JPH039392B2 - - Google Patents

Info

Publication number
JPH039392B2
JPH039392B2 JP57053167A JP5316782A JPH039392B2 JP H039392 B2 JPH039392 B2 JP H039392B2 JP 57053167 A JP57053167 A JP 57053167A JP 5316782 A JP5316782 A JP 5316782A JP H039392 B2 JPH039392 B2 JP H039392B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
purification device
pipe
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57053167A
Other languages
Japanese (ja)
Other versions
JPS58168877A (en
Inventor
Akira Wakaizumi
Tooru Tanaka
Hiroshi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP57053167A priority Critical patent/JPS58168877A/en
Publication of JPS58168877A publication Critical patent/JPS58168877A/en
Publication of JPH039392B2 publication Critical patent/JPH039392B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はコークス炉ガスより不純物を除去して
水素を回収するガス精製方法に係り、特に精製に
当つて、廃出するガスを有効に利用する効率的な
ガス精製方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas purification method for removing impurities from coke oven gas and recovering hydrogen, and in particular, an efficient gas purification method for effectively utilizing waste gas during purification. It is.

近年資源事情により、エネルギー源に使用され
る原料を可能な限り有効利用しようと種々検討さ
れているのが現状である。そしてその一つとして
コークスの製造、石炭のガス化および石油の蒸留
等の如き工業的操作で発生する水素を含有する廃
ガスを原料として、水素を回収することが提案さ
れている。この方法において、水素を含有する原
料ガスから水素を回収するに当つて、水素以外に
含まれている不純物を吸着する吸着剤を使用して
除去することが一般に用いられており、これによ
り吸着されない水素を比較的高純度で採取され
る。
In recent years, due to the resource situation, various studies have been made to utilize raw materials used as energy sources as effectively as possible. As one of these methods, it has been proposed to recover hydrogen from hydrogen-containing waste gas generated in industrial operations such as coke production, coal gasification, and petroleum distillation. In this method, when recovering hydrogen from hydrogen-containing raw material gas, it is generally used to remove impurities other than hydrogen using an adsorbent, which prevents them from being adsorbed. Hydrogen is extracted with relatively high purity.

然るに上記原料ガス中に含まれている不純物と
しては、特に比較的分子量の高い炭化水素、
NOx、H2S、メルカプタン、NH3、水蒸気、更
にはN2、CO、CO2、CH4、C2H4等多くの種類を
挙げること出来る。そしてこれらの不純物はそれ
ぞれに吸着し易い吸着剤が使用されることが好ま
しいが、前記した通り不純物の種類が極めて多
く、必ずしも全ての不純物を一つの吸着剤で吸着
除去することは困難であり、数種の吸着剤を用い
て、前記不純物を順次段階的に除去する方法が採
用されている。即ちこの種の方法では吸着性の強
い不純物ガスを第1の吸着装置(予備浄化装置)
で吸着させて、除去し、ついで弱い吸着性の不純
物ガスを含む水素を、吸着装置や、あるいは深冷
分離装置等の主浄化装置で前記残存した不純物を
分離除去し、高純な水素ガスを採取するものであ
る。
However, the impurities contained in the raw material gas include hydrocarbons with a relatively high molecular weight,
Many types can be mentioned, such as NOx, H 2 S, mercaptan, NH 3 , water vapor, and further N 2 , CO, CO 2 , CH 4 and C 2 H 4 . It is preferable to use an adsorbent that can easily adsorb each of these impurities, but as mentioned above, there are many types of impurities, and it is difficult to adsorb and remove all impurities with one adsorbent. A method has been adopted in which the impurities are removed in a stepwise manner using several types of adsorbents. In other words, in this type of method, impurity gases with strong adsorption properties are removed by the first adsorption device (preparation device).
Hydrogen containing weakly adsorbable impurity gases is then separated and removed using an adsorption device or a main purification device such as a cryogenic separator to produce highly pure hydrogen gas. It is something to be collected.

しかるに、予備浄化装置や主浄化装置で使用さ
れる吸着装置では該吸着装置に充填されている吸
着剤は吸着される成分を捕集し漸次この吸着成分
で満され、吸着剤の吸着容量の限界に到達した時
には吸着工程を停止し、次工程で再び使用し得る
ように吸着成分を吸着剤より脱着再生する必要が
ある。そしてこの脱着再生の方法としては減圧に
したり、加温する方法があるが、予備浄化装置で
の吸着装置で吸着除去される成分は、主浄化装置
で除去すると精製ガスに残つて好ましくなくしか
も脱着し難い成分が多い。即ち精製工程でより純
粋な水素を得ようと試みるならば、出来るだけ多
く予備浄化装置で精製ガスに入ると好ましくない
不純物を除去することが好ましいことによるもの
である。このようなことから予備浄化装置での再
生操作は、該種のガスの精製では極めて重要であ
る。
However, in the adsorption devices used in the preliminary purification device and the main purification device, the adsorbent filled in the adsorption device collects the adsorbed components and is gradually filled with the adsorbed components, which limits the adsorption capacity of the adsorbent. When this is reached, the adsorption step must be stopped and the adsorbed components must be desorbed and regenerated from the adsorbent so that they can be used again in the next step. Methods for this desorption and regeneration include reducing pressure and heating, but the components that are adsorbed and removed by the adsorption device in the preliminary purification device remain in the purified gas when removed by the main purification device, which is undesirable and desorption. There are many ingredients that are difficult to clean. That is, if an attempt is made to obtain purer hydrogen in the purification process, it is desirable to remove as many undesirable impurities as possible from entering the purified gas in a prepurification device. For this reason, the regeneration operation in the preliminary purification device is extremely important in the purification of this type of gas.

本発明は上述の如き現状に鑑みなされたもの
で、その特徴は、吸着装置よりなる予備浄化装置
と、吸着装置あるいは深冷分離装置よりなる主浄
化装置とよりなり、水素を含むコークス炉ガスを
原料として前記予備浄化装置、主浄化装置と流通
して水素ガスを精製する方法において、予備浄化
装置の再生を、主浄化装置で除去される排出ガス
を燃焼した後、予備浄化装置に供給して吸着成分
を脱着すると共に続いて吸着工程に先だつての予
冷を前記主浄化装置よりの排出ガスを供給して行
なうことを特徴とするガスの精製方法である。以
下本発明のガス精製方法を図面により詳細に説明
する。
The present invention was developed in view of the above-mentioned current situation, and its characteristics include a preliminary purification device consisting of an adsorption device, and a main purification device consisting of an adsorption device or cryogenic separation device, which purifies coke oven gas containing hydrogen. In the method of purifying hydrogen gas by flowing it through the preliminary purification device and the main purification device as a raw material, the regeneration of the preliminary purification device is performed by combusting the exhaust gas removed by the main purification device and then supplying it to the preliminary purification device. This gas purification method is characterized by desorbing adsorbed components and subsequently performing precooling prior to the adsorption step by supplying exhaust gas from the main purification device. The gas purification method of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明のガス精製方法の原理を説明す
る系統略図である。1は予備浄化装置で切り換え
可能な複数の吸着筒よりなり、2は主浄化装置で
複数の切り換え可能な吸着筒による吸着手段によ
るか、あるいは深冷分離装置より構成されてい
る。そして本発明のガス精製方法は、水素、メタ
ン、一酸化炭素、二酸化炭素、窒素、酸素、軽質
炭化水素、水分の外に微量のアンモニア、硫黄化
合物、ダスト、タールミストを含むコークス炉よ
りの排出ガスは管3を介して予備浄化装置1にま
ず導入して不純物の大部分を除去し、続いて管4
を介して主浄化装置2に供給し、該装置2で残部
の不純物を除去して、管5より純度の高い水素が
回収して採取される。そしてこの間予備浄化装置
1には不純物が逐次蓄積されて不純物の除去効果
が劣化する。それ故これを再度繰り返し使用する
ため、不純物を吸着した吸着剤より不純物を脱離
する必要がある。又主浄化装置2では前記した通
り管5より純度の高い水素が採取されるが、一方
該装置2では一酸化炭素、メタンと少量の水素を
含む不純物混合ガスが管6より排出される。この
ようなことから、本発明の方法では、前記予備浄
化装置1の吸着筒の再生を、主浄化装置2より排
出される不純混合ガスを管6より抽出し燃焼炉7
に導びき該燃焼炉7で混合ガスを燃焼して高温ガ
スとして、高温ガスを管8を介して予備浄化装置
1に供給して流通せしめる。この結果前工程の精
製工程で予備浄化装置1に吸着された不純物が効
果的に脱離し、前記高温ガスに同伴して不純物を
管9を介して外部に排出する。続いて高温ガスの
流通によつて高温度に上昇した予備浄化装置1へ
の高温度のガスの供給を弁10を閉じて停止し弁
11を開いて、主浄化装置2よりの排出ガスを燃
焼炉7を迂回して側路管12を介して予備浄化装
置1へと導びき、該装置1を流通せしめて管9よ
り大気に放出して、高温度にあつた予備浄化装置
1の再生中の吸着筒を精製工程に切り換える前に
先だつて精製運転に必要な温度にまで予冷する。
FIG. 1 is a system diagram explaining the principle of the gas purification method of the present invention. Reference numeral 1 is a preliminary purification device consisting of a plurality of switchable adsorption columns, and reference numeral 2 is a main purification device consisting of adsorption means using a plurality of switchable adsorption columns or a cryogenic separation device. The gas refining method of the present invention uses exhaust gas from a coke oven that contains not only hydrogen, methane, carbon monoxide, carbon dioxide, nitrogen, oxygen, light hydrocarbons, and moisture, but also trace amounts of ammonia, sulfur compounds, dust, and tar mist. The gas is first introduced into the prepurifier 1 via pipe 3 to remove most of the impurities, and then into the prepurifier 1 via pipe 4.
The hydrogen is supplied to the main purification device 2 via the main purification device 2, the remaining impurities are removed by the device 2, and highly pure hydrogen is recovered and collected from the pipe 5. During this time, impurities are accumulated in the preliminary purification device 1 one after another, and the impurity removal effect is deteriorated. Therefore, in order to use this again and again, it is necessary to remove the impurities from the adsorbent that has adsorbed the impurities. In the main purification device 2, highly purified hydrogen is extracted from the pipe 5 as described above, but on the other hand, in the main purification device 2, an impurity mixed gas containing carbon monoxide, methane, and a small amount of hydrogen is discharged from the pipe 6. For this reason, in the method of the present invention, the adsorption column of the preliminary purification device 1 is regenerated by extracting the impure mixed gas discharged from the main purification device 2 through the pipe 6 and then moving it to the combustion furnace 7.
The mixed gas is combusted in the combustion furnace 7 to produce a high-temperature gas, and the high-temperature gas is supplied to the preliminary purification device 1 through a pipe 8 to be circulated. As a result, the impurities adsorbed by the preliminary purification device 1 in the previous purification step are effectively desorbed, and the impurities are discharged to the outside via the pipe 9 along with the high temperature gas. Next, the supply of high temperature gas to the preliminary purification device 1, which has risen to a high temperature due to the flow of the high temperature gas, is stopped by closing the valve 10, and the valve 11 is opened to combust the exhaust gas from the main purification device 2. It bypasses the furnace 7 and is guided to the preliminary purification device 1 through the side pipe 12, and the device 1 is made to flow, and is discharged to the atmosphere through the pipe 9, during the regeneration of the preparatory purification device 1, which is at a high temperature. Before switching the adsorption cylinder to the purification process, it is pre-cooled to the temperature required for the purification operation.

次に第2図により、本発明のガス精製方法を一
実施態様を例示してより詳細に説明する。第2図
において予備浄化装置1として切り換え可能な如
く配管された3基の活性炭を充填した吸着筒50
A,50B,50Cよりなり、それぞれの吸着筒
はそれぞれ精製、再生、予冷の工程を順次繰り返
して操作され、又同時にそれぞれの吸着筒50
A,50B,50Cは前記精製、再生、予冷の各
異つた一つの工程状態に保持される。前記吸着筒
50は説明を容易にするため3基としたが、2基
以上であれば適宜切り換え操作して連続運転する
ことが可能である。又主浄化装置2は深冷分離装
置や吸着器を用いた装置いずれでも実施可能であ
るが、本実施例ではゼオライトを充填した吸着塔
60A,60Bの2基を設置し精製、再生の各工
程を切り換え操作して運転する圧力スイング法の
場合について説明する。
Next, with reference to FIG. 2, the gas purification method of the present invention will be explained in more detail by illustrating one embodiment. In FIG. 2, three adsorption cylinders 50 filled with activated carbon are piped so as to be switchable as the preliminary purification device 1.
A, 50B, and 50C, each adsorption cylinder is operated by repeating the purification, regeneration, and precooling steps in sequence, and at the same time, each adsorption cylinder 50
A, 50B, and 50C are held in different process states of refining, regeneration, and precooling. Although three adsorption cylinders 50 are used for ease of explanation, if there are two or more adsorption cylinders 50, they can be operated continuously by appropriately switching them. Although the main purification device 2 can be implemented by either a cryogenic separation device or a device using an adsorption device, in this embodiment two adsorption towers 60A and 60B filled with zeolite are installed to perform each step of purification and regeneration. The case of the pressure swing method in which the pressure swing method is operated by switching will be explained.

コークス炉より排出されたH2:60%、CH4
26%、CO:5%、軽質炭化水素:2%、CO2
2%、N2:4%、その外H2S、NOx、アンモニ
ア、タールミスト、BTx(ベンゼン、トルエン、
キシレン)、水分等の不純物1%の組成よりなる
廃ガスを原料として該ガス350Nm3/hを圧縮機
101で11Kg/cm2Gに圧縮し管102弁103A
管104Aを介して吸着筒50Aに導入する。そ
して該吸着塔50Aに充填されている活性炭によ
り前記約1%含有しているH2S、NOx、アンモ
ニア、タールミスト、BTx、水分等主浄化装置
2での除去では装置の運転を継続するのに弊害を
もたらしたり、製品水素ガスの純度向上に好まし
くない成分を除去しついで弁105A、管106
A、管107を介して主浄化装置2に供給され
る。そして主浄化装置2として設置されているゼ
オライトを充填した2基の吸着筒60A,60B
のうちのたとえば60Aに弁108A、管109
Aを介して導入し、吸着筒60AでCH4、CO、
軽質炭化水素、CO2、N2が吸着除去され管11
0A、弁111A、管112、弁113を介して
管114より純度約99.9%以上のH2が100Nm3
hが回収される。
H2 discharged from coke oven: 60%, CH4 :
26%, CO: 5%, light hydrocarbons: 2%, CO 2 :
2%, N 2 : 4%, H 2 S, NOx, ammonia, tar mist, BTx (benzene, toluene,
350Nm 3 /h of this gas is compressed to 11Kg/cm 2 G by a compressor 101 using a waste gas having a composition of 1% of impurities such as xylene and water as a raw material, and then the pipe 102 and the valve 103A
It is introduced into the adsorption cylinder 50A via the pipe 104A. The activated carbon packed in the adsorption tower 50A removes the approximately 1% H 2 S, NOx, ammonia, tar mist, BTx, moisture, etc. in the main purification device 2 while the device continues to operate. The valve 105A, the pipe 106
A, supplied to the main purifier 2 via pipe 107; Two adsorption cylinders 60A and 60B filled with zeolite are installed as the main purification device 2.
For example, 60A has a valve 108A and a pipe 109.
CH 4 , CO,
Light hydrocarbons, CO 2 and N 2 are adsorbed and removed in pipe 11.
0A, valve 111A, pipe 112, and valve 113 from pipe 114, H 2 with a purity of about 99.9% or more is supplied at 100 Nm 3 /
h is collected.

一方この間予備浄化装置1の別の吸着筒50B
は再生工程に、また吸着筒50Cは予冷工程に運
転され、順次精製工程−再生工程−予冷工程の各
工程に切り換えて使用される。又主浄化装置2で
の吸着筒60A,60Bも又精製工程と再生工程
を順次切り換えて繰り返し使用される。そして該
吸着筒60Aと60Bとの再生工程たとえば吸着
筒60Bでの再生では弁108B、弁111Bが
閉じられ、弁115Bを開状態として筒内のガス
を管109B、弁115B、管116を介して
徐々に放出し大気圧迄減圧した後、精製工程にあ
る吸着筒60Aよりの高純度の製品水素ガスの一
部をニードル弁117を介して減圧して管11
8、弁119B、管110Bを経て吸着筒60B
に送給し、該吸着筒60Bのゼオライトに吸着さ
れているCH4、CO、軽質炭化水素、CO2、N2
の不純物を脱着して管109B、弁115Bを経
て排出主管116により排出される。続いて、吸
着筒60Bが精製工程に入り、予備浄化された原
料ガスが管107、弁108B、管109Bを介
して吸着筒60Bに導入され、該筒60Bで
CH4、CO、軽質炭化水素、CO2、N2の不純物を
吸着除去し、弁111B、管112、弁113を
経て管114より高純度のH2が100Nm3/h採取
される。一方吸着筒60Aは再生工程となり管1
09A、弁115Aを経て、管116より排出ガ
スが放出される。このようにして主浄化装置2よ
りは100Nm3/hの高純度の水素(H2)が採取さ
れる一方、H244.6%、CH436.9%、CO7.1%、軽
質炭化水素2.8%、CO22.9%、N25.7%の排出ガス
246.5Nm3/hが排出主管116より放出される。
そしてこの排出ガスのうち25Nm3/hは管12
0、弁121を経て燃焼炉7に導びかれ、該炉7
で燃焼して約1000℃の温度のガスとなつて管12
2より排出する。そしてこのガスは予備浄化装置
1の吸着筒50の再生に適切な200〜400℃の温度
にするよう、前記排出ガス246.5Nm3/hのうち
の一部が管123で分岐し前記管122の温度を
検知器124で検知して、その温度に応じて流量
を調節するよう開度が調整される流量調節弁12
5を経て、流量が調節されて管122に合流す
る。ついで適切な温度200〜400℃にされた高温ガ
ス25〜50Nm3/hrは、管126B、弁127Bを
介して再生工程にある吸着塔50Bに導入して、
該筒50Bが前工程の精製工程で吸着したH2S、
NOx等の不純物を効果的に脱着し、管128B、
弁129Bを介して排出し更に主管130を介し
て大気に放出される。
Meanwhile, another adsorption cylinder 50B of the preliminary purification device 1
is operated in the regeneration process, and the adsorption column 50C is operated in the precooling process, and is used by being sequentially switched to the purification process, regeneration process, and precooling process. Further, the adsorption cylinders 60A and 60B in the main purification device 2 are also used repeatedly by sequentially switching between the purification process and the regeneration process. In the process of regenerating the adsorption cylinders 60A and 60B, for example, in the regeneration of the adsorption cylinder 60B, the valves 108B and 111B are closed, and the valve 115B is opened, allowing the gas inside the cylinders to be passed through the pipes 109B, 115B, and 116. After gradually discharging and reducing the pressure to atmospheric pressure, a part of the high-purity product hydrogen gas from the adsorption column 60A in the purification process is depressurized via the needle valve 117 and transferred to the pipe 11.
8. Adsorption cylinder 60B via valve 119B and pipe 110B
The impurities such as CH 4 , CO, light hydrocarbons, CO 2 and N 2 adsorbed on the zeolite in the adsorption cylinder 60B are desorbed and discharged through the main discharge pipe 116 via the pipe 109B and the valve 115B. Ru. Subsequently, the adsorption cylinder 60B enters the purification process, and the prepurified raw material gas is introduced into the adsorption cylinder 60B via the pipe 107, valve 108B, and pipe 109B, and is purified in the cylinder 60B.
Impurities such as CH 4 , CO, light hydrocarbons, CO 2 , and N 2 are adsorbed and removed, and 100 Nm 3 /h of highly purified H 2 is collected from the pipe 114 via the valve 111B, the pipe 112, and the valve 113. On the other hand, the adsorption cylinder 60A is in the regeneration process, and the pipe 1
Exhaust gas is released from pipe 116 through valve 115A and valve 115A. In this way, 100Nm 3 /h of high-purity hydrogen (H 2 ) is collected from the main purification device 2, while 44.6% H 2 , 36.9% CH 4 , 7.1% CO, 2.8% light hydrocarbons, Exhaust gas of CO2 2.9%, N2 5.7%
246.5Nm 3 /h is discharged from the main discharge pipe 116.
Of this exhaust gas, 25Nm 3 /h is from pipe 12.
0, is led to the combustion furnace 7 via the valve 121, and the furnace 7
It burns and becomes a gas with a temperature of about 1000℃, and the tube 12
Discharge from 2. Then, a part of the exhaust gas 246.5Nm 3 /h is branched into the pipe 122 so that this gas has a temperature of 200 to 400°C suitable for regenerating the adsorption cylinder 50 of the preliminary purification device 1. A flow rate control valve 12 whose opening degree is adjusted so that the temperature is detected by a detector 124 and the flow rate is adjusted according to the detected temperature.
5, the flow rate is regulated and it joins the pipe 122. Next, 25 to 50 Nm 3 /hr of high-temperature gas brought to an appropriate temperature of 200 to 400°C is introduced into the adsorption tower 50B in the regeneration process via pipe 126B and valve 127B.
H 2 S adsorbed by the cylinder 50B in the previous purification process,
Effectively desorbs impurities such as NOx, pipe 128B,
It is discharged through the valve 129B and further discharged to the atmosphere through the main pipe 130.

又、吸着筒50Cは前工程で再生工程によつ
て、高温の状態にあるため、次工程での精製工程
に先だつて常温迄冷却する必要がある。このた
め、前記した主浄化装置2で排出される246.5N
m3/hrの排出ガスのうち前記再生に使用される25
〜50Nm3/h、の残部約220〜190Nm3/h、のガ
スが管131で分岐され弁132を介して分岐管
133Cに導びかれ弁134Cを介して吸着筒5
0Cに導入する。そして吸着筒を冷却して管13
5C、弁136Cを介して排出され、更に主管1
37に流入する。そしてこの予冷に使用したガス
の組成は前記した如くH2SやNOx、タールミス
ト等の主浄化装置2での除去が好ましくない不純
物が含まれておらず又水素が約45%も含まれてい
るのでこれを圧縮機101の吸入口に戻すことに
よつて有効に使用することも出来る。
Furthermore, since the adsorption column 50C is in a high temperature state due to the regeneration process in the previous process, it is necessary to cool it to room temperature prior to the purification process in the next process. For this reason, the 246.5N discharged by the main purification device 2 mentioned above
m 3 /hr of exhaust gas used for said regeneration.
~50Nm 3 /h, and the remaining gas of approximately 220 to 190Nm 3 /h is branched at pipe 131 and guided to branch pipe 133C via valve 132, and then to adsorption cylinder 5 via valve 134C.
Introduce at 0C. Then, the adsorption tube is cooled and the tube 13
5C, is discharged via valve 136C, and is further discharged through main pipe 1
37. As mentioned above, the composition of the gas used for this precooling is that it does not contain impurities such as H 2 S, NOx, and tar mist that are not desirable to be removed by the main purifier 2, and it also contains approximately 45% hydrogen. Therefore, it can be used effectively by returning it to the suction port of the compressor 101.

このようにして予備浄化装置1で設備された各
吸着筒50A,50B,50Cをそれぞれ順次切
り換えて操作することにより、精製、再生、予冷
の各工程を同時に異つた工程で運転して常にいず
れかの筒が精製、再生、予冷工程をして連続運転
が可能となる。そしてこれら予備浄化装置1の吸
着筒50A,50B,50Cの前記精製、再生、
予冷の各工程の切り換え操作と、主浄化装置2で
の吸着筒60A,60Bの切り換え操作とは、そ
れぞれ独立して行なわれる。この間予備浄化装置
1の吸着筒50A,50B,50Cのうち再生工
程と予冷工程にある吸着筒に、常に主浄化装置2
の吸着筒60A,60Bよりの排出ガスが前記し
た如く燃焼炉7を経たり又そのままそれぞれ連続
的に送給される。
In this way, by sequentially switching and operating the adsorption cylinders 50A, 50B, and 50C installed in the preliminary purification device 1, each of the purification, regeneration, and precooling steps can be operated simultaneously in different steps, so that only one of them can be operated at the same time. The cylinder undergoes refining, regeneration, and precooling processes, making continuous operation possible. The purification and regeneration of the adsorption cylinders 50A, 50B, and 50C of these preliminary purification apparatus 1,
The switching operation for each step of precooling and the switching operation for the adsorption cylinders 60A and 60B in the main purifier 2 are performed independently. During this time, the adsorption cylinders 50A, 50B, and 50C of the preliminary purification apparatus 1 that are in the regeneration process and the precooling process are always connected to the main purification apparatus 2.
The exhaust gases from the adsorption cylinders 60A and 60B are continuously fed through the combustion furnace 7 or as they are, respectively, as described above.

なお上記実施例では主浄化装置2として吸着に
よる精製について例示して説明したが、吸着精製
に代えて深冷分離装置を用いることもできる。た
とえば不純物であるCH4、CO、N2、軽質炭化水
素等は水素よりも液化温度が高いので、その液化
の温度の差を利用して、不純物を除去し水素ガス
を回収するものである。そしてこの時除去される
不純物CH4、CO、N2等を前記したと同様予備浄
化装置の吸着器50a,50b,50c、の再生
工程、予冷工程にそれぞれ供給して有効に使用す
る。
In the above embodiment, purification by adsorption has been exemplified and explained as the main purification device 2, but instead of adsorption purification, a cryogenic separation device can also be used. For example, impurities such as CH 4 , CO, N 2 , and light hydrocarbons have a higher liquefaction temperature than hydrogen, so the difference in liquefaction temperature is used to remove impurities and recover hydrogen gas. The impurities CH 4 , CO, N 2 , etc. removed at this time are supplied to the regeneration process and precooling process of the adsorbers 50a, 50b, 50c of the preliminary purification device, respectively, as described above, and are used effectively.

本発明は以上のようにコークス炉廃ガスより水
素を回収するにあたつて、吸着器よりなる予備浄
化装置と吸着器あるいは深冷分離装置よりなる主
浄化装置を経て水素を回収するので極めて高純度
の水素ガスが採取し得る。又、予備浄化装置に使
用している吸着器の再生には主浄化装置で除去さ
れる排ガスを使用するので外に再生ガスを求める
必要がない。しかもこの排ガスは予備浄化装置で
篩分けられた清浄ガスであるばかりでなく、これ
を燃焼すると高温度になりかつH2Oを生成する
のでこれを前記予備浄化装置の吸着器の再生に使
用すると極めて効果的に吸着された不純物を脱着
し得る。特に前記燃焼によつて生成されるH2O
の存在は、予備浄化装置の吸着器に吸着される不
純物のうちベンゼン・トルエン・キシレン等や
H2Sの如き脱着し難い物質を極めて効果的に脱離
する効果を発揮する。これによつて以後の吸着工
程における不純物の吸着作用を極めて効率よく行
なうことが出来る。更に又予備浄化装置での吸着
器が再生工程で高温度になつていて、これを吸着
工程に切り換えるに先だつて冷却(常温に)する
工程に、前記主浄化装置から排出するCH4、CO、
N2等の混合ガスを利用するが、該混合ガスは良
く乾燥しているので、吸着器はよく乾燥して再生
されて、以後の吸着器の吸着能力を充分維持して
良好に再生することが出来る。そして更にこれら
予備浄化装置の吸着器の再生及び予冷を主浄化装
置での排出ガスを使用して行なうのが、別途にこ
れらガスを用意することがなく、又これによつて
生ずる供給装置等の諸設備を設置することなく、
これが省略し得るので設備費を節減し得るし更に
は装置規模を縮少し得るので、その経済的効果は
極めて著しい。
As described above, in recovering hydrogen from coke oven waste gas, the present invention recovers hydrogen through a preliminary purification device consisting of an adsorber and a main purification device consisting of an adsorber or cryogenic separation device, resulting in extremely high efficiency. Pure hydrogen gas can be collected. Furthermore, since the exhaust gas removed by the main purification device is used to regenerate the adsorber used in the preliminary purification device, there is no need to obtain regeneration gas from outside. Moreover, this exhaust gas is not only clean gas that has been sieved by the pre-purification device, but when it is combusted, it reaches a high temperature and generates H 2 O, so if this gas is used to regenerate the adsorber of the pre-purification device, Adsorbed impurities can be desorbed very effectively. In particular the H 2 O produced by said combustion
The presence of impurities such as benzene, toluene, xylene, etc. that are adsorbed by the adsorber of the preliminary purification device
It exhibits the effect of extremely effectively desorbing substances that are difficult to desorb, such as H 2 S. This makes it possible to extremely efficiently adsorb impurities in the subsequent adsorption step. Furthermore, the adsorber in the preliminary purification device has reached a high temperature during the regeneration process, and in the process of cooling it (to room temperature) before switching to the adsorption process, CH 4 , CO,
A mixed gas such as N 2 is used, but since the mixed gas is well dried, the adsorber can be dried well and regenerated, and the adsorption capacity of the adsorber can be maintained sufficiently for subsequent regeneration. I can do it. Furthermore, regeneration and precooling of the adsorbers in these preliminary purification devices are performed using the exhaust gas from the main purification device, which eliminates the need to separately prepare these gases, and the resulting supply equipment, etc. Without installing various equipment,
Since this can be omitted, equipment costs can be reduced and the scale of the equipment can also be reduced, so the economic effect is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のガス精製方法の原理を説明
する概略系統図、第2図はこの発明の一実施例を
示す系統図である。 1……予備浄化装置、2……主浄化装置、7…
…燃焼炉、8,12……管、10,11……弁。
FIG. 1 is a schematic system diagram explaining the principle of the gas purification method of the invention, and FIG. 2 is a system diagram showing an embodiment of the invention. 1... Preliminary purification device, 2... Main purification device, 7...
... Combustion furnace, 8, 12 ... pipe, 10, 11 ... valve.

Claims (1)

【特許請求の範囲】[Claims] 1 水素ガスを含むコークス炉よりの排ガスを原
料として、吸着工程−再生工程−予冷工程に順次
切り換え可能な複数個の吸着塔よりなる予備浄化
装置を経て、吸着装置あるいは深冷分離装置より
なる主浄化装置に流通せしめて水素ガスを回収す
るガス精製方法において、前記予備浄化装置の吸
着塔の再生工程に、前記主浄化装置で除去される
排出ガスを燃焼せしめて加温ガスとして供給する
と共に、続いて吸着工程に先だつて行う予冷工程
に前記主浄化装置で除去される排出ガスにより吸
着塔を予冷することを特徴とするガス精製方法。
1 Exhaust gas from a coke oven containing hydrogen gas is used as a raw material, and passes through a preliminary purification device consisting of a plurality of adsorption towers that can be sequentially switched to an adsorption process, a regeneration process, and a precooling process, and then to a main body consisting of an adsorption device or a cryogenic separation device. In a gas purification method in which hydrogen gas is recovered by flowing through a purification device, the exhaust gas removed by the main purification device is combusted and supplied as a heated gas to the regeneration step of an adsorption tower of the preliminary purification device; A gas purification method characterized in that an adsorption tower is precooled by the exhaust gas removed by the main purification device in a precooling step that is subsequently performed prior to the adsorption step.
JP57053167A 1982-03-31 1982-03-31 Method of refining gas Granted JPS58168877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053167A JPS58168877A (en) 1982-03-31 1982-03-31 Method of refining gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053167A JPS58168877A (en) 1982-03-31 1982-03-31 Method of refining gas

Publications (2)

Publication Number Publication Date
JPS58168877A JPS58168877A (en) 1983-10-05
JPH039392B2 true JPH039392B2 (en) 1991-02-08

Family

ID=12935293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053167A Granted JPS58168877A (en) 1982-03-31 1982-03-31 Method of refining gas

Country Status (1)

Country Link
JP (1) JPS58168877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222882A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and purifying apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620505B2 (en) * 1984-11-08 1994-03-23 新日本製鐵株式会社 Method for refining coke oven gas
JP4534629B2 (en) * 2004-06-30 2010-09-01 Jfeエンジニアリング株式会社 Gas purification device and method for regenerating removal agent used in the gas purification device
JP5074116B2 (en) * 2007-07-12 2012-11-14 株式会社日立製作所 Regenerative desulfurization apparatus and desulfurization system
JP6347007B1 (en) * 2017-11-16 2018-06-20 株式会社島川製作所 Organic solvent-containing gas treatment system
US20230330587A1 (en) * 2020-09-11 2023-10-19 Toyobo Co., Ltd. Organic solvent recovery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222882A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and purifying apparatus

Also Published As

Publication number Publication date
JPS58168877A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
US4000990A (en) Adsorption process
US3594983A (en) Gas-treating process and system
EP0289877B1 (en) Gas separation process
CA1336041C (en) Separation of gas mixtures including hydrogen
US4696680A (en) Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption
CN105749699A (en) Full-temperature-range pressure swing adsorption gas separation, refinement and purification method
US4326858A (en) Pressure buildup technique in pressure swing adsorption process
US4259091A (en) Adiabatic adsorption method for gas purification or separation
EP1483036A1 (en) Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
IE912679A1 (en) Carbon dioxide production from combustion exhaust gases with¹nitrogen and argon by-product recovery
EP0603178A4 (en)
JPS6012117A (en) Drying of gas stream
JPH02281096A (en) Carbon dioxide and moisture remover for methane-enriched mixed gas
US5229089A (en) Recovery of flammable materials from gas streams
KR20140109356A (en) Recovery of NF3 from Adsorption Operation
CN112107963A (en) Treatment of methane streams comprising VOCs and carbon dioxide by a combination of adsorption units and membrane separation units
CN108236829B (en) From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus
JPH039392B2 (en)
KR940004626B1 (en) Process for helium purification
JPS6137970B2 (en)
JPS59116115A (en) Method for recovering carbon monoxide
JPH01176416A (en) Purifying method for combustion exhaust gas
JPS62279823A (en) Purification and recovery of methane from reclaimed garbage gas
CA1176994A (en) Repressurization for pressure swing adsorption system