JPH0250770B2 - - Google Patents
Info
- Publication number
- JPH0250770B2 JPH0250770B2 JP60082978A JP8297885A JPH0250770B2 JP H0250770 B2 JPH0250770 B2 JP H0250770B2 JP 60082978 A JP60082978 A JP 60082978A JP 8297885 A JP8297885 A JP 8297885A JP H0250770 B2 JPH0250770 B2 JP H0250770B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- adsorbent
- adsorption
- alumina
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 63
- 238000001179 sorption measurement Methods 0.000 claims description 61
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- 239000003463 adsorbent Substances 0.000 claims description 49
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 31
- 239000000377 silicon dioxide Substances 0.000 claims description 23
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 21
- 239000005749 Copper compound Substances 0.000 claims description 20
- 150000001880 copper compounds Chemical class 0.000 claims description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 18
- 238000011084 recovery Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000006185 dispersion Substances 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000243 solution Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 8
- -1 copper halides Chemical class 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 238000007872 degassing Methods 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 5
- 229910001431 copper ion Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052680 mordenite Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 description 2
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 2
- QYCVHILLJSYYBD-UHFFFAOYSA-L copper;oxalate Chemical compound [Cu+2].[O-]C(=O)C([O-])=O QYCVHILLJSYYBD-UHFFFAOYSA-L 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OPIPOVICJAKBHX-UHFFFAOYSA-N 1,1,1,2,2,3-hexachloropropane Chemical compound ClCC(Cl)(Cl)C(Cl)(Cl)Cl OPIPOVICJAKBHX-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical compound [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- FMWMEQINULDRBI-UHFFFAOYSA-L copper;sulfite Chemical compound [Cu+2].[O-]S([O-])=O FMWMEQINULDRBI-UHFFFAOYSA-L 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- TWSRVQVEYJNFKQ-UHFFFAOYSA-N pentyl propanoate Chemical compound CCCCCOC(=O)CC TWSRVQVEYJNFKQ-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
産業上の利用分野
本発明は、圧力変動式吸着分離法(以下PSA
法という)または/および温度変動式吸着分離法
(以下TSA法という)によりCOを含む混合ガス
から高純度のCOを分離回収する目的に用いる吸
着剤に関するものであり、さらにはその吸着剤を
製造する方法、およびその吸着剤を用いて高純度
COを分離回収する方法に関するものである。
従来の技術
COを主成分とするガスの代表的なものとして、
製鉄所の転炉から得られる転炉ガス、高炉から得
られる高炉ガス、電気炉から得られる電気炉ガ
ス、コークスをガス化して得られる発生炉ガスな
どがある。これらのガスは通常そのほとんどが燃
料として使用されているが、これらのガスの中に
はCOがたとえば70vol%前後あるいはそれ以上も
含まれているものもあるので、これらのガス中に
含まれるCOを高純度で分離回収することができ
れば、ギ酸、酢酸等の合成原料、有機化合物の還
元用などとして用いることができ、化学工業上非
常に有益である。
従来、COを主成分とするガスからCOを分離回
収する方法として、深冷分離法、銅アンモニア
法、コソーブ(COSORB)法などが知られてい
るが、これらの方法は設備費がかさむ上、電力、
蒸気等の熱エネルギーに要する費用が大きいとい
う問題があり、大容量のCOの分離回収には適し
ていても、中容量または小容量のCOの分離回収
には必ずしも適していなかつた。さらに、これら
の方法により分離して得られるCOにはO2、CO2
など有機合成反応上障害となるガス成分が混在し
てくるため、そのままでは有機合成用には適用で
きないという欠点があつた。
ところで、中容量または小容量の原料ガスから
特定ガスを選択分離する方法としてPSA法およ
びTSA法が知られている。
PSA法とは、混合ガスから特定ガスを選択分
離する方法の一つであつて、高い圧力で被吸着物
を吸着剤に吸着させ、ついで吸着系の圧力を下げ
ることによつて吸着剤に吸着した被吸着物を脱離
し、吸着物および非吸着物を分離する方法であつ
て、工業的には吸着剤を充填した塔を複数個設
け、それぞれの吸着塔において、昇圧→吸着→洗
浄→脱気の一連の操作を繰り返すことにより、装
置全体としては連続的に分離回収を行うことがで
きるようにしたものである。
また、TSA法も上記PSA法と同様に混合ガス
から特定ガスを選択分離する方法の一つであつ
て、低温で被吸着物を吸着剤に吸着させ、ついで
吸着系の温度を上げることによつて吸着剤に吸着
した被吸着物を脱離し、吸着物および非吸着物を
分離する方法である。
従来、このPSA法によりCOを含む混合ガスか
らCOを分離回収する方法として、モルデナイト
系ゼオライトを吸着剤として用いる方法が提案さ
れている。(特開昭59−22625号公報、特開昭59−
49818号公報参照)
また、PSA法またはTSA法によりCOを含む混
合ガスからCOを分離回収する方法として、ハロ
ゲン化銅()、酸化銅()、銅()塩、酸化
銅()などの銅化合物を活性炭に担持させたも
のを執着剤として用いる方法が提案されている。
(特開昭58−156517号公報、特開昭59−69414号公
報、特開昭59−105841号公報、特開昭59−136134
号公報参照)
そのほか、COを含む混合ガスからCOを除去す
る方法として、SiO2/Al2O3のモル比が20〜200
のゼオライトにイオン交換法により価の銅イオ
ンを直接導入するか、該ゼオライトにイオン交換
法により価の銅イオンを導入したのち価の銅
イオンに還元することにより製造した吸着剤を用
いる方法も知られている。(米国特許第4019879号
明細書参照)
発明が解決しようとする問題点
PSA法またはTSA法を実施するにあたり吸着
塔に充填する吸着剤に求められる性能としては、
共存成分に対する着目成分の選択的吸着がある
こと、加工または低温時と減圧または高温時の
着目成分の吸着量の差が大きいこと、吸着した
着目成分の脱離が容易であること、着目成分以
外は吸着されにくく、そして脱離しにくいこと、
などがあげられる。これらの性能は、製品ガスの
純度および収率に大きな影響を与えるため、
PSA法またはTSA法では重要な要素となる。
しかるに、吸着剤の物理的な吸着脱離現象を利
用する上記モルデナイト系ゼオライトを吸着剤と
して用いる方法にあつては、CO吸着量が比較的
小さいため圧力スイングの切替え頻度を多くしな
ければならず、操作の点でも弁類の寿命の点でも
不利となること、吸着操作に先立ちCO2を予め除
去しておかなければならないこと、N2の共吸着
を免かれないため、製品純度が低くなること、ま
た吸着したN2を除くために製品COガスを用いて
塔内洗浄を行うときの洗浄量が多く、製品COの
回収率が低くなることなどの問題がある。
一方、吸着剤の化学的な吸着脱離現象を利用す
る上記銅化合物を活性炭に担持させた吸着剤を用
いる方法にあつては、CO、N2、CO2などを含む
混合ガスからCOを分離しようとする場合、COと
同時にCO2なども共吸着する傾向があるため高純
度のCOを分離回収しがたいこと、また吸着剤の
CO吸着量が必ずしも大きくはないことなどの問
題点があり、工業的規模において採用しうるまで
には至つていない。
さらに、SiO2/Al2O3のモル比が20〜200のゼ
オライトに価の銅イオンをイオン交換法により
導入した吸着剤を用いる方法は、COの含有量が
比較的少ない混合ガスからCOを除去する目的に
は採用できても、COがたとえば70vol%前後ある
いはそれ以上も含まれている混合ガスからCOを
選択分離する目的には、CO吸着量が少なく、し
かも製品COガスの純度および収率が劣るため、
工業的には採用し難い。
本発明は、このような状況に鑑み、COを含む
混合ガスから高純度のCOを効率良く分離回収す
る工業的に有利な吸着剤を見出すべく鋭意研究を
重ねた結果到達したものである。
問題点を解決するための手段
本発明のCO分離回収用吸着剤は、シリカまた
は/およびアルミナからなる担体に銅化合物を担
持させてなるものである。
また、本発明のCO分離回収用吸着剤の製造法
は、シリカまたは/およびアルミナからなる担体
に、銅化合物を溶媒に溶解または分散した溶液ま
たは分散液を接触させた後、溶媒を除去すること
を特徴とするものである。
さらにまた、本発明の高純度COを分離回収す
る方法は、PSA法または/およびTSA法により
COを含む混合ガスから高純度COを分離回収する
にあたり、吸着剤として、シリカまたは/および
アルミナからなる担体に銅化合物を担持させてな
るCO分離回収用吸着剤を用いることを特徴とす
るものである。
以下、本発明を詳細に説明する。
吸着剤
本発明のCO分離回収用吸着剤は、シリカまた
は/およびアルミナからなる担体に銅化合物を担
持させてなるものである、
シリカは、たとえばケイ酸ナトリウム水溶液を
塩酸などの酸で中和して沈澱を析出させ、ついで
水洗、乾燥し、さらに必要に応じて減圧加熱によ
り活性化し、粉粒状とすることにより取得され
る。アルミナは、たとえば可溶性のアルミニウム
塩の水溶液から水酸化アルミニウムを沈澱させて
ろ過し、これを強熱することにより取得される。
シリカとアルミナを併用するときは、シリカとア
ルミナとの単なる機械的混合物のほか、シリカゲ
ルとアルミナゲルとを湿つた状態で練り合せる方
法、シリカゲルにアルミニウム塩を浸漬する方
法、シリカとアルミナとを水溶液から同時にゲル
化させる方法、シリカゲル上にアルミナゲルを沈
着させる方法などが採用される。
これらのシリカ、アルミナおよびシリカ−アル
ミナは、いずれも市販されており、本発明におい
ては塔に充填したときの圧損等を考慮して粒径が
たとえば1〜7mm程度の粒状のものを選択し、こ
れを必要に応じて乾燥してから使用する。
シリカとアルミナとを比較すると、CO吸着量
の点ではシリカの方がすぐれており、一方CO純
度の点ではアルミナの方がすぐれているという傾
向がある。
シリカまたは/およびアルミナ担体に担持させ
る銅化合物としては、銅()化合物、銅()
化合物または銅()化合物の還元物が用いられ
る。
ここで銅()化合物としては、塩化銅()、
フツ化銅()、臭化銅()等のハロゲン化銅
();酸化銅();シアン化銅();ギ酸銅
()、酢酸銅()、シユウ酸銅()、硫酸銅
()、亜硫酸銅()等の銅()の酸素酸塩ま
たは有機酸塩;硫化銅();ジクロロ銅()
酸塩、テトラクロロ銅()酸塩、ジシアノ銅
()酸塩、テトラシアノ銅()酸塩等の錯塩
などが例示される。特に塩化銅()が好適であ
る。
銅()化合物としては、塩化銅()、フツ
化銅()、臭化銅()等のハロゲン化銅
();酸化銅();シアン化銅();ギ酸銅
()、酢酸銅()、シユウ酸銅()、硫酸銅
()、硝酸銅()、リン酸銅()、炭酸銅
()等の銅()の酸素酸塩または有機酸塩;
水酸化銅();硫化銅():トリフルオロ銅
()酸塩、テトラフルオロ銅()酸塩、トリ
クロロ銅()酸塩、テトラクロロ銅()酸
塩、テトラシアノ銅()酸塩、テトラヒドロオ
クソ銅()酸塩、ヘキサヒドロオクソ銅()
酸塩、アンミン錯塩等の錯塩などが例示される。
銅()化合物を担体に担持させた場合は、こ
れを還元した還元物も用いられる。この還元物
は、銅()化合物と銅()化合物との混合
物、あるいは価と価の中間の原子価を持つ化
合物であると推定される。
シリカまたは/およびアルミナ担体に対する銅
化合物の担持量は特に限定はないが、通常は0.5
〜10m−mol/g、好ましくは1〜5m−mol/
gの範囲から選択する。担持量が余りに少ないと
CO吸着能力が不足し、一方担持量が余りに多い
とかえつて分離効率が低下する。
吸着剤の製造法
上述の吸着剤は、シリカまたは/およびアルミ
ナからなる担体に、銅化合物を溶媒に溶解または
分散させた溶液または分散液を接触させた後、溶
媒を除去することにより製造される。
溶液または分散液の接触は、含浸、スプレーな
どによりなされる。この際、シリカまたは/およ
びアルミナに銅化合物の溶液または分散液を含浸
またはスプレーなどの手段により単に接触させる
だけでなく、真空脱気したシリカまたは/および
アルミナに銅化合物の溶液または分散液を接触さ
せたり、シリカまたは/およびアルミナに銅化合
物の溶液または分散液を接触させた後、減圧条件
下に脱気したりしてもよい。
溶媒としては、たとえば、水、塩酸、酢酸、ギ
酸、アンモニア性ギ酸水溶液、アンモニア水、含
ハロゲン溶剤(クロロホルム、四塩化炭素、二塩
化エチレン、トリクロロエタン、テトラクロロエ
タン、テトラクロロエチレン、塩化メチレン、フ
ツ素系溶剤等)、含イオウ溶剤(二硫化炭素、ジ
メチルスルホキシド等)、含窒素溶剤(プロピオ
ニトリル、アセトニトリル、ジエチルアミン、ジ
メチルホルムアミド、N−メチルピロリドン等)、
炭化水素(ヘキサン、ベンゼン、トルエン、キシ
レン、エチルベンゼン、シクロヘキサン、デカリ
ン等)、アルコール類(メタノール、エタノール、
プロパノール、ブタノール、アミルアルコール、
シクロヘキサノール、エチレングリコール、プロ
ピレングリコール等)、ケトン類(アセトン、メ
チルエチルケトン、メチルイソブチルケトン、ア
セトフエノン、イトホロン、シクロヘキサノン
等)、エステル類(酢酸メチル、酢酸エチル、酢
酸アミル、プロピオン酸メチル、プロピオン酸ア
ミル等)、エーテル類(イソプロピルエーテル、
ジオキサン等)、セロソルブ類(セロソルブ、エ
チルセロソルブ、ブチルセロソルブ、セロソルブ
アセテート等)、カルビトール類などがあげられ
る。
シリカまたは/およびアルミナからなる担体に
銅化合物の溶液または分散液を接触させた後は、
空気雰囲気下または窒素、アルゴンなどの不活性
ガス雰囲気下に適当な手段により溶媒を除去す
る。溶媒の除去は単なる加熱乾燥のほか、減圧乾
燥によつてもなされる。
銅()化合物を用いた場合は、この乾燥によ
り十分なCO吸着能を示す吸着剤が得られるが、
さらに不活性ガスまたは還元性ガス雰囲気下に加
熱処理を行つてもよい。
これに対し銅()化合物を用いた場合は、上
記乾燥だけではCO吸着能が不足する場合が多い。
そこで銅()化合物を用いた場合には、乾燥後
の吸着剤をさらに不活性ガスまたは還元性ガス雰
囲気下において加熱処理することにより活性化を
行うことが望ましい。加熱温度は、窒素、アルゴ
ンなどの不活性ガス中においては200〜600℃、好
ましくは400〜550℃、CO、H2などの還元性ガス
中においては100〜230℃とするのが適当である。
この加熱処理により、担体に担持された銅
()化合物は部分的に還元されて、銅()化
合物と銅()化合物との混合物、あるいは価
と価の中間の原子価を持つ化合物になるものと
推定される。
COの分離回収
上記のようにして得られた吸着剤は、吸着塔に
充填され、PSA法またはTSA法により、COを含
む混合ガスからのCOの分離回収が遂行される。
PSA法によりCOの分離回収を行う場合は、吸
着工程における吸着圧力は大気圧以上、たとえば
0〜6Kg/cm2Gとすることが望ましく、真空脱気
工程における真空度は大気圧以下、たとえば200
〜10Torrとすることが望ましい。
TSA法によりCOの分離回収を行う場合は、吸
着工程における吸着温度はたとえば0〜40℃程
度、脱気工程における脱気温度はたとえば60〜
180℃程度とすることが望ましい。
また、PSA法とTSA法とを併用し、吸着を大
気圧以上で低温条件下に行い、脱気を大気圧以下
で高温条件下に行うこともできる。
なお、TSA法はエネルギー消費の点でPSA法
に比しては不利であるため、工業的にはPSA法
を採用するか、PSA−TSA併用法を採用するこ
とが望ましい。
本発明の方法に適用できるCOを含む混合ガス
としては、たとえば、製鉄所の転炉から発生する
転炉ガスが用いられる。転炉ガスは、通常、主成
分としてのCOのほか、O2、メタンその他の炭化
水素、水および少量のH2S、NH3等を含んでい
る。転炉ガス以外に、高炉ガス、電気炉ガス、発
生炉ガスなども原料ガスとして用いることができ
る。
なお、本発明においては、CO分離回収工程に
先立ち、上記吸着剤を被毒し、あるいはその寿命
を縮めるおそれのある成分、すなわちイオウ化合
物、NH3等の不純物の吸着除去工程、水分除去
工程およびO2除去工程を設けることが望ましい。
ただし、CO2除去工程やN2除去工程は設けるに
は及ばない。
PSA法を採用した場合の操作は、工業的には、
上記吸着剤を充填した複数の吸着塔を用い、次の
各操作をそれぞれの吸着塔において、
(1) 原料ガスを吸着塔に流してCOを吸着する工
程、および、排出ガス中CO濃度が原料ガス中
のCO濃度と等しくなる少し前に、排出ガスを
他塔の昇圧()に用いる工程、
(2) 吸着工程終了後、その吸着塔と真空脱気が終
つた吸着塔とを連絡し、前者吸着塔の圧力を大
気圧付近まで並流に減圧させる減圧工程、およ
びそれに対応して後者吸着塔を昇圧()する
工程、
(3) 減圧した吸着塔に製品ガスの一部を並流に導
入して、塔内部残留不純物ガスを洗浄する洗浄
工程、および、このとき排出されるガスを他塔
の昇圧()に用いる工程、
(4) 真空減圧して、吸着剤に吸着されているCO
を吸着剤から向流に脱気させ、製品ガスを回収
する製品回収工程、
(5) 製品回収が終つた吸着塔と吸着工程が終つた
吸着塔とを連絡して、前者吸着塔を並流に昇圧
する昇圧()工程、
(6) 他の吸着塔の洗浄排ガスにより並流に昇圧す
る昇圧()工程、
(7) 他の吸着塔の吸着工程終了間際の排ガスによ
り昇圧する昇圧()工程、
を順次繰返して行えばよい。
このように上記操作をそれぞれの吸着塔におい
て順次繰返して行うことによつて、連続的に高純
度のCOガスを高い回収率で分離回収することが
できる。
作 用
本発明の固体吸着剤による吸着脱離現象は、主
として担体に担持された銅化合物とCOとの可逆
的な化学反応(錯体形成反応と解離反応)に基づ
くものであり(N2、CO2との化学反応は起こら
ない)、副次的にシリカまたは/およびアルミナ
担体の細孔表面上への物理的な吸着およびそこか
らの脱離に基くものであると考えられる。
実施例
次に、実施例をあげて本発明をさらに説明す
る。
実施例 1
200mlの三角フラスコ中で塩化銅()14gを
40mlの塩酸に溶解することにより、塩化銅()
溶液を調製した。この溶液中に、予め110℃で約
4時間乾燥した平均粒径3mmのアルミナ(不二見
研磨材工業株式会社製AH−S11)40gを加え、
アスピレーターで1分間脱気した後、4時間静置
した。ついで、マントルヒーターで200℃に加熱
しつつ、N2気流中で溶媒を留去した後、室温ま
で冷却し、CO分離回収用の吸着剤を得た。
上記で得た吸着剤を吸着塔(15mmφ×300mmH)
に充填し、この吸着塔に
CO:71.4vol%
N2:12.7vol%
CO2:15.9vol%
よりなる組成の1気圧の混合ガスを供給して20℃
でCOを吸着させた。このときのCO吸着量は16.2
c.c./c.c.であつた。
吸着操作後CO180mlで塔内を洗浄し、ついで真
空ポンプを用いて圧力50Torrで5分間脱気を行
い、吸着されているガスを放出させた。このとき
のCO放出量は8.9c.c./c.c.であり、回収ガス組成
は、
CO:99.9vol%
CO2:0.1vol%
N2:trace
であつた。
再び上記と同じ条件で吸着させると、放出した
CO量と同じ量のCOが吸着された。
比較例 1
吸着剤としてのモルデナイト系ゼオライト(粒
径3mm)を充填した吸着塔を用いたほかは実施例
1と同様にして実験を行つた。
比較例 2
アルミナに代えて市販の活性炭(粒径3mm)を
用いたほかは実施例1と同様にして吸着剤を製造
し、この吸着剤を用いて実施例1と同様の実験を
行つた。
以上実施例1、比較例1〜2の結果を第1表に
示す。
Industrial Application Field The present invention is a pressure fluctuation adsorption separation method (hereinafter referred to as PSA
This technology relates to adsorbents used for the purpose of separating and recovering high-purity CO from a mixed gas containing CO by the temperature fluctuation adsorption separation method (hereinafter referred to as the TSA method) and/or the temperature fluctuation adsorption separation method (hereinafter referred to as the TSA method). method and its adsorbent to achieve high purity
This relates to a method for separating and recovering CO. Conventional technology As a typical gas whose main component is CO,
Examples include converter gas obtained from a converter in a steel mill, blast furnace gas obtained from a blast furnace, electric furnace gas obtained from an electric furnace, and generator gas obtained by gasifying coke. Most of these gases are normally used as fuel, but some of these gases contain around 70 vol% or more of CO, so the CO contained in these gases is If it can be separated and recovered with high purity, it can be used as a raw material for the synthesis of formic acid, acetic acid, etc., and for the reduction of organic compounds, and is extremely useful in the chemical industry. Conventionally, cryogenic separation methods, copper ammonia methods, and COSORB methods are known as methods for separating and recovering CO from a gas whose main component is CO, but these methods require high equipment costs and electricity,
There is a problem in that the cost of thermal energy such as steam is high, and although it is suitable for separating and recovering large volumes of CO, it is not necessarily suitable for separating and recovering medium or small volumes of CO. Furthermore, the CO obtained by separation by these methods contains O 2 and CO 2
It has the disadvantage that it cannot be used as it is for organic synthesis because it contains gas components that can be a hindrance to organic synthesis reactions. Incidentally, the PSA method and the TSA method are known as methods for selectively separating a specific gas from a medium or small volume of source gas. The PSA method is a method for selectively separating specific gases from a mixed gas.The adsorbent is adsorbed onto an adsorbent under high pressure, and then the adsorbent is adsorbed onto the adsorbent by lowering the pressure of the adsorption system. This method desorbs adsorbed substances and separates adsorbed substances and non-adsorbed substances.Industrially, multiple towers filled with adsorbent are installed, and in each adsorption tower, pressure increase → adsorption → washing → desorption is performed. By repeating a series of air operations, the entire device can perform continuous separation and recovery. Similarly to the PSA method, the TSA method is also a method for selectively separating a specific gas from a mixed gas, by adsorbing the adsorbent onto an adsorbent at a low temperature and then raising the temperature of the adsorption system. In this method, the adsorbed substances adsorbed on the adsorbent are desorbed, and the adsorbed substances and non-adsorbed substances are separated. Conventionally, a method using mordenite-based zeolite as an adsorbent has been proposed as a method for separating and recovering CO from a mixed gas containing CO using the PSA method. (JP-A-59-22625, JP-A-59-22625, JP-A-59-22625,
(Refer to Publication No. 49818) In addition, as a method for separating and recovering CO from a mixed gas containing CO using the PSA method or TSA method, copper halides (), copper oxides (), copper () salts, copper oxides (), etc. A method has been proposed in which a compound supported on activated carbon is used as an attachment agent.
(JP-A-58-156517, JP-A-59-69414, JP-A-59-105841, JP-A-59-136134)
(Refer to the publication) In addition, as a method for removing CO from a mixed gas containing CO, there is a method in which the molar ratio of SiO 2 /Al 2 O 3 is 20 to 200.
There is also a known method of using an adsorbent produced by directly introducing valent copper ions into zeolite by an ion exchange method, or by introducing valence copper ions into the zeolite by an ion exchange method and then reducing the valent copper ions to valent copper ions. It is being (Refer to US Pat. No. 4,019,879) Problems to be Solved by the Invention When carrying out the PSA method or the TSA method, the performance required of the adsorbent packed in the adsorption tower is as follows.
There is selective adsorption of the target component over coexisting components, there is a large difference in the adsorption amount of the target component during processing or low temperature and under reduced pressure or high temperature, the adsorbed target component is easily desorbed, and components other than the target component is difficult to adsorb and desorb,
etc. These performances have a significant impact on product gas purity and yield, so
This is an important element in the PSA or TSA Act. However, in the method of using mordenite-based zeolite as an adsorbent, which utilizes the physical adsorption/desorption phenomenon of the adsorbent, the pressure swing must be changed more frequently because the amount of CO adsorbed is relatively small. , there are disadvantages in terms of operation and valve life, CO 2 must be removed before adsorption operation, and co-adsorption of N 2 is inevitable, resulting in low product purity. In addition, when cleaning the inside of the tower using product CO gas to remove adsorbed N 2 , the amount of cleaning required is large, resulting in a low recovery rate of product CO. On the other hand, in the case of a method using an adsorbent in which the above-mentioned copper compound is supported on activated carbon, which utilizes the chemical adsorption/desorption phenomenon of the adsorbent, CO is separated from a mixed gas containing CO, N 2 , CO 2 , etc. However, when trying to separate and recover high-purity CO because it tends to co-adsorb CO2 and other substances at the same time, it is also difficult to separate and recover CO2 with high purity.
There are problems such as the amount of CO adsorption is not necessarily large, and it has not yet reached the point where it can be adopted on an industrial scale. Furthermore, a method using an adsorbent in which valent copper ions are introduced into zeolite with a SiO 2 /Al 2 O 3 molar ratio of 20 to 200 by an ion exchange method removes CO from a mixed gas with a relatively low CO content. Although it can be used for the purpose of removing CO, for the purpose of selectively separating CO from a mixed gas containing, for example, around 70 vol% or more, it is difficult to adsorb CO and the purity and yield of the product CO gas is insufficient. Because the rate is inferior,
Difficult to adopt industrially. In view of this situation, the present invention was achieved as a result of intensive research aimed at finding an industrially advantageous adsorbent that can efficiently separate and recover high-purity CO from a mixed gas containing CO. Means for Solving the Problems The adsorbent for CO separation and recovery of the present invention has a copper compound supported on a carrier made of silica and/or alumina. In addition, the method for manufacturing the adsorbent for CO separation and recovery of the present invention includes contacting a carrier made of silica and/or alumina with a solution or dispersion in which a copper compound is dissolved or dispersed in a solvent, and then removing the solvent. It is characterized by: Furthermore, the method of separating and recovering high-purity CO of the present invention uses the PSA method or/and TSA method.
In separating and recovering high-purity CO from a mixed gas containing CO, this system is characterized by using an adsorbent for CO separation and recovery, which is made by supporting a copper compound on a carrier made of silica and/or alumina. be. The present invention will be explained in detail below. Adsorbent The adsorbent for CO separation and recovery of the present invention is made by supporting a copper compound on a carrier made of silica and/or alumina. The precipitate is precipitated, washed with water, dried, and if necessary activated by heating under reduced pressure to form a powder. Alumina is obtained, for example, by precipitating aluminum hydroxide from an aqueous solution of a soluble aluminum salt, filtering it, and igniting it.
When using silica and alumina together, in addition to a simple mechanical mixture of silica and alumina, methods include kneading silica gel and alumina gel together in a wet state, soaking silica gel in aluminum salt, and mixing silica and alumina in an aqueous solution. A method of simultaneously gelling the silica gel, a method of depositing alumina gel on silica gel, etc. are adopted. These silica, alumina, and silica-alumina are all commercially available, and in the present invention, granular materials with a particle size of, for example, about 1 to 7 mm are selected in consideration of pressure loss when packed into a column, Dry this if necessary before using. When comparing silica and alumina, silica tends to be superior in terms of CO adsorption amount, while alumina tends to be superior in terms of CO purity. Copper compounds supported on silica and/or alumina carriers include copper() compounds, copper()
A compound or a reduced product of a copper() compound is used. Here, copper () compounds include copper chloride (),
Copper halides () such as copper fluoride () and copper bromide (); copper oxide (); copper cyanide (); copper formate (), copper acetate (), copper oxalate (), copper sulfate () , copper sulfite (), oxyacid or organic acid salt of copper (); copper sulfide (); dichlorocopper ()
Examples include complex salts such as acid salts, tetrachlorocopper()ates, dicyanocopper()ates, and tetracyanocopper()ates. Copper chloride () is particularly suitable. Copper () compounds include copper halides () such as copper chloride (), copper fluoride (), copper bromide (); copper oxide (); copper cyanide (); copper formate (), copper acetate (); ), copper oxalate (), copper sulfate (), copper nitrate (), copper phosphate (), copper carbonate (), and other oxy- or organic acid salts of copper ();
Copper hydroxide (); Copper sulfide (): trifluorocopper()ate, tetrafluorocopper()ate, trichlorocopper()ate, tetrachlorocopper()ate, tetracyanocopper()ate, tetrahydrocopper()ate Oxocopper() salt, hexahydroxocopper()
Examples include acid salts and complex salts such as ammine complex salts. When a copper () compound is supported on a carrier, a reduced product of the copper compound may also be used. This reduced product is estimated to be a mixture of a copper() compound and a copper() compound, or a compound having an intermediate valence. The amount of copper compound supported on the silica or/and alumina support is not particularly limited, but is usually 0.5
~10 m-mol/g, preferably 1-5 m-mol/
Select from the range of g. If the supported amount is too small
If the CO adsorption capacity is insufficient, and on the other hand, the amount supported is too large, the separation efficiency will decrease. Method for producing adsorbent The above-mentioned adsorbent is produced by contacting a carrier made of silica or/and alumina with a solution or dispersion in which a copper compound is dissolved or dispersed in a solvent, and then removing the solvent. . The solution or dispersion is brought into contact by impregnation, spraying, or the like. At this time, in addition to simply contacting silica or/and alumina with a solution or dispersion of a copper compound by means such as impregnation or spraying, the solution or dispersion of a copper compound is brought into contact with vacuum-degassed silica or/and alumina. Alternatively, a solution or dispersion of a copper compound may be brought into contact with silica and/or alumina, and then degassed under reduced pressure conditions. Examples of solvents include water, hydrochloric acid, acetic acid, formic acid, ammoniacal formic acid aqueous solution, aqueous ammonia, halogen-containing solvents (chloroform, carbon tetrachloride, ethylene dichloride, trichloroethane, tetrachloroethane, tetrachloroethylene, methylene chloride, fluorinated solvents). etc.), sulfur-containing solvents (carbon disulfide, dimethyl sulfoxide, etc.), nitrogen-containing solvents (propionitrile, acetonitrile, diethylamine, dimethylformamide, N-methylpyrrolidone, etc.),
Hydrocarbons (hexane, benzene, toluene, xylene, ethylbenzene, cyclohexane, decalin, etc.), alcohols (methanol, ethanol,
propanol, butanol, amyl alcohol,
cyclohexanol, ethylene glycol, propylene glycol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, itophorone, cyclohexanone, etc.), esters (methyl acetate, ethyl acetate, amyl acetate, methyl propionate, amyl propionate, etc.) ), ethers (isopropyl ether,
dioxane, etc.), cellosolves (cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate, etc.), and carbitols. After contacting a solution or dispersion of a copper compound with a carrier made of silica or/and alumina,
The solvent is removed by appropriate means under an air atmosphere or an inert gas atmosphere such as nitrogen or argon. The solvent can be removed not only by heat drying but also by vacuum drying. When a copper() compound is used, an adsorbent with sufficient CO adsorption ability can be obtained through this drying process, but
Furthermore, heat treatment may be performed under an inert gas or reducing gas atmosphere. On the other hand, when a copper() compound is used, the CO adsorption capacity is often insufficient just by the above-mentioned drying.
Therefore, when a copper() compound is used, it is desirable to activate the adsorbent after drying by further heat-treating it in an inert gas or reducing gas atmosphere. The appropriate heating temperature is 200 to 600°C, preferably 400 to 550°C in an inert gas such as nitrogen or argon, and 100 to 230°C in a reducing gas such as CO or H2 . . Through this heat treatment, the copper () compound supported on the carrier is partially reduced, resulting in a mixture of copper () compounds and copper () compounds, or a compound with a valence between two valences. It is estimated to be. Separation and recovery of CO The adsorbent obtained as described above is packed into an adsorption tower, and separation and recovery of CO from a mixed gas containing CO is performed by the PSA method or the TSA method. When separating and recovering CO by the PSA method, it is desirable that the adsorption pressure in the adsorption step is at least atmospheric pressure, for example 0 to 6 kg/cm 2 G, and the degree of vacuum in the vacuum degassing step is below atmospheric pressure, for example 200 kg/cm 2 G.
It is desirable to set it to ~10Torr. When separating and recovering CO by the TSA method, the adsorption temperature in the adsorption step is, for example, about 0 to 40°C, and the degassing temperature in the degassing step is, for example, 60 to 40°C.
It is desirable to set the temperature to about 180℃. It is also possible to use the PSA method and the TSA method in combination, performing adsorption at atmospheric pressure or higher under low temperature conditions and degassing at atmospheric pressure or lower under high temperature conditions. In addition, since the TSA method is disadvantageous compared to the PSA method in terms of energy consumption, it is desirable to adopt the PSA method or a combined PSA-TSA method from an industrial perspective. As the mixed gas containing CO that can be applied to the method of the present invention, for example, converter gas generated from a converter in a steel mill is used. Converter gas usually contains CO as a main component, as well as O 2 , methane and other hydrocarbons, water, and small amounts of H 2 S, NH 3 and the like. In addition to converter gas, blast furnace gas, electric furnace gas, generator gas, etc. can also be used as raw material gas. In addition, in the present invention, prior to the CO separation and recovery step, a step of adsorbing and removing impurities such as sulfur compounds and NH 3 , a step of removing water, and a step of removing impurities that may poison the adsorbent or shorten its lifespan are performed. It is desirable to provide an O 2 removal step.
However, it is not enough to provide a CO 2 removal process or a N 2 removal process. Industrially, the operation when using the PSA method is as follows:
Using a plurality of adsorption towers filled with the above adsorbent, the following operations are carried out in each adsorption tower: (1) A step in which the raw material gas is passed through the adsorption tower to adsorb CO, and a step in which the CO concentration in the exhaust gas is Shortly before the CO concentration in the gas becomes equal, the exhaust gas is used to boost the pressure of another column (2) After the adsorption step is completed, the adsorption column is connected to the adsorption column that has completed vacuum deaeration; A depressurization step in which the pressure in the former adsorption tower is reduced to near atmospheric pressure in parallel flow, and a corresponding step in which the pressure in the latter adsorption tower is increased (); (3) A part of the product gas is flowed in parallel flow into the depressurized adsorption tower. (4) A cleaning process in which CO is introduced into the column to clean residual impurity gas inside the column, and a process in which the gas discharged at this time is used to boost the pressure of other columns (4) The CO adsorbed by the adsorbent is
(5) The adsorption tower where product recovery has been completed and the adsorption tower where the adsorption process has been completed are connected, and the former adsorption tower is operated in parallel flow. (6) Pressure raising () step in which the pressure is raised in parallel flow using the washed exhaust gas from other adsorption towers; (7) Pressure raising () step in which the pressure is raised by the exhaust gas from other adsorption towers near the end of the adsorption process. , may be repeated in sequence. By sequentially repeating the above operations in each adsorption tower in this manner, highly pure CO gas can be continuously separated and recovered at a high recovery rate. Effect The adsorption/desorption phenomenon by the solid adsorbent of the present invention is mainly based on the reversible chemical reaction (complex formation reaction and dissociation reaction) between the copper compound supported on the carrier and CO (N 2 , CO (No chemical reaction with 2 occurs), and is thought to be based on secondary physical adsorption onto the pore surface of the silica or/and alumina support and desorption therefrom. Examples Next, the present invention will be further explained with reference to Examples. Example 1 14g of copper chloride () was added in a 200ml Erlenmeyer flask.
Copper chloride () by dissolving in 40ml hydrochloric acid
A solution was prepared. To this solution, 40 g of alumina (AH-S11 manufactured by Fujimi Abrasives Industry Co., Ltd.) with an average particle size of 3 mm was previously dried at 110 ° C. for about 4 hours, and
After degassing with an aspirator for 1 minute, it was left standing for 4 hours. Next, while heating to 200° C. with a mantle heater, the solvent was distilled off in a N 2 stream, and then cooled to room temperature to obtain an adsorbent for CO separation and recovery. Transfer the adsorbent obtained above to an adsorption tower (15mmφ x 300mmH)
A mixed gas of 1 atm with a composition of CO: 71.4 vol% N 2 : 12.7 vol% CO 2 : 15.9 vol% was supplied to the adsorption tower at 20°C.
CO was adsorbed. The amount of CO adsorption at this time is 16.2
It was cc/cc. After the adsorption operation, the inside of the column was washed with 180 ml of CO, and then degassing was performed for 5 minutes at a pressure of 50 Torr using a vacuum pump to release the adsorbed gas. The amount of CO released at this time was 8.9 cc/cc, and the composition of the recovered gas was CO: 99.9 vol% CO 2 : 0.1 vol % N 2 : trace. When adsorbed again under the same conditions as above, the released
The same amount of CO was adsorbed. Comparative Example 1 An experiment was conducted in the same manner as in Example 1, except that an adsorption tower filled with mordenite zeolite (particle size 3 mm) was used as an adsorbent. Comparative Example 2 An adsorbent was produced in the same manner as in Example 1, except that commercially available activated carbon (particle size: 3 mm) was used in place of alumina, and the same experiment as in Example 1 was conducted using this adsorbent. The results of Example 1 and Comparative Examples 1 and 2 are shown in Table 1.
【表】
実施例 2
実施例1において、混合ガスの吸着操作を2
Kg/cm2Gの加圧下に行い、吸着操作後は大気圧ま
で減圧してCO180mlで塔内を洗浄し、ついで真空
ポンプを用いて圧力50Torrで5分間脱気を行い、
吸着されているガスを放出させた。結果は次の通
りであつた。
CO吸着量 17.4c.c./c.c.
CO放出量 10.1c.c./c.c.
回収ガス組成
CO:99.95vol%
CO2:0.05vol%
N2:trace
実施例 3
200mlの三角フラスコ中で塩化銅()10gを
60mlの水に溶解することにより、塩化銅()溶
液を調製した。この溶液中に実施例1で用いたア
ルミナ40gを加え、アスピレーターで1分間脱気
した後、4時間静置した。ついで、マントルヒー
ターで200℃に加熱しつつ、N2気流中で溶媒を留
去した後、引き続きN2気流中500℃で約1時間熱
処理を行つた。その後室温まで冷却し、CO分離
回収用の吸着剤を得た。
この吸着剤を用いて実施例1と同じ条件で吸着
実験を行つた。結果は次の通りであつた。
CO吸着量 6.2c.c./c.c.
洗浄CO量 180ml
CO放出量 3.2c.c./c.c.
回収ガス組成
CO:98.7vol%
CO2:1.2vol%
N2:0.1vol%
実施例 4
担体として粒径3mmのシリカ−アルミナ(日揮
化学株式会社製N631L)33gを用い、熱処理温
度を450℃、洗浄量を360mlとした以外は実施例2
と同じ条件で実験を行つた。結果は次の通りであ
つた。
CO吸着量 13.7c.c./c.c.
CO放出量 9.9c.c./c.c.
回収ガス組成
CO:99.7vol%
CO2:0.3vol%
N2:trace
実施例 5
塩化銅()に代えて酸化銅()11gを用
い、熱処理温度を500℃とした以外は実施例1と
同じ条件で実験を行つた。結果は次の通りであつ
た。
CO吸着量 13.5c.c./c.c.
CO放出量 6.4c.c./c.c.
回収ガス組成
CO:99.6vol%
CO2:0.4vol%
N2:trace
実施例 6
実施例1において、吸着操作は1気圧、20℃で
行い、放出操作は1気圧、120℃で行つた。結果
は次の通りであつた。
CO吸着量 16.2c.c./c.c.
CO放出量 9.6c.c./c.c.
回収ガス組成
CO:96.3vol%
CO2:3.4vol%
N2:0.2vol%
実施例 7
実施例3において、アルミナに代えて平均粒径
3mmのシリカ(ローヌプーラン社製DCS)を用
い、これを塩化銅()溶液中に加え、アスピレ
ーターで1分間脱気した後、4時間静置した。つ
いで、マントルヒーターで200℃に加熱しつつ、
N2気流中で溶媒を留去した後、引き続きCO気流
中450℃で約1時間熱処理を行つた。その後室温
まで冷却し、CO分離回収用の吸着剤を得た。
この吸着剤を用いて実施例1と同じ条件で吸着
実験を行つた。結果は次の通りであつた。
CO吸着量 5.9c.c./c.c.
洗浄CO量 360ml
CO放出量 3.0c.c./c.c.
回収ガス組成
CO:98.8vol%
CO2:1.1vol%
N2:0.1vol%
発明の効果
本発明のCO吸着剤は、安価な原材料を用い
容易に製造できること、熱に対して安定である
上、硬さもあり、吸着塔に充填した場合長期にわ
たり耐久性を持つこと、混合ガス中のCO以外
のガスの吸着が少ないため、極めて純度の高い
COを分離回収できること、などのすぐれた利点
を有している。
よつて、本発明により、転炉ガスその他COを
含むガスから高純度のCOを工業的規模で分離回
収することでき、化学工業上の意義が大きい。[Table] Example 2 In Example 1, the mixed gas adsorption operation was carried out in two steps.
It was carried out under a pressure of Kg/cm 2 G, and after the adsorption operation, the pressure was reduced to atmospheric pressure and the inside of the column was washed with 180 ml of CO. Then, degassing was performed for 5 minutes at a pressure of 50 Torr using a vacuum pump.
The adsorbed gas was released. The results were as follows. CO adsorption amount 17.4cc/cc CO release amount 10.1cc/cc Recovered gas composition CO: 99.95vol% CO 2 : 0.05vol% N 2 : trace Example 3 10g of copper chloride () was added in a 200ml Erlenmeyer flask.
Copper chloride () solution was prepared by dissolving in 60 ml of water. 40 g of the alumina used in Example 1 was added to this solution, degassed with an aspirator for 1 minute, and then allowed to stand for 4 hours. Next, while heating to 200°C with a mantle heater, the solvent was distilled off in a N 2 stream, and then heat treatment was performed at 500°C in a N 2 stream for about 1 hour. Thereafter, it was cooled to room temperature to obtain an adsorbent for CO separation and recovery. An adsorption experiment was conducted using this adsorbent under the same conditions as in Example 1. The results were as follows. CO adsorption amount 6.2 cc/cc Washing CO amount 180 ml CO release amount 3.2 cc/cc Recovered gas composition CO: 98.7 vol% CO 2 : 1.2 vol% N 2 : 0.1 vol% Example 4 Silica-alumina with particle size of 3 mm as carrier Example 2 except that 33g of (N631L manufactured by JGC Chemical Co., Ltd.) was used, the heat treatment temperature was 450℃, and the amount of washing was 360ml.
The experiment was conducted under the same conditions. The results were as follows. CO adsorption amount 13.7cc/cc CO release amount 9.9cc/cc Recovered gas composition CO: 99.7vol% CO 2 : 0.3vol% N 2 :trace Example 5 Using 11 g of copper oxide () instead of copper chloride (), The experiment was conducted under the same conditions as in Example 1 except that the heat treatment temperature was 500°C. The results were as follows. CO adsorption amount 13.5cc/cc CO release amount 6.4cc/cc Recovered gas composition CO: 99.6vol% CO 2 : 0.4vol% N 2 :trace Example 6 In Example 1, the adsorption operation was performed at 1 atm and 20°C. The discharge operation was carried out at 1 atm and 120°C. The results were as follows. CO adsorption amount 16.2cc/cc CO release amount 9.6cc/cc Recovered gas composition CO: 96.3vol% CO 2 : 3.4vol% N 2 : 0.2vol% Example 7 In Example 3, the average particle size was 3 mm instead of alumina. Silica (DCS, manufactured by Rhone-Poulenc) was added to a copper chloride solution, degassed with an aspirator for 1 minute, and then allowed to stand for 4 hours. Next, while heating it to 200℃ with a mantle heater,
After the solvent was distilled off in a N 2 stream, heat treatment was subsequently performed at 450°C for about 1 hour in a CO stream. Thereafter, it was cooled to room temperature to obtain an adsorbent for CO separation and recovery. An adsorption experiment was conducted using this adsorbent under the same conditions as in Example 1. The results were as follows. CO adsorption amount 5.9cc/cc Washing CO amount 360ml CO release amount 3.0cc/cc Recovered gas composition CO: 98.8vol% CO 2 : 1.1vol% N 2 : 0.1vol% Effects of the invention The CO adsorbent of the present invention is inexpensive It is easy to manufacture using raw materials, is stable against heat, is hard, and has long-term durability when packed in an adsorption tower, and has low adsorption of gases other than CO in the mixed gas. Extremely pure
It has excellent advantages such as the ability to separate and recover CO. Therefore, the present invention makes it possible to separate and recover high-purity CO from converter gas and other CO-containing gases on an industrial scale, which is of great significance in the chemical industry.
Claims (1)
に銅化合物を担持させてなるCO分離回収用吸着
剤。 2 銅化合物が、銅()化合物である特許請求
の範囲第1項記載の吸着剤。 3 銅化合物が、銅()化合物またはその還元
物である特許請求の範囲第1項記載の吸着剤。 4 シリカまたは/およびアルミナからなる担体
に、銅化合物を溶媒に溶解または分散した溶液ま
たは分散液を接触させた後、溶媒を除去すること
を特徴とするCO分離回収用吸着剤の製造法。 5 シリカまたは/およびアルミナからなる担体
に、銅化合物を溶媒に溶解または分散した溶液ま
たは分散液を接触させた後、溶媒を除去し、さら
に不活性ガスまたは還元性ガス雰囲気下に加熱処
理することを特徴とする特許請求の範囲第4項記
載の製造法。 6 圧力変動式吸着分離法または/および温度変
動式吸着分離法によりCOを含む混合ガスから高
純度COを分離回収するにあたり、吸着剤として、
シリカまたは/およびアルミナからなる担体に銅
化合物を担持させてなるCO分離回収用吸着剤を
用いることを特徴とする高純度COを分離回収す
る方法。[Claims] 1. An adsorbent for CO separation and recovery, comprising a carrier made of silica and/or alumina supporting a copper compound. 2. The adsorbent according to claim 1, wherein the copper compound is a copper() compound. 3. The adsorbent according to claim 1, wherein the copper compound is a copper() compound or a reduced product thereof. 4. A method for producing an adsorbent for CO separation and recovery, which comprises contacting a carrier made of silica or/and alumina with a solution or dispersion in which a copper compound is dissolved or dispersed in a solvent, and then removing the solvent. 5. After contacting a carrier made of silica and/or alumina with a solution or dispersion in which a copper compound is dissolved or dispersed in a solvent, the solvent is removed and further heat treatment is performed under an inert gas or reducing gas atmosphere. The manufacturing method according to claim 4, characterized in that: 6. When separating and recovering high-purity CO from a mixed gas containing CO by pressure fluctuation type adsorption separation method and/or temperature fluctuation type adsorption separation method, as an adsorbent,
A method for separating and recovering high-purity CO, characterized by using an adsorbent for separating and recovering CO, which is made by supporting a copper compound on a carrier made of silica and/or alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60082978A JPS61242638A (en) | 1985-04-17 | 1985-04-17 | Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60082978A JPS61242638A (en) | 1985-04-17 | 1985-04-17 | Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61242638A JPS61242638A (en) | 1986-10-28 |
JPH0250770B2 true JPH0250770B2 (en) | 1990-11-05 |
Family
ID=13789299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60082978A Granted JPS61242638A (en) | 1985-04-17 | 1985-04-17 | Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61242638A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61263635A (en) * | 1985-05-17 | 1986-11-21 | Chiyoda Chem Eng & Constr Co Ltd | Co adsorbent |
KR960007736B1 (en) * | 1993-07-27 | 1996-06-11 | 한국과학기술연구원 | Method of removing carbonyl compound in inlet gas |
US5529970A (en) * | 1994-04-29 | 1996-06-25 | Air Products And Chemicals, Inc. | CO adsorbents with hysteresis |
GB0914272D0 (en) | 2009-08-17 | 2009-09-30 | Johnson Matthey Plc | Sorbent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019879A (en) * | 1975-09-26 | 1977-04-26 | Union Carbide Corporation | Selective adsorption of carbon monoxide from gas streams |
US4034065A (en) * | 1975-09-26 | 1977-07-05 | Union Carbide Corporation | Preparation of CU+ zeolites |
-
1985
- 1985-04-17 JP JP60082978A patent/JPS61242638A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019879A (en) * | 1975-09-26 | 1977-04-26 | Union Carbide Corporation | Selective adsorption of carbon monoxide from gas streams |
US4034065A (en) * | 1975-09-26 | 1977-07-05 | Union Carbide Corporation | Preparation of CU+ zeolites |
Also Published As
Publication number | Publication date |
---|---|
JPS61242638A (en) | 1986-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0157045B2 (en) | ||
US4914076A (en) | Method of producing an adsorbent for separation and recovery of CO | |
US7160360B2 (en) | Purification of hydride gases | |
US5536302A (en) | Adsorbent for removal of trace oxygen from inert gases | |
US5529970A (en) | CO adsorbents with hysteresis | |
EP0640376B1 (en) | Method for recovering ethylene from ethylene oxide plant vent gas | |
US6468329B2 (en) | Adsorbents and methods for the separation of ethylene and propylene and/or unsaturated hydrocarbons from mixed gases | |
JP4612323B2 (en) | Carbon monoxide gas adsorbent, adsorption method, and recovery method | |
JPH0250770B2 (en) | ||
US20220184578A1 (en) | Method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent | |
JPH0699127B2 (en) | Adsorbent for CO separation and recovery, method for producing the same, and method for separating and recovering CO using the same | |
JPH0724762B2 (en) | Method for producing adsorbent for CO separation and recovery | |
JP5256120B2 (en) | Method for producing CO adsorption / desorption agent | |
JPS6265919A (en) | Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent | |
JPS61242908A (en) | Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent | |
KR100636424B1 (en) | The preparation method of an adsorbent and the purification method of gases using the same | |
KR102677862B1 (en) | A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent | |
JP5324369B2 (en) | Method for producing alkene adsorption / desorption agent | |
JPS6265920A (en) | Method for separating and recovering carbon mon-oxide from mixed gas containing carbon monoxide | |
JP5752485B2 (en) | Method for producing CO adsorption / desorption agent | |
JPH0149643B2 (en) | ||
JPS61242909A (en) | Production of adsorbent for separating and recovering co | |
KR101824771B1 (en) | Method for adsorptively separating carbon dioxide using activated carbons modified by surface reforming | |
CN1158114A (en) | Process for separating hydrogen halides from gases containing sulphur dioxide | |
JPH0132163B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |