JPS61263635A - Co adsorbent - Google Patents

Co adsorbent

Info

Publication number
JPS61263635A
JPS61263635A JP60103989A JP10398985A JPS61263635A JP S61263635 A JPS61263635 A JP S61263635A JP 60103989 A JP60103989 A JP 60103989A JP 10398985 A JP10398985 A JP 10398985A JP S61263635 A JPS61263635 A JP S61263635A
Authority
JP
Japan
Prior art keywords
adsorbent
soln
acidic oxide
hcl
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60103989A
Other languages
Japanese (ja)
Inventor
Shunichi Azuma
俊一 東
Sachio Asaoka
佐知夫 浅岡
Ikuko Kawamura
河村 郁子
Isao Suzuki
功 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP60103989A priority Critical patent/JPS61263635A/en
Publication of JPS61263635A publication Critical patent/JPS61263635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To efficiently separate high-purity CO from a by-product gas in an iron mill by bringing sufficiently an HCl aq. soln. of CuCl into contact with a porous acidic oxide except the zeolite series such as Al2O3, thereafter removing the aq. soln. and using the obtained adsorbent. CONSTITUTION:An HCl aq. soln. of CuCl is sufficiently brought into contact with a porous acidic oxide except the zeolite series such as Al2O3 and SiO2 and thereafter the aq. soln. is removed. High-purity CO is efficiently separated and removed from a gaseous mixture contg. CO such as a by-product gas in an iron mill by using the prepared adsorbent. Since this adsorbent is a solid, the corrosion due to HCl or the like and the loss of the absorbed component are not caused and it has the high absorption performance without causing the deterioration properties due to H2O. As the porous acidic oxide except the zeolite series, 0.2-1.5cc/g narrow pore volume and 20-200Angstrom mean narrow pore diameter are desirable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、COを含む混合ガスから効率的に1高純度の
COを分離・回収する際に適する固体状00  吸着剤
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid 00 adsorbent suitable for efficiently separating and recovering highly pure CO from a mixed gas containing CO.

(従来の技術) COは合成化学の基礎原料であシ、製鉄所副生ガス中に
含まれる多量の00の有効利用方法について各方面で研
究が進められている。
(Prior Art) CO is a basic raw material in synthetic chemistry, and research is underway in various fields on how to effectively utilize the large amount of 00 contained in by-product gas from steel works.

混合ガスから00を分離・濃縮するための吸収液として
、従来、 i)銅アルミニウム四塩化物トルエン溶液11)アンモ
ニアアルカリ性ギ酸銅山水溶液i)塩酸酸性塩化鋼(I
)水溶液 等が知られていた。
Conventionally, as an absorption liquid for separating and concentrating 00 from a mixed gas, i) copper aluminum tetrachloride toluene solution 11) ammonia alkaline formic acid copper mine aqueous solution i) hydrochloric acid acidic chlorinated steel (I
) aqueous solutions were known.

(発明が解決しようとする問題点) 上記の1)は吸収能は大きいが、馬Oと不可逆的に反応
して沈殿を生成し、11)はアンモニアの損失が生じ、
1ii)けnor (cよる腐食性がある等の問題点が
ある。
(Problems to be Solved by the Invention) Although 1) above has a large absorption capacity, it irreversibly reacts with horse O to form a precipitate, and 11) causes loss of ammonia.
1ii) There are problems such as corrosivity due to corrosion.

本発明は、斯る問題点を解決し穐0による劣化性がなく
、かつ吸収成分の損失がなく、シかも装置の腐食性のな
い高吸収能を有する固体状吸着剤を提案するものである
The present invention solves these problems and proposes a solid adsorbent that has a high absorption capacity that does not deteriorate due to dust, does not cause loss of absorption components, and is not corrosive to equipment. .

(問題点を解決する丸めの手段) 本発明は、上記固体状吸着剤を塩化第一銅と非ゼオライ
ト系多孔質酸性酸化物との複合体とすることKよシ得る
ものである。
(Means for solving the problem) The present invention can be achieved by using the solid adsorbent as a composite of cuprous chloride and a non-zeolitic porous acid oxide.

すなわち本発明は、塩化第一銅の塩化水素水溶液を非ゼ
オライト系多孔質酸性酸化物に十分接触させ、次いで上
記水溶液を除去して々る一酸化炭素吸着剤に関するもの
である。
That is, the present invention relates to a carbon monoxide adsorbent in which a hydrogen chloride aqueous solution of cuprous chloride is sufficiently brought into contact with a non-zeolitic porous acidic oxide, and then the aqueous solution is removed.

本発明における非ゼオライト系多孔質酸性酸化物とは、
数A程度のマイクルポアーを持たず、従ってモレキュラ
ーシービング能がなく、かつ低温で安定なブレンステッ
ド酸点あるいは高温で生成しゃすいルイス酸点のいずれ
かの酸点を有するもので、例えばアルミナ、シリカ、シ
リカアルミナ、チタニア等がある。
The non-zeolite porous acidic oxide in the present invention is
A substance that does not have micropores of several A, therefore has no molecular sieving ability, and has either a Brønsted acid site that is stable at low temperatures or a Lewis acid site that is easily generated at high temperatures, such as alumina, There are silica, silica alumina, titania, etc.

本発明において、塩化第一銅と複合体を形成させる物質
として上記の非ゼオライト系多孔質酸性酸化物を用いる
理由は次の通)である。すなわち、ゼオライトのような
ゼオリティックな細孔を持つもの、活性炭のようなマイ
クロ細孔を有するもの、その他モレキュラーシービング
能を有するものは、細孔内表面へ塩化第一銅のHag水
溶液が入夛込み難いため、COの高選択吸収性を十分く
発揮することができない。これに対し、本発明のマイク
ロポアをもたず、したがってモレキュラーシービング能
のない非ゼオライト系多孔質酸性酸化物は、細孔径が大
きく、上記溶液が入シ込み易く、COの高選択吸収性を
発揮する銅(1)を十分に担持てきるのみ表らず、当該
酸性酸化物と銅(1)の周囲の配位状態を変化させない
相互作用を示す。この結果、担持した銅11)を安定に
保ち、安定な複合体を形成し、鋼(1)による化学吸収
能を低下させず、かつその高選択特性をそのまま発揮し
得るのである。
In the present invention, the reason for using the above non-zeolite porous acidic oxide as a substance forming a complex with cuprous chloride is as follows. In other words, for materials with zeolitic pores such as zeolite, materials with micropores such as activated carbon, and other materials with molecular sieving ability, a Hag aqueous solution of cuprous chloride enters the inner surface of the pores. Since it is difficult to incorporate, it is not possible to fully exhibit high selective absorption of CO. On the other hand, the non-zeolitic porous acidic oxide of the present invention, which does not have micropores and therefore has no molecular sieving ability, has large pore diameters, allows the solution to enter easily, and has high selective absorption of CO. Not only can it sufficiently support copper (1), which exhibits the same properties, but it also exhibits an interaction that does not change the coordination state of the acidic oxide and the surrounding copper (1). As a result, the supported copper 11) is kept stable, a stable composite is formed, the chemical absorption ability of the steel (1) is not reduced, and its highly selective properties can be exhibited as is.

また本発明において、非ゼオライト系多孔質酸性酸化物
の細孔容積が小さ過ぎると、細孔内部の鋼(1)と原料
ガスとの接触効率が低下し、吸着能が低下し、また細孔
容積が大きくなるにつれ、細孔中に残留する未吸収原料
ガス(低濃度00ガス)の量が増加するため、大き過ぎ
ると回収製品ガスの純度を低下させる原因となる。その
ため本発明の非ゼオライト多孔質酸性酸化物の細孔容積
は、02工/?〜1.5 CC/ t 、好ましくはα
S CC/ f〜1.ocr:、/lが適している。
In addition, in the present invention, if the pore volume of the non-zeolitic porous acid oxide is too small, the contact efficiency between the steel (1) inside the pores and the raw material gas will decrease, the adsorption capacity will decrease, and the pore volume will decrease. As the volume increases, the amount of unabsorbed raw material gas (low concentration 00 gas) remaining in the pores increases, so if it is too large, it will cause a decrease in the purity of the recovered product gas. Therefore, the pore volume of the non-zeolite porous acidic oxide of the present invention is 02 mm/? ~1.5 CC/t, preferably α
S CC/f~1. ocr:, /l are suitable.

更に1非ゼオライト系多孔質酸性酸化物の細孔径が小さ
くなると、モレキュラーシービング能が発現し、またO
O* 、%O、On等を吸着しやすくなり、しかも塩化
第一銅との複合化処理の際に細孔がつぶれてしまう。そ
のためv4製前の状態で平均細孔径として20ム以上で
あることが好ましい。また、当然ではあるが同じ細孔容
積ならば細孔径が大きくなるほど表面積が減少するため
、塩化第−鋼を均一に分散・担持するためには高表面積
であることが好ましい。従って本発明の非ゼオライト系
多孔質酸性酸化物の平均細孔径として2[IA〜200
A、好ましくは50A〜150Aが適している。
Furthermore, when the pore size of the non-zeolite porous acidic oxide becomes smaller, molecular sieving ability is expressed, and O
It becomes easy to adsorb O*, %O, On, etc., and moreover, the pores are crushed during the composite treatment with cuprous chloride. Therefore, it is preferable that the average pore diameter in the state before v4 production is 20 μm or more. Furthermore, as a matter of course, if the pore volume is the same, the surface area decreases as the pore diameter increases, so a high surface area is preferable in order to uniformly disperse and support the chlorinated steel. Therefore, the average pore diameter of the non-zeolitic porous acidic oxide of the present invention is 2[IA~200
A, preferably 50A to 150A is suitable.

本発明の塩化第−鋼と非ゼオライト系多孔質酸性酸化物
との複合体は、CJaolのHat 水溶液と該酸化物
とを十分接触させ、次いで該水溶液を除去することによ
り調製される。
The composite of chlorinated di-steel and non-zeolitic porous acidic oxide of the present invention is prepared by thoroughly contacting the oxide with an aqueous solution of CJaol's Hat, and then removing the aqueous solution.

この時のHat水溶液のHOl濃度は、短時間の一度の
接触で所望0u(1)担持量を得るためKは、高い方が
0uOj  も少量から多量まで容易に溶解して好まし
いが、0u(1)の担持量ヤ操業能率等との関係で、任
意濃度のものが使用できる。Cu0lの溶解量について
も同様に任意量で使用できる。
At this time, the HOl concentration of the Hat aqueous solution is such that in order to obtain the desired amount of 0u(1) supported in a single contact in a short period of time, a higher K is preferable because 0uOj can be easily dissolved from a small amount to a large amount. ) can be used at any concentration depending on the supported amount, operational efficiency, etc. Similarly, any amount of Cu0l can be used.

また本発明において、非ゼオライト系多孔質酸性酸化物
の表面にハロゲン化水素類が存在していることが好まし
い。0ust  はハロゲン化水素類との共存によって
1価に安定に保たれると考えられるからである。
Further, in the present invention, it is preferable that hydrogen halides exist on the surface of the non-zeolite porous acidic oxide. This is because Oust is considered to be stably maintained as monovalent by coexistence with hydrogen halides.

更に本発明において、○Uを1価に安定に保つためにH
agと同じ効果を持つものとして水に溶けてプロトンと
C/−を解離する塩、例えばA / O/、、0u01
z等も使用できると考えられる。
Furthermore, in the present invention, in order to keep ○U stable at a monovalent level, H
Salts that dissolve in water and dissociate protons and C/- have the same effect as ag, such as A / O /, 0u01
It is considered that z etc. can also be used.

なお、本発明において、非ゼオライト系多孔質物質とし
て酸性酸化物を使用するのは、後述の比較例から明らか
なようにZnOやElnOl等の酸性酸化物でないもの
ではCO吸着性に乏しいからである。また本発明におい
て、HO/水溶液を用いるのは、後述の比較例に示すよ
うにアンモニア性等の塩基性水溶液では00吸着能が発
揮できず、また11fNO1はOuO/1を溶解するが
CO吸着能のある吸着剤とはならず、又酢酸やZSO,
等はOuO/1を溶解しないからである。
In the present invention, acidic oxides are used as the non-zeolite porous material because, as is clear from the comparative examples described later, non-acidic oxides such as ZnO and ElnOl have poor CO adsorption properties. . In addition, in the present invention, the reason for using an HO/aqueous solution is that, as shown in the comparative example below, basic aqueous solutions such as ammonia cannot exhibit 00 adsorption ability, and 11fNO1 dissolves OuO/1 but has no CO adsorption ability. It is not an adsorbent with acetic acid, ZSO,
etc. do not dissolve OuO/1.

(発明の効果) 本発明のOur/  と非ゼオライト系多孔質酸性酸化
物との複合体からなる吸着剤によれば、C0に対する高
選択性を示し、例えば製鉄所転炉副生ガスからの00の
分離・回収において好ましい結果を示す。その際に1モ
レ中ニラ−シービング能を持つ小細孔を有する物質や、
塩基性酸化物とOur/  との複合体を用いると、0
0と同時に他の物理吸着しやすいガスや酸性ガスを吸着
する。例えば、0u(1)を分散・担持したゼオライト
(U、S、P、4,019.+379.4.0!54,
065)や活性炭(特開昭59−1osa41 )を用
いると、CO,等をも吸着し、製鉄所副生ガス等のCO
を多量に含む混合ガスはほとんどの場合00g、EIO
s等を同時に含むため、回収ガスのCOの純度が低く、
別途酸性ガス、馬0等の除去処理が必要となる。
(Effects of the Invention) The adsorbent of the present invention made of a composite of Our/ and a non-zeolite porous acidic oxide exhibits high selectivity for CO, for example, CO from a steelworks converter byproduct gas. shows favorable results in the separation and recovery of At that time, a substance with small pores that has leek sieving ability in one mole,
When a complex of basic oxide and Our/ is used, 0
At the same time, it adsorbs other easily physically adsorbed gases and acidic gases. For example, zeolite (U, S, P, 4,019.+379.4.0!54,
065) or activated carbon (JP-A-59-1OSA41) can also adsorb CO, etc., and remove CO from steelworks byproduct gas.
In most cases, mixed gas containing a large amount of 00g, EIO
The purity of CO in the recovered gas is low because it simultaneously contains s, etc.
Separate removal treatment for acidic gases, etc. is required.

また、本発明吸着剤は固体状であるため、アンモニアの
損失もHOI等による腐食も起こらない。さらに溶液状
の吸着剤では脱着(吸着剤の再生)の際に熱を加える方
法しかなかったが、固体化することにより圧力変動によ
って吸着・脱着をも行なうことができる。
Further, since the adsorbent of the present invention is in a solid state, neither loss of ammonia nor corrosion due to HOI etc. occurs. Furthermore, with a solution adsorbent, the only method available was to apply heat during desorption (regeneration of the adsorbent), but by solidifying it, adsorption and desorption can also be performed by changing pressure.

(実施例) 実施例1゜ 塩化第一銅は市販の特級試薬(和光紬薬工業製)をその
まま使用した。乾燥窒素下で200−二口ナスフラスコ
Ic I N HO/水溶液を40CC加え、上記塩化
第一銅αb t (6mmo’:l )を添加し、70
℃で2時間加熱保温し、無色透明な溶液を得た。一方、
非ゼオライト系多孔質酸性酸化物として550℃にて3
時間焼成したアルミナA担体(触媒化成(0製、平均細
孔直径108A1・B凹T表面積250 m”/f )
を11111F用意し、乾燥窒素気流下にて上記のOu
O/−nor @液に加えた。70℃にて30分間浸漬
した後、アスピレータ−にてナスフラスコ内を減圧(約
1010mT1にして3時間排気し、溶媒を十分に除去
し、薄灰色の吸着剤を得た。
(Example) Example 1 As cuprous chloride, a commercially available special grade reagent (manufactured by Wako Tsumugi Kogyo Co., Ltd.) was used as it was. Add 40 CC of Ic I N HO/aqueous solution to a 200-two-neck eggplant flask under dry nitrogen, add the above cuprous chloride αb t (6 mmo':l), and add 70
The mixture was heated and kept at ℃ for 2 hours to obtain a colorless and transparent solution. on the other hand,
3 at 550°C as a non-zeolitic porous acidic oxide.
Time-calcined alumina A carrier (catalyst chemical treatment (made by 0, average pore diameter 108 A1, B concave T surface area 250 m"/f)
11111F was prepared, and the above Ou was heated under a stream of dry nitrogen.
O/-nor @ was added to the solution. After immersion at 70° C. for 30 minutes, the inside of the eggplant flask was evacuated using an aspirator to reduce the pressure (approximately 1010 mT1) for 3 hours, and the solvent was sufficiently removed to obtain a light gray adsorbent.

この吸着剤に1 atmのOO混合ガス(aO分圧α3
atmS%分圧17 atm )を通気し、吸着性能を
確認したところ、10分間でX Ommol  の吸着
量であった。真空ポンプにて系内を減圧(15mug)
Kして10分間保ったとコロ、aot′zammoL 
 回収した。
This adsorbent is charged with 1 atm OO mixed gas (aO partial pressure α3
AtmS% partial pressure (17 atm) was aerated and the adsorption performance was checked, and the amount of adsorption was X Ommol in 10 minutes. Reduce the pressure in the system with a vacuum pump (15mg)
K and held for 10 minutes, aot'zammoL
Recovered.

この吸着剤に飽和水蒸気圧のH,Cを含む島ガスを吹き
つけた(馬0接触量約50 mmol、)。その後、上
記のCO混合ガスを通気したところ、吸着量は2.5 
mrnol  であり、為OKよる劣化は観察されなか
った。
An island gas containing H and C at saturated water vapor pressure was blown onto this adsorbent (approximately 50 mmol of contact amount). After that, when the above CO mixed gas was aerated, the adsorption amount was 2.5
mrnol, and no deterioration due to OK was observed.

実施例λ 実施例1と全く同じ方法で塩化第一銅の塩酸水溶液を調
製した。非ゼオライト系多孔質酸性、酸化物として55
0℃にて3時間焼成したアルミナ(住友アルミナ(株)
製、平均細孔直径68A、Bl!iT表面積203y3
”/f、細孔容積IIL35■/f)を10t1乾燥窒
素気流下にて上記溶液に加えた。70℃にて30分間浸
漬した後、アスピレータ−(Cてナスフラスコ内を減圧
(約1101HH) K シて3時間排気し、溶媒を十
分に除去し、薄灰色の吸着剤を得た。
Example λ A hydrochloric acid aqueous solution of cuprous chloride was prepared in exactly the same manner as in Example 1. Non-zeolitic porous acidic, 55 as oxide
Alumina fired at 0℃ for 3 hours (Sumitomo Alumina Co., Ltd.)
manufactured by, average pore diameter 68A, Bl! iT surface area 203y3
''/f, pore volume IIL 35 ■/f) was added to the above solution under a 10t1 stream of dry nitrogen. After immersing at 70°C for 30 minutes, the inside of the eggplant flask was reduced in pressure (approximately 1101HH) using an aspirator (C). The mixture was evacuated for 3 hours to thoroughly remove the solvent and obtain a light gray adsorbent.

この吸着剤に実施例1で用いたのと同じ00混合ガスを
通気し、実施例1と同様にして00吸着、回収量を測定
したところ、10分間で2.1 mmolの00吸着量
が確認された。
The same 00 mixed gas used in Example 1 was passed through this adsorbent, and the amount of 00 adsorption and recovery was measured in the same manner as in Example 1, and the amount of 00 adsorbed was 2.1 mmol in 10 minutes. It was done.

この吸着剤を実施例1と同様に飽和水蒸気圧のII、O
を含むN、ガスにて処理後、2回目のaO吸着、回収量
を測定したところ、2.2mmolの00吸着量が確認
された。
This adsorbent was used in the same manner as in Example 1.
After the treatment with N and gas containing gas, the second adsorption and recovery amount of aO was measured, and the amount of 00 adsorption was confirmed to be 2.2 mmol.

比較例1〜2 実施例1で使用したものと同じ試薬を同じ量使用し、同
じ方法にて0uOj −Floe水溶液を調製した。実
施例1で使用したアルミナA担体のかわシに下記の物質
10Fを担体として使用し、吸着剤を調製した。
Comparative Examples 1 to 2 An aqueous OuOj-Floe solution was prepared using the same reagents and amounts in the same manner as those used in Example 1. An adsorbent was prepared by using the following substance 10F as a carrier for the alumina A carrier used in Example 1.

細孔容積    平均細孔径 1、   Zn0IIL10i/f    16OA2
、   E?nO1α11crI?/P    200
  A上記吸着剤に1 atmの○O混合ガス(00分
圧α!iatm、)−分圧α7 atm )を通気し、
吸着量を測定した。この結果は次の通シであった。
Pore volume Average pore diameter 1, Zn0IIL10i/f 16OA2
, E? nO1α11crI? /P 200
A 1 atm of ○O mixed gas (00 partial pressure α!iatm, ) - partial pressure α7 atm) was aerated through the above adsorbent,
The amount of adsorption was measured. The results were as follows.

1、    ZnOQ、5  mmol2.8n偽  
αs mmol 比較例五 塩化第−銅は市販の特級試薬(和光紬薬工業(株)製)
をそのまま使用した。乾燥窒素下で200−二口ナスフ
ラスコに1Nアンモニア水溶液20CCを加え、上記塩
化第一銅16f(6mmol)を添加し、室温で50分
攪拌し、前送明色の溶液を得た。550℃にで3時間焼
成したアルミナA担体(触媒化成(9製、平均細孔直径
108A、BIT表面積230m”/r)を102、乾
燥窒素気流下にて上記青色溶液に加えた。
1. ZnOQ, 5 mmol2.8n sham
αs mmol Comparative Example Cupric pentachloride is a commercially available special grade reagent (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd.)
was used as is. 20 cc of 1N ammonia aqueous solution was added to a 200-2-necked eggplant flask under dry nitrogen, and the above cuprous chloride 16f (6 mmol) was added, followed by stirring at room temperature for 50 minutes to obtain a bright-colored solution. An alumina A carrier (manufactured by Catalyst Kasei (9), average pore diameter 108 A, BIT surface area 230 m''/r) calcined at 550° C. for 3 hours was added to the above blue solution under a stream of dry nitrogen.

室温にて30分間浸漬した後、アスピレータ−にてナス
フラスコ内を減圧(約10 gag )にして3時間排
気し、溶媒を十分に除去した。
After immersing at room temperature for 30 minutes, the inside of the eggplant flask was reduced in pressure (approximately 10 gag) using an aspirator and evacuated for 3 hours to sufficiently remove the solvent.

この吸着剤に1 atmのCO混合ガス(aO分圧Q、
5atm、N1分圧(L 7 atm )を通気し吸着
性能を確認したところ、10分間で“[L5mmolの
吸着量であった。
1 atm CO mixed gas (aO partial pressure Q,
When 5 atm and N1 partial pressure (L 7 atm) were aerated to check the adsorption performance, the amount of adsorption was 5 mmol in 10 minutes.

比較何歳 塩化第−銅は市販の特級試薬(和光紬薬工業(株)製)
をそのまま使用した。乾燥窒素下で200−ニロナスフ
ラスコにI N HC1水溶液4゜仁を加え、上記塩化
第一銅[L6F添加し70’Cで2時間加熱・保温し、
無色透明な溶液が得られた。酸性酸化物として550℃
で3時間焼成し、デシケータ中で冷却したY−ゼオライ
ト(リンダ(株)社製)を10F投入し、70’Cにて
50分間浸漬した。その後、アスピレータにでナスフラ
スコ内を減圧(約10101IIIHにして3時間排気
し、溶媒を十分に除去して吸着剤を得た。この吸着剤K
 1 atmの00混合ガス(ロ)分圧α3atmS%
分圧0.7 atm ) f通気し、吸着量を測定した
ところ、10分間で1.2mmolの吸着量であった。
Comparative age Cupric chloride is a commercially available special grade reagent (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd.)
was used as is. Add 4° of IN HC1 aqueous solution to a 200-niron flask under dry nitrogen, add the above cuprous chloride [L6F, and heat and keep warm at 70'C for 2 hours.
A colorless and transparent solution was obtained. 550℃ as acidic oxide
Y-zeolite (manufactured by Linda Co., Ltd.), which had been calcined for 3 hours and cooled in a desiccator, was charged at 10F and immersed at 70'C for 50 minutes. Thereafter, the inside of the eggplant flask was evacuated for 3 hours using an aspirator to reduce the pressure (approximately 10101IIIH), and the solvent was sufficiently removed to obtain an adsorbent.
1 atm 00 mixed gas (b) partial pressure α3atmS%
When aerated at a partial pressure of 0.7 atm) and measured the amount of adsorption, the amount of adsorption was 1.2 mmol in 10 minutes.

この吸着剤を90℃に加温して、窒素を通気してaOを
脱離した後、室温まで冷却した。この吸着剤K 1 a
tmのCO,混合ガス(Cox分圧Q、3atm、%分
圧(L 7 atm )を通気し、00mの吸着量を測
定したところ、吸着量は10分間で2.7mmo1であ
った。この吸着剤はCOよシも0への吸着能が大きいこ
とが明らかとなった。
This adsorbent was heated to 90° C., nitrogen was bubbled through it to remove aO, and then the adsorbent was cooled to room temperature. This adsorbent K 1 a
tm of CO, mixed gas (Cox partial pressure Q, 3 atm, % partial pressure (L 7 atm)) was aerated and the adsorption amount of 00m was measured, and the adsorption amount was 2.7 mmol in 10 minutes. It was revealed that the agent has a large adsorption capacity for both CO and 0.

Claims (1)

【特許請求の範囲】[Claims] 塩化第一銅の塩化水素水溶液を非ゼオライト系多孔質酸
性酸化物に十分接触させ、次いで上記水溶液を除去して
なる一酸化炭素吸着剤。
A carbon monoxide adsorbent obtained by fully contacting a hydrogen chloride aqueous solution of cuprous chloride with a non-zeolite porous acidic oxide, and then removing the aqueous solution.
JP60103989A 1985-05-17 1985-05-17 Co adsorbent Pending JPS61263635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103989A JPS61263635A (en) 1985-05-17 1985-05-17 Co adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103989A JPS61263635A (en) 1985-05-17 1985-05-17 Co adsorbent

Publications (1)

Publication Number Publication Date
JPS61263635A true JPS61263635A (en) 1986-11-21

Family

ID=14368711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103989A Pending JPS61263635A (en) 1985-05-17 1985-05-17 Co adsorbent

Country Status (1)

Country Link
JP (1) JPS61263635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922640A (en) * 1996-02-29 1999-07-13 Mitsubishi Gas Chemical Company, Inc. Adsorbent for carbon monoxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242638A (en) * 1985-04-17 1986-10-28 Kansai Coke & Chem Co Ltd Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242638A (en) * 1985-04-17 1986-10-28 Kansai Coke & Chem Co Ltd Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922640A (en) * 1996-02-29 1999-07-13 Mitsubishi Gas Chemical Company, Inc. Adsorbent for carbon monoxide

Similar Documents

Publication Publication Date Title
US4914076A (en) Method of producing an adsorbent for separation and recovery of CO
JP2002520136A (en) Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds
JP4807552B2 (en) Adsorbent
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JPS58216719A (en) Removal of hydrogen from gas
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
JPH08508236A (en) Air purification method
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JP2011504156A (en) Method for purifying silicon tetrafluoride
CN101693193A (en) Rare earth-Cu-Fe active carbon adsorbent, preparation method and application thereof
JPS61263635A (en) Co adsorbent
JP3348407B2 (en) Adsorbent for carbon monoxide in inert gas
JP2711463B2 (en) Exhaust gas purification method
JPH119933A (en) Method for removing nitrogen oxide from gas
JP6345964B2 (en) NOx adsorbent and method for producing the same
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JPH0457368B2 (en)
JPH11104491A (en) Oxidation catalyst for co and nitrogen oxides
JPH074506B2 (en) Exhaust gas purification method
JPH0687943B2 (en) Exhaust gas purification method
JPS63162509A (en) Removing of oxygen from innert gas
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
WO2010073350A1 (en) Nox absorbent, method for production of the same, and method for removal of nox
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
JP2702461B2 (en) Exhaust gas purification method