JPH0360523B2 - - Google Patents

Info

Publication number
JPH0360523B2
JPH0360523B2 JP61148622A JP14862286A JPH0360523B2 JP H0360523 B2 JPH0360523 B2 JP H0360523B2 JP 61148622 A JP61148622 A JP 61148622A JP 14862286 A JP14862286 A JP 14862286A JP H0360523 B2 JPH0360523 B2 JP H0360523B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
gas
adsorption
purge
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61148622A
Other languages
Japanese (ja)
Other versions
JPS634825A (en
Inventor
Kazuo Tajima
Hiroshi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP61148622A priority Critical patent/JPS634825A/en
Publication of JPS634825A publication Critical patent/JPS634825A/en
Publication of JPH0360523B2 publication Critical patent/JPH0360523B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用方法) 本発明は、一酸化炭素選択吸着剤を使用して、
圧力スイング吸着法(以下PSA法と略称する)
により混合ガスから一酸化炭素を分離回収する方
法に関する。 (従来技術及びその問題点) 近時、転炉ガス、電気炉ガス、高炉ガス等に含
まれる一酸化炭素を有効に利用するために、これ
らのガスから一酸化炭素をPSAで分離する方法
が、数多く研究されている。 例えば、特開昭59−22625号等には、一般のゼ
オライト系吸着剤を用い、転炉ガス等からPSA
によつて一酸化炭素を濃縮する方法が提案されて
いる。しかしこの方法で使用する吸着剤は一酸化
炭素と共存する二酸化炭素の吸着量が一酸化炭素
よりも多い。このため、この方法では前段で二酸
化炭素を除去するCO2−PSA等の前処理装置を必
要とし、工程が複雑となり、しかも、装置コスト
がかさむという欠点がある。またこの方法では、
一酸化炭素濃度を向上させようとすると、パージ
量が増し、回収率が著しく低下すること、また
CO−PSAにおいては、一般のゼオライト系吸着
剤を用いるために、窒素の共吸着が大きくなり、
窒素濃度を十分に低下することが困難になるとい
う欠点がある。 また特開昭61−21906号及び特開昭61−26506号
は、一酸化炭素を選択的に吸着する吸着剤を用い
てPSAにて一酸化炭素を分離する方法を開示し
ている。ここでは吸着剤として一酸化炭素と共存
する他のガス成分、例えば窒素、二酸化炭素、水
素、酸素に対して一酸化炭素を選択的に吸着する
ものを用い、これら成分を有する原料混合ガスを
一方の吸着塔に流通し、昇圧、吸着の各工程を経
て、真空脱着工程の終了した他塔と連結させ並流
減圧工程を行つた後、真空脱着工程により一酸化
炭素を回収する方法が開示され、またさらに純度
を向上するために、並流減圧工程の後、製品加工
工程と減圧排気工程を加える方法が示されてい
る。しかし、この公報に記載された実施例による
と、原料混合ガス濃度が、CO90.0%、N29.2%、
CO20.8%に対して、製品ガス濃度はCO96.2%、
N22.7%、CO21.10%となり、製品純度は、それ
ほど向上していない。ましてCO2濃度は原料混合
ガスよりも増加している。従つてこの方法ではガ
スのパージが不十分といえる。 さらに特公昭54−3822には、混合ガスから吸着
しやすい成分を高純度で分離する方法のために、
脱着する前に、製品ガスで吸着時と同一圧力下で
パージする方法が示されている。また特公昭54−
3823には、混合ガスから難吸着成分と易吸着成分
をそれぞれ高純度で連続的に分離回収するため
に、混合ガスの供給前にテイルガスによる昇圧工
程と、脱着工程前に製品ガスで吸着時と同一圧力
下でパージする方法が記載されている。しかし製
品ガスによるパージは、吸着時と同一圧力で行う
必然性はなく、またテイルガスによる昇圧は、一
見回収率の向上に役立つように思えるが、実際
は、二番目に易吸着性である成分の共吸着が多く
なるために、かえつてパージ操作が困難になると
いう欠点がある。 (発明が解決しようとする技術的課題) 本発明は、一酸化炭素とともに二酸化炭素や窒
素等を含む混合ガスから、一段で一酸化炭素を高
純度かつ高回収率で分離回収することができる一
酸化炭素の分離回収方法を提供することを目的と
する。 (技術的課題を解決する手段) この発明は、一酸化炭素を主成分のひとつと
し、少なくとも二酸化炭素及び/又は窒素を含有
する混合ガスを一酸化炭素選択吸着剤を入れた塔
に通して、一酸化炭素を選択的に吸着せしめた後
脱着する一酸化炭素の分離回収方法において、 一酸化炭素の脱着回収が終了した塔に上記混合
ガスを供給し、少なくとも大気圧まで昇圧する昇
圧工程と、 昇圧工程の終了した塔に大気圧以上の圧力の混
合ガスを、一酸化炭素に次いで吸着量の多い成分
が少なくともブレークスルーし始めるまで流通せ
しめる吸着工程と、 吸着工程が終了した塔に、パージ工程の出口ガ
スを放圧しながら供給して、一酸化炭素及び一酸
化炭素に次いで吸着量の多い成分を除いた他の吸
着成分をパージする予備パージ工程と、 予備パージ工程が終了した塔の出口端を閉じて
パージ工程の出口ガスを回収するパージ後ガス回
収工程と、 脱着回収後の製品ガスを吸着工程における吸着
圧力を超える圧力に昇圧し、その断熱圧縮熱で昇
温し、これをパージ後ガス回収工程の終了した塔
の入口端に供給し同時に出口端を開けて、一酸化
炭素に次いで吸着量の多い吸着成分をパージする
パージ工程と、 パージ工程終了後の塔を減圧して、濃縮した一
酸化炭素を回収する脱着回収工程とを、順次繰返
して行う一酸化炭素の分離回収方法である。 (発明の具体的説明) 一酸化炭素とともに二酸化炭素および窒素等を
含む混合ガスから1段のPSAにて易吸着成分
(ここでは一酸化炭素)を純度よく分離回収する
には共存する混合ガスの成分の中で、一酸化炭素
を最も吸着する吸着剤を用いることが必須であ
り、また共吸着する他成分(二酸化炭素、窒素
等)を製品ガス(一酸化炭素)の還流で置換吸着
させる操作、すなわちパージ操作をいかに効率よ
く行わせしめるかが最も重要なポイントである。 本発明者等は、すでに特開昭61−17413号など
において、このような吸着剤の作成方法と優れた
吸着性能について開示した。即ちこの吸着剤は、
シリカ/アルミナ比10以下のゼオライトに、Ni、
Mn、Rh、Cu()、Ag及びこれらの混合物から
選択された1または2以上の金属を担持せしめた
ものであり、この吸着剤の製造方法は、ゼオライ
トに第1段階でイオン交換法により、第2段階で
含浸法により金属を担持する方法である。そし
て、本発明者は更にこれら一酸化炭素選択吸着剤
のブレークスルー、パージ特性について検討を重
ねた結果、パージ工程を効率よく行うためには以
下の2点が重要であることを見出した。 (1) パージ温度を上げること。 (2) パージガス量を増やすこと。 すなわち、置換吸着が行われる温度が高いほ
ど、本吸着剤の一酸化炭素の選択吸着能が増加す
るうえ、物質移動速度が大となるので速やかにパ
ージできる。またパージ圧力を上げると、脱着量
が増すので一酸化炭素の回収量を変えずにパージ
量を増加させることができる。さらにパージガス
を昇圧することで断熱圧縮熱でパージガスを昇温
できるという相乗効果も得られることがわかつ
た。 そして本発明者はこれらの特性を効率的に
PSAシステムに反映し、一酸化炭素の純度さら
には回収率を向上することのできる工程として本
発明を完成するに到つた。 表1及び第1図は本発明方法の1例を示す。こ
こでは4塔の吸着塔A〜Dを使用して、昇圧、吸
着、予備パージ、パージ後ガス回収パージ、脱着
回収の各工程を8ステツプで1順するサイクルに
組んである。少なくとも4塔の吸着塔を使用する
ことにより、原料混合ガスの供給、パージガスの
供給及び製品ガスの回収を連続して操作すること
ができる。なおここでは、工程をわかりやすく説
明するために、基本的な操作のみ示すが、これに
限定されるものではない。また原料混合ガスとし
て転炉ガス(CO80%、CO210%、N29%、H21
%)を想定している。 まずD塔に着目して説明する。 ステツプ1は昇圧工程を示す。この工程のD塔
は脱着回収工程が終了し、塔内が真空状態であ
り、このD塔の入口端から原料混合ガスを送風機
で流入する。この工程での終点は、送風圧力が大
気圧乃至送風機圧力程度となつた時である。この
工程で直接原料混合ガスを送風し、テイルガス
(後述する)を供給しないのは、テイルガスは、
原料混合ガスよりも一酸化炭素濃度が低いため、
このテイルガスで昇圧すると、この工程以後に行
う共吸着成分のパージが困難になるためである。 ステツプ2のD塔は吸着工程を示す。この工程
では出口端を開け、原料混合ガスを送風機にて流
通する。原料混合ガスの圧力は送風機で昇圧され
る程度の圧力で十分であり、0〜0.5Kg/cm2Gで
よい。この工程により、吸着能の小さい水素、酸
素は容易にブレイクスルーされる。この工程の終
点は少なくとも窒素がブレイクスルーされ、二酸
化炭素のブレイクスルーが始まるまで行う。この
点がステツプ2の終点となる。なお二酸化炭素の
ブレイクスルー終了後も吸着を続けると一酸化炭
素の回収率が低下する。吸着圧力を低くするの
は、一酸化炭素以外の成分の共吸着をなるべく少
なくするためである。また、原料混合ガスの供給
に昇圧機は不要となり、送風機程度のものですむ
という利点もある。 ステツプ3のD塔は、予備パージ工程を示す。
この工程では入口端からC塔出口のパージ後の出
口ガスを流入する。吸着工程終了後の塔出口側は
ブレイクスルーが完結していないので、塔出口端
を開けることによつて窒素および二酸化炭素の濃
度の高いテイルガスが排気される。この工程は、
少なくとも共吸着した二酸化炭素の置換脱着が始
まる点、すなわちパージが開始する点まで行われ
る。なお、二酸化炭素のパージ開始点を超えてこ
の工程を続けると一酸化炭素の回収率が低下する
ため、好ましくない。 ステツプ4のD塔は、パージ後ガス回収工程を
示す。ここでは出口端を閉じ、C塔出口のパージ
後ガスを回収しつつ昇圧する。塔内には、パージ
後ガスといえども一酸化炭素濃度が高いので、こ
の工程によつて回収率は改善される。また窒素お
よび二酸化炭素の吸着帯は出口端に移動するので
次のパージ工程が容易になる。 ステツプ5のD塔は、パージ工程を示す。この
工程では塔入口から昇圧機を介して加圧された製
品ガス(脱着回収された一酸化炭素を主成分とし
たガス)を流入する。出口端からのパージ後のガ
スはA塔の入口端に入る。パージガスの圧力は少
なくとも吸着圧力より高く5Kg/cm2G以下、好ま
しくは吸着圧力より高く2Kg/cm2G以下とし、製
品ガスの純度に応じて任意に設定する。パージガ
スは昇圧にともなう断熱圧縮熱で加熱されてお
り、パージ効率が向上する。 ステツプ6のD塔は、テツプ5と同様に加圧さ
れた製品ガスによるパージ工程を示す。この工程
では、A塔出口端は閉じられるので、D塔内は昇
圧されつつパージが行われる。このパージ工程
(ステツプ5,6)で使用する製品ガスは、多い
ほど純度は改善されるが、多すぎると処理量が低
下するので脱着回収工程で得られる製品ガスの多
くとも80%以下、好ましくは60%以下とするのが
よい。 ステツプ7はパージ工程が終了した直後の塔を
示す。ここではパージ工程の圧力から大気圧、あ
るいは大気圧付近の圧力まで放圧する。さらに大
気圧、あるいは大気圧付近の圧力まで達したら真
空ポンプを介して減圧脱着する。 ステツプ8では、引き続き真空ポンプを介して
減圧脱着する。吸着剤の一酸化炭素吸着能が大気
圧以下で大きいため、ここでの真空度は低い程好
ましく、少なくとも150Torr以下、好ましくは
100Torr以下とする。 図示する具体例では、上述したステツプ1〜8
を順次おこなう塔を4塔A〜D備えている。各塔
では、表1に示すようにステツプ1〜8をずらし
て、一酸化炭素の分離回収を連続的に行なえるよ
うにしている。各ステツプにおける各塔の接続
は、第1図に示す通りである。各塔を連続的に操
業するための構造は第2図に示す通りであり、図
示する機器はコンピユーターにより制御されてい
る。符号1は送風機を示し、原料混合ガスFを塔
A〜Dに順次送るものである。また真空ポンプ2
は塔A〜Dを順次減圧する。昇圧機3はガスホル
ダー4内の製品ガスRの一部を塔A〜Dに順次送
る。図中5〜8は流量調整弁、9〜29は切換弁
を示す。Tはテイルガスを示す。 なお本発明が応用できる原料混合ガスは、吸着
工程およびパージ工程での温度、圧力、時間の条
件下で、一酸化炭素の吸着量が最も多い吸着剤を
用いる限り、どのような成分を含んでいてもよ
い。ただし吸着剤の一酸化炭素吸着能を低下させ
る不純物はこの限りでない。このような原料混合
ガスには転炉、高炉、電気炉などから発生するオ
フガスがあるが、これらに限定されない。 また本発明で使用する吸着剤は一酸化炭素を他
の成分に対して選択的に吸着するものであれば、
いかなるものでもよい。 本発明において、原料混合ガスの供給、パージ
ガスの供給、製品ガスの回収を連続して操作する
ためには少なくとも4塔の吸着塔を必要とする。
(Industrial usage method) The present invention uses a carbon monoxide selective adsorbent to
Pressure swing adsorption method (hereinafter abbreviated as PSA method)
This invention relates to a method for separating and recovering carbon monoxide from a mixed gas. (Prior art and its problems) Recently, in order to effectively utilize carbon monoxide contained in converter gas, electric furnace gas, blast furnace gas, etc., a method of separating carbon monoxide from these gases using PSA has been developed. , has been extensively studied. For example, in JP-A-59-22625, etc., a general zeolite-based adsorbent is used to remove PSA from converter gas, etc.
proposed a method for concentrating carbon monoxide. However, the adsorbent used in this method adsorbs more carbon dioxide, which coexists with carbon monoxide, than carbon monoxide. For this reason, this method requires a pretreatment device such as CO 2 -PSA for removing carbon dioxide in the first stage, which complicates the process and increases the cost of the device. Also, with this method,
Attempts to increase carbon monoxide concentration will increase the amount of purge, significantly reducing the recovery rate, and
In CO-PSA, since a general zeolite adsorbent is used, the co-adsorption of nitrogen becomes large.
There is a drawback that it becomes difficult to sufficiently reduce the nitrogen concentration. Further, JP-A-61-21906 and JP-A-61-26506 disclose a method of separating carbon monoxide using PSA using an adsorbent that selectively adsorbs carbon monoxide. Here, an adsorbent that selectively adsorbs carbon monoxide against other gas components that coexist with carbon monoxide, such as nitrogen, carbon dioxide, hydrogen, and oxygen, is used, and a raw material mixed gas containing these components is Disclosed is a method for recovering carbon monoxide through a vacuum desorption process after passing through an adsorption tower, passing through each step of pressurization and adsorption, and connecting it to another tower where the vacuum desorption process has been completed to perform a cocurrent depressurization process. Furthermore, in order to further improve the purity, a method of adding a product processing step and a vacuum evacuation step after the co-current depressurization step is shown. However, according to the example described in this publication, the raw material mixed gas concentration is CO90.0%, N2 9.2%,
For CO 2 0.8%, the product gas concentration is CO 96.2%,
N 2 was 2.7% and CO 2 was 1.10%, so the product purity had not improved that much. Moreover, the CO 2 concentration is higher than that of the raw material mixed gas. Therefore, it can be said that gas purging is insufficient with this method. Furthermore, Japanese Patent Publication No. 54-3822 describes a method for separating easily adsorbable components from mixed gases with high purity.
A method of purging with product gas under the same pressure as during adsorption before desorption is shown. Also, special public service in 1977-
In order to continuously separate and recover difficult-to-adsorb and easily-adsorbed components from a mixed gas with high purity, 3823 requires a pressure increase process using tail gas before supplying the mixed gas, and an adsorption process using product gas before the desorption process. A method of purging under the same pressure is described. However, purging with product gas does not necessarily have to be carried out at the same pressure as during adsorption, and although increasing the pressure with tail gas may seem at first glance to be useful for improving the recovery rate, it actually co-adsorbs the second most adsorbable component. This has the disadvantage that the purge operation becomes difficult because of the increase in the amount of water. (Technical Problems to be Solved by the Invention) The present invention is a system that can separate and recover carbon monoxide in one step with high purity and high recovery rate from a mixed gas containing carbon monoxide, carbon dioxide, nitrogen, etc. The purpose of the present invention is to provide a method for separating and recovering carbon oxide. (Means for Solving the Technical Problems) This invention involves passing a mixed gas containing carbon monoxide as one of the main components and containing at least carbon dioxide and/or nitrogen through a column containing a carbon monoxide selective adsorbent. In a method for separating and recovering carbon monoxide in which carbon monoxide is selectively adsorbed and then desorbed, a pressurization step of supplying the mixed gas to a tower where desorption and recovery of carbon monoxide has been completed and increasing the pressure to at least atmospheric pressure; An adsorption process in which a mixed gas at a pressure higher than atmospheric pressure is passed through the tower after the pressure raising process until at least the component with the highest amount of adsorption next to carbon monoxide begins to break through, and a purge process in which the adsorption process is completed in the tower. A preliminary purge step in which the outlet gas is supplied while depressurizing to purge other adsorbed components except for carbon monoxide and the component with the second largest amount of adsorption after carbon monoxide, and the outlet end of the tower after the preliminary purge step is completed. a post-purging gas recovery process in which the gas at the outlet of the purge process is recovered by closing the purge process, and a post-purging gas recovery process in which the product gas after desorption and recovery is pressurized to a pressure exceeding the adsorption pressure in the adsorption process, heated by the adiabatic heat of compression, and then transferred to the post-purging process. There is a purge step in which gas is supplied to the inlet end of the tower where the gas recovery step has been completed, and the outlet end is simultaneously opened to purge the adsorbed components that have the second largest adsorption amount after carbon monoxide.After the purge step, the tower is depressurized and concentrated. This is a carbon monoxide separation and recovery method in which a desorption and recovery step for recovering carbon monoxide is sequentially repeated. (Specific Description of the Invention) In order to separate and recover easily adsorbable components (here, carbon monoxide) with high purity from a mixed gas containing carbon monoxide, carbon dioxide, nitrogen, etc., in one stage PSA, the coexisting mixed gas must be It is essential to use an adsorbent that best adsorbs carbon monoxide among the components, and it is also necessary to replace and adsorb other co-adsorbed components (carbon dioxide, nitrogen, etc.) with reflux of the product gas (carbon monoxide). In other words, the most important point is how efficiently the purge operation can be performed. The present inventors have already disclosed a method for producing such an adsorbent and its excellent adsorption performance in Japanese Patent Application Laid-Open No. 17413/1983. That is, this adsorbent is
Zeolite with a silica/alumina ratio of 10 or less, Ni,
One or more metals selected from Mn, Rh, Cu(), Ag, and mixtures thereof are loaded on the adsorbent, and the manufacturing method for this adsorbent is to attach zeolite to zeolite in the first step by an ion exchange method. In this method, the metal is supported by an impregnation method in the second step. As a result of further studies on the breakthrough and purge characteristics of these carbon monoxide selective adsorbents, the inventors found that the following two points are important in order to perform the purge process efficiently. (1) Raise the purge temperature. (2) Increase the amount of purge gas. That is, the higher the temperature at which displacement adsorption is performed, the more the selective adsorption ability of carbon monoxide of this adsorbent increases, and the mass transfer rate increases, so that purging can be performed quickly. Furthermore, when the purge pressure is increased, the amount of desorption increases, so the amount of purge can be increased without changing the amount of carbon monoxide recovered. Furthermore, it was found that by increasing the pressure of the purge gas, a synergistic effect could be obtained in that the temperature of the purge gas could be increased by the heat of adiabatic compression. And the inventor has efficiently exploited these characteristics.
We have completed the present invention as a process that can be reflected in the PSA system and improve the purity and recovery rate of carbon monoxide. Table 1 and FIG. 1 show one example of the method of the present invention. Here, four adsorption towers A to D are used to form a cycle in which the steps of pressurization, adsorption, preliminary purge, post-purging gas recovery purge, and desorption/recovery are performed in one order in eight steps. By using at least four adsorption towers, supply of raw material mixed gas, supply of purge gas, and recovery of product gas can be performed continuously. Here, in order to explain the process in an easy-to-understand manner, only basic operations are shown, but the present invention is not limited thereto. In addition, converter gas (CO80%, CO 2 10%, N 2 9%, H 2 1
%). First, let's focus on Tower D and explain it. Step 1 shows the pressure increasing step. The D column in this step has completed the desorption and recovery step and is in a vacuum state, and the raw material mixed gas is introduced from the inlet end of the D column using a blower. The end point of this process is when the blowing pressure reaches about atmospheric pressure or blower pressure. The reason why the raw material mixed gas is directly blown in this process and the tail gas (described later) is not supplied is because the tail gas is
Because the carbon monoxide concentration is lower than that of the raw material mixed gas,
This is because if the pressure is increased with this tail gas, it becomes difficult to purge the co-adsorbed components after this step. Tower D in step 2 represents the adsorption step. In this step, the outlet end is opened and the raw material mixed gas is circulated using a blower. It is sufficient for the pressure of the raw material mixed gas to be increased by a blower, and may be 0 to 0.5 kg/cm 2 G. Through this process, hydrogen and oxygen, which have a small adsorption capacity, can easily break through. The end point of this process is at least until nitrogen has broken through and carbon dioxide has begun to break through. This point is the end point of step 2. Note that if adsorption continues even after carbon dioxide breakthrough ends, the recovery rate of carbon monoxide will decrease. The reason for lowering the adsorption pressure is to minimize co-adsorption of components other than carbon monoxide. Another advantage is that a booster is not required to supply the raw material mixed gas, and only a blower is required. Step 3, column D, represents a preliminary purge step.
In this step, the purged outlet gas from the C tower outlet is introduced from the inlet end. Since the breakthrough has not been completed on the column outlet side after the adsorption process is completed, the tail gas with a high concentration of nitrogen and carbon dioxide is exhausted by opening the column outlet end. This process is
This is carried out at least up to the point at which displacement desorption of the co-adsorbed carbon dioxide begins, ie, the point at which purge begins. Note that it is not preferable to continue this step beyond the carbon dioxide purge starting point because the recovery rate of carbon monoxide will decrease. Step 4, Tower D, represents a post-purging gas recovery step. Here, the outlet end is closed and the purged gas at the outlet of the C column is recovered and pressurized. Since the carbon monoxide concentration in the column is high even in the gas after purging, this step improves the recovery rate. Additionally, the nitrogen and carbon dioxide adsorption zones move to the outlet end, facilitating the next purge step. Step 5, column D, represents a purge step. In this step, pressurized product gas (gas mainly composed of desorbed and recovered carbon monoxide) is introduced from the tower inlet via a booster. The purged gas from the outlet end enters the inlet end of the A column. The pressure of the purge gas is at least higher than the adsorption pressure and not more than 5 kg/cm 2 G, preferably higher than the adsorption pressure and not more than 2 kg/cm 2 G, and is arbitrarily set depending on the purity of the product gas. The purge gas is heated by the heat of adiabatic compression accompanying pressure increase, improving purge efficiency. Tower D in step 6 shows a purge step with pressurized product gas similar to step 5. In this step, since the outlet end of column A is closed, purging is performed while the pressure inside column D is increased. The purity of the product gas used in this purge step (steps 5 and 6) improves as the amount increases, but if the amount is too large, the throughput decreases, so the product gas used in the desorption and recovery step should preferably be at most 80% or less. It is best to keep it below 60%. Step 7 shows the column just after the purge step is completed. Here, the pressure in the purge step is released to atmospheric pressure or a pressure near atmospheric pressure. Furthermore, when the pressure reaches atmospheric pressure or near atmospheric pressure, it is depressurized and desorbed via a vacuum pump. In step 8, decompression is subsequently carried out using a vacuum pump. Since the carbon monoxide adsorption capacity of the adsorbent is high below atmospheric pressure, the degree of vacuum here is preferably as low as possible, at least 150 Torr or less, preferably
Must be 100Torr or less. In the illustrated example, steps 1 to 8 described above are
It is equipped with four towers A to D, which perform these steps sequentially. In each column, steps 1 to 8 are staggered as shown in Table 1 so that carbon monoxide can be separated and recovered continuously. The connections of each tower in each step are as shown in FIG. The structure for continuously operating each column is as shown in FIG. 2, and the equipment shown is controlled by a computer. Reference numeral 1 indicates a blower, which sequentially sends the raw material mixed gas F to the towers A to D. Also vacuum pump 2
The pressure in columns A to D is sequentially reduced. The booster 3 sequentially sends a part of the product gas R in the gas holder 4 to the columns A to D. In the figure, 5 to 8 indicate flow rate adjustment valves, and 9 to 29 indicate switching valves. T indicates tail gas. Note that the raw material mixed gas to which the present invention can be applied can contain any components as long as an adsorbent that adsorbs the largest amount of carbon monoxide under the temperature, pressure, and time conditions in the adsorption step and purge step is used. You can stay there. However, this does not apply to impurities that reduce the carbon monoxide adsorption ability of the adsorbent. Such raw material mixed gas includes off-gas generated from converters, blast furnaces, electric furnaces, etc., but is not limited to these. In addition, if the adsorbent used in the present invention selectively adsorbs carbon monoxide with respect to other components,
It can be anything. In the present invention, at least four adsorption towers are required to continuously operate the supply of raw material mixed gas, the supply of purge gas, and the recovery of product gas.

【表】 以下、実施例を示す。 実施例 1 CuCl2の1N溶液を作成し、100ml丸底フラスコ
にNa−Y型ゼオライト(1.5mmφ、5mmLペレツ
ト、バインダ20%含む)10gと、1NCuCl2溶液50
mlを加え、丸底フラスコにコンデンサーを取付け
てマントルヒータで100℃で加熱還流を2時間行
なつた。静置后、デカンテーシヨンにより上澄み
を回収し、更に1NCuCl2溶液50mlを加え、同様に
還流を行なつた。還流操作は合計5回行ない、ゼ
オライトは純水で十分水洗し、110℃で乾燥后、
電気炉で550℃2時間焼成して吸着剤を作成した。
尚、回収した上澄み液とろ液を混合し、発光分析
で放出したNa量を求めてイオン交換率を測定し
た結果、86.5%であり、単位吸着剤当りの担持Cu
量は、8.87wt%であつた。 このCu()−Y型ゼオライト(1.5mmφ、5mm
hペレツト)を10g秤量し、100mlのナス型フラ
スコに入れ、ロータリバキユームエバポレータに
セツトし、95℃以上で真空脱気する。脱気後、真
空にしながら試料を室温まで冷却する。 一方、CuCl2・2H2O8.3gを室温の水に溶解さ
せ20mlとする。これは、ほぼCuCl2の飽和溶液と
なる。 ロータリバキユームエバポレータのリークコツ
クにキヤピラリを取付け、ナス型フラスコ内を真
空に保持させながら、上記溶液を、2〜3滴ずつ
吸着剤に滴下含浸させる。 吸着剤が一様に漏れた時点で滴下をやめフラス
コ内を常圧に戻す。さらに金網をつけた吸引濾過
器を含浸させた試料を移し、残りの溶液を試料上
に注ぎ、約30分間吸引濾過した後、磁性皿上に広
げて一昼夜風乾させる。風乾後の試料を真空乾燥
器内で110℃で3時間真空乾燥させて、本発明の
吸着剤を得た。当吸着剤の担持Cu量は、15.96wt
%であつた。 このようにして得られたCu()Y−CUCl2
Cu含有率16wt%、1.5mmφ、5mmLペレツトを内
径50mmφ、高さ800mmの吸着塔に1000g(dry)
充てんし、99.9%以上の純度のCOガスを250℃で
2時間、約1Nl/minで流通し、Cu2+をCu+に還
元した。該COガスを供給しながら、塔内をほぼ
大気圧に保ちつつ60℃に降温し、保持した。該
COガスの供給を止め、真空ポンプを接続し、5
分間真空排気した。5分後の塔内圧力は80Torr
であつた。 減圧状態にある吸着塔内に入口端から転炉ガス
を想定した標準ガス(CO80.0容量%、CO210.5容
量%、H21.0容量%、N28.5容量%)を1.4Nl/
minで流入し、0.3Kg/cm2Gに達した後、出口端
を開け、非分散型赤外線吸収法のCO/CO2ガス
分析計で塔出口のCO、CO2濃度を連続測定した。
出口ガス濃度が入口ガス濃度とほぼ一致したら、
標準ガスの流通を止め、99.9%upのCOガスを、
同じく1.4Nl/min、0.3Kg/cm2Gで流通し、出口
ガス濃度を測定した。 同様に塔内を70℃に設定してブレイクスルー、
パージ測定を実施した。第3図に60℃と70℃のパ
ージ測定の結果を示す。H2、N2のパージ特性は
ほぼ同じだが、CO2は70℃の法が吸着帯の幅が小
さく、高温ほどCO2の置換吸着が容易であること
がわかる。 実施例 2〜7 実施例1に示す方法で作製したCu()Y−
CUCl2、Cu含有率16wt%、1.5mmφ、5mmLペレ
ツトを内径50mmφ、高さ800mmの吸着塔4本に、
各1000g(dry)充てんし、第2図に示す装置に
設置した。吸着剤を活性化するために純水素ガス
を120℃で2時間、1Nl/minで流通し、Cu2+
Cu+に還元した。 塔内温度を所定の操作温度に設定した後、除
塵、除湿した転炉ガス(CO78〜82容量%、CO29
〜11容量%、N27〜10容量%、H20.8〜2容量%、
O20.05容量%以下、水分露点0℃以下)を本発明
方法に示すシステムでPSAを行い、COを分離し
た。 サイクルタイムはいずれも20分、ステツプ1は
2分、ステツプ2は3分とした。各実験は20サイ
クル以上運転し、流量、濃度ともに安定してから
各部の流量と濃度を測定した。実施例2〜7の結
果を表2に示す。 なお本実験装置の処理量では、パージガスの断
熱圧縮による温度の上昇はわずかで影響は認めら
れなかつたが、結果は良好であつた。
[Table] Examples are shown below. Example 1 A 1N solution of CuCl 2 was prepared, and 10 g of Na-Y type zeolite (1.5 mmφ, 5 mm L pellet, containing 20% binder) and 50 g of 1N CuCl 2 solution were placed in a 100 ml round bottom flask.
ml was added, a condenser was attached to the round bottom flask, and the mixture was heated under reflux at 100°C for 2 hours using a mantle heater. After standing still, the supernatant was collected by decantation, and 50 ml of 1NCuCl 2 solution was added thereto, followed by refluxing in the same manner. The reflux operation was performed a total of 5 times, and the zeolite was thoroughly washed with pure water and dried at 110℃.
An adsorbent was created by firing in an electric furnace at 550°C for 2 hours.
The ion exchange rate was measured by mixing the recovered supernatant and filtrate and determining the amount of Na released by luminescence analysis.
The amount was 8.87wt%. This Cu()-Y type zeolite (1.5mmφ, 5mm
Weigh out 10g of pellets), put them in a 100ml eggplant-shaped flask, set it in a rotary vacuum evaporator, and vacuum degas it at 95°C or above. After degassing, the sample is cooled to room temperature while applying a vacuum. On the other hand, 8.3 g of CuCl 2 .2H 2 O was dissolved in water at room temperature to make 20 ml. This results in an approximately saturated solution of CuCl 2 . A capillary is attached to the leak tank of the rotary vacuum evaporator, and while the inside of the eggplant-shaped flask is maintained in vacuum, the adsorbent is impregnated with 2 to 3 drops of the above solution. When the adsorbent leaks out evenly, stop dropping and return the inside of the flask to normal pressure. Then, transfer the impregnated sample to a suction filter equipped with a wire mesh, pour the remaining solution onto the sample, filter it with suction for about 30 minutes, spread it on a magnetic plate, and air dry it overnight. The air-dried sample was vacuum-dried at 110° C. for 3 hours in a vacuum dryer to obtain an adsorbent of the present invention. The amount of Cu supported on this adsorbent is 15.96wt
It was %. Cu()Y-CUCl 2 obtained in this way,
Cu content 16wt%, 1.5mmφ, 5mmL pellets were placed in an adsorption tower with an inner diameter of 50mmφ and a height of 800mm (dry).
The chamber was filled with CO gas with a purity of 99.9% or higher at 250°C for 2 hours at a rate of about 1 Nl/min to reduce Cu 2+ to Cu + . While supplying the CO gas, the temperature inside the column was lowered to 60° C. and maintained at approximately atmospheric pressure. Applicable
Stop the CO gas supply, connect the vacuum pump, and
It was evacuated for a minute. The pressure inside the column after 5 minutes is 80Torr.
It was hot. A standard gas (CO8 0.0% by volume, CO 2 10.5% by volume, H 2 1.0% by volume, N 2 8.5% by volume) is added at 1.4Nl/into the adsorption tower under reduced pressure from the inlet end.
After reaching 0.3 Kg/cm 2 G, the outlet end was opened and the CO and CO 2 concentrations at the tower outlet were continuously measured using a CO/CO 2 gas analyzer using a non-dispersive infrared absorption method.
When the outlet gas concentration almost matches the inlet gas concentration,
Stopping the flow of standard gas and supplying 99.9% more CO gas.
Similarly, the flow was conducted at 1.4 Nl/min and 0.3 Kg/cm 2 G, and the outlet gas concentration was measured. Similarly, breakthrough was achieved by setting the inside of the tower to 70℃.
Purge measurements were performed. Figure 3 shows the results of purge measurements at 60°C and 70°C. The purge characteristics for H 2 and N 2 are almost the same, but for CO 2 the width of the adsorption zone is smaller in the 70°C method, indicating that the displacement adsorption of CO 2 is easier at higher temperatures. Examples 2 to 7 Cu()Y- produced by the method shown in Example 1
CUCl 2 , Cu content 16wt%, 1.5mmφ, 5mmL pellets were placed in four adsorption towers with an inner diameter of 50mmφ and a height of 800mm.
Each was filled with 1000 g (dry) and installed in the apparatus shown in Figure 2. To activate the adsorbent, pure hydrogen gas was passed at 1Nl/min at 120°C for 2 hours to remove Cu 2+ .
Reduced to Cu + . After setting the tower internal temperature to the specified operating temperature, the dedusted and dehumidified converter gas (CO78~82% by volume, CO2 9
~11% by volume, N2 7-10% by volume, H2 0.8-2% by volume,
PSA was performed using the system shown in the method of the present invention, and CO was separated. The cycle time was 20 minutes in each case, 2 minutes for step 1, and 3 minutes for step 2. Each experiment was operated for more than 20 cycles, and after the flow rate and concentration were both stable, the flow rate and concentration at each part were measured. The results of Examples 2 to 7 are shown in Table 2. Note that with the throughput of this experimental device, the temperature increase due to adiabatic compression of the purge gas was slight and no influence was observed, but the results were good.

【表】 (発明の効果) この発明によれば、昇圧工程でテイルガスを使
用せず、すべて原料混合ガスを用いており、また
パージ工程で製品ガスは断熱圧縮により昇圧、昇
温されているため、吸着剤の一酸化炭素選択吸着
能が増加し、しかも物質移動速度が大となり、パ
ージ工程を効率よくおこなうことができる。
[Table] (Effects of the invention) According to this invention, no tail gas is used in the pressure increase process, and all raw material mixed gas is used, and the product gas is pressurized and heated by adiabatic compression in the purge process. , the selective adsorption capacity of carbon monoxide of the adsorbent is increased, and the mass transfer rate is increased, so that the purge process can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分離回収方法における各ガス
の流れの1側を説明する図、第2図は本発明の分
離回収方法を実施するための4塔式PSA装置を
示す図、第3図は吸着が終了した塔にCOパージ
ガスを流通して、出口CO濃度の変化を求めた図
である。 1…送風機、2…真空ポンプ、4…昇圧機、4
…ガスホルダー、5〜8…流量調節弁、9〜29
…切換弁、A〜D…吸着塔、F…原料混合ガス、
P…パージガス、T…テイルガス、De…脱着ガ
ス。
FIG. 1 is a diagram explaining one side of the flow of each gas in the separation and recovery method of the present invention, FIG. 2 is a diagram showing a four-column PSA apparatus for carrying out the separation and recovery method of the present invention, and FIG. 3 This is a diagram showing the change in the CO concentration at the outlet by flowing CO purge gas through the tower where adsorption has been completed. 1...Blower, 2...Vacuum pump, 4...Booster, 4
...Gas holder, 5-8...Flow rate control valve, 9-29
...Switching valve, A to D...Adsorption tower, F...Raw material mixed gas,
P...Purge gas, T...Tail gas, De...Desorption gas.

Claims (1)

【特許請求の範囲】 1 一酸化炭素を主成分のひとつとし、少なくと
も二酸化炭素及び/または、窒素を含有する混合
ガスを一酸化炭素選択吸着剤を入れた塔に通し
て、一酸化炭素を選択的に吸着せしめた後脱着す
る一酸化炭素の分離回収方法において、 一酸化炭素の脱着回収が終了した塔に上記混合
ガスを供給し、少なくとも大気圧まで昇圧する昇
圧工程と、 昇圧工程の終了した塔に大気圧以上の圧力の混
合ガスを、一酸化炭素に次いで吸着量の多い成分
が少なくともブレークスルーし始めるまで流通せ
しめる吸着工程と、 吸着工程が終了した塔に、パージ工程の出口ガ
スを放圧しながら供給して、一酸化炭素及び一酸
化炭素に次いで吸着量の多い成分を除いた他の吸
着成分をパージする予備パージ工程と、 予備パージ工程が終了した塔の出口端を閉じて
パージ工程の出口ガスを回収するパージ後ガス回
収工程と、 脱着回収後の製品ガスを吸着工程における吸着
圧力を超える圧力に昇圧し、その断熱圧縮熱で昇
温し、これをパージ後ガス回収工程の終了した塔
の入口端に供給し同時に出口端を開けて、一酸化
炭素に次いで吸着量の多い吸着成分をパージする
パージ工程と、 パージ工程終了後の塔を減圧して、濃縮した一
酸化炭素を回収する脱着回収工程とを、順次繰返
して行う一酸化炭素の分離回収方法。 2 一酸化炭素選択吸着剤は、シリカ/アルミナ
比10以下のゼオライトに、Ni、Mn、Rh、Cu
()、Ag及びこれらの混合物から選択された1
又は2以上の金属を担持せしめたものである特許
請求の範囲第1項記載の一酸化炭素分離回収方
法。
[Claims] 1 A mixed gas containing carbon monoxide as one of the main components and containing at least carbon dioxide and/or nitrogen is passed through a column containing a carbon monoxide selective adsorbent to select carbon monoxide. In the separation and recovery method for carbon monoxide, which is adsorbed and then desorbed, the above-mentioned mixed gas is supplied to the column where the desorption and recovery of carbon monoxide has been completed, and the pressure is increased to at least atmospheric pressure; There is an adsorption process in which a mixed gas at a pressure higher than atmospheric pressure is passed through the tower until at least the component with the highest amount of adsorption next to carbon monoxide begins to break through, and the outlet gas from the purge process is released into the tower after the adsorption process has been completed. A preliminary purge step in which carbon monoxide and other adsorbed components except for the component with the second largest amount of adsorption after carbon monoxide are purged by supplying the product under pressure, and a purge step in which the outlet end of the tower is closed after the preliminary purge step is completed. The product gas after desorption and recovery is pressurized to a pressure higher than the adsorption pressure in the adsorption step, and its temperature is raised by the heat of adiabatic compression, and then the gas is collected at the end of the post-purging gas recovery step. There is a purge step in which carbon monoxide is supplied to the inlet end of the tower, and at the same time the outlet end is opened to purge the adsorbed component, which has the second largest amount of adsorption after carbon monoxide.After the purge step, the tower is depressurized to remove the concentrated carbon monoxide. A method for separating and recovering carbon monoxide by sequentially repeating the desorption and recovery process. 2 The carbon monoxide selective adsorbent uses zeolite with a silica/alumina ratio of 10 or less, Ni, Mn, Rh, and Cu.
1 selected from ( ), Ag and mixtures thereof
The carbon monoxide separation and recovery method according to claim 1, wherein the carbon monoxide separation and recovery method is one in which two or more metals are supported.
JP61148622A 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide Granted JPS634825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148622A JPS634825A (en) 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148622A JPS634825A (en) 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide

Publications (2)

Publication Number Publication Date
JPS634825A JPS634825A (en) 1988-01-09
JPH0360523B2 true JPH0360523B2 (en) 1991-09-17

Family

ID=15456902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148622A Granted JPS634825A (en) 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide

Country Status (1)

Country Link
JP (1) JPS634825A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912706B2 (en) * 2006-03-20 2012-04-11 日揮触媒化成株式会社 Carbon monoxide methanation method
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst

Also Published As

Publication number Publication date
JPS634825A (en) 1988-01-09

Similar Documents

Publication Publication Date Title
JP4315666B2 (en) Syngas purification method
KR100271539B1 (en) Temperature swing adsorption
CA1050901A (en) Adsorption process
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
JPH10114508A (en) Method for purifying flow of inert gas
JPH11179137A (en) Method for removing steam and carbon dioxide from gas
JPS6325809B2 (en)
JPS6137968B2 (en)
EP1931465A2 (en) Silver-exchanged zeolites and methods of manufacture therefor
JP2000317244A (en) Method and device for purifying gas
WO2009116671A1 (en) Method and apparatus for separating blast furnace gas
US6660240B1 (en) Gas processing agent and manufacturing method therefor, gas purification method, gas purifier and gas purification apparatus
TWI569864B (en) Purifying method and purifying apparatus for argon gas
EP2364766A1 (en) "Method for the removal of moist in a gas stream"
JPS6246911A (en) Method for concentrating gaseous co
JPH1085588A (en) Treatment agent for gas refining and gas refining device
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JPH0360523B2 (en)
JPH0360524B2 (en)
CZ234396A3 (en) Process of selective adsoption of nitrogen from a gas mixture
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
JPS621767B2 (en)
JPS621766B2 (en)
US4303228A (en) Apparatus for heat treating containing air-purged molecular sieves in O.sub. -free N2 atmospheres
JP2012082080A (en) Argon refining method and argon refining apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees