JPH0457368B2 - - Google Patents

Info

Publication number
JPH0457368B2
JPH0457368B2 JP59250123A JP25012384A JPH0457368B2 JP H0457368 B2 JPH0457368 B2 JP H0457368B2 JP 59250123 A JP59250123 A JP 59250123A JP 25012384 A JP25012384 A JP 25012384A JP H0457368 B2 JPH0457368 B2 JP H0457368B2
Authority
JP
Japan
Prior art keywords
gas
toxic components
purifying
exhaust gas
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59250123A
Other languages
Japanese (ja)
Other versions
JPS61129026A (en
Inventor
Koichi Kitahara
Takashi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP59250123A priority Critical patent/JPS61129026A/en
Publication of JPS61129026A publication Critical patent/JPS61129026A/en
Publication of JPH0457368B2 publication Critical patent/JPH0457368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は排ガスの浄化方法に関し、さらに詳細
には半導体製造工程などから排出される有毒成分
を含有するガスの浄化方法に関する。 近年、半導体工業やオプトエレクトロニクス工
業の発展とともに、アルシン、ホスフイン、シボ
ラン、およびセレン化水素などの極めて毒性の強
い水素化物の使用量が増加している。 これらの有毒成分は、シリコン半導体や化合物
半導体製造工業あるいは光フアイバー製造工業な
どにおいて、原料あるいはドーピングガスとして
不可欠な物質である。 半導体製造プロセスあるいは光フアイバー製造
プロセスなどから排出される排ガス中には、未反
応の有毒成分が含まれる場合が多い。これらの成
分はそれぞれ生物にとつて極めて有害であるか
ら、環境を破壊しないためにガスの排出に先立つ
て除去する必要がある。 〔従来の技術および解決しようとする課題〕 これらの有毒成分を除去する方法としては、ス
クラバーで吸収分解させる湿式法と吸着剤または
酸化剤などの浄化剤を充填した充填筒内に排ガス
を流して除去する方法が知られている。一般的に
湿式法は、吸収液による腐食や後処理などに困難
性があるため、装置の保守に費用を要するという
欠点がある。 また、浄化剤を用いる方法としては、硝酸銀な
どの硝酸塩類を多孔質担体に担持せしめたもの、
あるいは二酸化鉄などの金属塩化物を多孔質担体
に含浸せしめたものを吸着剤として用い、ホスフ
イン、アルシンを酸化的に除去する方法(特開昭
56−89837号公報)が知られている。しかしなが
ら、この方法は、湿式法におけるような諸欠点は
解決されるが、CVD(化学蒸着)プロセスなどの
排ガスを、予め湿潤化処理する必要があるため、
装置が複雑になるという欠点を有する。 さらに、無機珪酸塩にアルカリ水溶液、酸化剤
水溶液またはアルカリと酸化剤との水溶液をそれ
ぞれ含浸させた三種の吸着剤を用いて、アルシ
ン、ホスフインなどを処理する方法(特公昭59−
49822号公報)も提案されている。この方法も前
記した方法と同様に結局は湿潤状態における処理
であつて湿式法と同様な欠点を有している。 〔課題を解決するための手段、作用〕 本発明者らは、これら従来技術の欠点を補うべ
く鋭意研究した結果、酸化第二銅と珪素、アルミ
ニウム、酸化亜鉛などの酸化物とを配合して得た
浄化剤に有毒成分を含有する排ガスを接触させる
とこれらの有毒成分が効率よく除去されることを
見い出し、さらに研究を続けて本発明を完成し
た。 すなわち本発明は、(1)有毒成分としてアルシ
ン、ホスフイン、シボランおよびセレン化水素の
1種以上を含有するガスからこれら有毒成分を除
去する排ガスの浄化方法において、該ガスを(イ)酸
化第二銅および(ロ)珪素および/またはアルミニウ
ムのそれぞれの酸化物を配合した浄化剤に接触さ
せることを特徴とする排ガスの浄化方法、および
(2)有毒成分としてジボランおよび/またはセレン
化水素を含有するガスからこれら有毒成分を除去
する排ガスの浄化方法において、該ガスを酸化第
二銅および酸化亜鉛を配合した浄化剤に接触させ
ることを特徴とする排ガスの浄化方法である。 本発明に使用する浄化剤は完全に乾燥したガス
中の有毒成分をも何ら支障無く除去することが可
能なので湿潤化処理が不要となり、そのメリツト
は大きい。 本発明は、窒素ガス、水素ガスまたは空気など
と、アルシン、ホスフイン、ジボランおよびセレ
ン化水素などの水素化物の一種以上を含有するガ
スに適用される。 本発明に用いられる浄化剤は、(イ)酸化第二銅と
(ロ)酸化珪素、酸化アルミニウムの少なくとも1種
とを配合してなる組成物である。また、ジボラン
およびセレン化水素の浄化には酸化第二銅と酸化
亜鉛とを配合してなる組成物も浄化剤として適用
しうる。 酸化第二銅に対する酸化珪素、酸化アルミニウ
ムまたは酸化亜鉛の配合割合には特に制限はない
が、それぞれの金属の原子比でM/(M+Cu)
として、通常は0.03〜0.55、好ましくは0.045〜
0.35である。式中でCuは銅の原子数を示し、Mは
珪素、アルミニウムまたは亜鉛の原子数(これら
の成分を2種以上使用するときはそれらの原子数
の合計)を示す。浄化剤の調製方法としては種々
の方法の適用が可能である。 例えば、銅、亜鉛、アルミニウムそれぞれの硝
酸塩、硫酸塩、塩化物、有機酸塩などに、苛性ソ
ーダ、苛性カリ、炭酸ナトリウム、重炭酸ナトリ
ウム、アンモニアなどのアルカリを加えて得られ
た水酸化物、酸化物の中間体などの沈澱物を焼成
して酸化物とし、これを浄化剤とする。また、例
えば、酸化第二銅の粉末に酸化珪素としてシリカ
ゾル、酸化アルミニウムとしてアルミナゾルなど
を混合してニーダーで混練し、乾燥して浄化剤と
してもよい。なおこれらの酸化物中には、焼成工
程などにおいて分解させなかつた水酸化銅、水酸
化亜鉛、水酸化アルミニウム、水和酸化銅(例え
ば4CuO・H2O)あるいは塩基性炭酸銅〔Cu
(OH)2・nCuCO3)〕や塩基性炭酸亜鉛〔Zn
(OH)2・nZnCO3〕などの中間体が一部残留する
ことが多いが、これらが含有されていても有毒成
分の除去の妨げにはならない。 これらの浄化剤はそのまま、あるいは成型して
用いてもよく、またシリカ、シリカアルミナ、け
いそう土、水酸化カルシウムなどの担体に担持さ
せて用いてもよいが、浄化剤自体をペレツトなど
に成型したものを用いるか、あるいはこの成型物
を適当な大きさに破砕するなどして用いることが
好ましい。 成型する方法としては、従来公知の乾式法ある
いは湿式法を用いることができる。また成型の際
には必要に応じて、少量の水、グラフアイト、滑
剤などを使用してもよい。 成型物の形状には特に制限はないが、球形、円
柱形、および筒形などが代表例として挙げられ
る。 本発明で使用される浄化剤は筒内に充填されて
用いられる。有毒成分を含有するガス(以下被処
理ガスと記す)はこの筒内に流され浄化剤と接触
せしめられることにより、有毒成分である各種水
素化物が除去され、浄化される。 本発明の浄化方法が適用される被処理ガス中の
水素化物の濃度およびガスの流速には特に制限は
ない。一般に速度が高いほど流速を小さくするこ
とが好ましい。 例えば、被処理ガスが水素ベースの場合には含
有される有毒成分の濃度が10%以上で、流速が20
cm/sec以上になると発熱によつて浄化剤の水素
による還元が生じ、活性が失われることもあるの
で、このような場合には吸着筒を冷却するなどの
処置を構じて操作することが好ましい。 本発明の浄化方法を適用しうる被処理ガスは、
通常は乾燥状態であるが、湿潤状態であつても、
浄化剤充填筒内で結露する程湿つていなければよ
い。 被処理ガスと浄化剤との接触温度には特に制限
はないが、通常は常温乃至室温でよく特に加熱や
冷却をする必要はない。 被処理ガスの圧力には特に制限はなく、通常は
常圧であるが、減圧、または加圧状態であつても
よい。 〔実施例〕 実施例 1、2 酸化第二銅粉末に、アルミナゾルまたはシリカ
ゾルを銅に対するアルミニウムまたは珪素の原子
比として銅:アルミニウムが93:7、銅:珪素が
92:8になるように加えて、それぞれニーダーで
混煉し、350℃で焼成した後6mmφ×6mmHに打
錠成型して浄化剤をそれぞれ調製した。 内径13mmφ×200mmHの硬質ポリ塩化ビニル製
の浄化筒内に、前記の浄化剤1gを充填し、この
浄化筒に被処理ガスとしてアルシン1vol%を含有
せしめた窒素ガスを3/hの速度で流して、そ
れぞれの場合について破過までの時間ならびに飽
和浄化量を測定した。 破過の検知は浄化筒出口のガスをアルシン用検
知管(ガステツク社製、No.19L、検知下限
0.05ppm)でモニターし、痕跡が認められた時点
とした。結果を第1表に示す。 実施例 3、4 硝酸銅と硝酸亜鉛とを金属の原子比で9:1に
なるように混合して得た混合物をイオン交換水に
20重量%になるように溶解した。他方、これらの
金属酸化物を得るため、化学量論量の炭酸ナトリ
ウムを20重量%の水溶液とした。 硝酸塩混合溶液を撹拌槽中で撹拌しながら、炭
酸ナトリウム水溶液を滴下して塩基性炭酸銅と塩
基性炭酸亜鉛との混合沈澱物を生成させた。 この沈澱物をろ過、洗浄した後、120℃で乾燥
し、続いて350℃で焼成して酸化第二銅と酸化亜
鉛との混合物を得た。 この混合物を6mmφ×6mmHのペレツトに打錠
成型したものを破砕し、ふるいにかけ、12〜
28meshとしたものを浄化剤として用いた。 浄化剤1gを内径13mmφ×200mmHの硬質ポリ
塩化ビニル製の浄化筒内に充填し、この浄化筒に
被処理ガスとしてジボランまたはセレン化水素
1vol%を含有せしめた窒素ガスを3/hの速度
で流して、それぞれの浄化剤を充填した場合につ
いて破過までの時間ならびに飽和浄化量を測定し
た。 モニター用の検知管としてジボラン用(理研−
ドレーゲル社製CH−181、検出下限0.1ppm)、セ
レン化水素用(光明理化学社製No.167、検出下限
0.05ppm)をそれぞれ使用した。結果を第1表に
示す。 以上の如く、本発明の浄化方法によつて半導体
製造工程から排出される各種水素化物を有毒成分
として含有するガスを、乾燥状態で効率よく浄化
しうることが判る。
[Industrial Application Field] The present invention relates to a method for purifying exhaust gas, and more particularly to a method for purifying gas containing toxic components discharged from semiconductor manufacturing processes. In recent years, with the development of the semiconductor industry and the optoelectronics industry, the amount of highly toxic hydrides used such as arsine, phosphine, ciborane, and hydrogen selenide has increased. These toxic components are essential substances as raw materials or doping gases in silicon semiconductor and compound semiconductor manufacturing industries, optical fiber manufacturing industries, and the like. Exhaust gas discharged from semiconductor manufacturing processes or optical fiber manufacturing processes often contains unreacted toxic components. Since each of these components is extremely harmful to living organisms, it is necessary to remove them before the gas is discharged in order not to damage the environment. [Prior art and problems to be solved] Methods for removing these toxic components include a wet method in which they are absorbed and decomposed using a scrubber, and a wet method in which exhaust gas is passed through a cylinder filled with a purifying agent such as an adsorbent or oxidizing agent. There are known methods for removing it. In general, the wet method has the drawback that maintenance of the equipment is expensive due to corrosion caused by the absorbing liquid and difficulty in post-treatment. In addition, as a method of using a purifying agent, nitrates such as silver nitrate are supported on a porous carrier,
Alternatively, a porous carrier impregnated with a metal chloride such as iron dioxide is used as an adsorbent to oxidatively remove phosphine and arsine (Japanese Patent Application Laid-open No.
56-89837) is known. However, although this method solves the various drawbacks of the wet method, it requires pre-wetting treatment of the exhaust gas from the CVD (chemical vapor deposition) process, etc.
This has the disadvantage that the device becomes complicated. Furthermore, a method of treating arsine, phosphine, etc. using three types of adsorbents in which inorganic silicate is impregnated with an aqueous alkali solution, an aqueous oxidizing agent solution, or an aqueous solution of an alkali and an oxidizing agent (Japanese Patent Publication No. 59-198-1)
49822) has also been proposed. Like the above-mentioned method, this method is also a process in a wet state and has the same drawbacks as the wet method. [Means and effects for solving the problem] As a result of intensive research to compensate for the shortcomings of these conventional techniques, the present inventors have developed a method that combines cupric oxide with oxides such as silicon, aluminum, and zinc oxide. They discovered that when the obtained purifying agent was brought into contact with exhaust gas containing toxic components, these toxic components could be efficiently removed, and after further research, they completed the present invention. That is, the present invention provides (1) a method for purifying exhaust gas that removes toxic components from a gas containing one or more of arsine, phosphine, ciborane, and hydrogen selenide as toxic components; A method for purifying exhaust gas, which comprises bringing the exhaust gas into contact with a purifying agent containing respective oxides of copper and (b) silicon and/or aluminum, and
(2) In an exhaust gas purification method for removing toxic components from a gas containing diborane and/or hydrogen selenide as toxic components, the gas is brought into contact with a purification agent containing cupric oxide and zinc oxide. This is a unique method for purifying exhaust gas. Since the purifying agent used in the present invention can remove toxic components from completely dried gas without any problem, there is no need for wetting treatment, which is a great advantage. The present invention applies to gases containing nitrogen gas, hydrogen gas or air, and one or more hydrides such as arsine, phosphine, diborane and hydrogen selenide. The purifying agent used in the present invention includes (a) cupric oxide and
(b) A composition containing at least one of silicon oxide and aluminum oxide. Furthermore, a composition containing cupric oxide and zinc oxide can also be used as a purifying agent for purifying diborane and hydrogen selenide. There is no particular restriction on the blending ratio of silicon oxide, aluminum oxide or zinc oxide to cupric oxide, but the atomic ratio of each metal is M/(M+Cu).
Usually 0.03~0.55, preferably 0.045~
It is 0.35. In the formula, Cu indicates the number of atoms of copper, and M indicates the number of atoms of silicon, aluminum, or zinc (when two or more of these components are used, the total number of atoms). Various methods can be applied to prepare the purifying agent. For example, hydroxides and oxides obtained by adding alkalis such as caustic soda, caustic potash, sodium carbonate, sodium bicarbonate, and ammonia to nitrates, sulfates, chlorides, and organic acid salts of copper, zinc, and aluminum, respectively. Precipitates such as intermediates are calcined to form oxides, which are used as purifying agents. Alternatively, for example, silica sol as silicon oxide, alumina sol as aluminum oxide, etc. may be mixed with cupric oxide powder, kneaded in a kneader, and dried to form a purifying agent. These oxides include copper hydroxide, zinc hydroxide, aluminum hydroxide, hydrated copper oxide (e.g. 4CuO・H 2 O), or basic copper carbonate [Cu
(OH) 2・nCuCO 3 )] and basic zinc carbonate [Zn
Although some intermediates such as (OH) 2 ·nZnCO 3 ] often remain, their presence does not impede the removal of toxic components. These purifying agents may be used as they are or after being molded, or they may be supported on a carrier such as silica, silica alumina, diatomaceous earth, or calcium hydroxide; It is preferable to use a molded product or to crush this molded product into an appropriate size. As a molding method, a conventionally known dry method or wet method can be used. Further, during molding, a small amount of water, graphite, lubricant, etc. may be used as necessary. Although there is no particular restriction on the shape of the molded product, typical examples include a spherical shape, a cylindrical shape, and a cylindrical shape. The cleaning agent used in the present invention is filled into a cylinder. Gas containing toxic components (hereinafter referred to as gas to be treated) is flowed into this cylinder and brought into contact with a purifying agent, whereby various hydrides, which are toxic components, are removed and purified. There are no particular limitations on the concentration of hydrides in the gas to be treated and the flow rate of the gas to which the purification method of the present invention is applied. Generally, it is preferable to decrease the flow rate as the velocity increases. For example, if the gas to be treated is hydrogen-based, the concentration of toxic components contained is 10% or more, and the flow rate is 20%.
If the temperature exceeds cm/sec, the purifying agent may be reduced by hydrogen due to heat generation, and its activity may be lost.In such cases, it is recommended to take measures such as cooling the adsorption column before operation. preferable. The gases to be treated to which the purification method of the present invention can be applied are:
Usually in a dry state, but even in a wet state,
It is sufficient that the inside of the cleaning agent filling cylinder is not so damp as to cause dew condensation. There is no particular restriction on the contact temperature between the gas to be treated and the purifying agent, but it is usually at room temperature or room temperature and there is no need for particular heating or cooling. The pressure of the gas to be treated is not particularly limited, and is usually normal pressure, but may be under reduced pressure or pressurized state. [Example] Examples 1 and 2 Alumina sol or silica sol was added to cupric oxide powder with an atomic ratio of aluminum or silicon to copper of 93:7 (copper:aluminum), copper:silicon (copper:silicon).
The mixture was added in a ratio of 92:8, kneaded in a kneader, calcined at 350°C, and then molded into tablets of 6 mmφ x 6 mmH to prepare purifying agents. A hard polyvinyl chloride purification cylinder with an inner diameter of 13 mmφ x 200 mmH was filled with 1 g of the purification agent, and nitrogen gas containing 1 vol% arsine was flowed into the purification cylinder at a rate of 3/h as the gas to be treated. In each case, the time until breakthrough and the amount of saturated purification were measured. To detect breakthrough, detect the gas at the outlet of the purification tube using an arsine detection tube (manufactured by Gastech, No. 19L, lower detection limit).
0.05ppm), and the time was defined as the point at which traces were observed. The results are shown in Table 1. Examples 3 and 4 A mixture obtained by mixing copper nitrate and zinc nitrate at a metal atomic ratio of 9:1 was added to ion-exchanged water.
It was dissolved to a concentration of 20% by weight. On the other hand, to obtain these metal oxides, a stoichiometric amount of sodium carbonate was made into a 20% by weight aqueous solution. While stirring the nitrate mixed solution in a stirring tank, an aqueous sodium carbonate solution was added dropwise to form a mixed precipitate of basic copper carbonate and basic zinc carbonate. After filtering and washing the precipitate, it was dried at 120°C and then calcined at 350°C to obtain a mixture of cupric oxide and zinc oxide. This mixture was molded into pellets of 6 mmφ x 6 mmH, crushed, sieved,
28mesh was used as a purifying agent. 1 g of purification agent is filled into a hard polyvinyl chloride purification cylinder with an inner diameter of 13 mmφ x 200 mmH, and diborane or hydrogen selenide is added to the purification cylinder as the gas to be treated.
Nitrogen gas containing 1 vol% was flowed at a rate of 3/h, and the time until breakthrough and the saturated purification amount were measured when each purifying agent was filled. For diborane (RIKEN) as a detection tube for monitoring
CH-181 manufactured by Dräger, detection limit 0.1 ppm), for hydrogen selenide (No. 167 manufactured by Komei Rikagaku Co., Ltd., detection limit 0.1 ppm)
0.05ppm) was used. The results are shown in Table 1. As described above, it can be seen that gas containing various hydrides as toxic components discharged from semiconductor manufacturing processes can be efficiently purified in a dry state by the purification method of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の浄化方法は、下記のような優れた特徴
を有しており、工業的に極めて有用である。 (1) 浄化剤の単位重量当りに対する有毒成分の除
去量および除去速度が大きい。 (2) 各種水素化物をその濃度とは関係なくほぼ完
全に除去することができる。 (3) 常温乃至室温で浄化操作を行うことができ、
特に加熱や冷却を必要としない。 (4) 浄化剤に水分などが実質的に含有されていな
いため、常に安定した浄化性能が得られる。
The purification method of the present invention has the following excellent features and is extremely useful industrially. (1) The amount and speed of removal of toxic components per unit weight of the purifying agent is large. (2) Various hydrides can be almost completely removed regardless of their concentration. (3) Purification operations can be performed at room temperature or room temperature;
No special heating or cooling is required. (4) Since the purifying agent contains virtually no moisture, stable purifying performance can always be obtained.

Claims (1)

【特許請求の範囲】 1 有毒成分としてアルシン、ホスフイン、シボ
ランおよびセレン化水素の1種以上を含有するガ
スからこれら有毒成分を除去する排ガスの浄化方
法において、該ガスを(イ)酸化第二銅および(ロ)珪素
および/またはアルミニウムのそれぞれの酸化物
を配合した浄化剤に接触させることを特徴とする
排ガスの浄化方法。 2 有毒成分としてジボランおよび/またはセレ
ン化水素を含有するガスからこれら有毒成分を除
去する排ガスの浄化方法において、該ガスを酸化
第二銅および酸化亜鉛を配合した浄化剤に接触さ
せることを特徴とする排ガスの浄化方法。
[Scope of Claims] 1. A method for purifying exhaust gas for removing toxic components from a gas containing one or more of arsine, phosphine, ciborane, and hydrogen selenide as toxic components, wherein the gas is (a) cupric oxide. and (b) a method for purifying exhaust gas, which comprises bringing the exhaust gas into contact with a purifying agent containing respective oxides of silicon and/or aluminum. 2. An exhaust gas purification method for removing toxic components from a gas containing diborane and/or hydrogen selenide as toxic components, characterized by bringing the gas into contact with a purifying agent containing cupric oxide and zinc oxide. How to purify exhaust gas.
JP59250123A 1984-11-27 1984-11-27 Purification of exhaust gas Granted JPS61129026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250123A JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250123A JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7280863A Division JP2702461B2 (en) 1995-10-27 1995-10-27 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPS61129026A JPS61129026A (en) 1986-06-17
JPH0457368B2 true JPH0457368B2 (en) 1992-09-11

Family

ID=17203160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250123A Granted JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPS61129026A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200820A (en) * 1987-02-17 1988-08-19 Kikuchi:Kk Treatment of exhaust gas in producing semiconductor
JPH0729049B2 (en) * 1987-04-30 1995-04-05 三菱重工業株式会社 Method for removing arsenic compounds in combustion exhaust gas
JPH01297129A (en) * 1988-05-26 1989-11-30 Tonen Sekiyukagaku Kk Arsenic removal from liquid
EP1205564B1 (en) 2000-11-14 2006-10-04 Japan Pionics Co., Ltd. Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent
EP1317952B1 (en) 2001-06-28 2009-11-18 Sued-Chemie Catalysts Japan, Inc. Treating agent for exhaust gas containing metal hydride, its process of preparation and method of treating exhaust gas containing metal hydride with said agent

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889892A (en) * 1972-03-03 1973-11-24
JPS4945887A (en) * 1972-08-02 1974-05-01
US3812652A (en) * 1972-04-27 1974-05-28 Gulf Research Development Co Process for regenerating metal oxides used in the removal of arsenic from gaseous streams
JPS5684618A (en) * 1979-12-12 1981-07-10 Seitetsu Kagaku Co Ltd Method of removing harmful gas for semiconductor
JPS5689837A (en) * 1979-12-21 1981-07-21 Toyo Sanso Kk Cleaner composition of exhaust gas
JPS58128146A (en) * 1982-01-27 1983-07-30 Nippon Sanso Kk Absorbing agent
JPS5949822A (en) * 1982-09-14 1984-03-22 Nippon Sanso Kk Treatment of gas comtaining volatile inorganic hydride or the like
US4462896A (en) * 1982-10-26 1984-07-31 Osaka Petrochemical Industries Ltd. Method of removing arsenic in hydrocarbons
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS6071039A (en) * 1983-09-26 1985-04-22 Takeda Chem Ind Ltd Noxious gas adsorbent
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPH0417082A (en) * 1990-05-10 1992-01-21 Fujitsu Ltd Picture element information accumulating system for graphic display device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889892A (en) * 1972-03-03 1973-11-24
US3812652A (en) * 1972-04-27 1974-05-28 Gulf Research Development Co Process for regenerating metal oxides used in the removal of arsenic from gaseous streams
JPS4945887A (en) * 1972-08-02 1974-05-01
JPS53140293A (en) * 1972-08-02 1978-12-07 Hoppecke Zoellner Sohn Accu Absorbent for removing catalyst poison from oxygen hydrogen mixed gas generated in storage battery and manufacturing method
JPS5684618A (en) * 1979-12-12 1981-07-10 Seitetsu Kagaku Co Ltd Method of removing harmful gas for semiconductor
JPS5689837A (en) * 1979-12-21 1981-07-21 Toyo Sanso Kk Cleaner composition of exhaust gas
JPS58128146A (en) * 1982-01-27 1983-07-30 Nippon Sanso Kk Absorbing agent
JPS5949822A (en) * 1982-09-14 1984-03-22 Nippon Sanso Kk Treatment of gas comtaining volatile inorganic hydride or the like
US4462896A (en) * 1982-10-26 1984-07-31 Osaka Petrochemical Industries Ltd. Method of removing arsenic in hydrocarbons
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS6071039A (en) * 1983-09-26 1985-04-22 Takeda Chem Ind Ltd Noxious gas adsorbent
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPH0417082A (en) * 1990-05-10 1992-01-21 Fujitsu Ltd Picture element information accumulating system for graphic display device

Also Published As

Publication number Publication date
JPS61129026A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
US4786483A (en) Process for removing hydrogen sulfide and mercury from gases
US5597540A (en) Process for cleaning harmful gas
KR960003147B1 (en) Method of purifying exhaust gases
EP0194366B1 (en) Method of cleaning exhaust gases
JPH07308538A (en) Cleaner for harmful gas
KR920003770B1 (en) Purifying process of exhaust gas
US5512262A (en) Process for cleaning harmful gas
JPH0457368B2 (en)
JP2633511B2 (en) Exhaust gas purification method
JP3260825B2 (en) How to purify harmful gases
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JP2691927B2 (en) How to remove harmful components
JP2702461B2 (en) Exhaust gas purification method
JPH074506B2 (en) Exhaust gas purification method
JPH0687943B2 (en) Exhaust gas purification method
JPH0417082B2 (en)
JPS62286522A (en) Method for purifying exhaust gas
JPS62286525A (en) Method for purifying exhaust gas
JPS62286523A (en) Method for purifying exhaust gas
JPS62286521A (en) Method for purifying exhaust gas
JP3362918B2 (en) Exhaust gas purification method
JPS621439A (en) Removal of noxious component
JPS61209030A (en) Purification of exhaust gas
JPH07275646A (en) Harmful gas purifying agent
JPS62286524A (en) Method for purifying exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees