 50 m 2 / g, but in general, a particulate material rather than a thin film material. Since it is more productive to activate the material, the preferred specific surface area is 1 to 50 m 2 / g. In addition, the quantitative measure of pores can be generally expressed by pore volume. Although it is difficult to accurately express that the pores are substantially absent or very few, if any, most conventional B—C—N materials with poor adsorptivity have their fine details. The pore volume is 0.1 cm 3 / g or less.

本発明において原料として用いるB−C−N材料は、前記[背景技術]に述べたような特許文献2〜8に記載の製造方法によって製造することができる。これらの方法で製造されるB−C−N材料は、通常、黒鉛類似構造(グラファイト構造やグラファイト構造よりもc軸方向の対称性がよくないturbostratic構造などの総称)もしくは明確なX線回折パターンを持たない無定形の材料や緻密な立方晶構造をもつものである。しかし、一般的に、従来のB−C−N材料は、比表面積が小さい、細孔がほとんどない、吸着のための官能基がほとんどない、等の理由から吸着剤としての機能はもっていない。本発明活性B−C−N材料は、このような吸着性の乏しいB−C−N材料を原料として使用する。本発明活性B−C−N材料を製造するためには、賦活処理が比較的容易で量産可能な黒鉛類似構造もしくは無定形のB−C−N材料のほうが好ましい。
賦活処理によって得られる本発明活性B−C−N材料の比表面積は、通常、100〜3000m/gであり、好ましくは200〜1000m/gである。100m/g未満では吸着性能が不十分であるので100m/g以上であることが好ましく、また、3000m/gを越えると機械的な耐久性の低下が大きくなるので3000m/g以下であることが好ましい。
The B—C—N material used as a raw material in the present invention can be produced by the production methods described in Patent Documents 2 to 8 as described in [Background Art]. BCN materials produced by these methods usually have a graphite-like structure (generic name such as a graphite structure or a turbostratic structure that is less symmetrical in the c-axis direction than the graphite structure) or a clear X-ray diffraction pattern. It has an amorphous material that does not have, and a dense cubic structure. However, in general, the conventional B—C—N material does not have a function as an adsorbent because of a small specific surface area, few pores, few functional groups for adsorption, and the like. The active B—C—N material of the present invention uses such a poor B—C—N material as a raw material. In order to produce the active B—C—N material of the present invention, a graphite-like structure or an amorphous B—C—N material that is relatively easy to activate and can be mass-produced is preferred.
The specific surface area of this invention active BCN material obtained by an activation process is 100-3000 m < 2 > / g normally, Preferably it is 200-1000 m < 2 > / g. If it is less than 100 m 2 / g, the adsorption performance is insufficient, and therefore it is preferably 100 m 2 / g or more, and if it exceeds 3000 m 2 / g, the mechanical durability is greatly reduced, so that it is 3000 m 2 / g or less. It is preferable that

本発明活性B−C−N材料は、賦活処理によって比表面積が増大しているだけでなく微細な細孔と親水性の官能基を多量に含有している。賦活処理によって新たに生成する細孔の細孔分布は、通常、0.4nm〜50nmの範囲が好ましく、0.6nm〜20nmの範囲がさらに好ましく、0.8nm〜3nmの範囲が最も好ましい。0.4nm未満では被吸着物質の細孔内拡散が不十分であるので0.4nm以上であることが好ましく、また、50nmよりも大きいと吸着性能が不十分となるので50nm以下であることが好ましい。また、賦活処理によって新たに生成する親水性の官能基は、水酸基(OH)、アルコール性水酸基(ROH)、カルボニル基(CO)、カルボキシル基(COH)、アミノ基(NH)等であり、これらの官能基のトータル濃度は酸素含有量換算で、通常、B−C−N材料当たり1〜20質量%の範囲であることが好ましく、5〜15質量%の範囲であることがさらに好ましい。1質量%未満では、吸着性能が不十分であるので1質量%以上であることが好ましく、また、20質量%よりも大きくなると機械的な耐久性の低下が大きくなるので20質量%以下であることが好ましい。 The active B—C—N material of the present invention not only has a specific surface area increased by the activation treatment, but also contains a large amount of fine pores and hydrophilic functional groups. The pore distribution of pores newly generated by the activation treatment is usually preferably in the range of 0.4 nm to 50 nm, more preferably in the range of 0.6 nm to 20 nm, and most preferably in the range of 0.8 nm to 3 nm. If it is less than 0.4 nm, the diffusion of the substance to be adsorbed in the pores is insufficient, so that it is preferably 0.4 nm or more. preferable. Moreover, the hydrophilic functional group newly generated by the activation treatment is a hydroxyl group (OH), an alcoholic hydroxyl group (ROH), a carbonyl group (CO), a carboxyl group (CO 2 H), an amino group (NH 2 ), or the like. In general, the total concentration of these functional groups is preferably in the range of 1 to 20% by mass and more preferably in the range of 5 to 15% by mass in terms of oxygen content per B—C—N material. preferable. If it is less than 1% by mass, the adsorption performance is insufficient, so that it is preferably 1% by mass or more, and if it exceeds 20% by mass, the mechanical durability decreases greatly, so it is 20% by mass or less. It is preferable.

本発明活性B−C−N材料は、前記に述べたように比表面積の小さい炭窒化ホウ素材料を原料に用いてこれを賦活処理することによって製造される。賦活処理に用いる薬剤としては酸化剤を用いるのが有害物質吸着のための表面官能基を形成する上で好ましい。酸化剤としては、強塩基性物質、オキソ酸、オキソ酸塩、超臨界水、ハロゲン、過酸化水素、オゾン、二酸化窒素、二酸化硫黄、三酸化硫黄、五酸化リン、五酸化バナジウム、等を用いることができるが、これらの中で強塩基性物質、オキソ酸、オキソ酸塩、及び超臨界水が酸化力と取扱性の点から好ましい。強塩基性物質としては、アルカリ金属、アルカリ金属の水酸化物、アルカリ金属の酸化物、アルカリ金属の過酸化物、アルカリ金属の超酸化物、アルカリ金属の硝酸塩、アルカリ土類金属、アルカリ土類金属の水酸化物、アルカリ土類金属の過酸化物、アルカリ土類金属の超酸化物、アルカリ土類金属の硝酸塩、等が好ましく、中でもアルカリ金属の水酸化物、及びアルカリ土類金属の水酸化物は塩基性が高く取扱性も比較的容易なのでさらに好ましい。オキソ酸及びオキソ酸塩としては、硝酸、硫酸、燐酸、王水、混酸(硫酸と硝酸の混合液)、過塩素酸、過塩素酸塩、次亜ハロゲン酸、次亜ハロゲン酸塩、鉄酸塩、ヘテロポリ酸、ヘテロポリ酸塩、及び過マンガン酸塩は酸化力が高く取扱性も比較的容易なのでさらに好ましい。また、本発明における超臨界水とは、臨界定数を超える状態にある水分子のことである。水の臨界定数は、臨界温度がTc=647.3K、臨界圧力がPc=22.12MPaであるのでこの温度−圧力状態では、水分子は液体と気体の二相が相平衡している。また、500℃以上、36.65MPa以上は通常、超臨界状態と言われ、水分子のラジカル分解が生じているので、非常に強い酸化性を示す。本発明における超臨界水とはこのような超臨界状態にある水のことをいう。
強塩基性物質による賦活処理は、B−C−N材料に含有される炭素原子をアルコール基(ROH)、カルボニル基(CO)、カルボキシル基(COH)等に酸化するだけでなく窒素原子を塩基性の官能基であるアミノ基に変換する特徴がある。オキソ酸及びオキソ酸塩による賦活処理は、水酸基を生成する他、炭窒化ホウ素材料に含有される炭素原子をカルボニル基(CO)、カルボキシル基(COH)等に酸化する特徴がある。また、超臨界水による賦活処理は、新たに水酸基を生成する特徴がある。
The active B—C—N material of the present invention is produced by activation treatment using a boron carbonitride material having a small specific surface area as a raw material as described above. It is preferable to use an oxidizing agent as the agent used for the activation treatment in order to form a surface functional group for adsorbing harmful substances. As the oxidizing agent, strong basic substances, oxo acids, oxo acid salts, supercritical water, halogen, hydrogen peroxide, ozone, nitrogen dioxide, sulfur dioxide, sulfur trioxide, phosphorus pentoxide, vanadium pentoxide, etc. are used. Among these, strong basic substances, oxoacids, oxoacid salts, and supercritical water are preferable from the viewpoint of oxidizing power and handleability. Strongly basic substances include alkali metals, alkali metal hydroxides, alkali metal oxides, alkali metal peroxides, alkali metal superoxides, alkali metal nitrates, alkaline earth metals, alkaline earths Metal hydroxides, alkaline earth metal peroxides, alkaline earth metal superoxides, alkaline earth metal nitrates, etc. are preferred, among which alkali metal hydroxides and alkaline earth metal water Oxides are more preferred because they are basic and easy to handle. As oxo acid and oxo acid salt, nitric acid, sulfuric acid, phosphoric acid, aqua regia, mixed acid (mixed solution of sulfuric acid and nitric acid), perchloric acid, perchlorate, hypohalous acid, hypohalous acid salt, iron acid Salts, heteropolyacids, heteropolyacid salts, and permanganates are more preferable because they have high oxidizing power and are relatively easy to handle. The supercritical water in the present invention is a water molecule in a state exceeding the critical constant. As for the critical constant of water, the critical temperature is Tc = 647.3K and the critical pressure is Pc = 22.22 MPa. Therefore, in this temperature-pressure state, the water molecules are in phase equilibrium between the liquid and gas phases. Moreover, 500 degreeC or more and 36.65 Mpa or more are usually called a supercritical state, and since radical decomposition | disassembly of a water molecule has arisen, very strong oxidation property is shown. The supercritical water in the present invention refers to water in such a supercritical state.
Activation treatment with a strongly basic substance not only oxidizes the carbon atoms contained in the B—C—N material to alcohol groups (ROH), carbonyl groups (CO), carboxyl groups (CO 2 H), etc., but also nitrogen atoms Is converted to an amino group which is a basic functional group. The activation treatment with an oxo acid and an oxo acid salt is characterized by generating a hydroxyl group and oxidizing a carbon atom contained in the boron carbonitride material to a carbonyl group (CO), a carboxyl group (CO 2 H), or the like. In addition, the activation treatment with supercritical water is characterized in that a hydroxyl group is newly generated.

以上の薬剤(超臨界水を除く)を用いた賦活処理は、通常、薬剤の水溶液中に原料であるB−C−N材料を加え室温〜該水溶液の沸点の温度で数10分〜数100時間処理することによって可能であるが、溶融状態の薬剤、又は、気体状態の薬剤を用いて室温〜500℃の範囲で数10分〜数100時間処理することも可能である。賦活処理の加熱温度、処理時間、等の賦活処理条件は、用いる酸化剤の酸化力に従って適宜調整を行なわなければならない。例えば、強塩基性のアルカリ水酸化物を用いる場合には、水溶液中で賦活処理を行った時と融点以上の温度で行った時とでは得られる活性B−C−N材料の比表面積、細孔径、官能基の生成量、及びB/C/Nの組成比が大きく異なる場合があるからである。通常、マイルドな条件では、処理時間は長くなるけれどもB/C/Nの組成比を原料の組成比とあまり変えることなく活性化ができるが、過酷な条件では、短時間で活性化を行うことができるが、材料の質量損失がかなり大きく、また窒素及びホウ素の含有量がかなり減少する。オキソ酸やオキソ酸塩、又は超臨界水を用いる場合も基本的に強塩基性物質の場合と同様である。   The activation treatment using the above drugs (excluding supercritical water) is usually performed by adding a B—C—N material as a raw material to an aqueous solution of the drug at a temperature ranging from room temperature to the boiling point of the aqueous solution. Although it is possible to perform the treatment for a period of time, it is also possible to carry out the treatment in the range of room temperature to 500 ° C. for several tens of minutes to several hundreds of hours using a molten chemical or a gaseous chemical. The activation treatment conditions such as the heating temperature and treatment time of the activation treatment must be appropriately adjusted according to the oxidizing power of the oxidizing agent used. For example, when a strongly basic alkali hydroxide is used, the specific surface area of the active B—C—N material obtained when activated in an aqueous solution and at a temperature above the melting point, This is because the pore size, the amount of functional groups generated, and the B / C / N composition ratio may differ greatly. Normally, the treatment time is longer under mild conditions, but the B / C / N composition ratio can be activated without changing much from the composition ratio of the raw material, but under severe conditions, activation can be performed in a short time. However, the mass loss of the material is significant and the nitrogen and boron contents are significantly reduced. The case of using oxo acid, oxo acid salt, or supercritical water is basically the same as that of a strongly basic substance.

上記の強塩基性物質による賦活処理、オキソ酸またはオキソ酸塩による賦活処理、及び超臨界水による賦活処理の中で、強塩基性物質による賦活処理が比表面積の増大、細孔径の分布、及び官能基の生成において適度に調和しているのでもっとも好ましい方法である。
以上の賦活処理では、酸素含有の官能基やアミノ基などが新たに導入されるのであるが、酸素含有量の調整やアミノ基の含有量を調整するために上記の賦活処理を行った後にさらに還元剤を用いて還元処理を行うこともできる。このような還元処理は、水素、ヒドラジン、アンモニア、等を用いた気流中での還元処理や水素化ホウ素ナトリウム、水素化リチウムアルミニウム、過酸化水素、チオ硫酸塩、等を用いた溶液中での還元処理、等によって行うことができる。
本発明活性B−C−N材料は、原料であるB−C−N材料と同様に耐酸化性が活性炭よりも非常に優れており、空気中400℃以上に加熱しても活性炭のように完全燃焼することはなく、600℃付近から質量減少が始まるが800℃付近で質量減少がほぼ停止し、1200℃でも60%程度質量が保持される。したがって、従来、使用困難であった自動車の排ガス浄化のための吸着材料として使用できる。
Among the above-mentioned activation treatment with a strong basic substance, activation treatment with an oxo acid or oxo acid salt, and activation treatment with supercritical water, the activation treatment with a strong basic substance increases the specific surface area, the pore size distribution, and This is the most preferable method because it is moderately harmonized in the generation of functional groups.
In the above activation treatment, oxygen-containing functional groups, amino groups, and the like are newly introduced. After performing the activation treatment described above in order to adjust the oxygen content or the amino group content, Reduction treatment can also be performed using a reducing agent. Such a reduction treatment can be performed in a gas stream using hydrogen, hydrazine, ammonia, etc. or in a solution using sodium borohydride, lithium aluminum hydride, hydrogen peroxide, thiosulfate, etc. Reduction can be performed.
The active B—C—N material of the present invention is much better in oxidation resistance than activated carbon, like the B—C—N material that is the raw material, and even when heated to 400 ° C. or higher in air, There is no complete combustion, and the mass reduction starts from around 600 ° C., but the mass reduction almost stops at around 800 ° C., and the mass is maintained at about 60% even at 1200 ° C. Therefore, it can be used as an adsorbing material for purifying automobile exhaust gas, which has heretofore been difficult to use.

本発明活性B−C−N材料は、排ガス中のNOx、SOx等の有害物質を低温領域から中温領域に渡って効率的に吸着除去するのに適している。自動車の排ガス浄化に用いる際は、通常、本発明活性B−C−N材料料と白金等の酸化触媒を組み合わせて用いる。その理由は、活性B−C−N材料による吸脱着のサイクルを触媒的に回転させるためである。被吸着物質の吸着速度は、気相における被吸着物質の濃度と活性B−C−N材料に吸着した被吸着物質の濃度との濃度差に依存するので、活性B−C−N材料に吸着した被吸着物質を速やかに排除することが大切であり、そのためには活性B−C−N材料よって吸着された被吸着物質を触媒上で還元性物質によって還元除去するのがよいからである。
白金等の酸化触媒としては、従来のγアルミナに担持した白金−ロジウム触媒を使用することができるが、比表面積が非常に大きく平均細孔径が2〜50nmのメソ領域にあるメソポーラス材料に白金等を担持した触媒のほうが良い成績を与えるので好ましい。中でも、比表面積が400〜2000m/gであり平均細孔径が数nmである非晶性(細孔配列に規則性がないことをいう)のメソポーラスシリカ材料に白金等を担持した触媒は非常に良い成績を与えるので好ましい。
The active B—C—N material of the present invention is suitable for efficiently adsorbing and removing harmful substances such as NOx and SOx in exhaust gas from a low temperature region to a medium temperature region. When used for purification of automobile exhaust gas, the active BCN material material of the present invention and an oxidation catalyst such as platinum are usually used in combination. The reason for this is to catalytically rotate the adsorption / desorption cycle with the active B—C—N material. Since the adsorption rate of the adsorbed substance depends on the concentration difference between the adsorbed substance concentration in the gas phase and the adsorbed substance adsorbed on the active BCN material, the adsorbed substance adsorbs on the active BCN material. It is important to quickly remove the adsorbed substances, and for that purpose, the adsorbed substances adsorbed by the active B—C—N material should be reduced and removed with a reducing substance on the catalyst.
As an oxidation catalyst such as platinum, a conventional platinum-rhodium catalyst supported on γ-alumina can be used, but platinum or the like is used as a mesoporous material having a very large specific surface area and an average pore diameter of 2 to 50 nm in a meso region. A catalyst supporting bismuth is preferred because it gives better results. Among them, a catalyst in which platinum or the like is supported on an amorphous mesoporous silica material having a specific surface area of 400 to 2000 m 2 / g and an average pore diameter of several nanometers (which means that the pore arrangement is not regular) is very Is preferable because it gives good results.

本発明活性B−C−N材料の粉体を排ガス浄化槽に充填して用いる場合には、白金触媒等の酸化触媒の粉末と混合して使用することができるが、本発明活性B−C−N材料を自動車用ハニカム支持体に塗布して用いる場合には、ハニカム支持体に本発明活性B−C−N材料を塗布した後でその上に白金触媒等の酸化触媒を塗布するのがよい(ダブルウオッシュコートという)。その理由は、本発明活性B−C−N材料と酸化触媒を混合した均一混合スラリーをハニカム支持体に塗布すると、活性B−C−N材料によって酸化触媒表面が部分的に被覆されるために触媒性能が損なわれるので、それを防止するためである。ダブルウオッシュコートの塗布層は少なくとも二層から構成されており、最上層(排ガスと直接接触する層)に白金触媒等の酸化触媒を設け、下層に本発明活性B−C−N材料の塗布層を設けるのは、最上層で排ガス中の一酸化窒素をNOに酸化し、生成NOを下層の本発明活性B−C−N材料で吸着させるためである。吸着したNOの一部は吸着した炭化水素によって還元処理され、また一部は脱着して上層の酸化触媒上で炭化水素によって還元処理される。
また、本発明活性B−C−N材料は、トラックやバス等の排ガスを浄化するための尿素SCR法式に用いる触媒と複合して用いると、100℃付近からNOx浄化が開始するので、大型ディーゼル車の排ガス浄化剤としても非常に好ましい。
In the case where the powder of the present invention active B—C—N material is filled in an exhaust gas purification tank and used, it can be used by mixing with a powder of an oxidation catalyst such as a platinum catalyst. When the N material is applied to a honeycomb support for automobiles, it is preferable to apply an oxidation catalyst such as a platinum catalyst on the honeycomb support after applying the active B—C—N material of the present invention to the honeycomb support. (This is called a double wash coat). The reason is that when the uniform mixed slurry in which the active BCN material and the oxidation catalyst of the present invention are mixed is applied to the honeycomb support, the surface of the oxidation catalyst is partially covered with the active BCN material. This is to prevent the catalyst performance from being impaired. The coating layer of the double wash coat is composed of at least two layers. An oxidation catalyst such as a platinum catalyst is provided in the uppermost layer (a layer in direct contact with the exhaust gas), and the coating layer of the present active BCN material is provided in the lower layer. The reason for this is to oxidize nitric oxide in the exhaust gas to NO 2 in the uppermost layer, and to adsorb the produced NO 2 with the lower active B—C—N material of the present invention. Part of the adsorbed NO 2 is reduced by the adsorbed hydrocarbon, and part of it is desorbed and reduced by the hydrocarbon on the upper oxidation catalyst.
In addition, when the active BCN material of the present invention is used in combination with a catalyst used in the urea SCR method for purifying exhaust gas from trucks and buses, NOx purification starts from around 100 ° C. It is also very preferable as a vehicle exhaust gas purifier.

以下に実施例などを挙げて本発明を具体的に説明する。
実施例中のX線回折パターンはX線回折装置(リガク株式会社製造品:RINT-UltimaIII)を用いて測定した。比表面積、細孔容積、及び細孔分布は、脱吸着の気体として窒素を用い、カルロエルバ社製ソープトマチック1800型装置によって測定した。比表面積及び細孔容積はBET法によって求めた。細孔分布は、0.4〜200nmの範囲を測定し、BJH法で求められる微分分布で示した。細孔分布曲線は指数関数的に左上がりの分布を描き、特定の細孔直径の位置にピークを示すとき、このピークを与える細孔直径を平均細孔径とした。官能基は、赤外吸収スペクトル測定装置(JASCO FT-IR460)によって測定した。元素分析は元素分析装置(パーキンエルマー株式会社製造品:2400II CHNS/O元素分析装置)を用いて測定した。ホウ素の分析は、ICP−MS分析装置(VG-Elemental Plasmatrace ICP-mass Analyzer)を用いて測定した。排ガスのモデルガスとしてヘリウムで希釈した一酸化窒素(NO)−酸素(O)−プロピレン(C)の混合ガスを用いた。NOxの処理率は、減圧式化学発光法NOx分析計(日本サーモ株式会社製造品:モデル42i−HL及び46C−H)によって処理後のガスに含まれるNOxを測定し、以下の式(1)によって算出した。なお、NOx濃度は、一酸化窒素の濃度と二酸化窒素の濃度の合計である。
[数1]
{1−(反応後のガスに含まれるNOxの濃度÷反応前のガスに含まれるNOxの濃度)}×100(%) (1)
The present invention will be specifically described below with reference to examples.
The X-ray diffraction patterns in the examples were measured using an X-ray diffractometer (manufactured by Rigaku Corporation: RINT-UltimaIII). Specific surface area, pore volume, and pore distribution were measured with a Sorpmatic 1800 type apparatus manufactured by Carlo Elba using nitrogen as a desorption gas. The specific surface area and pore volume were determined by the BET method. The pore distribution was measured in the range of 0.4 to 200 nm and indicated by a differential distribution obtained by the BJH method. The pore distribution curve draws an exponentially upward distribution, and when a peak is shown at a specific pore diameter position, the pore diameter that gives this peak was taken as the average pore diameter. The functional group was measured with an infrared absorption spectrum measuring apparatus (JASCO FT-IR460). Elemental analysis was performed using an elemental analyzer (manufactured by PerkinElmer, Inc .: 2400II CHNS / O elemental analyzer). The analysis of boron was measured using an ICP-MS analyzer (VG-Elemental Plasmatrace ICP-mass Analyzer). A mixed gas of nitric oxide (NO) -oxygen (O 2 ) -propylene (C 3 H 6 ) diluted with helium was used as a model gas for the exhaust gas. The NOx treatment rate is determined by measuring the NOx contained in the treated gas with a reduced pressure chemiluminescence NOx analyzer (manufactured by Nippon Thermo Co., Ltd .: models 42i-HL and 46C-H), and the following formula (1) Calculated by The NOx concentration is the sum of the concentration of nitric oxide and the concentration of nitrogen dioxide.
[Equation 1]
{1- (NOx concentration contained in gas after reaction / NOx concentration contained in gas before reaction)} × 100 (%) (1)

「製造例1」BCN材料の製造
石英製の三口フラスコにメラミン50gを入れ200℃に加熱した。これに三塩化ホウ素ガスを導入し、三塩化ホウ素ガスの吸収が収まるまで反応を続けた。反応終了後、フラスコ内を窒素ガスで置換し、窒素ガスを流しながら500℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、この中間生成物をアルミナ製の坩堝に移し、電気炉に入れ、窒素気流下で1500℃まで昇温し、この温度で2時間加熱を続けた。室温まで放冷後、生成物を取り出した。元素分析の結果、組成比は、ホウ素:炭素:窒素≒1:1:1であった。赤外吸収スペクトルは、1400cm−1に強いピーク(ヘテロ環伸縮振動に帰属される)と794cm−1(ヘテロ環変角振動に帰属される)に弱いピークを示した。X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.245nm、c=0.696nmであった。また、比表面積は15m/g、細孔容積は0.06cm/gであり、左上がりの細孔分布曲線には約4nmと約80nmの位置に非常に小さなピークを示した。これらの結果から、生成物は黒鉛類似BCN材料であり、比表面積が小さく、細孔がほとんど存在しない材料であることが確認された。
[Production Example 1] Production of BC 2 N material 50 g of melamine was placed in a quartz three-necked flask and heated to 200 ° C. Boron trichloride gas was introduced into this, and the reaction was continued until the absorption of boron trichloride gas was stopped. After completion of the reaction, the inside of the flask was replaced with nitrogen gas, the temperature was raised to 500 ° C. while flowing nitrogen gas, and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, this intermediate product was transferred to an alumina crucible, placed in an electric furnace, heated to 1500 ° C. under a nitrogen stream, and heated at this temperature for 2 hours. The product was taken out after standing_to_cool to room temperature. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen≈1: 1: 1. Infrared absorption spectrum showed a weak peak at strong peak at 1400 cm -1 (attributed to the hetero ring stretching vibration) and 794cm -1 (attributed to the heterocyclic deformation vibration). As a result of X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.245 nm and c 0 = 0.696 nm. The specific surface area was 15 m 2 / g, the pore volume was 0.06 cm 3 / g, and the pore distribution curve rising to the left showed very small peaks at positions of about 4 nm and about 80 nm. From these results, it was confirmed that the product was a graphite-like BC 2 N material having a small specific surface area and almost no pores.

「製造例2」BCN材料の製造
石英製の三口フラスコにアセトニトリルの液体50gを入れ、これに三塩化ホウ素ガスを導入し、三塩化ホウ素ガスの吸収が収まるまで反応を続けた。反応終了後、フラスコ内を窒素ガスで置換し、窒素ガスを流しながら500℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、この中間生成物をアルミナ製の坩堝に移し、電気炉に入れ、窒素気流下で1500℃まで昇温し、この温度で2時間加熱を続けた。室温まで放冷後、生成物を取り出した。元素分析の結果、組成比は、ホウ素:炭素:窒素≒1:2:1であった。赤外吸収スペクトルは、1387cm−1に強いピークと794cm−1に弱いピークを示した。X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm、c=0.682nmであった。また、比表面積は18m/g、細孔容積は0.07cm/gであり、左上がりの細孔分布曲線には約4nmと約80nmの位置に非常に小さなピークを示した。これらの結果から、生成物は黒鉛類似BCN材料であり、比表面積が小さく細孔がほとんど存在しない材料であることが確認された。
“Production Example 2” Production of BC 2 N Material 50 g of acetonitrile liquid was placed in a quartz three-necked flask, boron trichloride gas was introduced into the flask, and the reaction was continued until absorption of boron trichloride gas was stopped. After completion of the reaction, the inside of the flask was replaced with nitrogen gas, the temperature was raised to 500 ° C. while flowing nitrogen gas, and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, this intermediate product was transferred to an alumina crucible, placed in an electric furnace, heated to 1500 ° C. under a nitrogen stream, and heated at this temperature for 2 hours. The product was taken out after standing_to_cool to room temperature. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen≈1: 2: 1. Infrared absorption spectrum showed a weak peak at strong peak and 794cm -1 to 1387cm -1. As a result of X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.682 nm. The specific surface area was 18 m 2 / g, the pore volume was 0.07 cm 3 / g, and the pore distribution curve rising to the left showed very small peaks at about 4 nm and about 80 nm. From these results, it was confirmed that the product was a graphite-like BC 2 N material having a small specific surface area and almost no pores.

「製造例3」BCN材料の製造
石英製の三口フラスコにポリアクリロニトリル(旭化成製造品:分子量約1万のアクリロニトリルのホモポリマー)の粉末50gを入れ、これに三塩化ホウ素ガスを導入し、三塩化ホウ素ガスの吸収が収まるまで反応を続けた。反応終了後、フラスコ内を窒素ガスで置換し、窒素ガスを流しながら500℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、この中間生成物をアルミナ製の坩堝に移し、電気炉に入れ、窒素気流下1500℃まで昇温し、この温度で2時間加熱を続けた。室温まで放冷後、生成物を取り出した。元素分析の結果、組成比は、ホウ素:炭素:窒素≒1:5:1であった。赤外吸収スペクトルは、1400cm−1に強いピークと794cm−1に弱いピークを示した。X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.242nm、c=0.676nmであった。また、比表面積は17m/g、細孔容積は0.07cm/gであり、左上がりの細孔分布曲線には約4nmと約80nmの位置に非常に小さなピークを示した。これらの結果から、生成物は黒鉛類似BCN材料であり、比表面積が小さく、細孔がほとんど存在しない材料であることが確認された。
“Production Example 3” Production of BC 5 N material A quartz three-necked flask was charged with 50 g of polyacrylonitrile (Asahi Kasei product: homopolymer of acrylonitrile having a molecular weight of about 10,000), and boron trichloride gas was introduced into it. The reaction was continued until the absorption of boron trichloride gas stopped. After completion of the reaction, the inside of the flask was replaced with nitrogen gas, the temperature was raised to 500 ° C. while flowing nitrogen gas, and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, this intermediate product was transferred to an alumina crucible, placed in an electric furnace, heated to 1500 ° C. under a nitrogen stream, and heated at this temperature for 2 hours. The product was taken out after standing_to_cool to room temperature. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen≈1: 5: 1. Infrared absorption spectrum showed a weak peak at strong peak and 794cm -1 to 1400 cm -1. As a result of X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.242 nm and c 0 = 0.676 nm. The specific surface area was 17 m 2 / g, the pore volume was 0.07 cm 3 / g, and the pore distribution curve rising to the left showed very small peaks at about 4 nm and about 80 nm. From these results, it was confirmed that the product was a graphite-like BC 5 N material having a small specific surface area and almost no pores.

「製造例4」BC10N材料の製造
石英製の三口フラスコに1,10−ジアミノデカン50gを入れ100℃に加熱した。これに三塩化ホウ素ガスを導入し、三塩化ホウ素ガスの吸収が収まるまで反応を続けた。反応終了後、フラスコ内を窒素ガスで置換し、窒素ガスを流しながら500℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、この中間生成物をアルミナ製の坩堝に移し、電気炉に入れ、窒素気流下1500℃まで昇温し、この温度で2時間加熱を続けた。室温まで放冷後、生成物を取り出した。元素分析の結果、組成比は、ホウ素:炭素:窒素≒1:10:1であった。赤外吸収スペクトルは、1400cm−1に強いピークと794cm−1に弱いピークを示した。X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm、c=0.670nmであった。また、比表面積は16m/g、細孔容積は0.06cm/gであり、左上がりの細孔分布曲線には約4nmと約80nmの位置に非常に小さなピークを示した。これらの結果から、生成物は黒鉛類似BC10N材料であり、比表面積が小さく、細孔がほとんど存在しない材料であることが確認された。
And heated to "Production Example 4" BC 10 N 100 ° C. was placed in a three-necked flask 1,10 diaminodecane 50g steel manufacturing quartz material. Boron trichloride gas was introduced into this, and the reaction was continued until the absorption of boron trichloride gas was stopped. After completion of the reaction, the inside of the flask was replaced with nitrogen gas, the temperature was raised to 500 ° C. while flowing nitrogen gas, and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, this intermediate product was transferred to an alumina crucible, placed in an electric furnace, heated to 1500 ° C. under a nitrogen stream, and heated at this temperature for 2 hours. The product was taken out after standing_to_cool to room temperature. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen≈1: 10: 1. Infrared absorption spectrum showed a weak peak at strong peak and 794cm -1 to 1400 cm -1. As a result of X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.670 nm. The specific surface area was 16 m 2 / g, the pore volume was 0.06 cm 3 / g, and the pore distribution curve rising to the left showed very small peaks at about 4 nm and about 80 nm. From these results, it was confirmed that the product was a graphite-like BC 10 N material having a small specific surface area and almost no pores.

「製造例5」アルカリ水溶液での賦活処理による活性BCN材料の製造
ビーカーに製造例1のBCN材料の粉体を10g入れ、これに50質量%の水酸化カリウム水溶液100gを加えて、2時間沸騰させた。室温まで放冷後、これに1リットルの蒸留水を加えて攪拌した液を減圧濾過、ろ液がほぼ中性になるまで十分に水洗した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素:水素:酸素≒1:2:1:0.2:0.2であり、酸素含有量は約6質量%であった。赤外吸収スペクトルは、1560cm−1付近にブロードな弱いピーク(C=C伸縮振動及びC=O伸縮振動に帰属される)、1400cm−1付近にブロードな中程度のピーク(ヘテロ環伸縮振動に帰属される)、1020cm−1付近にブロードな中程度のピーク(C−O伸縮振動に帰属される)、795cm−1に弱いピーク(ヘテロ環変角振動に帰属される)を示した。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm, c=0.682nmであった。また、比表面積は120m/g、細孔容積は0.12cm/gであり、平均細孔径は2.4nmであった。これらの結果から、生成物は活性BCN材料であることがわかった。
“Production Example 5” Production of active BC 2 N material by activation treatment with alkaline aqueous solution 10 g of the powder of BC 2 N material of Production Example 1 was put in a beaker, and 100 g of 50% by mass potassium hydroxide aqueous solution was added thereto. Boiled for 2 hours. After allowing to cool to room temperature, 1 liter of distilled water was added thereto, and the stirred solution was filtered under reduced pressure. The filtrate was sufficiently washed with water until the filtrate became almost neutral, and then dried in vacuo at 120 ° C. for 5 hours. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen: hydrogen: oxygen≈1: 2: 1: 0.2: 0.2, and the oxygen content was about 6 mass%. The infrared absorption spectrum shows a broad weak peak near 1560 cm −1 (attributed to C = C stretching vibration and C═O stretching vibration), and a broad medium peak near 1400 cm −1 (in the heterocyclic stretching vibration). attributed), attributed to the peak (C-O stretching vibration of medium broad around of 1020 cm -1), showed a weak peak at 795 cm -1 (attributed to the heterocyclic deformation vibration). As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.682 nm. The specific surface area was 120 m 2 / g, the pore volume was 0.12 cm 3 / g, and the average pore diameter was 2.4 nm. From these results, it was found that the product was an active BC 2 N material.

「製造例6」溶融アルカリ条件での賦活処理による活性BCN材料の製造
磁製皿に製造例1のBCN材料の粉体を10g入れ、これに50質量%の水酸化カリウム水溶液20gを加えて、蒸発乾固した後、約400℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、これに1リットルの蒸留水を加えて固形物を分散させた分散液を減圧濾過、ろ液がほぼ中性になるまで十分に水洗した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素:水素:酸素≒1:6:1:3:0.6であり、酸素含有量は約8質量%であった。赤外吸収スペクトルは、2920cm−1及び2950cm−1に非常に小さなピーク(C−H伸縮振動に帰属される)、1560cm−1付近にブロードな弱いピーク、1400cm−1付近にブロードな弱いピーク、1020cm−1付近にブロードな中程度のピークを示した。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm,c=0.682nmであった。また、比表面積は430m/g、細孔容積は0.36cm/gであり、平均細孔径は1.0nmであった。これらの結果から、生成物は活性BCN材料であることがわかった。
“Production Example 6” Production of activated BC 6 N material by activation treatment under molten alkali conditions 10 g of the powder of BC 2 N material of Production Example 1 is put in a porcelain dish, and 20 g of 50% by weight aqueous potassium hydroxide solution is added thereto. After evaporating to dryness, the temperature was raised to about 400 ° C. and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, 1 liter of distilled water was added thereto, and the dispersion in which the solid was dispersed was filtered under reduced pressure, washed thoroughly with water until the filtrate was almost neutral, and then vacuum dried at 120 ° C. for 5 hours. did. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen: hydrogen: oxygen≈1: 6: 1: 3: 0.6, and the oxygen content was about 8% by mass. Infrared absorption spectrum (attributed to C-H stretching vibration) very small peak at 2920 cm -1 and 2950 cm -1, a broad weak peak near 1560 cm -1, a broad weak peak near 1400 cm -1, A broad medium peak was observed around 1020 cm −1 . As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.682 nm. The specific surface area was 430 m 2 / g, the pore volume was 0.36 cm 3 / g, and the average pore diameter was 1.0 nm. These results showed that the product was an active BC 6 N material.

「製造例7」溶融アルカリ条件での賦活処理による活性BC12N材料の製造
磁製皿に製造例2のBCN材料の粉体を10g入れ、これに50質量%の水酸化カリウム水溶液20gを加えて、蒸発乾固した後、約400℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、これに100倍量の蒸留水を加えて分散させた分散液を減圧濾過、ろ液がほぼ中性になるまで十分に水洗した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素:水素:酸素≒1:12:1:6:1であり、酸素含有量は約8質量%であった。赤外吸収スペクトルは、2920cm−1及び2950cm−1に非常に小さなピーク、1560cm−1付近にブロードな弱いピーク、1400cm−1付近にブロードな弱いピーク、1020cm−1にブロードな中程度のピークを示した。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.242nm,c=0.711nmであった。また、比表面積は330m/g、細孔容積は0.28cm/gであり、平均細孔径は0.8nmであった。これらの結果から、生成物は活性BC12N材料であることがわかった。
“Production Example 7” Production of activated BC 12 N material by activation treatment under molten alkaline conditions 10 g of the powder of BC 2 N material of Production Example 2 is put in a porcelain dish, and 20 g of 50% by mass aqueous potassium hydroxide solution is added thereto. After evaporating to dryness, the temperature was raised to about 400 ° C. and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, a dispersion obtained by adding 100 times the amount of distilled water thereto was filtered under reduced pressure, sufficiently washed with water until the filtrate became almost neutral, and then vacuum-dried at 120 ° C. for 5 hours. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen: hydrogen: oxygen≈1: 12: 1: 6: 1, and the oxygen content was about 8% by mass. Infrared absorption spectrum, a very small peak at 2920 cm -1 and 2950 cm -1, a broad weak peak near 1560 cm -1, a broad weak peak near 1400 cm -1, a peak of moderate broad in of 1020 cm -1 Indicated. As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.242 nm and c 0 = 0.711 nm. The specific surface area was 330 m 2 / g, the pore volume was 0.28 cm 3 / g, and the average pore diameter was 0.8 nm. These results indicated that the product was an active BC 12 N material.

「製造例8」溶融アルカリ条件での賦活処理による活性BC20N材料の製造
磁製皿に製造例3のBCN材料の粉体を10g入れ、これに50質量%の水酸化カリウム水溶液20gを加えて、蒸発乾固した後、約400℃まで昇温しこの温度で1時間加熱を続けた。室温まで放冷後、これに100倍量の蒸留水を加えて分散させた分散液を減圧濾過、ろ液がほぼ中性になるまで十分に水洗した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素:水素:酸素≒1:20:8:2であり、酸素含有量は約10質量%であった。赤外吸収スペクトルは、2920cm−1及び2950cm−1に非常に小さなピーク、1580cm−1付近にブロードな弱いピーク(C=C伸縮振動及びC=O伸縮振動に帰属される)、1400cm−1付近にブロードな弱いピーク、1020cm−1にブロードな中程度のピークを示した。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm,c=0.720nmであった。また、比表面積は650m/g、細孔容積は0.48cm/gであり、平均細孔径は1.0nmであった。これらの結果から、生成物は活性BC20N材料であることがわかった。
[Production Example 8] Production of activated BC 20 N material by activation treatment under molten alkali conditions 10 g of the powder of BC 5 N material of Production Example 3 is placed in a porcelain dish, and 20 g of a 50% by mass aqueous potassium hydroxide solution is added thereto. After evaporating to dryness, the temperature was raised to about 400 ° C. and heating was continued at this temperature for 1 hour. After allowing to cool to room temperature, a dispersion obtained by adding 100 times the amount of distilled water thereto was filtered under reduced pressure, sufficiently washed with water until the filtrate became almost neutral, and then vacuum-dried at 120 ° C. for 5 hours. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen: hydrogen: oxygen≈1: 20: 8: 2, and the oxygen content was about 10% by mass. Infrared absorption spectrum, a very small peak at 2920 cm -1 and 2950 cm -1, (attributable to C = C stretching vibration and C = O stretching vibration) broad weak peak near 1580 cm -1, 1400 cm around -1 A broad weak peak was observed at 1020 cm −1 . As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.720 nm. The specific surface area was 650 m 2 / g, the pore volume was 0.48 cm 3 / g, and the average pore diameter was 1.0 nm. These results indicated that the product was an active BC 20 N material.

「製造例9」オキソ酸を用いた賦活処理による活性BC20N材料の製造
ビーカーに混酸200g(質量比が濃硫酸:濃硝酸=8:2の混合液)を入れ、これに製造例2のBCN材料の粉体を10g入れ、室温で1時間攪拌した。2リットルの蒸留水を加えて希釈した後、ガラスフィルターで固形物を濾別した。該固形物を10%の炭酸水素ナトリウム水溶液100gに入れ、沈殿物をガラスフィルターで濾別し、蒸留水で濾液がほぼ中性になるまで十分に洗浄した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素:水素:酸素≒1:20:1:10:3であり、酸素含有量は約15質量%であった。赤外吸収スペクトルは、1732cm−1付近にブロードな弱いピーク(カルボキシル基の伸縮振動に帰属される)、1600cm−1付近にブロードな中程度のピークを示した(C=C伸縮振動及びC=O伸縮振動に帰属される)。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm,c=0.730nmであった。また、比表面積は820m/g、細孔容積は0.70cm/gであり、平均細孔径は1.0nmであった。これらの結果から、生成物は活性BC20N材料であることがわかった。
“Production Example 9” Production of Active BC 20 N Material by Activation Treatment Using Oxo Acid 200 g of mixed acid (mixed solution of concentrated sulfuric acid: concentrated nitric acid = 8: 2) was placed in a beaker. 10 g of powder of BC 2 N material was added and stirred at room temperature for 1 hour. After diluting with 2 liters of distilled water, the solid was filtered off with a glass filter. The solid was placed in 100 g of a 10% aqueous sodium hydrogen carbonate solution, the precipitate was filtered off with a glass filter, thoroughly washed with distilled water until the filtrate was almost neutral, and then dried in vacuo at 120 ° C. for 5 hours. . As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen: hydrogen: oxygen≈1: 20: 1: 10: 3, and the oxygen content was about 15% by mass. Infrared absorption spectrum (attributed to the stretching vibration of the carboxyl group) broad weak peak near 1732 cm -1, and a peak moderate broad around 1600 cm -1 (C = C stretching vibration and C = O attributed to stretching vibration). As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.730 nm. The specific surface area was 820 m 2 / g, the pore volume was 0.70 cm 3 / g, and the average pore diameter was 1.0 nm. These results indicated that the product was an active BC 20 N material.

「製造例10」オキソ酸塩を用いた賦活処理による活性BC16N材料の製造
ビーカーに20質量%の次亜塩素酸ナトリウム水溶液200gを入れ、これに製造例4のBC10N材料の粉体を10g入れ、1時間沸騰させた。ガラスフィルターで固形物を濾別し、10質量%の炭酸水素ナトリウム水溶液100gを用いて洗浄後、蒸留水で濾液がほぼ中性になるまで十分に洗浄した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素:水素:酸素≒1:16:1:1:1であり、酸素含有量は約7質量%であった。赤外吸収スペクトルは、1590cm−1付近にブロードな弱いピーク(C=C伸縮振動及びC=O伸縮振動に帰属される)、1400cm−1付近にブロードな中程度のピーク、1020cm−1にブロードな弱いピーク、795cm−1に小さいピークを示した。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm,c=0.682nmであった。また、比表面積は210m/g、細孔容積は0.18cm/gであり、平均細孔径は1.0nmであった。これらの結果から、生成物は活性BC16N材料であることがわかった。
“Production Example 10” Production of active BC 16 N material by activation treatment using oxo acid salt 200 g of 20% by weight aqueous sodium hypochlorite aqueous solution was placed in a beaker, and the powder of BC 10 N material of Production Example 4 was added thereto. 10 g was added and boiled for 1 hour. The solid matter was separated by filtration with a glass filter, washed with 100 g of a 10% by mass aqueous sodium hydrogen carbonate solution, sufficiently washed with distilled water until the filtrate became almost neutral, and then vacuum-dried at 120 ° C. for 5 hours. . As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen: hydrogen: oxygen≈1: 16: 1: 1: 1, and the oxygen content was about 7% by mass. Infrared absorption spectrum (attributed to C = C stretching vibration and C = O stretching vibration) broad weak peak near 1590 cm -1, a peak of moderate broad near 1400 cm -1, broad in of 1020 cm -1 Weak peak and a small peak at 795 cm −1 . As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.682 nm. The specific surface area was 210 m 2 / g, the pore volume was 0.18 cm 3 / g, and the average pore diameter was 1.0 nm. These results indicated that the product was an active BC 16 N material.

「製造例11」超臨界水を用いた賦活処理による活性BC20N材料の製造
鉄製の耐圧容器に製造例1のBCN材料の粉体を10g入れ、蒸留水100gを加えて、密閉後、電気炉に入れ500℃で5時間加熱した。室温まで放冷後、内容物を取り出し減圧濾過、蒸留水で洗浄した後、120℃で5時間真空乾燥した。元素分析の結果、組成比は、ホウ素:炭素:窒素≒1:20:1:10:4であり、酸素含有量は約19質量%であった。赤外吸収スペクトルは、2920cm−1及び2950cm−1に非常に小さなピーク、1580cm−1付近にブロードな中程度のピーク(C=C伸縮振動及びC=O伸縮振動に帰属される)、1400cm−1付近にブロードな弱いピーク、1020cm−1にブロードな中程度のピークを示した。粉末X線回折測定の結果、黒鉛類似の六方晶系に帰属され、a=0.240nm,c=0.740nmであった。また、比表面積は1860m/g、細孔容積は2.60cm/gであり、平均細孔径は1.0nmであった。これらの結果から、生成物は活性BC20N材料であることがわかった。
[Production Example 11] Production of activated BC 20 N material by activation treatment using supercritical water 10 g of the powder of BC 2 N material of Production Example 1 is put in an iron pressure vessel, 100 g of distilled water is added, and after sealing And placed in an electric furnace and heated at 500 ° C. for 5 hours. After cooling to room temperature, the contents were taken out, filtered under reduced pressure, washed with distilled water, and then vacuum dried at 120 ° C. for 5 hours. As a result of elemental analysis, the composition ratio was boron: carbon: nitrogen≈1: 20: 1: 10: 4, and the oxygen content was about 19% by mass. Infrared absorption spectrum, a very small peak at 2920 cm -1 and 2950 cm -1, (attributable to C = C stretching vibration and C = O stretching vibration) broad moderate peak near 1580 cm -1, 1400 cm - A broad weak peak in the vicinity of 1 and a broad medium peak at 1020 cm −1 were shown. As a result of powder X-ray diffraction measurement, it was assigned to a hexagonal system similar to graphite, and a 0 = 0.240 nm and c 0 = 0.740 nm. The specific surface area was 1860 m 2 / g, the pore volume was 2.60 cm 3 / g, and the average pore diameter was 1.0 nm. These results indicated that the product was an active BC 20 N material.

「製造例12」〔Pt−Rh/γアルミナ〕触媒の製造
蒸留水20gにHPtCl・6HOを0.6642g、及び塩化ロジウムを0.0153g加えて溶解させた。この水溶液を蒸発皿に入れ、これに市販のγアルミナ(日揮化学株式会社製造品:比表面積250m/g、平均細孔径6.2nm)5gを入れて、均一にかき混ぜ、スチームバスで蒸発乾固した後、真空乾燥機に入れ100℃−3時間真空乾燥を行った。この試料を石英管に入れ、ヘリウム希釈水素ガス(10v/v%)気流下500℃で3時間還元を行った。γアルミナに担持された白金、及びロジウムのそれぞれの担持量は、5質量%、及び0.15質量%であった。
"Production Example 12" [Pt-Rh / gamma-alumina] 0.6642g of H 2 PtCl 6 · 6H 2 O for the production of distilled water 20g of catalyst, and was dissolved by adding 0.0153g rhodium chloride. Put this aqueous solution into an evaporating dish, put 5 g of commercially available γ-alumina (manufactured by JGC Chemical Co., Ltd .: specific surface area 250 m 2 / g, average pore diameter 6.2 nm), stir uniformly, evaporate to dryness with a steam bath. After solidifying, it was put in a vacuum dryer and vacuum dried at 100 ° C. for 3 hours. This sample was put into a quartz tube and reduced at 500 ° C. for 3 hours in a helium-diluted hydrogen gas (10 v / v%) stream. The supported amounts of platinum and rhodium supported on γ-alumina were 5% by mass and 0.15% by mass, respectively.

「製造例13」NOx吸蔵還元型触媒の製造
蒸留水20gにHPtCl・6HOを0.6642g、塩化ロジウムを0.0153g、及び炭酸バリウムを1.762g加えて溶解させた。この水溶液を蒸発皿に入れ、これに市販のγアルミナ(日揮化学株式会社製造品:比表面積250m/g、平均細孔径6.2nm)5gを入れて、均一にかき混ぜ、スチームバスで蒸発乾固した後、真空乾燥機に入れ100℃−3時間真空乾燥を行った。この試料を石英管に入れ、ヘリウム希釈水素ガス(10v/v%)気流下500℃−3時間還元を行った。γアルミナに担持された白金、ロジウム、及びバリウムのそれぞれの担持量は、5質量%、0.15質量%、及び10質量%であった。
"Production Example 13" NOx occlusion reduction type catalyst produced distilled water 20g of H 2 PtCl 6 · 6H 2 O to 0.6642G, and the rhodium chloride 0.0153G, and dissolved by adding 1.762g of barium carbonate. Put this aqueous solution into an evaporating dish, put 5 g of commercially available γ-alumina (manufactured by JGC Chemical Co., Ltd .: specific surface area 250 m 2 / g, average pore diameter 6.2 nm), stir uniformly, evaporate to dryness with a steam bath. After solidifying, it was put in a vacuum dryer and vacuum dried at 100 ° C. for 3 hours. This sample was put into a quartz tube and reduced at 500 ° C. for 3 hours in a helium-diluted hydrogen gas (10 v / v%) stream. The supported amounts of platinum, rhodium, and barium supported on γ-alumina were 5 mass%, 0.15 mass%, and 10 mass%, respectively.

「製造例14」〔Pt−Rh/メソポーラスシリカ〕触媒の製造
蒸留水300gにエタノール240g、及びドデシルアミン30gを入れ、溶解させた。攪拌下でテトラエトキシシラン125gを加えて室温で22時間攪拌した。生成物を濾過、水洗し、110℃で5時間温風乾燥した後、空気中550℃5時間焼成して含有するドデシルアミンを分解除去し、メソポーラスシリカを製造した。該メソポーラスシリカを小角X線回折測定した結果、2θ角が2.72度(d=3.25nm)の所に1本のブロードな回折ピークを示した。また、透過型電子顕微鏡観察の結果、細孔の配列には規則的な配列が観測されず無秩序に分散している状態が観測された。これらの結果から、製造したメソポーラスシリカは、細孔配列について非晶性であることが確認された。また、細孔分布及び比表面積測定の結果、約2.5nmの位置に細孔ピークがあり、比表面積が1123m/g、及び細孔容積が0.89cm/gであった。
次に、蒸留水20gにHPtCl・6HOを0.6642g、及び塩化ロジウムを0.0153g溶解した水溶液を蒸発皿に入れ、これに上記のメソポーラスシリカ材料5gを加え、スチームバスで蒸発乾固した後、真空乾燥器に入れ100℃−3時間真空乾燥を行った。この試料を石英管に入れ、ヘリウム希釈水素ガス(10v/v%)気流下500℃で3時間還元を行った。メソポーラスシリカに担持された白金、及びロジウムの担持量は、それぞれ5質量%、及び0.15質量%であった。
Production Example 14 Production of [Pt-Rh / Mesoporous Silica] Catalyst 240 g of ethanol and 30 g of dodecylamine were added to 300 g of distilled water and dissolved. While stirring, 125 g of tetraethoxysilane was added and stirred at room temperature for 22 hours. The product was filtered, washed with water, dried in warm air at 110 ° C. for 5 hours, and then calcined in air at 550 ° C. for 5 hours to decompose and remove the contained dodecylamine to produce mesoporous silica. As a result of small-angle X-ray diffraction measurement of the mesoporous silica, one broad diffraction peak was observed at a 2θ angle of 2.72 degrees (d = 3.25 nm). Further, as a result of observation with a transmission electron microscope, a regular arrangement was not observed in the pore arrangement, and a disordered state was observed. From these results, it was confirmed that the produced mesoporous silica was amorphous with respect to the pore arrangement. As a result of pore distribution and specific surface area measurement, a pore peak was found at a position of about 2.5 nm, the specific surface area was 1123 m 2 / g, and the pore volume was 0.89 cm 3 / g.
Then, the H 2 PtCl 6 · 6H 2 O in distilled water 20 g 0.6642G, and rhodium chloride were placed an aqueous solution prepared by dissolving 0.0153g in an evaporating dish, to which the mesoporous silica material 5g addition, a steam bath After evaporating to dryness, it was placed in a vacuum dryer and vacuum dried at 100 ° C. for 3 hours. This sample was put into a quartz tube and reduced at 500 ° C. for 3 hours in a helium-diluted hydrogen gas (10 v / v%) stream. The supported amounts of platinum and rhodium supported on mesoporous silica were 5% by mass and 0.15% by mass, respectively.

「製造例15」〔Pt−Rh/γアルミナ〕触媒とアルカリ賦活活性BCN材料を混合した触媒の製造
製造例12の触媒80mgと製造例5の活性BCN材料100mgを乳鉢に入れ均一混合物を製造した。
「製造例16」〔Pt−Rh/メソポーラスシリカ〕触媒とアルカリ賦活活性BCN材料との混合触媒の製造
製造例14の触媒80mgと製造例6の活性BCN材料100mgを乳鉢に入れ均一混合物を製造した。
「製造例17」〔Pt−Rh/メソポーラスシリカ〕触媒とアルカリ賦活活性BC12N材料との混合触媒の製造
製造例14の触媒80mgと製造例7の活性BC12N材料100mgを乳鉢に入れ均一混合物を製造した。
"Production Example 15" [Pt-Rh / γ alumina] Catalyst and alkali-activated active BC 2 N material mixed catalyst 80 mg of Production Example 12 catalyst and 100 mg of Active BC 2 N material of Production Example 5 were placed in a mortar and homogeneous. A mixture was prepared.
“Production Example 16” [Pt—Rh / Mesoporous Silica] Catalyst and Alkaline-Activated Active BC 6 N Material Mixed Catalyst Production Example 14 Catalyst 80 mg and Production Example 6 Active BC 6 N Material 100 mg were uniformly placed in a mortar. A mixture was prepared.
Production Example 17 Production of Mixed Catalyst of [Pt-Rh / Mesoporous Silica] Catalyst and Alkaline-Activated Active BC 12 N Material 80 mg of the catalyst of Production Example 14 and 100 mg of the activated BC 12 N material of Production Example 7 are placed in a mortar and uniform. A mixture was prepared.

「製造例18」〔Pt−Rh/メソポーラスシリカ〕触媒とアルカリ賦活活性BC20N材料との混合触媒の製造
製造例14の触媒80mgと製造例8の活性BC20N材料100mgを乳鉢に入れ均一混合物を製造した。
「製造例19」〔Pt−Rh/メソポーラスシリカ〕触媒とオキソ酸賦活活性BC20N材料との混合触媒の製造
製造例14の触媒80mgと製造例9の活性BC20N材料100mgを乳鉢に入れ均一混合した触媒を製造した。
「製造例20」〔Pt−Rh/メソポーラスシリカ〕触媒とオキソ酸塩賦活活性BC16N材料との混合物の製造
製造例14の触媒80mgと製造例10の活性BC16N材料100mgを乳鉢に入れ均一混合物を製造した。
「製造例21」〔Pt−Rh/メソポーラスシリカ〕触媒と超臨界水賦活活性化BC20N材料との混合物の製造
製造例14の触媒80mgと製造例11の活性BC20N材料100mgを乳鉢に入れ均一混合物を製造した。
“Production Example 18” [Pt—Rh / Mesoporous Silica] Catalyst and Alkaline-Activated Active BC 20 N Material Mixed Catalyst Production 80 mg of the catalyst of Production Example 14 and 100 mg of the active BC 20 N material of Production Example 8 were placed in a mortar uniformly. A mixture was prepared.
Production Example 19 Production of Mixed Catalyst of [Pt-Rh / Mesoporous Silica] Catalyst and Oxo Acid-Activated Active BC 20 N Material 80 mg of the catalyst of Production Example 14 and 100 mg of the active BC 20 N material of Production Example 9 are placed in a mortar. A homogeneously mixed catalyst was produced.
[Production Example 20] [Pt-Rh / mesoporous silica] Production of mixture of catalyst and oxoacid salt activated active BC 16 N material 80 mg of the catalyst of Production Example 14 and 100 mg of the active BC 16 N material of Production Example 10 were placed in a mortar. A homogeneous mixture was produced.
"Production Example 21" [Pt-Rh / Mesoporous Silica] Catalyst and Supercritical Water Activation Activated BC 20 N Material Mixture Production Example 14 Catalyst 80 mg and Production Example 11 Active BC 20 N Material 100 mg in a mortar A homogeneous mixture was produced.

「製造例22」〔Pt−Rh/メソポーラスシリカ〕触媒とアルカリ賦活活性BCN材料を塗布したハニカム触媒の製造
製造例6の活性BCN材料の粉末12.5gを蒸留水100mLに加え、攪拌してスラリーを調整した(スラリーA)。また、製造例14の触媒10gとシリカゾル1gを蒸留水100mlに加え、攪拌してスラリーを調整した(スラリーB)。スラリーAに、市販のコージェライトモノリス成形体(4.5mil/400cells/in、直径143.8mm×長さ118mm)から切り出したミニ成形体(直径38mm×長さ50mm)を浸漬し、ミニ成形体を取り出し風乾した後、窒素気流中で500℃−3時間熱処理した。次にこのミニ成形体をスラリーBに浸漬し、ミニ成形体を取り出し風乾した後、窒素気流中で500℃−3時間熱処理した。ミニ成形体当たりの活性BCN材料の付着量は6g、メソポーラスシリカ担持白金−ロジウム触媒の付着量は4.6gであった。
“Production Example 22” [Pt—Rh / mesoporous silica] Production of honeycomb catalyst coated with alkali-activated active BC 6 N material 12.5 g of powder of active BC 6 N material of Production Example 6 was added to 100 mL of distilled water. The slurry was prepared by stirring (slurry A). Further, 10 g of the catalyst of Production Example 14 and 1 g of silica sol were added to 100 ml of distilled water and stirred to prepare a slurry (slurry B). A mini-molded body (diameter 38 mm x length 50 mm) cut from a commercially available cordierite monolith molded body (4.5 mil / 400 cells / in 2 , diameter 143.8 mm x length 118 mm) is immersed in slurry A, and mini-molded. The body was taken out and air-dried, and then heat-treated in a nitrogen stream at 500 ° C. for 3 hours. Next, after this mini-molded body was immersed in slurry B, the mini-molded body was taken out and air-dried, and then heat-treated in a nitrogen stream at 500 ° C. for 3 hours. The amount of active BC 6 N material deposited per mini-molded body was 6 g, and the amount of mesoporous silica-supported platinum-rhodium catalyst deposited was 4.6 g.

「製造例23」〔Pt−Rh/メソポーラスシリカ〕触媒と未処理BCN材料との混合触媒の製造
製造例14の触媒80mgと製造例3の未処理BCN材料100mgを乳鉢に入れ均一混合物を製造した。
「比較例1」〔Pt−Rh/γアルミナ〕触媒のNOx浄化性能
製造例12の触媒80mgと海砂1mlを均一に混合し、石英製の連続流通式反応管(外径20mm×内径16mm×長さ200mm)に充填し、管状電気炉に入れ、ヘリウムで濃度調整したNOx含有の模擬ガスを流通して、NOx浄化を行った。模擬ガスの成分モル濃度は、一酸化窒素250ppm、酸素10%、プロピレン400ppmとした。反応管に導入した模擬ガスの流量は毎分500mlとした。反応管入口での模擬ガスの温度を150℃から400℃に調整した。処理後のガスに含まれるNOx濃度をオンライン測定し、NOx処理率を求めた。結果を表1に示した。
“Production Example 23” [Pt—Rh / Mesoporous Silica] Catalyst and Untreated BC 5 N Material Mixed Catalyst Production Example 14 Catalyst 80 mg and Production Example 3 Untreated BC 5 N Material 100 mg were uniformly placed in a mortar. A mixture was prepared.
"Comparative Example 1" NOx purification performance of [Pt-Rh / γ alumina] catalyst 80 mg of the catalyst of Production Example 12 and 1 ml of sea sand were uniformly mixed, and a continuous flow reaction tube made of quartz (outer diameter 20 mm x inner diameter 16 mm x NOx purification was carried out by circulating a NOx-containing simulated gas whose concentration was adjusted with helium. The component molar concentrations of the simulated gas were 250 ppm nitric oxide, 10% oxygen, and 400 ppm propylene. The flow rate of the simulated gas introduced into the reaction tube was 500 ml per minute. The temperature of the simulated gas at the inlet of the reaction tube was adjusted from 150 ° C to 400 ° C. The NOx concentration contained in the treated gas was measured online to determine the NOx treatment rate. The results are shown in Table 1.

「比較例2」NOx吸蔵還元型触媒のNOx浄化性能
製造例13の触媒80mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「比較例3」〔Pt−Rh/メソポーラスシリカ〕触媒のNOx浄化性能
製造例14の触媒80mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「比較例4」〔Pt−Rh/メソポーラスシリカ〕触媒と未処理BCN材料との混合物のNOx浄化性能
製造例23の触媒180mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
"Comparative Example 2" NOx purification performance of NOx occlusion reduction type catalyst The NOx treatment rate was determined by the same method as Comparative Example 1 using 80 ml of the catalyst of Production Example 13 and 1 ml of powder in which sea sand was uniformly mixed. The results are shown in Table 1.
"Comparative Example 3" NOx purification performance of [Pt-Rh / mesoporous silica] catalyst The NOx treatment rate was determined in the same manner as in Comparative Example 1 using 1 ml of powder in which 80 mg of the catalyst of Production Example 14 and sea sand were uniformly mixed. . The results are shown in Table 1.
"Comparative Example 4" NOx purification performance of a mixture of [Pt-Rh / mesoporous silica] catalyst and untreated BC 5 N material Comparative Example 1 using 180 mg of the catalyst of Production Example 23 and 1 ml of powder uniformly mixed with sea sand The NOx treatment rate was determined by the same method. The results are shown in Table 1.

「実施例1」〔Pt−Rh/γアルミナ〕触媒+アルカリ賦活活性BCN材料のNOx浄化性能
製造例15の触媒180mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「実施例2」〔Pt−Rh/メソポーラスシリカ〕触媒+アルカリ賦活活性BCN材料のNOx浄化性能
製造例16の触媒180mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「実施例3」〔Pt−Rh/メソポーラスシリカ〕触媒+アルカリ賦活活性BC12N材料のNOx浄化性能
製造例17の触媒180mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
"Example 1" [Pt-Rh / γ alumina] catalyst + NOx purification performance of alkali activated BC 2 N material Same as Comparative Example 1 using 1 ml of powder in which 180 mg of catalyst of Production Example 15 and sea sand were uniformly mixed The NOx treatment rate was determined by the method. The results are shown in Table 1.
"Example 2" [Pt-Rh / mesoporous silica] catalyst + alkali-activated activated BC 6 N material NOx purification performance The same as in Comparative Example 1 using 180 mg of the catalyst of Production Example 16 and 1 ml of powder in which sea sand was uniformly mixed The NOx treatment rate was determined by the method. The results are shown in Table 1.
"Example 3" [Pt-Rh / mesoporous silica] catalyst + alkali-activated BC 12 N material NOx purification performance The same as Comparative Example 1 using 180 mg of the catalyst of Production Example 17 and 1 ml of powder in which sea sand was uniformly mixed The NOx treatment rate was determined by the method. The results are shown in Table 1.

「実施例4」〔Pt−Rh/メソポーラスシリカ〕触媒+アルカリ賦活活性BC20N材料のNOx浄化性能
製造例18の触媒80mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「実施例5」〔Pt−Rh/メソポーラスシリカ〕触媒+オキソ酸賦活活性BC20N材料のNOx浄化性能
製造例19の触媒80mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「実施例6」〔Pt−Rh/メソポーラスシリカ〕触媒+オキソ酸塩賦活活性BC16N材料のNOx浄化性能
製造例20の触媒180mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
"Example 4" [Pt-Rh / mesoporous silica] catalyst + alkali-activated BC 20 N material NOx purification performance 80 mg of the catalyst of Production Example 18 and 1 ml of powder obtained by uniformly mixing sea sand were used as in Comparative Example 1. The NOx treatment rate was determined by the method. The results are shown in Table 1.
"Example 5" [Pt-Rh / mesoporous silica] catalyst + oxo acid activation activated BC 20 N material NOx purification performance 80% of the catalyst of Production Example 19 and 1 ml of powder in which sea sand is uniformly mixed, as in Comparative Example 1 The NOx treatment rate was determined by this method. The results are shown in Table 1.
"Example 6" [Pt-Rh / mesoporous silica] catalyst + oxo acid salt activation activated BC 16 N material NOx purification performance 180% of the catalyst of Production Example 20 and 1 ml of powder in which sea sand is uniformly mixed with Comparative Example 1 The NOx treatment rate was determined by the same method. The results are shown in Table 1.

「実施例7」〔Pt−Rh/メソポーラスシリカ〕触媒+超臨界水賦活活性BC20N材料のNOx浄化性能
製造例21の触媒180mgと海砂を均一混合した粉末1mlを用いて比較例1と同様の方法によりNOx処理率を求めた。結果を表1に示した。
「実施例8」〔Pt−Rh/メソポーラスシリカ〕触媒+アルカリ賦活の活性BCN材料を塗布したハニカム触媒のNOx浄化性能
製造例22のハニカム触媒を石英製の連続流通式反応管(外径46mm×内径40mm×長さ500mm)に充填し、管状電気炉に入れ、ヘリウムで濃度調整したNOx含有の模擬ガスを流通して、NOx浄化を行った。模擬ガスの成分モル濃度は、一酸化窒素250ppm、酸素10%、プロピレン400ppmとした。反応管に導入した模擬ガスの流量は毎分27.5リットルとした。反応管入口での模擬ガスの温度を160℃から400℃に調整した。処理後のガスに含まれるNOx濃度をオンライン測定し、NOx処理率を求めた。結果を表2に示した。
“Example 7” [Pt—Rh / mesoporous silica] catalyst + supercritical water activation activated BC 20 N material NOx purification performance 180% of the catalyst of Production Example 21 and 1 ml of powder in which sea sand is uniformly mixed with Comparative Example 1 The NOx treatment rate was determined by the same method. The results are shown in Table 1.
"EXAMPLE 8" [Pt-Rh / Mesoporous Silica] catalyst + alkali activation activity BC 6 N material a honeycomb catalyst made of quartz continuous flow reaction tube NOx purification performance Production Example 22 of the coated honeycomb catalyst (outer diameter 46 mm × inner diameter 40 mm × length 500 mm), put in a tubular electric furnace, and circulated a NOx-containing simulated gas whose concentration was adjusted with helium, to perform NOx purification. The component molar concentrations of the simulated gas were 250 ppm nitric oxide, 10% oxygen, and 400 ppm propylene. The flow rate of the simulated gas introduced into the reaction tube was 27.5 liters per minute. The temperature of the simulated gas at the inlet of the reaction tube was adjusted from 160 ° C to 400 ° C. The NOx concentration contained in the treated gas was measured online to determine the NOx treatment rate. The results are shown in Table 2.

Figure 2009119423
表1の結果から、本発明活性B−C−N材料は、低温領域の排ガス浄化に効果があるだけでなく中温領域でも優れた性能を発揮することがわかる。
Figure 2009119423
From the results shown in Table 1, it can be seen that the active B—C—N material of the present invention is not only effective in purifying exhaust gas in a low temperature region, but also exhibits excellent performance in a medium temperature region.

Figure 2009119423
表2の結果から、本発明活性B−C−N材料を塗布した自動車排ガス浄化用ハニカム触媒は、低温から中温領域の全温度領域に渡って優れた浄化性能を示すので、自動車排ガス浄化用に好適であることがわかる。
Figure 2009119423
From the results of Table 2, the honeycomb catalyst for automobile exhaust gas purification coated with the active BCN material of the present invention exhibits excellent purification performance over the entire temperature range from low temperature to medium temperature range. It turns out that it is suitable.

本発明活性B−C−N材料は、有害物質の吸着除去に用いることができる。特に、自動車用排ガス浄化のための吸着除去材として有用である。   The active B—C—N material of the present invention can be used for adsorption removal of harmful substances. In particular, it is useful as an adsorption removal material for exhaust gas purification for automobiles.

Claims (6)

炭素、窒素、及びホウ素からなる活性B−C−N材料であって、比表面積が100〜3000m/g、平均細孔径が0.4〜50nm、及びB−C−N材料の酸素含有量が1〜20質量%であることを特徴とする活性B−C−N材料。 An active B—C—N material comprising carbon, nitrogen, and boron, having a specific surface area of 100 to 3000 m 2 / g, an average pore diameter of 0.4 to 50 nm, and an oxygen content of the B—C—N material Is an active B—C—N material, characterized in that 1 to 20% by weight. 比表面積が0.1〜50m/gであるB−C−N材料を酸化剤によって賦活処理することを特徴とする請求項1に記載の活性B−C−N材料の製造方法。 The method for producing an active B—C—N material according to claim 1, wherein a B—C—N material having a specific surface area of 0.1 to 50 m 2 / g is activated by an oxidizing agent. 酸化剤が強塩基性物質であることを特徴とする請求項2に記載の活性B−C−N材料の製造方法。   The method for producing an active BCN material according to claim 2, wherein the oxidizing agent is a strongly basic substance. 酸化剤がオキソ酸、又はオキソ酸塩であることを特徴とする請求項2に記載の活性B−C−N材料の製造方法。   The method for producing an active B—C—N material according to claim 2, wherein the oxidizing agent is an oxo acid or an oxo acid salt. 酸化剤が超臨界水であることを特徴とする請求項2に記載の活性B−C−N材料の製造方法。   The method for producing an active B—C—N material according to claim 2, wherein the oxidizing agent is supercritical water. 請求項1に記載の活性B−C−N材料を排ガス浄化に用いることを特徴とする排ガス浄化方法。   An exhaust gas purification method using the activated B—C—N material according to claim 1 for exhaust gas purification.
JP2007298778A 2007-11-19 2007-11-19 Active b-c-n material and method of manufacturing the same Withdrawn JP2009119423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298778A JP2009119423A (en) 2007-11-19 2007-11-19 Active b-c-n material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298778A JP2009119423A (en) 2007-11-19 2007-11-19 Active b-c-n material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009119423A true JP2009119423A (en) 2009-06-04

Family

ID=40812184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298778A Withdrawn JP2009119423A (en) 2007-11-19 2007-11-19 Active b-c-n material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009119423A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050711A (en) * 2011-11-08 2013-05-16 삼성에스디아이 주식회사 Composite cathode active material, cathode and lithium battery comprising the material, and preparation method thereof
WO2015079955A1 (en) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 Solid base catalyst, and method and reactor relating to same
JP2015106512A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing the same, electrode for alkaline fuel cell, and alkaline fuel cell
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME
CN113666473A (en) * 2021-08-19 2021-11-19 宿州学院 Preparation method of nitrided compound acidic wastewater treatment agent and prepared treatment agent
WO2022071240A1 (en) * 2020-09-29 2022-04-07 デンカ株式会社 Boron carbonitride powder and method for producing same, powder composition, boron nitride sintered compact and method for producing same, and complex and method for producing same
CN115715979A (en) * 2021-08-26 2023-02-28 中国石油化工股份有限公司 Oxidation catalyst, preparation method thereof and application thereof in preparation of 2, 5-furandicarboxylic acid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050711A (en) * 2011-11-08 2013-05-16 삼성에스디아이 주식회사 Composite cathode active material, cathode and lithium battery comprising the material, and preparation method thereof
KR101973047B1 (en) 2011-11-08 2019-04-29 삼성에스디아이 주식회사 Composite cathode active material, cathode and lithium battery comprising the material, and preparation method thereof
WO2015079955A1 (en) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 Solid base catalyst, and method and reactor relating to same
JP2015106512A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing the same, electrode for alkaline fuel cell, and alkaline fuel cell
JP2015104708A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Solid base catalyst, and method and reactor regarding the same
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME
WO2022071240A1 (en) * 2020-09-29 2022-04-07 デンカ株式会社 Boron carbonitride powder and method for producing same, powder composition, boron nitride sintered compact and method for producing same, and complex and method for producing same
JPWO2022071240A1 (en) * 2020-09-29 2022-04-07
JP7228752B2 (en) 2020-09-29 2023-02-24 デンカ株式会社 Boron carbonitride powder and its manufacturing method, powder composition, boron nitride sintered body and its manufacturing method, and composite and its manufacturing method
CN113666473A (en) * 2021-08-19 2021-11-19 宿州学院 Preparation method of nitrided compound acidic wastewater treatment agent and prepared treatment agent
CN115715979A (en) * 2021-08-26 2023-02-28 中国石油化工股份有限公司 Oxidation catalyst, preparation method thereof and application thereof in preparation of 2, 5-furandicarboxylic acid

Similar Documents

Publication Publication Date Title
JP2009119423A (en) Active b-c-n material and method of manufacturing the same
JP3932478B2 (en) Noble metal pore body and method for producing the same
JP2014524352A5 (en)
KR20200114460A (en) Low temperature DeNOx catalyst containing hierarchically structured porous TiO2 catalyst support and method for preparing the same
JP5880527B2 (en) Exhaust gas purification catalyst
Levasseur et al. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions
TW201031464A (en) Catalyst and process for purifying exhaust gas
JP2006305406A (en) CATALYST FOR REMOVING NOx IN EXHAUST GAS
JP2011504156A (en) Method for purifying silicon tetrafluoride
Ali et al. Noble metal free catalyst with High activity and stability for catalytic wet air oxidation of N, N-dimethylformamide
JP4749093B2 (en) NOx purification catalyst carrier
JP2011224428A (en) Porous catalyst, and method of producing the same
JP2006297348A (en) Catalyst for clarifying exhaust gas
Zheng et al. Photo-reduction of NO by g-C3N4@ foamed ceramic
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
JP2008215253A (en) NOx EMISSION CONTROL METHOD AND NOx EMISSION CONTROL DEVICE
JP4895858B2 (en) New exhaust gas purification method
Xiaoyuan et al. Effect of pretreatment atmosphere on CuO/TiO 2 activities in NO+ CO reaction
JP4233572B2 (en) Honeycomb catalyst for exhaust gas purification
JP4753613B2 (en) NOx purification catalyst
JP4712406B2 (en) NOx purification catalyst
JP2007244934A (en) Catalyst for exhaust gas treatment
JP4823100B2 (en) New exhaust gas purification catalyst
JP3766984B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2014111231A (en) Carbon-coated porous body and adsorption tank for water purification and water purifying system using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201