JP2013017913A - Steam-reforming catalyst and hydrogen production process using the same - Google Patents

Steam-reforming catalyst and hydrogen production process using the same Download PDF

Info

Publication number
JP2013017913A
JP2013017913A JP2011150983A JP2011150983A JP2013017913A JP 2013017913 A JP2013017913 A JP 2013017913A JP 2011150983 A JP2011150983 A JP 2011150983A JP 2011150983 A JP2011150983 A JP 2011150983A JP 2013017913 A JP2013017913 A JP 2013017913A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
steam
steam reforming
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011150983A
Other languages
Japanese (ja)
Inventor
Shinya Kitaguchi
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011150983A priority Critical patent/JP2013017913A/en
Publication of JP2013017913A publication Critical patent/JP2013017913A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a steam-reforming catalyst which is non-precious metal and has a long durability against poisoning by sulfur compounds contained in fuel hydrocarbon compounds and changes in catalyst components or carbon deposition due to changes in temperature or environment caused by repeated on/offs of a fuel cell systems and a hydrogen production process using the catalyst.SOLUTION: The steam-reforming catalyst produces hydrogen by reforming hydrocarbon compounds, and is obtained by applying a catalyst composition in which nickel is dispersed and supported on cerium oxide onto a honeycomb carrier. The content of alumina oxide in the catalyst composition is less than 20 mass%.

Description

本発明は、水蒸気改質触媒及び該触媒を用いて炭化水素系化合物を改質して水素含有ガスを製造する水素製造方法に関する。   The present invention relates to a steam reforming catalyst and a hydrogen production method for producing a hydrogen-containing gas by reforming a hydrocarbon compound using the catalyst.

水素含有ガスは、水素ガス製造用の他に還元用ガス、更には各種化学製品の原料等として広く活用されており、最近では、燃料電池用燃料としても実用化研究が進められている。このような水素含有ガスは、炭化水素化合物の水蒸気改質によって得られることが知られている。天然ガスの主成分であるメタンを原料とした場合の水蒸気改質反応を下式に示した。
CH+HO→CO+3H
酸化アルミニウムや酸化マグネシウムなどの無機多孔担体に活性成分としてニッケルを担持したニッケル系水蒸気改質触媒は古くから工業的に使用されている。例えば特許文献1では特定の細孔容積を有したα−アルミナを担体としてニッケルを3〜20質量%含浸担持する水蒸気改質触媒が開示されている。しかしながらα−アルミナは高温での使用条件下でニッケルと固相反応して不活性なニッケルアルミネートを形成し活性低下し易い。
Hydrogen-containing gas is widely used as a reducing gas in addition to hydrogen gas production, and also as a raw material for various chemical products. Recently, practical research has been conducted as a fuel for fuel cells. It is known that such a hydrogen-containing gas can be obtained by steam reforming of a hydrocarbon compound. The steam reforming reaction when methane, the main component of natural gas, is used as a raw material is shown in the following equation.
CH 4 + H 2 O → CO + 3H 2
Nickel-based steam reforming catalysts in which nickel is supported as an active component on an inorganic porous carrier such as aluminum oxide or magnesium oxide have been used industrially for a long time. For example, Patent Document 1 discloses a steam reforming catalyst in which α-alumina having a specific pore volume is supported and impregnated with 3 to 20% by mass of nickel. However, α-alumina easily reacts with nickel under high-temperature use conditions to form an inactive nickel aluminate, resulting in a decrease in activity.

そこで特許文献2ではニッケルアルミネートなどを担体として更に活性成分としてニッケルや鉄を担持した水素製造触媒が提案されている。スピネル型構造やベロブスカイト型構造を有した担体を用いることで活性成分が前述の固相反応により取り込まれるのを防止することを目的としているが、これら担体はα−アルミナと同様に比表面積が小さく高温使用条件においてニッケルの粒子成長を招き耐久性が十分ではない。また特許文献3ではニッケルを酸化マグネシウムなどのアルカリ土類金属酸化物と固溶体を形成してS/C比(スチーム/カーボンモル比)が低い反応条件でも炭素析出が少ない水蒸気改質触媒が開示されている。しかしながら長期使用において耐酸化性や炭素析出性が満足できるものではなかった。ニッケル系水蒸気改質触媒の炭素析出を抑制するためにニッケルを微粒子化する方法が有効であるとされている。例えば特許文献4ではマグネシウム、アルミニウム及びニッケルを含むハイドロタルサイト化合物を焼成して得られ、ニッケル金属粒子の平均粒子径が10nm以下である水蒸気改質触媒が提案されている。ただしハイドロタルサイトの製造は共沈、熟成、水洗、濾別、乾燥、焼成などの複雑な製造工程や廃水処理設備が必要であって触媒製造方法に課題があった。   Therefore, Patent Document 2 proposes a hydrogen production catalyst in which nickel aluminate or the like is used as a carrier and nickel or iron is supported as an active ingredient. The purpose is to prevent the active ingredient from being taken in by the above-mentioned solid-phase reaction by using a carrier having a spinel structure or a velovskite structure, but these carriers have a specific surface area similar to α-alumina. Small and high temperature use conditions cause nickel particle growth, and durability is not sufficient. Further, Patent Document 3 discloses a steam reforming catalyst in which nickel is formed into a solid solution with an alkaline earth metal oxide such as magnesium oxide and carbon deposition is small even under reaction conditions having a low S / C ratio (steam / carbon molar ratio). ing. However, the oxidation resistance and carbon deposition properties were not satisfactory after long-term use. In order to suppress the carbon deposition of the nickel-based steam reforming catalyst, it is said that a method of making nickel fine particles is effective. For example, Patent Document 4 proposes a steam reforming catalyst obtained by firing a hydrotalcite compound containing magnesium, aluminum, and nickel, and having an average particle diameter of nickel metal particles of 10 nm or less. However, the production of hydrotalcite required complicated production processes such as coprecipitation, ripening, water washing, filtration, drying, and firing, and wastewater treatment equipment, and there were problems with the catalyst production method.

またニッケル系水蒸気改質触媒の性能が使用により低下した際の性能回復方法として、炭化水素燃料及び水蒸気を停止して、空気を導入し析出した炭素を除去することが特許文献5に記載されている。しかしながらこれら再生処理によりニッケルは酸化されて不活性となるため、再使用前に還元処理を実施する必要があった。   Further, Patent Document 5 describes that as a performance recovery method when the performance of the nickel-based steam reforming catalyst deteriorates due to use, hydrocarbon fuel and steam are stopped, air is introduced, and precipitated carbon is removed. Yes. However, since nickel is oxidized and becomes inactive by these regeneration treatments, it is necessary to carry out a reduction treatment before reuse.

特開平2−43952号公報JP-A-2-43952 特開2004−89812号公報JP 2004-89812 A 特開平9−77501号公報JP-A-9-77501 特開2003−135967号公報JP 2003-135967 A 特開2007−284322号公報JP 2007-284322 A

家庭用燃料電池システムは電力及び熱需要のバランスで日々システムの稼動停止が繰り返し実施され、省エネルギーの観点よりS/C比をできるだけ低くして運転することが求められる。このような運転方法から家庭用燃料電池向けには優れた耐酸化性及び炭素析出抑制性が必要であり高価なルテニウム系水蒸気改質触媒が採用されている。   The domestic fuel cell system is repeatedly shut down daily with a balance between power and heat demand, and is required to be operated with the S / C ratio as low as possible from the viewpoint of energy saving. Due to such an operation method, an excellent ruthenium-based steam reforming catalyst is required for home fuel cells, which requires excellent oxidation resistance and carbon deposition suppression.

本発明は上記事情に鑑みてなされたものであって、その目的は燃料である炭化水素系化合物に含まれる硫黄含有化合物による被毒、燃料電池システムの稼動停止の繰り返しでの温度や雰囲気変化による触媒成分変質や炭素析出に対して長期耐久性を有する非貴金属系の水蒸気改質触媒、および該触媒を用いた水素製造方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is due to poisoning due to sulfur-containing compounds contained in hydrocarbon-based compounds as fuel, and changes in temperature and atmosphere due to repeated shutdown of the fuel cell system. The object is to provide a non-noble metal-based steam reforming catalyst having long-term durability against catalyst component alteration and carbon deposition, and a hydrogen production method using the catalyst.

本発明者らは、水蒸気改質反応について詳細に検討した結果、ニッケルを酸化セリウムに分散担持せしめた触媒組成物をハニカム担体に被覆してなる水蒸気改質触媒を見出して本発明を完成させた。当該触媒は耐酸化性に優れ、かつ従来から用いられているルテニウム系の水蒸気改質触媒と遜色の無い各種炭化水素化合物に対する改質性能を有しているものである。   As a result of detailed studies on the steam reforming reaction, the present inventors have found a steam reforming catalyst formed by coating a honeycomb carrier with a catalyst composition in which nickel is dispersed and supported on cerium oxide, and completed the present invention. . The catalyst is excellent in oxidation resistance, and has a reforming performance with respect to various hydrocarbon compounds that is comparable to a ruthenium-based steam reforming catalyst conventionally used.

また該触媒を用いた水素製造方法を、燃料電池システムの停止の際に600℃以上で炭化水素化合物の供給を停止して水蒸気パージを実施することで、低S/C比でも炭素析出を起こさずに、触媒の高活性を維持し省エネルギーな運転条件で水素を製造できることを見出し、本発明を完成するに至った。   In addition, in the hydrogen production method using the catalyst, carbon deposition is caused even at a low S / C ratio by stopping the supply of the hydrocarbon compound at 600 ° C. or higher when the fuel cell system is stopped and performing the steam purge. In addition, the inventors have found that hydrogen can be produced under an energy-saving operating condition while maintaining high activity of the catalyst, and the present invention has been completed.

本発明の水蒸気改質触媒は、高価な貴金属を使用しなくても各種炭化水素化合物を燃料として低温で水蒸気改質反応を行うことができ、かつ耐酸化性や炭素析出抑制性が優れている。また該触媒を用いた水素製造方法は、耐酸化性に優れ、低S/C比においても炭素析出が抑制されるため本発明の水素製造方法によって長期に亘り安定して、効率的に水素を製造することができる。従って家庭用の燃料電池システム向けに好適であり、例えば固体高分子型燃料電池や固体酸化物型燃料電池への組み込みに適している。   The steam reforming catalyst of the present invention can perform a steam reforming reaction at a low temperature using various hydrocarbon compounds as fuel without using expensive noble metals, and is excellent in oxidation resistance and carbon precipitation suppression. . Also, the hydrogen production method using the catalyst has excellent oxidation resistance, and carbon deposition is suppressed even at a low S / C ratio. Therefore, the hydrogen production method of the present invention stably and efficiently produces hydrogen over a long period of time. Can be manufactured. Therefore, it is suitable for a fuel cell system for home use, for example, suitable for incorporation into a polymer electrolyte fuel cell or a solid oxide fuel cell.

本発明の水蒸気改質触媒はニッケルを酸化セリウムに分散担持せしめた触媒組成物をハニカム担体に被覆してなり、前記触媒組成物における酸化アルミニウムの含有率が20質量%未満であることを特徴とする水蒸気改質触媒である。本発明の水蒸気改質触媒はγ−アルミナに代表される活性アルミナやα−アルミナなどの酸化アルミニウムの含有率が触媒組成物中の20質量%未満である。酸化アルミニウムの含有率は触媒組成物の15質量%未満が好ましく、より好ましくは10質量%、5質量%未満であることが更に好ましく、酸化アルミニウムが1質量%未満であることが特に好ましい。
触媒組成物中の酸化アルミニウムの含有率が20質量%以上である場合は高温での使用条件において活性成分であるニッケルがアルミナと反応してニッケルアルミネート形成し水蒸気改質性能の低下や炭素析出が生じやすくなるため好ましくない。触媒組成物中の活性アルミナの含有率を制限することで、安定した処理性能を維持することができる。またニッケルが酸化セリウムに分散担持されていることにより炭素析出が起こりにくくなり、水蒸気改質反応により各種炭化水素化合物から水素を生成することができる。以下に本発明の詳細を説明する。
The steam reforming catalyst of the present invention comprises a honeycomb carrier coated with a catalyst composition in which nickel is dispersed and supported on cerium oxide, and the aluminum oxide content in the catalyst composition is less than 20% by mass. It is a steam reforming catalyst. In the steam reforming catalyst of the present invention, the content of aluminum oxide such as activated alumina or α-alumina typified by γ-alumina is less than 20% by mass in the catalyst composition. The content of aluminum oxide is preferably less than 15% by mass, more preferably less than 10% by mass and less than 5% by mass, and particularly preferably less than 1% by mass of aluminum oxide.
When the content of aluminum oxide in the catalyst composition is 20% by mass or more, nickel, which is an active component, reacts with alumina to form nickel aluminate under high temperature use conditions, thereby reducing steam reforming performance and carbon deposition. Is not preferred because it tends to occur. By limiting the content of activated alumina in the catalyst composition, stable processing performance can be maintained. Further, since nickel is dispersedly supported on cerium oxide, carbon deposition hardly occurs, and hydrogen can be generated from various hydrocarbon compounds by a steam reforming reaction. Details of the present invention will be described below.

(水蒸気改質触媒)
本発明の水蒸気改質触媒においてニッケルを担持する酸化セリウムは、10m/g以上、好ましくは50〜250m/gの比表面積を有しているものである。10m/g未満であると、ニッケルを高分散に担持できず、粒子の凝集が生じやすくなり高温での使用条件下において性能低下を招くからである。
(Steam reforming catalyst)
Cerium oxide carrying the nickel in the steam reforming catalyst of the present invention, 10 m 2 / g or more, preferably has a specific surface area of 50 to 250 m 2 / g. This is because if it is less than 10 m 2 / g, nickel cannot be supported in a highly dispersed state, and particles are likely to be aggregated, resulting in performance deterioration under use conditions at high temperatures.

ニッケルを前記の酸化セリウムに分散担持するのは通常触媒調製方法を用いることができ、好ましくは含浸法を用いることである。例えば酸化セリウム粉体にニッケル塩溶液を含浸して焼成することにより得られる。   It is usually possible to use a catalyst preparation method to disperse and carry nickel on the cerium oxide, and preferably to use an impregnation method. For example, it is obtained by impregnating a cerium oxide powder with a nickel salt solution and baking.

本発明の水蒸気改質触媒の触媒組成物において、酸化セリウムは80〜300g/L、好ましくは120〜200g/L(ハニカム担体の1リットル当り)被覆することができる。酸化セリウムの含有量が80g/L未満である場合はニッケルの分散性が低下して十分な耐酸化性を得ることができない。また反応ガスとの接触効率を高めるためにはハニカム担体に十分な厚みのコート層を形成する必要があり、酸化セリウムを単位容積当り120g/L以上被覆することが特に好ましい。   In the catalyst composition of the steam reforming catalyst of the present invention, cerium oxide can be coated at 80 to 300 g / L, preferably 120 to 200 g / L (per liter of honeycomb carrier). When the content of cerium oxide is less than 80 g / L, the dispersibility of nickel is lowered and sufficient oxidation resistance cannot be obtained. In order to increase the contact efficiency with the reaction gas, it is necessary to form a coat layer having a sufficient thickness on the honeycomb carrier, and it is particularly preferable to coat cerium oxide with 120 g / L or more per unit volume.

次にニッケルは触媒組成物中に酸化ニッケルとしてハニカム担体の単位容積当りに5〜150g/L、好ましくは10〜100g/Lで含有されていることが好ましい。酸化ニッケルの含有量が5g/Lを未満である活性成分が少なく長期耐久性が得られにくくなる。また酸化ニッケルの含有量が150g/Lを超える場合は分散性が低下して高温反応条件で凝集しやすくなるため好ましくない。   Next, nickel is preferably contained in the catalyst composition as nickel oxide in an amount of 5 to 150 g / L, preferably 10 to 100 g / L per unit volume of the honeycomb carrier. There are few active ingredients whose nickel oxide content is less than 5 g / L, and long-term durability is difficult to obtain. Further, when the content of nickel oxide exceeds 150 g / L, the dispersibility is lowered, and it tends to aggregate under high temperature reaction conditions, which is not preferable.

本発明の触媒組成物においてニッケルは酸化セリウムに分散担持されており、NiO/CeOのモル比は0.05〜2.0、より好ましくは0.1〜1.0の範囲であることが好ましい。NiO/CeOのモル比が0.05未満である場合は、酸化ニッケル含有量が少なくなり十分な改質性能が得られにくく、2.0を越えるとニッケルの分散性が低下し耐久性能の低下を招く可能性がある。また特に好ましくはNiO/CeOのモル比が0.2〜0.5であって、触媒組成物の粉末X線回折測定において二酸化セリウム蛍石型構造と類似した位置に結晶ピ―クが主に検出され、酸化ニッケルに由来する結晶ピークは検出されないか、検出されてもそのメインピークが前記二酸化セリウムのメインピークの1/10未満のピーク強度であることが好ましい。このようにモル比を特定の範囲にすることにより、ニッケルは酸化セリウムに微粒子上に高分散に担持され本発明の効果が最大限に発揮される。本発明の実施例におけるX線回折の測定条件は、CuKα線源、電圧45KV、電流40mA、走査範囲10〜90°、走査速度0.198°/minである。 In the catalyst composition of the present invention, nickel is dispersed and supported on cerium oxide, and the molar ratio of NiO / CeO 2 is 0.05 to 2.0, more preferably 0.1 to 1.0. preferable. When the molar ratio of NiO / CeO 2 is less than 0.05, the nickel oxide content decreases and it is difficult to obtain sufficient reforming performance. There is a possibility of degrading. Particularly preferably, the molar ratio of NiO / CeO 2 is 0.2 to 0.5, and the crystal peak is mainly located at a position similar to the cerium dioxide fluorite structure in the powder X-ray diffraction measurement of the catalyst composition. It is preferable that the crystal peak derived from nickel oxide is not detected, or even if detected, the main peak has a peak intensity less than 1/10 of the main peak of the cerium dioxide. By setting the molar ratio in a specific range as described above, nickel is supported on fine particles in high dispersion on cerium oxide, and the effects of the present invention are maximized. The measurement conditions of X-ray diffraction in the example of the present invention are a CuKα ray source, a voltage of 45 KV, a current of 40 mA, a scanning range of 10 to 90 °, and a scanning speed of 0.198 ° / min.

このように本発明の水蒸気改質触媒はニッケルを酸化セリウムに分散担持せしめた触媒組成物をハニカム担体に被覆してなる。本発明に使用されるハニカム担体としてはセル数が100〜600セル/inch2(1平方インチ当たりのセルの数)のコージライトやムライトのようなセラミック製ハニカム担体やステンレス製のメタルハニカムなどを使用することができる。ハニカム担体のセル数が100セル/inch2以下である場合は単位容積当たりのガスとの接触面積が小さくなるため十分な反応速度が得られ難くなり、600セル/inch2を越える場合は触媒組成物の担持に際して目詰まりが生じやすくなるため好ましくない。水蒸気改質反応は吸熱反応であり外部加熱で触媒を500℃以上に昇温する必要があるが、軽量で伝熱性が良好なメタルハニカム担体を用いることで燃料電池システムを短時間で始動することが可能となる。特に、アルミニウムを含有するフェライト系ステンレス(Fe−Cr−Al)薄鋼板からなる平板と波板とを交互に重ね合わせて、渦巻状に積層したメタルハニカム担体を使用することが好ましい。メタルハニカム担体のセル数は100〜600セル/inch2(1平方インチ当たりのセル数)であり、ステンレス薄鋼板の箔厚が10〜50μmであることが好ましい。より好ましくはセル数が200〜400セル/inch2であり、ステンレス薄鋼板の箔厚が20〜30μmである。またステンレス薄鋼板の箔厚が10μm未満の場合はハニカムの機械的強度の低下を招く可能性があり、50μmを超える場合は触媒重量が重たくなるので好ましくない。 Thus, the steam reforming catalyst of the present invention is obtained by coating a honeycomb carrier with a catalyst composition in which nickel is dispersed and supported on cerium oxide. As the honeycomb carrier used in the present invention, a ceramic honeycomb carrier such as cordierite or mullite having a cell number of 100 to 600 cells / inch 2 (number of cells per square inch), a metal honeycomb made of stainless steel, or the like. Can be used. When the number of cells of the honeycomb carrier is 100 cells / inch 2 or less, the contact area with the gas per unit volume is small, so that it is difficult to obtain a sufficient reaction rate. When the number of cells exceeds 600 cells / inch 2 , the catalyst composition It is not preferable because clogging is likely to occur when a product is loaded. The steam reforming reaction is an endothermic reaction, and it is necessary to raise the catalyst temperature to 500 ° C or higher by external heating, but the fuel cell system can be started in a short time by using a lightweight and good heat transfer metal honeycomb carrier Is possible. In particular, it is preferable to use a metal honeycomb carrier in which flat plates and corrugated plates made of a ferritic stainless steel (Fe—Cr—Al) thin steel sheet containing aluminum are alternately stacked and stacked in a spiral shape. The number of cells of the metal honeycomb carrier is 100 to 600 cells / inch 2 (number of cells per square inch), and the foil thickness of the stainless steel sheet is preferably 10 to 50 μm. More preferably, the number of cells is 200 to 400 cells / inch 2 , and the foil thickness of the stainless steel sheet is 20 to 30 μm. Further, when the foil thickness of the stainless steel sheet is less than 10 μm, the mechanical strength of the honeycomb may be lowered, and when it exceeds 50 μm, the catalyst weight becomes heavy, which is not preferable.

本発明の水蒸気改質触媒の製造方法としては例えば次の(1)〜(3)の方法が例示される。(1)予め酸化セリウム粉体にニッケル塩溶液を含浸して焼成してから得られた触媒組成物を湿式粉砕してハニカム担体に被覆して焼成する。(2)先に酸化セリウムを湿式粉砕してハニカム担体に被覆して焼成してから、次にニッケル塩溶液を含浸し焼成して担持する。(3)酸化セリウムをニッケル塩水溶液中で湿式粉砕して同時にハニカム担体に被覆し焼成する。特に(3)の方法を製造設備が簡易であり、焼成回数も少なく、ニッケルの分散性も高めることができるので好ましい。   Examples of the method for producing the steam reforming catalyst of the present invention include the following methods (1) to (3). (1) The catalyst composition obtained after impregnating a cerium oxide powder with a nickel salt solution in advance and firing is wet-ground, coated on a honeycomb carrier, and fired. (2) First, wet pulverization of cerium oxide, coating on a honeycomb carrier and firing, followed by impregnation with a nickel salt solution, firing and supporting. (3) Wet-grind cerium oxide in an aqueous nickel salt solution, and simultaneously coat and fire the honeycomb carrier. In particular, the method (3) is preferable because the production equipment is simple, the number of firings is small, and the dispersibility of nickel can be improved.

尚、前記焼成はいずれも空気中で実施することが好ましく、300〜900℃の温度で0.5〜10時間焼成する。前記処理によりニッケルは酸化ニッケルとして担持されているが、使用開始前に還元処理することによってニッケル金属の微粒子とすることができる。   In addition, it is preferable to implement all the said baking in the air, and it bakes at the temperature of 300-900 degreeC for 0.5 to 10 hours. Although nickel is supported as nickel oxide by the above treatment, nickel metal fine particles can be obtained by reduction treatment before the start of use.

ニッケルの原料としては、塩化ニッケル、硫酸ニッケル、硫酸ニッケルアンモニウム、硝酸ニッケル、酢酸ニッケル、シュウ酸ニッケル、クエン酸ニッケルなどの水溶性のニッケル塩化合物などが使用できる。   As a nickel raw material, water-soluble nickel salt compounds such as nickel chloride, nickel sulfate, nickel ammonium sulfate, nickel nitrate, nickel acetate, nickel oxalate, nickel citrate and the like can be used.

またニッケルを酸化セリウムに分散担持せしめるとは、前記のように単にニッケル塩溶液を酸化セリウムに分散担持させるだけでなく、以下のような原料を用いて各種触媒調製方法によって製造することができる。   In addition, as described above, nickel is dispersed and supported on cerium oxide, not only by simply dispersing and supporting a nickel salt solution on cerium oxide, but also by various catalyst preparation methods using the following raw materials.

例えばセリウム源としては、酸化セリウムの他、触媒調製方法により酸化セリウム以外の化合物を用いることができ、例えば、前記(1)〜(3)の製造方法においては酸化セリウムの代わりに酸化セリウムの前駆体である炭酸セリウム、水酸化セリウムなどを用いることもできる。同様に酸化セリウムの代わりにCe−Zr、Ce−Zr−La、Ce−Zr−Y、Ce−Zr−La−Ndなどの各種セリウム系複合酸化物(固溶体を含む)などを使用することもできる。前記セリウム系複合酸化物の比表面積は50〜250m/gであり、複合酸化物における酸化セリウムの含有率が50%以上、好ましくは60%以上のものを使用することが好ましい。 For example, as the cerium source, in addition to cerium oxide, a compound other than cerium oxide can be used by a catalyst preparation method. For example, in the production methods (1) to (3), a precursor of cerium oxide instead of cerium oxide. It is also possible to use cerium carbonate, cerium hydroxide, and the like as the body. Similarly, various cerium-based composite oxides (including solid solutions) such as Ce—Zr, Ce—Zr—La, Ce—Zr—Y, and Ce—Zr—La—Nd can be used instead of cerium oxide. . The specific surface area of the cerium-based composite oxide is 50 to 250 m 2 / g, and the cerium oxide content in the composite oxide is preferably 50% or more, preferably 60% or more.

また含浸法以外に共沈法、水熱合成法、噴霧燃焼法やゾルゲル法などを用いる際は、セリウム源として硝酸セリウム、酢酸セリウム、硫酸セリウム、蓚酸セリウム、炭酸セリウムアンモニウムなどの可溶性セリウム塩を使用することができる。   When using a coprecipitation method, hydrothermal synthesis method, spray combustion method or sol-gel method in addition to the impregnation method, a soluble cerium salt such as cerium nitrate, cerium acetate, cerium sulfate, cerium oxalate, or cerium ammonium carbonate is used as the cerium source. Can be used.

例えば可溶性セリウム塩と可溶性ニッケル塩とを混合した溶液から共沈法、水熱合成法、噴霧燃焼法やゾルゲル法などを用いてセリウムとニッケルの混合酸化物、複合酸化物、固溶体またはそれらの混合物を作成してから湿式粉砕してハニカム担体に被覆しても良い。   For example, a mixed oxide, composite oxide, solid solution or mixture of cerium and nickel using a coprecipitation method, hydrothermal synthesis method, spray combustion method, sol-gel method, etc. from a solution in which soluble cerium salt and soluble nickel salt are mixed Then, the honeycomb carrier may be coated by wet pulverization.

本発明の水蒸気改質触媒の代表的な製法として前記(3)の製造方法について以下に更に詳細を説明する。   As a typical production method of the steam reforming catalyst of the present invention, the production method (3) will be described in detail below.

(水蒸気改質触媒の製造方法)
触媒組成物である酸化セリウム、水溶性ニッケル塩化合物をボールミルなどの粉砕機に供給し適当量の水を加えて湿式粉砕することで水性スラリーを作成する。前記触媒組成物以外に水と共にスラリーの粘度調節や安定性改善のため、塩酸、硫酸、硝酸、酢酸、シュウ酸などの酸性化合物、アンモニアや水酸化テトラアンモニウムなどの塩基性化合物、ポリアクリル酸やポリビニルアルコールなどの高分子化合物などを必要に応じて添加しても良い。また担体との接着性を高めるためにシリカゾルなどのバインダー成分を添加することもできる。
(Method for producing steam reforming catalyst)
An aqueous slurry is prepared by supplying the catalyst composition cerium oxide and a water-soluble nickel salt compound to a pulverizer such as a ball mill and adding an appropriate amount of water to wet pulverization. In addition to the catalyst composition, in order to adjust the viscosity and stability of the slurry together with water, acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and oxalic acid, basic compounds such as ammonia and tetraammonium hydroxide, polyacrylic acid and A polymer compound such as polyvinyl alcohol may be added as necessary. In addition, a binder component such as silica sol can be added in order to enhance the adhesion to the carrier.

湿式粉砕によりスラリーの平均粒子径は0.5〜10μmであることが好ましい。より好ましくは平均粒子径が1〜5μmであり、更に好ましくは2〜4.5μmである。スラリーの平均粒子径が0.5μmより小さくても、10μmを超えてもハニカム担体との接着性が低下し、被覆した触媒組成物が剥がれやすくなる。   The average particle diameter of the slurry is preferably 0.5 to 10 μm by wet pulverization. More preferably, the average particle size is 1 to 5 μm, and more preferably 2 to 4.5 μm. Even if the average particle diameter of the slurry is smaller than 0.5 μm or exceeds 10 μm, the adhesion to the honeycomb carrier is lowered, and the coated catalyst composition is easily peeled off.

ハニカム担体へのスラリーの被覆方法としては特に限定されず、含浸法、吸引法、湿式吸着法、スプレー法、塗布法などの方法が適用できる。またスラリー被覆の操作は大気圧下、加圧下あるいは減圧下で行うことができる。スラリー被覆時のスラリー温度も特に制限はなく、必要により加熱してもよく、室温から90℃程度の範囲内で行うことができる。メタルハニカム担体を用いる場合は減圧によりスラリーを吸引して含浸させると均一に触媒成分を担持させることができるので、この吸引含浸法が好適に用いられる。スラリー被覆後は、ハニカム担体に付着している過剰なスラリー(例えば、セル内に残存しているスラリー)をエアブロー等の方法によって除去した後、通風下で乾燥するのがよい。   The method for coating the honeycomb carrier with the slurry is not particularly limited, and methods such as an impregnation method, a suction method, a wet adsorption method, a spray method, and a coating method can be applied. The slurry coating operation can be performed under atmospheric pressure, under pressure or under reduced pressure. The slurry temperature at the time of slurry coating is not particularly limited, and may be heated if necessary, and can be performed within a range from room temperature to 90 ° C. In the case of using a metal honeycomb carrier, the suction impregnation method is preferably used because the catalyst component can be uniformly supported when the slurry is sucked and impregnated under reduced pressure. After the slurry coating, it is preferable to remove excess slurry (for example, slurry remaining in the cells) adhering to the honeycomb carrier by a method such as air blowing and then drying under ventilation.

乾燥方法についても特に制限はなく、スラリーの水分を除去し得る条件であればいずれも用いることができる。乾燥は常温下、あるいは50〜200℃の熱風をセル内に通風してもよい。乾燥後に空気中で400〜800℃にて焼成することで触媒組成物をハニカム担体に強固に定着させることができる。例えば、一回の操作で必要量の触媒組成物を担持できないときは、上記スラリー被覆−乾燥−焼成の操作を繰り返して行えばよい。   There is no restriction | limiting in particular also about the drying method, As long as the conditions which can remove the water | moisture content of a slurry, all can be used. Drying may be performed by passing hot air at room temperature or 50 to 200 ° C. into the cell. After drying, the catalyst composition can be firmly fixed to the honeycomb carrier by firing at 400 to 800 ° C. in the air. For example, when a required amount of the catalyst composition cannot be supported by a single operation, the above slurry coating-drying-firing operation may be repeated.

本発明の水蒸気改質触媒は触媒組成物中にニッケル及びセリウム以外に、更にナトリウム、カリウム、ルビジウム、セシウムなどのアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、イットリウム、ランタン、プラセオジム、ネオジム、サマリウムなどの希土類金属及びバナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛、ニオブ、モリブデン、銀などの遷移金属の元素を含む化合物1種以上を添加することができる。これら元素の添加により改質性能の向上や炭素析出を抑制され、触媒活性が長期に亘り、維持することが可能となる。各元素の添加量としてはニッケルの1/3〜1/100モルを触媒組成物中に添加することが好ましい。前記各元素の硝酸塩、塩化物、硫酸塩、酢酸塩や蓚酸塩など焼成により酸化物を形成する原料化合物を使用することができる。また白金族金属の添加量はニッケルの1/10〜1/1000モルを触媒組成物中に添加することができる。白金族金属の原料化合物についても硝酸塩、塩化物、硫酸塩やアンモニウム錯体などの水溶性塩を使用することができる。またルテニウム、ロジウム、パラジウム、白金などの白金族金属を添加しても良い。   In addition to nickel and cerium, the steam reforming catalyst of the present invention further includes alkali metals such as sodium, potassium, rubidium and cesium, alkaline earth metals such as magnesium, calcium, strontium and barium, yttrium, lanthanum, One or more compounds including rare earth metals such as praseodymium, neodymium, and samarium and transition metal elements such as vanadium, chromium, manganese, iron, cobalt, copper, zinc, niobium, molybdenum, and silver can be added. By adding these elements, improvement in reforming performance and carbon deposition can be suppressed, and the catalytic activity can be maintained over a long period of time. As addition amount of each element, it is preferable to add 1/3 to 1/100 mol of nickel in the catalyst composition. Raw material compounds that form oxides by firing, such as nitrates, chlorides, sulfates, acetates, and oxalates of the above elements, can be used. Moreover, the addition amount of a platinum group metal can add 1/10-1/1000 mol of nickel in a catalyst composition. Water-soluble salts such as nitrates, chlorides, sulfates and ammonium complexes can also be used for the platinum group metal raw material compounds. Further, a platinum group metal such as ruthenium, rhodium, palladium, or platinum may be added.

ニッケル及びセリウム以外の成分を触媒組成物に含有させる場合は、前記水蒸気改質触媒の製造方法において、酸化セリウム上にニッケルを分散担持してから他の元素を担持しても良いし、ニッケルと同時に担持しても良い。   When the catalyst composition contains a component other than nickel and cerium, in the method for producing the steam reforming catalyst, nickel may be dispersed and supported on cerium oxide, and then other elements may be supported. You may carry simultaneously.

(水蒸気改質反応による水素製造方法)
次に、本発明の水素製造方法について以下に説明する。本発明の水素製造方法は燃料となる炭化水素系化合物と水蒸気を混合して触媒層温度が500〜1,000℃で入口ガス空間速度(SV)は500〜100,000H−1にて水蒸気改質触媒と接触せしめることにより水素を製造する。好ましい触媒層温度としては600〜900℃であり、入口ガス空間速度は1,000〜30,000H−1であることが好ましい。反応圧力は、常圧以上であって5MPa以下、好ましくは3MPa以下とするのがよい。
(Method for producing hydrogen by steam reforming reaction)
Next, the hydrogen production method of the present invention will be described below. In the hydrogen production method of the present invention, a hydrocarbon compound as a fuel and steam are mixed, steam reforming is performed at a catalyst layer temperature of 500 to 1,000 ° C. and an inlet gas space velocity (SV) of 500 to 100,000 H −1 . Hydrogen is produced by contact with a porous catalyst. The catalyst layer temperature is preferably 600 to 900 ° C., and the inlet gas space velocity is preferably 1,000 to 30,000 H −1 . The reaction pressure is normal pressure or higher and 5 MPa or lower, preferably 3 MPa or lower.

水蒸気改質反応の燃料となる炭化水素系化合物としては、メタン、エタン、プロパン、ブタン、ヘプタン、ヘキサンなどの軽質炭化水素、ガソリン、軽油、ナフサなどの石油系炭化水素などが挙げられ、例えば天然ガス、LPG、都市ガス、灯油などの工業的に安定的に入手できる燃料を使用することができる。このような炭化水素系化合物は微量の硫黄含有化合物が残留していたり、一般家庭用LPGや都市ガスには付臭剤としてメルカプタン、チオフェン、スルフィドなどの硫黄含有化合物が添加されていたりする。これら硫黄含有化合物は触媒の被毒物質となることが知られており、燃料を改質器に導入する前に前処理脱硫器を設置して燃料中に含まれる硫黄含有化合物を除去してから改質反応を実施することが好ましい。   Examples of hydrocarbon compounds used as fuel for the steam reforming reaction include light hydrocarbons such as methane, ethane, propane, butane, heptane, and hexane, and petroleum hydrocarbons such as gasoline, light oil, and naphtha. Fuels that can be stably obtained industrially, such as gas, LPG, city gas, and kerosene, can be used. Such hydrocarbon compounds have trace amounts of sulfur-containing compounds remaining, or sulfur-containing compounds such as mercaptans, thiophenes, and sulfides are added as odorants to general household LPG and city gas. These sulfur-containing compounds are known to be poisons for the catalyst. After introducing the pretreatment desulfurizer and removing the sulfur-containing compounds contained in the fuel before introducing the fuel into the reformer. It is preferable to carry out the reforming reaction.

また改質器に導入する水蒸気のモル数と炭化水素系化合物に含まれる炭素原子モル数の比(S/C比)は2〜5、より好ましくは2.5〜4である。S/C比が2より小さい場合は炭素が析出しやすくなり、5より大きくするとエネルギーコストが高くなり好ましくない。   The ratio of the number of moles of water vapor introduced into the reformer to the number of moles of carbon atoms contained in the hydrocarbon compound (S / C ratio) is 2 to 5, more preferably 2.5 to 4. If the S / C ratio is less than 2, carbon is likely to precipitate, and if it is greater than 5, the energy cost increases, which is not preferable.

本発明の水素製造方法は毎日起動停止を繰り返す(DSS運転)ことが想定される家庭用燃料電池の改質器などに使用することが可能である。DSS運転では水蒸気で改質器内をパージして燃料電池を停止することが好ましいが、従来のニッケル系水蒸気改質触媒では高温酸化雰囲気で劣化するため窒素やアルゴンなどの不活性ガスを導入して燃料電池を停止する必要があった。ニッケルを酸化セリウムに分散担持せしめた触媒組成物をハニカム担体に被覆してなる本発明の水蒸気改質触媒は耐酸化性が優れており、前記不活性ガスを使用せずに燃料のみの供給をストップして改質器内を水蒸気でパージすることで燃料電池を停止することができる。燃料電池を停止するに際して触媒層温度が500〜1,000℃の範囲にて燃料供給をストップして水蒸気パージを実施することが好ましい。触媒層温度が500℃未満で燃料供給を停止する場合は炭素が析出しやすくなり、1,000℃を超えると触媒の熱劣化が生じやすくなるので好ましくない。特に好ましくは触媒層温度が700〜900℃で燃料供給を停止して水蒸気パージすることが好ましい。   The hydrogen production method of the present invention can be used for a reformer of a household fuel cell that is assumed to be repeatedly started and stopped every day (DSS operation). In DSS operation, it is preferable to purge the inside of the reformer with steam and stop the fuel cell. However, since conventional nickel-based steam reforming catalysts deteriorate in a high-temperature oxidizing atmosphere, an inert gas such as nitrogen or argon is introduced. It was necessary to stop the fuel cell. The steam reforming catalyst of the present invention formed by coating a honeycomb carrier with a catalyst composition in which nickel is dispersed and supported on cerium oxide has excellent oxidation resistance, and can supply only fuel without using the inert gas. The fuel cell can be stopped by stopping and purging the interior of the reformer with water vapor. When stopping the fuel cell, it is preferable to perform the steam purge by stopping the fuel supply when the catalyst layer temperature is in the range of 500 to 1,000 ° C. When the fuel supply is stopped when the catalyst layer temperature is less than 500 ° C., carbon tends to precipitate, and when it exceeds 1,000 ° C., the catalyst tends to be thermally deteriorated, which is not preferable. It is particularly preferable that the fuel supply is stopped and the steam purge is performed when the catalyst layer temperature is 700 to 900 ° C.

また本発明の水素製造方法において、長期間の使用で水蒸気改質触媒が性能低下した場合に、触媒層温度が700〜900℃の範囲にて改質器への燃料供給をストップして水蒸気パージを実施することによって改質性能を回復せしめることができる。前記水蒸気改質触媒の劣化は、コーキングや硫黄化合物の付着によって生じるが、上記水蒸気パージ処理によって触媒上に蓄積した炭素の分解や硫黄化合物の脱離が促進されて触媒が再生されると推定される。   Further, in the hydrogen production method of the present invention, when the performance of the steam reforming catalyst deteriorates after long-term use, the fuel supply to the reformer is stopped and the steam purge is performed when the catalyst layer temperature is in the range of 700 to 900 ° C. The reforming performance can be recovered by carrying out the above. Degradation of the steam reforming catalyst is caused by coking or adhesion of sulfur compounds, but it is estimated that the decomposition of carbon accumulated on the catalyst and the desorption of sulfur compounds are promoted by the steam purge treatment to regenerate the catalyst. The

また本発明の水素製造方法において燃料及び水蒸気と共に必要により微量酸素を添加してもよい。酸素の添加により炭化水素化合物が部分酸化反応により発熱し、外部から加熱しなくても触媒の温度を所定の温度に高めることができる。炭化水素含有ガスと酸素含有ガスとの割合については、炭素原子モル数に対する酸素分子のモル数の比(酸素/カーボン比)が0〜0.75とすることが好ましい。   Further, in the hydrogen production method of the present invention, a trace amount of oxygen may be added together with the fuel and water vapor if necessary. By adding oxygen, the hydrocarbon compound generates heat by a partial oxidation reaction, and the temperature of the catalyst can be raised to a predetermined temperature without heating from the outside. Regarding the ratio of the hydrocarbon-containing gas and the oxygen-containing gas, the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms (oxygen / carbon ratio) is preferably 0 to 0.75.

本発明の水素製造方法によって得られる改質ガスは、水素と一酸化炭素を主に含有しており、燃料電池や化学工業用原料として使用できる。たとえば高温作動型燃料電池と類別される溶融炭酸塩型燃料電池や固体酸化物型燃料電池は、一酸化炭素や炭化水素も燃料として利用できるので、前記改質ガスをそのまま燃料電池の燃料として使用できる好ましい用途である。   The reformed gas obtained by the hydrogen production method of the present invention mainly contains hydrogen and carbon monoxide, and can be used as a raw material for fuel cells and chemical industries. For example, molten carbonate fuel cells and solid oxide fuel cells, which are classified as high-temperature operation fuel cells, can use carbon monoxide and hydrocarbons as fuel, so the reformed gas can be used as fuel for fuel cells. A preferred application that can be made.

また前記改質ガスは、更にCO変性反応で一酸化炭素濃度を低減したり、深冷分離法、PAS法、水素貯蔵合金或いはパラジウム膜拡散法等により不純物を除去したりして高純度の水素ガスとすることができる。例えばCO変性反応は一酸化炭素と水を反応させて水素と二酸化炭素に転換することものであり一酸化炭素濃度を1%程度まで低減することができる。CO変性反応に用いる触媒としては、例えば銅主体、或いは鉄主体とする公知の触媒を用いて行えばよい。低温作動型固体高分子燃料電池の燃料などのように更に一酸化炭素濃度を低減する必要がある場合は、CO変性触媒の後段に設置するCO選択酸化触媒により二酸化炭素に酸化するかCO選択メタン化触媒によりメタンに転換させて、一酸化炭素濃度を10ppm以下とすることが望ましい。   In addition, the reformed gas can be reduced in carbon monoxide concentration by CO modification reaction, or impurities can be removed by cryogenic separation method, PAS method, hydrogen storage alloy or palladium membrane diffusion method, etc. It can be gas. For example, the CO modification reaction is a reaction in which carbon monoxide and water are converted into hydrogen and carbon dioxide, and the carbon monoxide concentration can be reduced to about 1%. As the catalyst used for the CO modification reaction, for example, a known catalyst mainly composed of copper or iron may be used. When it is necessary to further reduce the carbon monoxide concentration, such as the fuel of a low-temperature operation type solid polymer fuel cell, it is oxidized to carbon dioxide by a CO selective oxidation catalyst installed at the subsequent stage of the CO modification catalyst or CO selective methane It is desirable that the carbon monoxide concentration be 10 ppm or less by converting it to methane using a catalyst.

以下に、実施例を用いて本発明を詳細に説明するが、本発明の趣旨に反しない限り実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the examples without departing from the spirit of the present invention.

(実施例1)
スラリーの調製:比表面積が155m/gの活性アルミナ(γ−アルミナ)が40gと比表面積が237m/gの酸化セリウム160gと水および硝酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーを粒度分布測定器(レーザー回折散乱式)で観察したところ平均粒子径は3.1μmであった。
Example 1
Preparation of slurry: 40 g of activated alumina (γ-alumina) having a specific surface area of 155 m 2 / g, 160 g of cerium oxide having a specific surface area of 237 m 2 / g, water and nitric acid are supplied to a ball mill and wet pulverized to obtain an aqueous slurry. Prepared. When the obtained slurry was observed with a particle size distribution analyzer (laser diffraction scattering type), the average particle size was 3.1 μm.

メタルハニカム担体:ハニカム担体としてFe−Cr−Al系耐熱性ステンレス板の箔厚が30μmであって断面積1インチ平方当り400個のセルを有し、外径20mmで長さ66mmのメタルハニカム担体(幾何学表面積約3000m/m)を使用した。 Metal honeycomb carrier: Fe-Cr-Al heat-resistant stainless steel plate having a foil thickness of 30 μm as a honeycomb carrier, 400 cells per square inch of cross-sectional area, an outer diameter of 20 mm, and a length of 66 mm (Geometric surface area of about 3000 m 2 / m 3 ) was used.

触媒の製造:メタルハニカム担体の下部をスラリーに浸漬し、上部より減圧にて吸引してセル内にスラリーを満たしてから担体を取出し、次いで圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した。このようにしてスラリーを被覆したメタルハニカム担体を150℃で乾燥した後、空気中にて500℃で2時間焼成した。次に硝酸ニッケル6水和物を水に溶解した水溶液に含浸し乾燥後に空気中にて500℃で2時間焼成して完成触媒(A)を得た。完成触媒(A)の触媒組成物の組成比及び担持量を表1に示した。   Catalyst production: The lower part of the metal honeycomb carrier is immersed in the slurry, sucked from the upper part under reduced pressure, the slurry is filled into the cell, the carrier is taken out, and then the compressed air is blown to leave the excess slurry remaining in the cell. Was removed. The metal honeycomb carrier thus coated with the slurry was dried at 150 ° C. and then fired in air at 500 ° C. for 2 hours. Next, nickel nitrate hexahydrate was impregnated in an aqueous solution dissolved in water, dried and then calcined in air at 500 ° C. for 2 hours to obtain a finished catalyst (A). The composition ratio and supported amount of the catalyst composition of the finished catalyst (A) are shown in Table 1.

(実施例2〜4、比較例1〜2)
触媒の製造:実施例1においてスラリー調製時において活性アルミナと酸化セリウムの仕込み比率を変更した以外は実施例1と同様にして実施例2〜4及び比較例1〜2の触媒を作成した。完成触媒(B)〜(D)及び比較触媒(a)〜(b)の触媒組成物の組成比及び担持量を表1に示した。
(Examples 2-4, Comparative Examples 1-2)
Production of catalyst: The catalysts of Examples 2 to 4 and Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the charging ratio of activated alumina and cerium oxide was changed during slurry preparation in Example 1. Table 1 shows the composition ratios and supported amounts of the catalyst compositions of the finished catalysts (B) to (D) and the comparative catalysts (a) to (b).

Figure 2013017913
(実施例5)
スラリーの調製:比表面積153m/gの酸化セリウム180gと硝酸ニッケル6水和物78gと水及び硝酸をボールミルにて湿式粉砕して水性スラリーを調製した。得られたスラリーの平均粒子径は3.0μmであった。
Figure 2013017913
(Example 5)
Preparation of slurry: 180 g of cerium oxide having a specific surface area of 153 m 2 / g, 78 g of nickel nitrate hexahydrate, water and nitric acid were wet-ground in a ball mill to prepare an aqueous slurry. The average particle diameter of the obtained slurry was 3.0 μm.

触媒の製造:得られたスラリーを実施例1と同じメタルハニカム担体に被覆し、150℃で乾燥した後、空気中にて500℃で2時間焼成して完成触媒(E)を得た。完成触媒(E)の触媒組成物の組成比及び担持量を表2に示した。   Production of catalyst: The obtained slurry was coated on the same metal honeycomb carrier as in Example 1, dried at 150 ° C, and then calcined in air at 500 ° C for 2 hours to obtain a finished catalyst (E). Table 2 shows the composition ratio and supported amount of the catalyst composition of the finished catalyst (E).

(実施例6〜7)
実施例5のスラリー調製において酸化セリウムと硝酸ニッケル6水和物の添加比率を変更した以外は実施例5と同様にして、完成触媒(F)及び(G)を得た。完成触媒(F)及び(G)の触媒組成物の組成比及び担持量を表2に示した。
(Examples 6 to 7)
Completed catalysts (F) and (G) were obtained in the same manner as in Example 5 except that the addition ratio of cerium oxide and nickel nitrate hexahydrate was changed in the slurry preparation of Example 5. Table 2 shows the composition ratios and supported amounts of the catalyst compositions of the finished catalysts (F) and (G).

(実施例8)
実施例5のスラリー調製において酸化セリウムの代わりに市販のセリウム系複合酸化物(比表面積162m/g、CeO/ZrO/La=65/27/8)に変更した以外は実施例5と同様にして、完成触媒(H)を得た。完成触媒(H)の触媒組成物の組成比及び担持量を表2に示した。
(Example 8)
Implementation was performed except that in the slurry preparation of Example 5, a commercially available cerium-based composite oxide (specific surface area 162 m 2 / g, CeO 2 / ZrO 2 / La 2 O 3 = 65/27/8) was used instead of cerium oxide. In the same manner as in Example 5, a finished catalyst (H) was obtained. The composition ratio and supported amount of the catalyst composition of the finished catalyst (H) are shown in Table 2.

Figure 2013017913
(水熱加速エージング)
実施例及び比較例の各触媒試料を以下の条件で水熱加速エージングを実施した。
処理温度:800℃
処理時間:100時間
処理ガス:2L/min 10%HO/Nバランス
(メタン改質性能試験)
水熱加速エージング後の試料を水素気流中で500℃にて1時間還元してから、ラボ活性試験装置を用いて以下の試験条件で水蒸気改質触媒のメタン改質性能試験を実施した。燃料として都市ガス13Aを脱硫処理せずにそのまま使用し、触媒層温度750℃、GHSV=5,000H−1でスチーム/カーボン(S/C)モル比=3.0の条件にて水蒸気改質反応を実施した。ガスクロマトグラフィー(島津製作所:ガスクロマトグラフGC−8A)を用いて生成ガスの各濃度を測定し、反応開始24時間後のメタン転化率を下記数式(1)により算出した。
Figure 2013017913
(Hydrothermal accelerated aging)
Hydrothermal accelerated aging was performed on the catalyst samples of Examples and Comparative Examples under the following conditions.
Processing temperature: 800 ° C
Processing time: 100 hours Processing gas: 2 L / min 10% H 2 O / N 2 balance (methane reforming performance test)
The sample after hydrothermal acceleration aging was reduced in a hydrogen stream at 500 ° C. for 1 hour, and then a methane reforming performance test of the steam reforming catalyst was performed using a laboratory activity test apparatus under the following test conditions. Using city gas 13A as fuel without desulfurization, steam reforming under conditions of catalyst layer temperature of 750 ° C., GHSV = 5,000H −1 and steam / carbon (S / C) molar ratio = 3.0 The reaction was carried out. Each concentration of the product gas was measured using gas chromatography (Shimadzu Corporation: Gas Chromatograph GC-8A), and the methane conversion rate 24 hours after the start of the reaction was calculated by the following mathematical formula (1).

Figure 2013017913
なお、上記数式において、CO濃度、CO濃度およびCH濃度は、それぞれ生成ガス(触媒出口)における一酸化炭素、二酸化炭素およびメタンのガス濃度を表す。
Figure 2013017913
In the above formula, the CO concentration, the CO 2 concentration, and the CH 4 concentration represent the gas concentrations of carbon monoxide, carbon dioxide, and methane in the product gas (catalyst outlet), respectively.

実施例1〜8及び比較例1〜2の試料について水熱加速エージング後のメタン改質改質性能の試験結果を表3に示した。   Table 3 shows the test results of the methane reforming reforming performance after hydrothermal acceleration aging for the samples of Examples 1 to 8 and Comparative Examples 1 and 2.

(プロパン改質及び水蒸気パージ繰返し試験)
次に実施例の各触媒試料について上記メタン改質性能試験後にラボ活性試験装置の燃料供給と燃料停止による水蒸気パージを繰返しDSS運転に対する耐久性を調べた。燃料としては高純度プロパンガスを使用し、燃料供給時のGHSV=5,000H−1でスチーム/カーボン(S/C)比=2.5として、触媒層温度を750℃に維持してプロパンの供給を1時間毎に停止し水蒸気パージを1時間実施することを1サイクルとした。1サイクル目と10サイクル目の触媒出口ガスの流量及び出口ガス中の一酸化炭素、二酸化炭素及びメタンのガス濃度を測定し、供給したプロパンの炭素モル数に対するC1転化率を求めたて結果を表3に示した。
(Propane reforming and steam purge repeated test)
Next, after each methane reforming performance test for each catalyst sample of the example, the durability against the DSS operation was repeatedly checked by repeating the fuel supply of the lab activity test apparatus and the steam purge by stopping the fuel. A high-purity propane gas is used as the fuel, the GHSV at the time of fuel supply is 5,000 H −1 and the steam / carbon (S / C) ratio is 2.5, and the catalyst layer temperature is maintained at 750 ° C. One cycle consists of stopping the supply every hour and performing the steam purge for 1 hour. The flow rate of the catalyst outlet gas in the first cycle and the 10th cycle and the gas concentrations of carbon monoxide, carbon dioxide and methane in the outlet gas were measured, and the C1 conversion rate with respect to the number of moles of carbon of the supplied propane was obtained. It is shown in Table 3.

Figure 2013017913
Figure 2013017913

本発明の水蒸気改質触媒は高価な貴金属を使用しなくてもDSS運転に対して優れた耐久性を有しており、特に家庭用燃料電池の改質器に好適に適用できる。   The steam reforming catalyst of the present invention has excellent durability against DSS operation without using an expensive noble metal, and can be suitably applied to a reformer of a domestic fuel cell.

Claims (6)

ニッケルを酸化セリウムに分散担持せしめた触媒組成物をハニカム担体に被覆してなる水蒸気改質触媒において、前記触媒組成物における酸化アルミニウムの含有率が20質量%未満であることを特徴とする水蒸気改質触媒。 A steam reforming catalyst obtained by coating a honeycomb carrier with a catalyst composition in which nickel is dispersed and supported on cerium oxide, wherein the content of aluminum oxide in the catalyst composition is less than 20% by mass. Quality catalyst. 前記酸化セリウムは比表面積が10m/g以上であり、ハニカム担体の単位容積当り酸化セリウムが80〜300g/Lで被覆されている請求項1記載の水蒸気改質触媒。 The steam reforming catalyst according to claim 1, wherein the cerium oxide has a specific surface area of 10 m 2 / g or more and is coated with 80 to 300 g / L of cerium oxide per unit volume of the honeycomb carrier. 前記ニッケルはハニカム担体の単位容積当りに酸化ニッケル換算で5〜150g/Lで被覆されており、Ni/Ceのモル比が0.05〜2.0である請求項1〜2に記載の水蒸気改質触媒。 3. The water vapor according to claim 1, wherein the nickel is coated at 5 to 150 g / L in terms of nickel oxide per unit volume of the honeycomb carrier, and the molar ratio of Ni / Ce is 0.05 to 2.0. Reforming catalyst. 請求項1〜3記載の水蒸気改質触媒を用いて燃料の改質反応により水素を製造する水素製造方法において、触媒層温度が500〜1,000℃で入口ガス空間速度が500〜100,000H−1で水蒸気改質触媒と接触せしめる水素製造方法。 A hydrogen production method for producing hydrogen by a fuel reforming reaction using the steam reforming catalyst according to any one of claims 1 to 3, wherein the catalyst layer temperature is 500 to 1,000 ° C and the inlet gas space velocity is 500 to 100,000H. A method for producing hydrogen in which the steam reforming catalyst is brought into contact with -1 . DSS運転において水素製造を停止するに際して触媒層温度が500〜1,000℃で燃料供給をストップして、水蒸気パージを実施する請求項4記載の水素製造方法。 The hydrogen production method according to claim 4, wherein when hydrogen production is stopped in the DSS operation, the fuel supply is stopped at a catalyst layer temperature of 500 to 1,000 ° C., and the steam purge is performed. 水蒸気改質触媒が性能低下した際に触媒層温度が700〜900℃で水蒸気パージを実施して、水蒸気改質触媒を再生する請求項4〜5に記載の水素製造方法。 The method for producing hydrogen according to any one of claims 4 to 5, wherein when the performance of the steam reforming catalyst is deteriorated, steam purging is performed at a catalyst layer temperature of 700 to 900 ° C to regenerate the steam reforming catalyst.
JP2011150983A 2011-07-07 2011-07-07 Steam-reforming catalyst and hydrogen production process using the same Withdrawn JP2013017913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011150983A JP2013017913A (en) 2011-07-07 2011-07-07 Steam-reforming catalyst and hydrogen production process using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150983A JP2013017913A (en) 2011-07-07 2011-07-07 Steam-reforming catalyst and hydrogen production process using the same

Publications (1)

Publication Number Publication Date
JP2013017913A true JP2013017913A (en) 2013-01-31

Family

ID=47689913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150983A Withdrawn JP2013017913A (en) 2011-07-07 2011-07-07 Steam-reforming catalyst and hydrogen production process using the same

Country Status (1)

Country Link
JP (1) JP2013017913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127999A (en) * 2013-12-27 2015-07-09 Toto株式会社 Solid oxide fuel cell system
JP6194094B1 (en) * 2016-11-30 2017-09-06 日本碍子株式会社 Electrochemical equipment
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
WO2020026597A1 (en) * 2018-08-03 2020-02-06 株式会社ルネッサンス・エナジー・リサーチ Steam reforming catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
JP2015127999A (en) * 2013-12-27 2015-07-09 Toto株式会社 Solid oxide fuel cell system
JP6194094B1 (en) * 2016-11-30 2017-09-06 日本碍子株式会社 Electrochemical equipment
JP2018092741A (en) * 2016-11-30 2018-06-14 日本碍子株式会社 Electrochemical device
WO2020026597A1 (en) * 2018-08-03 2020-02-06 株式会社ルネッサンス・エナジー・リサーチ Steam reforming catalyst
CN112449615A (en) * 2018-08-03 2021-03-05 株式会社新生能源研究 Steam reforming catalyst
JPWO2020026597A1 (en) * 2018-08-03 2021-08-02 株式会社ルネッサンス・エナジー・リサーチ Steam reforming catalyst
US11819831B2 (en) 2018-08-03 2023-11-21 Renaissance Energy Research Corporation Steam reforming catalyst

Similar Documents

Publication Publication Date Title
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP2000302410A (en) Apparatus for purifying hydrogen
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP5096712B2 (en) Carbon monoxide methanation method
US10010876B2 (en) Catalyst for high temperature steam reforming
JP2007252988A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
WO2003106332A2 (en) Suppression of methanation activity of platinum group metal water-gas shift catalysts
MX2008006912A (en) Process conditions for pt-re bimetallic water gas shift catalysts
WO2007075267A1 (en) Process conditions for pt-re bimetallic water gas shift catalysts
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
Wu et al. Effect of MOx (M= Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP2010279911A (en) Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP2012061398A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP4707526B2 (en) Catalyst for partial oxidation of hydrocarbons
JP5126762B2 (en) Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst
JP2012061399A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JP6376494B2 (en) CO selective methanation reactor
JP2005034682A (en) Co modification catalyst and its production method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007