JP2008155147A - Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same - Google Patents

Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same Download PDF

Info

Publication number
JP2008155147A
JP2008155147A JP2006347908A JP2006347908A JP2008155147A JP 2008155147 A JP2008155147 A JP 2008155147A JP 2006347908 A JP2006347908 A JP 2006347908A JP 2006347908 A JP2006347908 A JP 2006347908A JP 2008155147 A JP2008155147 A JP 2008155147A
Authority
JP
Japan
Prior art keywords
catalyst
metal
methanation
carbon monoxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006347908A
Other languages
Japanese (ja)
Other versions
JP4864688B2 (en
Inventor
Takayoshi Mizuno
隆喜 水野
Katsuhiro Kino
勝博 城野
Tsuguo Koyanagi
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2006347908A priority Critical patent/JP4864688B2/en
Publication of JP2008155147A publication Critical patent/JP2008155147A/en
Application granted granted Critical
Publication of JP4864688B2 publication Critical patent/JP4864688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for removing carbon monoxide, which has high CO adsorptivity and the activity and selectivity more excellent than those of the conventional Ni-used methanation catalyst at low temperature and can be supplied at a low price since a noble metal is not used and to provide a method for removing carbon monoxide by using the catalyst. <P>SOLUTION: The catalyst for methanating carbon monoxide is obtained by depositing metal Ni and/or metal Co on a metal oxide carrier and characterized in that the average particle size of the deposited metal Ni and/or metal Co is within 0.5-3 nm and the amount of the deposited metal Ni and/or metal Co is within 5.0-15 wt.% of the catalyst. The catalyst for methanating carbon monoxide further contains one or more metals which are selected from group 4B metals, group 6A metals and group 7A metals and the content of which is within 0.1-5 wt.%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素含有ガス中の一酸化炭素除去用触媒および該触媒を用いた一酸化炭素の除去方法に関する。
さらに詳しくは、活性成分として微粒のNiおよび/またはCo金属が担持されているために、CO吸着量が高く、従来のNiを用いたメタネーション触媒より低温で活性・選択性に優れ、貴金属を用いないため安価に供給することが可能な一酸化炭素除去用触媒および該触媒を用いた一酸化炭素の除去方法に関する。
The present invention relates to a catalyst for removing carbon monoxide in a hydrogen-containing gas and a method for removing carbon monoxide using the catalyst.
More specifically, since fine Ni and / or Co metal is supported as an active ingredient, the amount of CO adsorption is high, and it is superior in activity and selectivity at a lower temperature than conventional methanation catalysts using Ni. The present invention relates to a carbon monoxide removal catalyst that can be supplied at low cost because it is not used, and a method for removing carbon monoxide using the catalyst.

近年、燃料電池による発電は、低公害でエネルギーロスが少なことから、注目を集めており、実用化に向けた研究開発が進められている。   In recent years, power generation by fuel cells has been attracting attention because of its low pollution and low energy loss, and research and development for practical use is being promoted.

燃料電池には、燃料や電解質の種類あるいは作動温度等によって種々のタイプのものが知られているが、中でも水素を還元剤(活物質)とし、酸素あるいは空気等を酸化剤とする水素−酸素燃料電池(低温作動型の燃料電池)の開発が最も進んでいる。   Various types of fuel cells are known, depending on the type of fuel and electrolyte, operating temperature, etc. Among them, hydrogen-oxygen using hydrogen as a reducing agent (active material) and oxygen or air or the like as an oxidizing agent. The development of fuel cells (low temperature operation type fuel cells) is most advanced.

水素−酸素燃料電池には電解質の種類や電極等の種類によって種々のタイプのものがあり、その代表的なものとして、例えば、リン酸型燃料電池、固体高分子型燃料電池などがある。このような燃料電池には、多くの場合、電極に白金触媒が使用されている。ところが、電極に用いている白金は一酸化炭素(以下、COともいう。)によって被毒されやすいので、燃料中にCOがあるレベル以上含まれていると発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題点がある。   There are various types of hydrogen-oxygen fuel cells depending on the type of electrolyte, the type of electrodes, etc., and typical examples include phosphoric acid fuel cells and solid polymer fuel cells. In such fuel cells, platinum catalysts are often used for electrodes. However, platinum used in the electrode is easily poisoned by carbon monoxide (hereinafter also referred to as CO), so if the fuel contains CO above a certain level, the power generation performance will be reduced or depending on the concentration. There is a serious problem that power generation becomes impossible.

このCO被毒による触媒の活性劣化は、特に低温ほど著しいので、この問題は、低温作動型の燃料電池の場合に特に深刻となる。
したがって、こうした白金系電極触媒を用いる燃料電池の燃料としては純粋な水素が好ましいが、実用的な点からは安価で貯蔵性等に優れたあるいは既に公共的な供給システムが完備されている各種の燃料、例えば、メタン、天然ガス(LNG)、プロパン、ブタン等の石油ガス(LPG)、ナフサ、ガソリン、灯油、軽油等の各種の炭化水素系燃料あるいはメタノール等のアルコール系燃料、あるいは都市ガス、その他の水素製造用燃料等の水蒸気改質等によって得られる水素含有ガスを用いることが一般的になっており、このような改質設備を組み込んだ燃料電池発電システムの普及が進められている。しかしながら、こうした改質ガス中には、一般に、水素の他にかなりの濃度のCOが含まれているので、このCOを白金系電極触媒に無害なものに転化し、燃料中のCO濃度を減少させる技術の開発が強く望まれている。例えば、固体高分子型燃料電池ではCO濃度を、通常100容量ppm以下、好ましくは50容量ppm以下、更に好ましくは10容量ppm以下という低濃度にまで低減することが望ましいとされている。
The deterioration of the activity of the catalyst due to the CO poisoning is remarkable especially at low temperatures, and this problem becomes particularly serious in the case of a low temperature operation type fuel cell.
Therefore, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrode catalyst. However, from a practical point of view, it is inexpensive and has excellent storage properties or is already equipped with a public supply system. Fuel, for example, petroleum gas (LPG) such as methane, natural gas (LNG), propane, butane, various hydrocarbon fuels such as naphtha, gasoline, kerosene, light oil, alcohol fuel such as methanol, city gas, It has become common to use hydrogen-containing gas obtained by steam reforming of other fuels for hydrogen production or the like, and fuel cell power generation systems incorporating such reforming equipment are being promoted. However, since these reformed gases generally contain a considerable concentration of CO in addition to hydrogen, this CO is converted into a harmless to the platinum-based electrode catalyst, and the CO concentration in the fuel is reduced. There is a strong demand for the development of technologies that can be used. For example, in a polymer electrolyte fuel cell, it is desirable to reduce the CO concentration to a low concentration of usually 100 ppm by volume or less, preferably 50 ppm by volume or less, more preferably 10 ppm by volume or less.

上記の問題を解決するために、燃料ガス(改質ガス中の水素含有ガス)中のCOの濃度を低減させる手段の一つとして、下記の式(1)で表されるシフト反応(水性ガスシフト反応)を利用する技術が提案されている。   In order to solve the above problem, as one of means for reducing the concentration of CO in the fuel gas (hydrogen-containing gas in the reformed gas), a shift reaction represented by the following formula (1) (water gas shift) A technique using (reaction) has been proposed.

CO + H2O = CO2 + H2 (1 )
しかしながら、このシフト反応のみによる反応では、化学平衡上の制約からCO濃度の低減には限界があり、一般に、CO濃度を1%以下にするのは困難である。そこで、CO
濃度をより低濃度まで低減する手段として、改質ガス中に酸素または酸素含有ガス(空気等)を導入し、COをCO2に変換する方法が提案されている。しかしながら、この場合
改質ガス中には水素が多量存在しているため、COを酸化しようとすると水素も酸化されてしまい、水素がロスするとともにCOの除去が不充分となることがあった。
CO + H 2 O = CO 2 + H 2 (1)
However, in the reaction using only this shift reaction, there is a limit to the reduction of the CO concentration due to restrictions on chemical equilibrium, and it is generally difficult to reduce the CO concentration to 1% or less. So CO
As a means for reducing the concentration to a lower concentration, a method of converting CO into CO 2 by introducing oxygen or an oxygen-containing gas (air or the like) into the reformed gas has been proposed. However, in this case, since a large amount of hydrogen is present in the reformed gas, hydrogen is also oxidized when attempting to oxidize CO, resulting in loss of hydrogen and insufficient removal of CO.

ところで、最近COを水素でメタネーション(以下、メタン化ともいう。)することによりメタンに変換する方法も見直されている。例えば、特開平3−93602号公報(特許文献1)、特開平11−86892号公報(特許文献2)には、γ−アルミナ担体にRuを担持した触媒(Ru/γ−アルミナ触媒)と、COを含有する水素ガスを接触させる方法が開示されている。しかし、水素ガスに二酸化炭素(CO2)が含まれている場合、
副反応である二酸化炭素のメタン化反応も起こり、それだけ水素が消費され望ましくない。したがって、主反応であるCOのメタン化反応の活性が高く、選択率の高い(二酸化炭素のメタン化反応の少ない)触媒の開発が望まれている。
Recently, a method of converting CO to methane by methanation with hydrogen (hereinafter also referred to as methanation) has been reviewed. For example, in JP-A-3-93602 (Patent Document 1) and JP-A-11-86892 (Patent Document 2), a catalyst in which Ru is supported on a γ-alumina carrier (Ru / γ-alumina catalyst), A method of contacting hydrogen gas containing CO is disclosed. However, if the hydrogen gas contains carbon dioxide (CO 2 ),
Carbon dioxide methanation, which is a side reaction, also occurs and hydrogen is consumed, which is undesirable. Therefore, it is desired to develop a catalyst having high activity of CO, which is the main reaction, and high selectivity (low carbon dioxide methanation reaction).

上記問題点を解決するために無機酸化物担体にRu化合物とアルカリ金属化合物および/またはアルカリ土類金属化合物を担持した触媒が提案されている(特開2002−68707号公報、特許文献3)。
特開平3−93602号公報 特開平11−86892号公報 特開2002−68707号公報
In order to solve the above problems, a catalyst in which an Ru compound and an alkali metal compound and / or an alkaline earth metal compound are supported on an inorganic oxide carrier has been proposed (Japanese Patent Laid-Open No. 2002-68707, Patent Document 3).
Japanese Patent Laid-Open No. 3-93602 JP-A-11-86892 JP 2002-68707 A

しかしながら、上記従来の燃料電池用電極触媒では、活性および選択性が不充分であったり、さらに長時間使用できるように寿命を向上することが求められている。   However, the above-mentioned conventional electrode catalyst for fuel cells is required to have an insufficient life and selectivity, and to improve the life so that it can be used for a long time.

このため、本発明者等は鋭意検討した結果、微粒のNiを金属酸化物担体に担持した触媒は高いCO吸着性能を発現し、COのメタン化反応において高い活性を発現することを見出して本発明を完成するに至った。   For this reason, as a result of diligent studies, the present inventors have found that a catalyst in which fine Ni is supported on a metal oxide support exhibits high CO adsorption performance and high activity in CO methanation reaction. The invention has been completed.

すなわち、本発明は、主反応である一酸化炭素のメタネーション反応の活性が高く、水素含有ガス中の一酸化炭素を効果的に除去できる触媒および除去方法を提供することを目的としている。
[1]Niおよび/またはCo金属が金属酸化物担体に担持されてなり、Niおよび/またはCo金属の平均粒子径が0.5〜3nmの範囲にあり、Niおよび/またはCo金属の担持量
が触媒中に5.0〜15重量%の範囲にある一酸化炭素メタネーション用触媒。
[2]さらに、4B族、6A族および7A族から選ばれる1種以上の金属を含み、該金属の
含有量が0.1〜5重量%の範囲にある[1]の一酸化炭素メタネーション用触媒。
[3]前記4B族の金属がSnであり、6A族の金属がMo、Wであり、7A族の金属がReであり、これら金属の含有量がNiおよび/またはCo金属の1〜5重量%の範囲にある[1]
または[2]の一酸化炭素メタネーション用触媒。
[4]前記金属酸化物担体がLa23、CeO2、ZrO2、Al23、TiO2、MgO、SiO2から選ばれる1種以上の酸化物、または複合酸化物である[1]〜[3]のいずれかに記載の一酸化炭素メタネーション用触媒。
[5]CO吸着量が6〜25cm3/g・Catの範囲にある[1]〜[4]の一酸化炭素メタネーション
用触媒。
[6][1]〜[5]のメタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させる一酸化
炭素のメタネーション方法。
[7]前記、接触させる際の温度(反応温度)が130〜200℃の範囲にある[6]の一酸化
炭素のメタネーション方法。
That is, an object of the present invention is to provide a catalyst and a method for removing carbon monoxide, which is a main reaction, having a high activity of methanation of carbon monoxide, and capable of effectively removing carbon monoxide in a hydrogen-containing gas.
[1] Ni and / or Co metal is supported on a metal oxide support, the average particle diameter of Ni and / or Co metal is in the range of 0.5 to 3 nm, and the supported amount of Ni and / or Co metal Is a catalyst for carbon monoxide methanation in the range of 5.0 to 15% by weight in the catalyst.
[2] The carbon monoxide methanation further comprising one or more metals selected from 4B group, 6A group and 7A group, and the metal content is in the range of 0.1 to 5% by weight. Catalyst.
[3] The group 4B metal is Sn, the group 6A metal is Mo, W, the group 7A metal is Re, and the content of these metals is 1 to 5 weight of Ni and / or Co metal. In the range of% [1]
Or [2] a catalyst for carbon monoxide methanation.
[4] The metal oxide support is one or more oxides selected from La 2 O 3 , CeO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , MgO, and SiO 2 , or a composite oxide. ] The catalyst for carbon monoxide methanation in any one of [3].
[5] A catalyst for carbon monoxide methanation having a CO adsorption amount in the range of 6 to 25 cm 3 / g · Cat [1] to [4].
[6] A method for methanation of carbon monoxide in which the catalyst for methanation according to [1] to [5] is brought into contact with hydrogen gas containing carbon monoxide gas.
[7] The method for methanation of carbon monoxide, wherein the temperature (reaction temperature) at the time of contact is in the range of 130 to 200 ° C.

本発明によると、微細なNiおよび/またはCo金属粒子が主たる活性成分として担持されているために一酸化炭素のメタネーション反応の選択率および活性が高く、水素含有ガス中の一酸化炭素を長期に亘って効果的に除去できる触媒および一酸化炭素のメタネーション方法を提供することができる。   According to the present invention, since fine Ni and / or Co metal particles are supported as the main active component, the selectivity and activity of the methanation reaction of carbon monoxide are high, and carbon monoxide in the hydrogen-containing gas can be used for a long time. It is possible to provide a catalyst and a carbon monoxide methanation method that can be effectively removed over a wide range.

以下、本発明を実施するための形態について説明する。
本発明に係る一酸化炭素メタネーション用触媒は、主たる活性成分として、Niおよび
/またはCo金属が金属酸化物担体に担持されている。
Hereinafter, modes for carrying out the present invention will be described.
In the catalyst for carbon monoxide methanation according to the present invention, Ni and / or Co metal is supported on a metal oxide support as the main active component.

活性成分
Niおよび/またはCo金属の平均粒子径は0.5〜3nm、さらには0.8〜2.5
nmの範囲にあることが好ましい。平均粒子径が小さいものは得ることが困難であり、得られたとしても時間とともに活性が低下し、触媒寿命が短くなる傾向がある。平均粒子径が3nmを超えるとCOの吸着と活性化が不充分となるため充分な活性を得ることができない場合がある。
The average particle size of the active ingredient Ni and / or Co metal is 0.5 to 3 nm, more preferably 0.8 to 2.5.
It is preferably in the range of nm. Those having a small average particle size are difficult to obtain, and even if obtained, the activity decreases with time and the catalyst life tends to be shortened. If the average particle diameter exceeds 3 nm, the adsorption and activation of CO are insufficient, and sufficient activity may not be obtained.

金属の平均粒子径は、担持した金属の割合より担持金属の平均原子量および平均原子半径を算出し、CO吸着量より触媒分析装置(BEL−CAT)取扱説明書に記載されている計算式を用いて算出することができる。   For the average particle diameter of the metal, the average atomic weight and average atomic radius of the supported metal are calculated from the ratio of the supported metal, and the calculation formula described in the instruction manual for the catalyst analyzer (BEL-CAT) is used from the CO adsorption amount. Can be calculated.

Niおよび/またはCo金属の担持量が触媒中に5.0〜15重量%、さらには7〜10重量%の範囲にあることが好ましい。担持量が少ないと活性が不充分となり、担持量が多すぎても活性は高くなるもののCO2のメタネーション反応が起こりやすくなり、選択性
が低下し、結果としてCOの除去効果が不充分となる。
The supported amount of Ni and / or Co metal is preferably in the range of 5.0 to 15% by weight, more preferably 7 to 10% by weight in the catalyst. If the loading amount is small, the activity is insufficient, and if the loading amount is too large, the activity is high, but the CO 2 methanation reaction tends to occur, the selectivity is lowered, and as a result, the effect of removing CO is insufficient. Become.

さらに、本発明の触媒には補助的活性成分として4B族、6A族および7A族から選ばれる1種または2種以上の金属を含むことが望ましい。
このような補助的活性成分の含有量は0.1〜5重量%、さらには0.2〜3重量%の範囲にあることが好ましい。補助的活性成分の含有量が少ないと、反応温度が高くなるにつれCO2のメタネーション活性が起こりやすく、発熱反応により反応温度が異常に高く
なることがある。補助的活性成分が多すぎても、CO2のメタネーション反応の抑制はで
きるが、活性が不充分となることがある。
Furthermore, the catalyst of the present invention preferably contains one or more metals selected from Group 4B, Group 6A and Group 7A as an auxiliary active component.
The content of such auxiliary active ingredients is preferably in the range of 0.1 to 5% by weight, more preferably 0.2 to 3% by weight. If the content of the auxiliary active ingredient is small, CO 2 methanation activity tends to occur as the reaction temperature increases, and the reaction temperature may become abnormally high due to an exothermic reaction. Even if there are too many auxiliary active ingredients, the CO 2 methanation reaction can be suppressed, but the activity may be insufficient.

補助的活性成分として、特に4B族の金属としてはSn、6A族の金属としてはMo、W、7A族の金属としてはReからなる群から選ばれる1種以上の金属が好適に用いられる
。上記した各金属の好ましい理由については必ずしも明らかではないが、Snの場合、Ni、Coに吸着した炭素種の脱離を促進することにより活性を向上させることが考えられる。Mo、Wの場合、H2の解離吸着による活性水素が生成して水素化を促進することに
より活性を向上させていることが考えられる。Reの場合、Ni、Coへの炭素種の吸着および脱離を促進することにより活性を向上させていることが考えられる。
As the auxiliary active component, in particular, one or more metals selected from the group consisting of Sn as the group 4B metal, Mo as the group 6A metal, W as the group 6A metal, and Re as the group 7A metal are preferably used. The reason why each of the above metals is preferable is not clear, but in the case of Sn, it is conceivable to improve the activity by promoting the elimination of carbon species adsorbed on Ni and Co. In the case of Mo and W, it is considered that active hydrogen is generated by dissociative adsorption of H 2 and promotes hydrogenation to improve the activity. In the case of Re, it is considered that the activity is improved by promoting the adsorption and desorption of the carbon species to and from Ni and Co.

これら補助的活性成分の含有量は、活性成分であるNiおよび/またはCo金属の5〜50重量%、さらには10〜35重量%の範囲にあることが好ましい。補助的活性成分の割合が前記範囲にあれば炭素種の吸着および脱離、H2の解離吸着、COの解離吸着が調和
を持って促進され、副反応を抑制することができるために高い選択性、長い触媒寿命を有する触媒が得られる。
The content of these auxiliary active ingredients is preferably in the range of 5 to 50% by weight, more preferably 10 to 35% by weight, of the active ingredient Ni and / or Co metal. If the ratio of the auxiliary active ingredient is within the above range, the adsorption and desorption of carbon species, the dissociative adsorption of H 2 , and the dissociative adsorption of CO can be promoted in a coordinated manner, and side reactions can be suppressed. And a catalyst having a long catalyst life can be obtained.

補助的活性成分を含む場合、合計の金属の担持量は、触媒中に5〜15重量%、さらには7〜10重量%の範囲にあることが好ましい。この範囲より少ないと、活性、触媒寿命が不充分となることがあり、多すぎても活性は高くなるもののCO2のメタネーション反
応が起こりやすくなるため、選択性が低下し、結果としてCOの除去効果が不充分となる。
When the auxiliary active component is included, the total amount of the metal supported is preferably in the range of 5 to 15% by weight, more preferably 7 to 10% by weight in the catalyst. If the amount is less than this range, the activity and catalyst life may be insufficient. If the amount is too large, the activity increases, but the CO 2 methanation reaction is likely to occur. The removal effect is insufficient.

金属酸化物担体
本発明に用いる金属酸化物担体としては、ZrO2、CeO2、Al23、TiO2、L
23、MgO、NiOおよびCoO(Co34等を含む)から選ばれる1種または2種以上の酸化物、特に複合酸化物であることが好ましい。
Metal oxide support The metal oxide support used in the present invention includes ZrO 2 , CeO 2 , Al 2 O 3 , TiO 2 , L
One or more oxides selected from a 2 O 3 , MgO, NiO and CoO (including Co 3 O 4 etc.), particularly a composite oxide is preferable.

具体的にはZrO2-CeO2、ZrO2-CeO2−Al23、Al23−CeO2−Ti
2、ZrO2-CoO、ZrO2-NiO、ZrO2-CoO-NiO、CoO-CeO2、NiO-CoO-CeO2、ZrO2-NiO-CoO-CeO2、Al23−Co34、Al23−CeO2−CoO、Al23−NiO、TiO2−CoO、TiO2−NiO、TiO2−SiO2−Co3 4 等が挙げられる。
Specifically, ZrO 2 —CeO 2 , ZrO 2 —CeO 2 —Al 2 O 3 , Al 2 O 3 —CeO 2 —Ti
O 2 , ZrO 2 —CoO, ZrO 2 —NiO, ZrO 2 —CoO—NiO, CoO—CeO 2 , NiO—CoO—CeO 2 , ZrO 2 —NiO—CoO—CeO 2 , Al 2 O 3 —Co 3 O 4 , Al 2 O 3 —CeO 2 —CoO, Al 2 O 3 —NiO, TiO 2 —CoO, TiO 2 —NiO, TiO 2 —SiO 2 —Co 3 O 4 and the like.

また、Zr、Ti、Al、Siの酸化物の少なくともいずれかが概ね20重量%以上、好ましくは50重量%以上含まれていると、比表面積が向上し、このため高い活性を得ることができる。   Further, when at least one of oxides of Zr, Ti, Al, and Si is contained in an amount of approximately 20% by weight or more, preferably 50% by weight or more, the specific surface area is improved, and thus high activity can be obtained. .

また、Ceの酸化物が概ね3.0重量%以上、好ましくは10.0重量%以上含まれていると、担持される金属種であるNi種および/またはCo種の粒子径を小さく保つことができることから、高活性触媒を調製することができる。   Further, when the Ce oxide is contained in an amount of 3.0% by weight or more, preferably 10.0% by weight or more, the particle size of the Ni species and / or Co species that are supported metal species is kept small. Therefore, a highly active catalyst can be prepared.

好ましい複合酸化物の組合わせてとしては、CoO-NiO−CeO2−ZrO2、Co
O-NiO−CeO2−ZrO2−Al23、CoO-NiO−CeO2−Al23−TiO2、NiO−ZrO2−CeO2、CoO−TiO2−CeO2、CoO−ZrO2−CeO2等のCeO2を含む複合酸化物は、低温活性を向上させる効果が顕著である。
Preferred composite oxide combinations include CoO—NiO—CeO 2 —ZrO 2 , Co
O—NiO—CeO 2 —ZrO 2 —Al 2 O 3 , CoO—NiO—CeO 2 —Al 2 O 3 —TiO 2 , NiO—ZrO 2 —CeO 2 , CoO—TiO 2 —CeO 2 , CoO—ZrO 2 -CeO composite oxide containing CeO 2, such as 2 is a remarkable effect of improving the low-temperature activity.

本発明に係る一酸化炭素メタネーション用触媒は、CO吸着量が6〜20cm3g・C
at、さらには8〜20cm/g・Catの範囲にあることが好ましい。この範囲のCO吸着量であれば、COの吸着と活性化が高く、安全性にも優れている。なおCO吸着量が少ないと、COの吸着と活性化が不充分となるため充分な活性を得ることが困難であり、CO吸着量をこの範囲よりも高くすること自体困難であり、吸着したとしても活性が高すぎて発熱を伴う暴走反応を伴うことがある。
The catalyst for carbon monoxide methanation according to the present invention has a CO adsorption amount of 6 to 20 cm 3 g · C.
It is preferable that it is in the range of at, and further 8-20 cm 3 / g · Cat. If the amount of CO adsorption is within this range, CO adsorption and activation are high and safety is also excellent. Note that if the amount of CO adsorption is small, it is difficult to obtain sufficient activity because of insufficient adsorption and activation of CO, and it is difficult to make the CO adsorption amount higher than this range. May be accompanied by a runaway reaction accompanied by an exotherm.

なお、本発明におけるCO吸着量は触媒分析装置(日本ベル株式会社製:BEL−CAT)を用い、装置内で触媒を400℃で30分間還元処理を行い、パルス法にてCO吸着を行うことによって測定することができる。   The amount of CO adsorption in the present invention is determined by using a catalyst analyzer (BEL-CAT, manufactured by Nippon Bell Co., Ltd.), reducing the catalyst at 400 ° C. for 30 minutes in the device, and performing CO adsorption by the pulse method. Can be measured.

また、触媒の比表面積が30〜200m2/g、さらには60〜120m2/gの範囲にあることが好ましい。比表面積が小さいと、活性が不充分となり、高いSV(空塔速度)での運転か困難となる。比表面積が大きいものは、長時間運転した場合に活性、選択性の低下が大きくなる傾向にある。 The specific surface area of the catalyst is preferably in the range of 30 to 200 m 2 / g, more preferably 60 to 120 m 2 / g. If the specific surface area is small, the activity becomes insufficient, and it becomes difficult to operate at a high SV (superficial velocity). When the specific surface area is large, the activity and selectivity tend to decrease greatly when operated for a long time.

また、触媒の細孔容積は0.10〜0.45ml/g、さらには0.15〜0.30ml/gの範囲にあることが好ましい。細孔容積が小さいものは、充分な活性が得られないことがある。細孔容積が大きいものは、本発明の組成範囲では得ることが困難である。
一酸化炭素メタネーション用触媒の製造方法
本発明に係る一酸化炭素メタネーション用触媒は、担体成分および活性成分が前記した範囲にあり、触媒の比表面積および細孔容積が前記した範囲にあり、一酸化炭素のメタネーションに用いることができれば特に制限はなく従来公知の方法によって製造することができる。なお、各種酸化物ゾルおよびシリカ源としては水ガラスを脱アルカリした珪酸液も好適に用いることができる。
The pore volume of the catalyst is preferably in the range of 0.10 to 0.45 ml / g, more preferably 0.15 to 0.30 ml / g. When the pore volume is small, sufficient activity may not be obtained. Those having a large pore volume are difficult to obtain in the composition range of the present invention.
Production method of catalyst for carbon monoxide methanation The catalyst for carbon monoxide methanation according to the present invention has the support component and the active component in the above-mentioned range, and the specific surface area and pore volume of the catalyst are in the above-mentioned range, If it can use for methanation of carbon monoxide, there will be no restriction | limiting in particular, It can manufacture by a conventionally well-known method. As various oxide sols and silica sources, a silicic acid solution obtained by dealkalizing water glass can also be suitably used.

例えば、担体成分原料としてジルコニウム塩、ニッケル塩、コバルト塩、セリウム塩、アルミニウム塩、チタニウム塩、珪酸塩の1種以上金属塩水溶液、好ましくは2種以上の混合金属塩水溶液を調製する。   For example, zirconium salt, nickel salt, cobalt salt, cerium salt, aluminum salt, titanium salt, silicate aqueous solution of one or more metal salts, preferably two or more mixed metal salt aqueous solutions are prepared as a carrier component raw material.

ニッケル塩としては硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、炭酸ニッケル等が用いられ、コバルト塩としては硝酸コバルト、硫酸コバルト、塩化コバルト、酢酸コバルト等が用いられる。セリウム塩としては硝酸セリウム、塩化セリウム、硫酸セリウム、等が用いられる。ジルコニウム塩としては硝酸ジルコニウム、塩化ジルコニウム、塩化ジルコニル、硫酸ジルコニウム、酢酸ジルコニウム、硝酸ジルコニル、硫酸ジルコニル、炭酸ジルコニウム等が用いられ、アルミニウム塩としては塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム等が用いられ、チタニウム塩としては四塩化チタン、硫酸チタン等が用いられ、珪酸塩としては水ガラス等が主に用いられる。   As the nickel salt, nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, nickel carbonate and the like are used, and as the cobalt salt, cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt acetate and the like are used. As the cerium salt, cerium nitrate, cerium chloride, cerium sulfate, etc. are used. Zirconium nitrate, zirconium chloride, zirconyl chloride, zirconium sulfate, zirconium acetate, zirconyl nitrate, zirconyl sulfate, zirconium carbonate, etc. are used as the aluminum salt, and aluminum chloride, aluminum sulfate, aluminum nitrate, etc. are used as the aluminum salt. As the salt, titanium tetrachloride, titanium sulfate or the like is used, and as the silicate, water glass or the like is mainly used.

混合塩水溶液は合計の酸化物としての濃度が概ね7.5重量%以下の範囲にあることが好ましい。混合塩水溶液濃度が高すぎると、得られる触媒の比表面積が小さく、十分な活性が得られないことがある。   The mixed salt aqueous solution preferably has a total oxide concentration in the range of 7.5% by weight or less. When the mixed salt aqueous solution concentration is too high, the specific surface area of the resulting catalyst is small, and sufficient activity may not be obtained.

ついで、混合塩水溶液に塩基性化合物の水溶液を加えて中和し、必要に応じて熟成してヒドロゲルを調製する。
塩基性化合物としてはNaOH、KOH、Na2CO3等のアルカリ金属水溶液、アンモニア、テトラメチルアンモニウムハイドロオキサイド等を用いることができる。
Next, an aqueous solution of a basic compound is added to the mixed salt aqueous solution to neutralize it, and it is aged as necessary to prepare a hydrogel.
Examples of basic compounds that can be used include aqueous alkali metal solutions such as NaOH, KOH, Na 2 CO 3 , ammonia, tetramethylammonium hydroxide, and the like.

熟成する際の温度は通常30〜100℃の範囲が好ましく、時間は通常0.5〜24時間程度である。
ヒドロゲルを濾過し、洗浄する。洗浄方法は副生する塩化ナトリウム等の塩を除去できれば特に制限はなく従来公知の方法を採用することができる。例えば、温水を充分掛ける方法、アンモニア水を掛ける方法、限外濾過膜法等は好適に採用することができる。
The temperature for aging is usually preferably in the range of 30 to 100 ° C., and the time is usually about 0.5 to 24 hours.
The hydrogel is filtered and washed. The washing method is not particularly limited as long as it can remove by-produced salt such as sodium chloride, and a conventionally known method can be adopted. For example, a method of sufficiently applying warm water, a method of applying ammonia water, an ultrafiltration membrane method and the like can be suitably employed.

ついで、成形するが、主に2つの方法があり、1つは洗浄したゲルを乾燥し、焼成し、得られた混合酸化物粉体は必要に応じて粉砕し、錠剤成型器等で成型する方法である。他の1つの方法は、洗浄したゲルを、必要に応じてセルローズ等の成型助剤を加え、水分調整、加熱濃縮、捏和、混練等した後、押出成型器等によりペレットとし、必要に応じてペレットをマルメライザー、転動造粒機等で球状とし、ついで、乾燥し、焼成する方法である。   Next, there are mainly two methods. One is drying and baking the washed gel, and the resulting mixed oxide powder is pulverized if necessary and molded with a tablet molding machine or the like. Is the method. Another method is to add a molding aid such as cellulose to the washed gel as necessary, adjust the moisture, heat and concentrate, knead, knead, etc., and then form a pellet with an extruder, etc. In this method, the pellets are formed into a spherical shape with a malmerizer, a rolling granulator or the like, then dried and fired.

乾燥は、通常80〜200℃で乾燥する。また、焼成は200〜600℃、好ましくは250〜500℃で行う。
特に、担体成分にニッケル成分および/またはコバルト成分を含む場合は300〜650℃、さらには350〜550℃で焼成することが好ましい。
The drying is usually performed at 80 to 200 ° C. Moreover, baking is performed at 200-600 degreeC, Preferably it is 250-500 degreeC.
In particular, when the carrier component contains a nickel component and / or a cobalt component, it is preferably fired at 300 to 650 ° C, more preferably 350 to 550 ° C.

焼成温度が300℃未満の場合はニッケル成分、コバルト成分が完全に酸化物あるいは複合酸化物とならない場合があり、ついで活性成分用ニッケル成分および/またはコバルト成分を担持し還元した際に、担体用ニッケル成分、コバルト成分の一部とともに金属微
粒子となり、この際の金属微粒子の粒子径が3nmを超えて大きくなり、最終的に得られる触媒の活性、選択性および寿命が不充分となることがある。
When the firing temperature is less than 300 ° C., the nickel component and cobalt component may not be completely converted to oxides or composite oxides. Then, when the nickel component and / or cobalt component for the active component is supported and reduced, Metal fine particles are formed together with a part of the nickel component and cobalt component, and the particle size of the metal fine particles at this time becomes larger than 3 nm, and the activity, selectivity and life of the catalyst finally obtained may be insufficient. .

なお、焼成温度が650℃を超えると担体の比表面積および触媒の比表面積が不充分となるとともに、担持する活性成分用ニッケル成分および/またはコバルト成分が3nmを超えて大きくなり、最終的に得られる触媒の活性、選択性および寿命が不充分となることがある。   When the calcination temperature exceeds 650 ° C., the specific surface area of the support and the specific surface area of the catalyst become insufficient, and the nickel component and / or cobalt component for the active component to be supported becomes larger than 3 nm, and finally obtained. The activity, selectivity and lifetime of the resulting catalyst may be insufficient.

焼成して得られた成形物の担体に、ついで活性成分用ニッケル成分および/またはコバルト成分を必要に応じて吸収させて担持する。
活性成分用ニッケル成分および/またはコバルト成分としては硝酸ニッケル、硫酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルト、硫酸コバルト等の金属塩水溶液、さらには混合金属塩水溶液を用いる。
Next, the nickel component and / or cobalt component for the active ingredient is absorbed and supported as necessary on the carrier of the molded product obtained by firing.
As the nickel component and / or cobalt component for the active component, an aqueous solution of a metal salt such as nickel nitrate, nickel sulfate, nickel chloride, cobalt nitrate, cobalt chloride, cobalt sulfate, or a mixed metal salt aqueous solution is used.

金属塩水溶液の濃度は、通常、所定量、すなわち得られる触媒中のNiおよび/またはCo金属の合計の含有量が5〜15重量%となるように担持できる濃度とするが、金属塩水溶液の濃度が低い場合、あるいは担持量が多い場合は吸収および乾燥を繰り返し行うこともできる。   The concentration of the aqueous metal salt solution is usually a predetermined amount, that is, a concentration that can be supported so that the total content of Ni and / or Co metal in the resulting catalyst is 5 to 15% by weight. When the concentration is low or when the loading is large, absorption and drying can be repeated.

なお、前記金属塩水溶液には、必要に応じて、補助的活性成分として4B族、6A族、7A族および8族から選ばれる1種以上の金属の塩を用いてもよい。金属塩としては、4B族のSn、6A族のMo、W、7A族のRe等の金属塩は好適に用いることができる。具体的には、塩化スズ、酢酸スズ、硫酸スズ、シュウ酸スズ、塩化モリブデン、モリブデン酸アンモニウム、タングステン酸アンモニウム、塩化レニウム、過レニウム酸アンモニウム等が好適に用いられる。   In the metal salt aqueous solution, if necessary, a salt of one or more metals selected from Group 4B, Group 6A, Group 7A and Group 8 may be used as an auxiliary active component. As the metal salt, metal salts such as 4B group Sn, 6A group Mo, W, and 7A group Re can be preferably used. Specifically, tin chloride, tin acetate, tin sulfate, tin oxalate, molybdenum chloride, ammonium molybdate, ammonium tungstate, rhenium chloride, ammonium perrhenate, etc. are preferably used.

補助的活性成分用の金属塩水溶液を含む場合も濃度は、得られる触媒中の補助的活性成分金属の含有量が0.1〜5重量%、さらには0.2〜3重量%の範囲となり、Niおよ
び/またはCo金属を含む合計の金属の含有量が0.5〜15重量%となるように担持で
きる濃度とする。
Even when the aqueous metal salt solution for the auxiliary active ingredient is included, the concentration of the auxiliary active ingredient metal in the resulting catalyst is in the range of 0.1 to 5% by weight, and further 0.2 to 3% by weight. The concentration is such that the total metal content including Ni and / or Co metal is 0.5 to 15% by weight.

また、補助的活性成分の含有量がは主たる活性成分であるNiおよび/またはCo金属の10〜50重量%、より好ましくは15〜40重量%の範囲となる濃度とすることが好ましい。   The content of the auxiliary active ingredient is preferably 10 to 50% by weight, more preferably 15 to 40% by weight of the main active ingredient Ni and / or Co metal.

焼成して得た成形他の担体に、活性成分用ニッケル成分および/またはコバルト成分を吸収させた後、必要に応じて補助的活性成分を吸収させ、ついで、乾燥する。
乾燥条件は特に制限はないが、通常80〜200℃で乾燥する。乾燥した後、還元ガス雰囲気下、250〜500℃、好ましくは300〜450℃で還元して一酸化炭素メタネーション用触媒を得ることができる。還元雰囲気ガスとしては通常、水素ガスあるいは水素ガスと窒素ガス等不活性ガスとの混合ガスが用いられる。
The nickel or cobalt component for active ingredient is absorbed in the molded or other carrier obtained by firing, and then the auxiliary active ingredient is absorbed if necessary, and then dried.
The drying conditions are not particularly limited, but are usually dried at 80 to 200 ° C. After drying, the catalyst for carbon monoxide methanation can be obtained by reduction at 250 to 500 ° C., preferably 300 to 450 ° C. in a reducing gas atmosphere. As the reducing atmosphere gas, hydrogen gas or a mixed gas of hydrogen gas and inert gas such as nitrogen gas is usually used.

還元温度が低いと活性金属の還元が不充分となり、充分な活性が得られないことがある。還元温度が高いと焼結が起こり、得られる触媒の比表面積が小さく、活性が不充分となることがある。   If the reduction temperature is low, the reduction of the active metal becomes insufficient and sufficient activity may not be obtained. When the reduction temperature is high, sintering occurs, and the resulting catalyst may have a small specific surface area, resulting in insufficient activity.

還元時間は、温度によっても異なるが、通常0.5〜12時間である。
また、一酸化炭素メタネーション用触媒の形状等は特に制限はなく、反応方法、反応条件等によって適宜選択することが可能であり、微粉体をそのまま用いてもよく、微粉体を加圧成型して用いてもよい。さらにはハニカム状あるいはペレット状に押出成型したもの
、さらにはペレットを球状(ビード状)にしたものも好適に用いることができる。
[一酸化炭素のメタネーション方法]
つぎに、本発明に係る一酸化炭素のメタネーション方法について説明する。
Although the reduction time varies depending on the temperature, it is usually 0.5 to 12 hours.
The shape of the catalyst for carbon monoxide methanation is not particularly limited and can be appropriately selected depending on the reaction method, reaction conditions, etc. The fine powder may be used as it is, or the fine powder may be formed by pressure molding. May be used. Further, a honeycomb or pellet extruded product, and a pellet formed into a spherical shape (bead shape) can also be suitably used.
[Method of carbonation methanation]
Next, the carbon monoxide methanation method according to the present invention will be described.

本発明に係る一酸化炭素のメタネーション方法は、メタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させることを特徴としている。
メタネーション用触媒としては前記した触媒を用いる。
The methanation method for carbon monoxide according to the present invention is characterized in that the methanation catalyst is brought into contact with a hydrogen gas containing carbon monoxide gas.
As the methanation catalyst, the aforementioned catalyst is used.

一酸化炭素ガス含有水素ガスとしては燃料ガス(改質ガス中の水素含有ガス)が用いられ、このガスは通常、水素ガス、一酸化炭素ガス、二酸化炭素ガス、および水蒸気等を含んでおり、メタンを含む場合もある。   As the carbon monoxide gas-containing hydrogen gas, a fuel gas (hydrogen-containing gas in the reformed gas) is used, and this gas usually contains hydrogen gas, carbon monoxide gas, carbon dioxide gas, water vapor, and the like. May contain methane.

本発明に用いる燃料ガス中の水素ガスの濃度は71〜89vol%、一酸化炭素ガス濃度は0.3〜1.0vol%、二酸化炭素ガス濃度は10〜25vol%、メタンガス濃度0〜3.0vol%(ガス組成)である。さらにその燃料中のガスに対して水蒸気を20vol%〜70vol%の割合で含んでいる。   The hydrogen gas concentration in the fuel gas used in the present invention is 71 to 89 vol%, the carbon monoxide gas concentration is 0.3 to 1.0 vol%, the carbon dioxide gas concentration is 10 to 25 vol%, and the methane gas concentration is 0 to 3.0 vol. % (Gas composition). Furthermore, it contains water vapor at a ratio of 20 vol% to 70 vol% with respect to the gas in the fuel.

メタネーション用触媒と一酸化炭素ガス含有水素ガスとを接触させる際の温度(以下、反応温度という)は100〜250℃、さらには130〜200℃の範囲にあることが好ましい。反応温度が低いと、反応ガス中に含まれる水蒸気が凝縮し、継続的に反応を行うことが困難である。反応温度が高すぎても、COシフト反応(CO+H2O→CO2+H2
)の温度域となり、COシフト反応により転化することのできる一酸化炭素をメタネーション反応により、メタン化するため、燃料ガス中に含まれる、水素濃度が著しく低下してしまう。
The temperature at which the methanation catalyst and carbon monoxide gas-containing hydrogen gas are brought into contact (hereinafter referred to as reaction temperature) is preferably in the range of 100 to 250 ° C, more preferably 130 to 200 ° C. When the reaction temperature is low, water vapor contained in the reaction gas condenses and it is difficult to carry out the reaction continuously. Even if the reaction temperature is too high, the CO shift reaction (CO + H 2 O → CO 2 + H 2
), And carbon monoxide that can be converted by the CO shift reaction is methanated by the methanation reaction, so that the concentration of hydrogen contained in the fuel gas is significantly reduced.

このような、本発明に係る一酸化炭素のメタネーション方法で処理された燃料ガスは、一酸化炭素ガス濃度が50ppm以下に除去される。
[実施例]
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により限定されるものではない。
[実施例1]
メタネーション用触媒(1)の調製
硝酸ジルコニル溶液(ZrO2濃度:25.0重量%)258.40g、硝酸セリウム
・6水和物30.87g、硝酸アルミナ・9水和物25.74gおよび硝酸ニッケル・6水和物15.57gを水2400gに溶解させ、混合水溶液(1)を得た。
The fuel gas treated by the carbon monoxide methanation method according to the present invention is removed to a carbon monoxide gas concentration of 50 ppm or less.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.
[Example 1]
Preparation of catalyst for methanation (1) Zirconyl nitrate solution (ZrO 2 concentration: 25.0 wt%) 258.40 g, cerium nitrate hexahydrate 30.87 g, alumina nitrate nonahydrate 25.74 g and nitric acid 15.57 g of nickel hexahydrate was dissolved in 2400 g of water to obtain a mixed aqueous solution (1).

水酸化ナトリウム90.68gを水2300gに溶解し、攪拌しながらこれに混合水溶液(1)を添加してヒドロゲルスラリーを調製し、ついで80℃にて2時間熟成した。
熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、350℃で1時間、大気中にて焼成を行い、複合酸化物粉体(1)を得た。
90.68 g of sodium hydroxide was dissolved in 2300 g of water, and the mixed aqueous solution (1) was added thereto while stirring to prepare a hydrogel slurry, and then aged at 80 ° C. for 2 hours.
The aged hydrogel is filtered, washed with sufficient warm water, dried at 120 ° C. for one day, and then baked in the air at 350 ° C. for 1 hour to obtain a composite oxide powder (1). It was.

ついで、複合酸化物粉体(1)を 錠剤成型器に充填し、50Kg/cm2で加圧成型し
、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体(1)を調製した。硝酸ニッケル・6水和物をニッケル濃度20重量%となるように含浸溶液(1)を調製した。ついで、メタネーション触媒用担体(1)44.00gに含浸溶液(1)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(1)を調製した。
Next, the complex oxide powder (1) is filled into a tablet molding machine, pressure-molded at 50 kg / cm 2 , then pulverized, and the particle size is adjusted to 20 to 42 mesh to adjust the carrier for methanation catalyst (1). Was prepared. An impregnation solution (1) was prepared so that nickel nitrate hexahydrate had a nickel concentration of 20% by weight. Subsequently, 30.00 g of the impregnation solution (1) was absorbed into 44.00 g of the methanation catalyst support (1). Subsequently, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the atmosphere to prepare a methanation catalyst (1).

活性試験
メタネーション用触媒(1)4.2mlを、内径12mmのステンレス製反応管に充填し
、触媒層温度330℃で水素−窒素混合ガス(H2濃度10VOl%)の流通下で再び1時
間還元処理し、ついで、触媒層温度を150℃の反応温度にした後、反応用混合ガス(一酸化炭素0.6Vol%、二酸化炭素20.0Vol%、メタン2.0Vol%、水素44.1Vol%、水蒸気33.3Vol%)をSV=2,500h-1となるように流通させ、
約1時間後の定常状態での生成ガスをガスクロマトグラフィーおよび赤外分光型ガス濃度計で分析し、反応管出口CO濃度、CO2濃度およびCH4濃度を測定した結果を表に示した。
The catalyst for activity test methanation (1) (4.2 ml) was filled in a stainless steel reaction tube having an inner diameter of 12 mm, and again for 1 hour under the flow of hydrogen-nitrogen mixed gas (H 2 concentration 10 VOL%) at a catalyst layer temperature of 330 ° C. Then, after reducing the catalyst layer temperature to 150 ° C., the reaction gas mixture (carbon monoxide 0.6 vol%, carbon dioxide 20.0 vol%, methane 2.0 vol%, hydrogen 44.1 vol%) , Water vapor 33.3 Vol%) is distributed so that SV = 2500 h -1 ,
The product gas in a steady state after about 1 hour was analyzed by gas chromatography and an infrared spectroscopic gas concentration meter, and the results of measuring the CO outlet concentration, CO 2 concentration and CH 4 concentration at the outlet of the reaction tube are shown in the table.

選択性としては、反応ガス中の二酸化炭素20.0Vol%からのCO2の増減を表に
示し、CO2の増減の少ない場合が選択性に優れるとして評価した。
同様にして、反応温度を180℃についても実施し、結果を表1に示した。
As the selectivity, the increase / decrease in CO 2 from 20.0 Vol% of carbon dioxide in the reaction gas is shown in the table, and the case where the increase / decrease in CO 2 is small is evaluated as being excellent in selectivity.
Similarly, the reaction was carried out at a reaction temperature of 180 ° C. and the results are shown in Table 1.

触媒寿命試験は、還元後の触媒層を280℃に保持し、加速劣化用混合ガス(一酸化炭素0.3Vol%、二酸化炭素10.0Vol%、メタン1.0Vol%、水素22.0Vol%、水蒸気66.7Vol%)をSV=2,500h-1となるように6h流通させ、その後150℃に触媒層の温度を保ち、反応用混合ガス(一酸化炭素0.6Vol%、
二酸化炭素20.0Vol%、メタン2.0Vol%、水素44.1Vol%、水蒸気33.3Vol%)をSV=2,500h-1となるように流通させ通常と同様に活性測定を行い、出口CO濃度の増加量を測定し、表1に示した。
[実施例2]
メタネーション用触媒(2)の調製
硝酸コバルト・6水和物をコバルト濃度20重量%となるように含浸溶液(2)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(1)44.00gに含浸溶液(2)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(2)を調製した。
In the catalyst life test, the reduced catalyst layer is maintained at 280 ° C., and a gas mixture for accelerated deterioration (carbon monoxide 0.3 vol%, carbon dioxide 10.0 vol%, methane 1.0 vol%, hydrogen 22.0 vol%, Steam 66.7 Vol%) was allowed to flow for 6 hours so that SV = 2,500 h −1, and then the temperature of the catalyst layer was maintained at 150 ° C., and the reaction gas mixture (carbon monoxide 0.6 Vol%,
20.0 Vol% of carbon dioxide, 2.0 Vol% of methane, 44.1 Vol% of hydrogen, 33.3 Vol% of water vapor) were circulated so that SV = 2,500 h −1, and the activity was measured as usual, and the outlet CO The increase in concentration was measured and shown in Table 1.
[Example 2]
Preparation of catalyst for methanation (2)
An impregnation solution (2) was prepared so that cobalt nitrate hexahydrate had a cobalt concentration of 20% by weight. Subsequently, 30.00 g of the impregnation solution (2) was absorbed into 44.00 g of the methanation catalyst support (1) prepared in Example 1. Next, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the atmosphere to prepare a methanation catalyst (2).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例3]
メタネーション用触媒(3)の調製
硝酸ニッケル・6水和物をニッケル濃度13.3重量%、硝酸コバルト・6水和物をコバルト濃度6.6重量%となるようにそれぞれ溶解し含浸溶液(3)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(1)44.00gに含浸溶液(
3)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(2)を調製した。
活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例4]
メタネーション用触媒(4)の調製
塩化ニッケル・6水和物をニッケル濃度20重量%、塩化スズ・5水和物をスズ濃度4.17重量%となるようにそれぞれ溶解し含浸溶液(4)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(1)42.80gに含浸溶液(3)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(4)を調製した。
活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例5]
メタネーション用触媒(5)の調製
硝酸ニッケル・6水和物をニッケル濃度15.3重量%、タングステン酸アンモニウム・5水和物をタングステン濃度8.0重量%となるように含浸溶液(5)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(1)43.00gに含浸溶液(3)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(5)を調製した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 3]
Preparation of catalyst for methanation (3) Nickel nitrate hexahydrate was dissolved in a nickel concentration of 13.3% by weight and cobalt nitrate hexahydrate was dissolved in a cobalt concentration of 6.6% by weight, respectively. 3) was prepared. Next, 44.00 g of the methanation catalyst support (1) prepared in Example 1 was added to the impregnating solution (
3) 30.00 g was absorbed. Next, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the atmosphere to prepare a methanation catalyst (2).
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 4]
Preparation of catalyst for methanation (4) Nickel chloride hexahydrate was dissolved in a nickel concentration of 20% by weight and tin chloride pentahydrate was dissolved in a tin concentration of 4.17% by weight, respectively. Impregnation solution (4) Was prepared. Subsequently, 30.00 g of the impregnation solution (3) was absorbed in 42.80 g of the methanation catalyst support (1) prepared in Example 1. Next, after drying treatment at 120 ° C. for 6 hours, it was calcined at 450 ° C. for 4 hours in the atmosphere to prepare a methanation catalyst (4).
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 5]
Preparation of catalyst for methanation (5) Impregnating solution of nickel nitrate hexahydrate with a nickel concentration of 15.3% by weight and ammonium tungstate pentahydrate with a tungsten concentration of 8.0% by weight (5) Was prepared. Subsequently, 30.00 g of the impregnation solution (3) was absorbed in 43.00 g of the methanation catalyst support (1) prepared in Example 1. Then, after drying at 120 ° C. for 6 hours, the methanation catalyst (5) was prepared by calcining in the atmosphere at 450 ° C. for 4 hours.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例6]
メタネーション用触媒(6)の調製
硝酸コバルト・6水和物をニッケル濃度21.7重量%、過レニウム酸溶液(Re濃度
:75重量%)を1.7重量%となるように含浸溶液(6)を調製した。ついで、実施例
1において調製したメタネーション触媒担体(1)43.00gに含浸溶液(6)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(6)を調製した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 6]
Preparation of catalyst for methanation (6) Cobalt nitrate hexahydrate was impregnated with a nickel concentration of 21.7% by weight and a perrhenic acid solution (Re concentration: 75% by weight) of 1.7% by weight. 6) was prepared. Subsequently, 30.00 g of the impregnation solution (6) was absorbed in 43.00 g of the methanation catalyst support (1) prepared in Example 1. Next, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the air to prepare a methanation catalyst (6).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例7]
メタネーション用触媒(7)の調製
硝酸ジルコニル溶液(ZrO2濃度:25.0重量%)218.40g、硝酸セリウム
・6水和物17.57g、硝酸アルミナ・9水和物71.35g四塩化チタン溶液(TiO2濃度:28.10重量%)24.91g、硝酸ニッケル・6水和物7.79gおよび
硝酸コバルト・6水和物7.76gを水2380gに溶解させ、混合水溶液(7)を得た。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 7]
Preparation of catalyst for methanation (7) Zirconyl nitrate solution (ZrO 2 concentration: 25.0 wt%) 218.40 g, cerium nitrate hexahydrate 17.57 g, alumina nitrate nonahydrate 71.35 g tetrachloride 24.91 g of a titanium solution (TiO 2 concentration: 28.10 wt%), 7.79 g of nickel nitrate hexahydrate and 7.76 g of cobalt nitrate hexahydrate were dissolved in 2380 g of water, and a mixed aqueous solution (7) Got.

水酸化ナトリウム151.59gを水2220gに溶解し、攪拌しながらこれに混合水溶液(7)を添加してヒドロゲルスラリーを調製し、ついで80℃にて2時間熟成した。
熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、その後、350℃で1時間、大気中にて焼成を行い、複合酸化物粉体(7)を得た。
A hydrogel slurry was prepared by dissolving 151.59 g of sodium hydroxide in 2220 g of water and adding the mixed aqueous solution (7) thereto while stirring, and then aged at 80 ° C. for 2 hours.
The aged hydrogel was filtered, washed with sufficient warm water, dried at 120 ° C for one day and night, and then calcined at 350 ° C for 1 hour in the air to obtain a composite oxide powder (7). It was.

ついで、複合酸化物粉体(7)を 錠剤成型器に充填し、50Kg/cm2で加圧成型し
、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体(7)を調製した。
Next, the complex oxide powder (7) is filled in a tablet molding machine, pressure-molded at 50 kg / cm 2 , then pulverized, and the particle size is adjusted to 20 to 42 mesh to support the methanation catalyst carrier (7). Was prepared.

硝酸ニッケル・6水和物をニッケル濃度10.0重量%、硝酸コバルト・6水和物をコバルト濃度3.3重量%となるようにそれぞれ溶解し含浸溶液(7)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(7)46.00gに含浸溶液(
7)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(7)を調製した。
Nickel nitrate hexahydrate was dissolved in a nickel concentration of 10.0% by weight and cobalt nitrate hexahydrate was dissolved in a cobalt concentration of 3.3% by weight to prepare an impregnation solution (7). Next, 46.00 g of the methanation catalyst support (7) prepared in Example 1 was added to the impregnating solution (
7) 30.00 g was absorbed. Next, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the air to prepare a methanation catalyst (7).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例8]
メタネーション用触媒(8)の調製
硝酸セリウム・6水和物22.09g、硝酸アルミナ・9水和物103.71g四塩化
チタン溶液(TiO2濃度:28.10重量%)150.18g、硝酸ニッケル・6水和
物7.79gおよび硝酸コバルト・6水和物7.76gを水2380gに溶解させ、混合水溶液(8)を得た。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 8]
Preparation of catalyst for methanation (8) Cerium nitrate hexahydrate 22.09 g, Alumina nitrate nonahydrate 103.71 g Titanium tetrachloride solution (TiO 2 concentration: 28.10 wt%) 150.18 g, nitric acid 7.79 g of nickel hexahydrate and 7.76 g of cobalt nitrate hexahydrate were dissolved in 2380 g of water to obtain a mixed aqueous solution (8).

水酸化ナトリウム225.92gおよび水ガラス(SiO2濃度:24.0重量%)3
6.67gを水2190gに溶解し、攪拌しながらこれに混合水溶液(8)を添加してヒドロゲルスラリーを調製し、ついで80℃にて2時間熟成した。
225.92 g of sodium hydroxide and water glass (SiO 2 concentration: 24.0 wt%) 3
6.67 g was dissolved in 2190 g of water, and the mixed aqueous solution (8) was added to this while stirring to prepare a hydrogel slurry, and then aged at 80 ° C. for 2 hours.

熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、350℃で1時間、大気中にて焼成を行い、複合酸化物粉体(8)を得た。ついで、複合酸化物粉体(8)を 錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し
、粒度を20〜42メッシュに調整してメタネーション触媒用担体(8)を調製した。
The aged hydrogel was filtered, washed with sufficient warm water, dried at 120 ° C. for one day and night, and baked in the atmosphere at 350 ° C. for 1 hour to obtain a composite oxide powder (8). Next, the complex oxide powder (8) is filled in a tablet molding machine, pressure-molded at 50 kg / cm 2 , then pulverized, and the particle size is adjusted to 20 to 42 mesh to support the methanation catalyst carrier (8). Was prepared.

硝酸ニッケル・6水和物をニッケル濃度10.0重量%、硝酸コバルト・6水和物をコバルト濃度3.3重量%となるようにそれぞれ溶解し含浸溶液(8)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(8)46.00gに含浸溶液(
8)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(8)を調製した。
Nickel nitrate hexahydrate was dissolved in a nickel concentration of 10.0% by weight and cobalt nitrate hexahydrate was dissolved in a cobalt concentration of 3.3% by weight to prepare an impregnation solution (8). Next, 46.00 g of the methanation catalyst support (8) prepared in Example 1 was added to the impregnating solution (
8) 30.00 g was absorbed. Subsequently, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the atmosphere to prepare a methanation catalyst (8).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[実施例9]
メタネーション用触媒(9)の調製
硝酸セリウム・6水和物128.01g、硝酸アルミナ・9水和物38.98g、四塩化チタン溶液(TiO2濃度:28.10重量%)93.95g、硝酸ニッケル・6水和
物7.79gおよび硝酸コバルト・6水和物7.76gを水2380gに溶解させ、混合水溶液(9)を得た。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Example 9]
Preparation of catalyst for methanation (9) 128.01 g of cerium nitrate hexahydrate, 38.98 g of alumina nitrate nonahydrate, 93.95 g of titanium tetrachloride solution (TiO 2 concentration: 28.10 wt%), Nickel nitrate hexahydrate 7.79 g and cobalt nitrate hexahydrate 7.76 g were dissolved in 2380 g of water to obtain a mixed aqueous solution (9).

水酸化ナトリウム154.40gを水2220gに溶解し、攪拌しながらこれに混合水溶液(9)を添加してヒドロゲルスラリーを調製し、ついで80℃にて2時間熟成した。
熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、350℃で1時間、大気中にて焼成を行い、複合酸化物粉体(9)を得た。
154.40 g of sodium hydroxide was dissolved in 2220 g of water, and a mixed aqueous solution (9) was added thereto while stirring to prepare a hydrogel slurry, and then aged at 80 ° C. for 2 hours.
The aged hydrogel was filtered, washed with sufficient warm water, dried overnight at 120 ° C., and baked in the air at 350 ° C. for 1 hour to obtain a composite oxide powder (9).

ついで、複合酸化物粉体(9)を 錠剤成型器に充填し、50Kg/cm2で加圧成型し
、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒(9)を調製した。硝酸ニッケル・6水和物をニッケル濃度10.0重量%、硝酸コバルト・6水和物をコバルト濃度3.3重量%となるようにそれぞれ溶解し含浸溶液(9)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(9)46.00gに含浸溶
液(9)30.00gを吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(9)を調製した。
Next, the complex oxide powder (9) is filled into a tablet molding machine, pressure-molded at 50 kg / cm 2 , then pulverized, and the particle size is adjusted to 20 to 42 mesh to prepare the methanation catalyst (9). did. Nickel nitrate hexahydrate was dissolved to a nickel concentration of 10.0% by weight and cobalt nitrate hexahydrate was dissolved to a cobalt concentration of 3.3% by weight to prepare an impregnation solution (9). Subsequently, 30.00 g of the impregnation solution (9) was absorbed in 46.00 g of the methanation catalyst support (9) prepared in Example 1. Then, after drying at 120 ° C. for 6 hours, the mixture was calcined at 450 ° C. for 4 hours in the air to prepare a methanation catalyst (9).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[比較例1]
メタネーション用触媒(R1)の調製
硝酸ニッケル・6水和物をニッケル濃度11.7重量%、硝酸コバルト・6水和物をコバルト濃度7.5重量%となるようにそれぞれ溶解し含浸溶液(R1)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(1)36.50gに含浸溶液
(R1)60.00gを吸収−乾燥を繰返し吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(R1)を調製した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Comparative Example 1]
Preparation of catalyst for methanation (R1) Nickel nitrate hexahydrate was dissolved to a nickel concentration of 11.7% by weight and cobalt nitrate hexahydrate was dissolved to a cobalt concentration of 7.5% by weight. R1) was prepared. Next, 60.00 g of the impregnation solution (R1) was absorbed and absorbed repeatedly in 36.50 g of the methanation catalyst support (1) prepared in Example 1. Next, after drying treatment at 120 ° C. for 6 hours, it was calcined in the atmosphere at 450 ° C. for 4 hours to prepare a methanation catalyst (R1).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[比較例2]
メタネーション用触媒(R2)の調製
硝酸ニッケル・6水和物をニッケル濃度5.0重量%、硝酸コバルト・6水和物をコバルト濃度2.5重量%となるようにそれぞれ溶解し含浸溶液(R2)を調製した。ついで、実施例1において調製したメタネーション触媒用担体(1)47.75gに含浸溶液(R
2)30.00gを吸収−乾燥を繰返し吸収させた。ついで、120℃にて6h乾燥処理した後、450℃にて4h大気中で焼成し、メタネーション触媒(R2)を調製した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Comparative Example 2]
Preparation of catalyst for methanation (R2) Nickel nitrate hexahydrate was dissolved at a nickel concentration of 5.0% by weight and cobalt nitrate hexahydrate was dissolved at a cobalt concentration of 2.5% by weight, respectively. An impregnation solution (R2) was prepared. Next, 47.75 g of the methanation catalyst support (1) prepared in Example 1 was added to the impregnation solution (R
2) Absorption-dry was absorbed repeatedly for 30.00 g. Next, after drying treatment at 120 ° C. for 6 hours, it was calcined at 450 ° C. for 4 hours in the air to prepare a methanation catalyst (R2).

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
[比較例3]
メタネーション用触媒(R3)の調製
硝酸ニッケル・6水和物をニッケル濃度22.0重量%となるようにそれぞれ溶解し含浸溶液(R3)を調製した。ついで、実施例1において調製したメタネーション触媒用担
体(1)43.30gに含浸溶液(R3)30.00gを吸収−乾燥を繰返し吸収させた。ついで、120℃にて6h乾燥処理した後、600℃にて4h大気中で焼成し、メタネーション触媒(R3)を調製した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.
[Comparative Example 3]
Preparation of catalyst for methanation (R3) Nickel nitrate hexahydrate was dissolved to a nickel concentration of 22.0% by weight to prepare an impregnation solution (R3). Subsequently, 30.00 g of the impregnation solution (R3) was absorbed and absorbed repeatedly in 43.30 g of the methanation catalyst support (1) prepared in Example 1. Subsequently, after drying at 120 ° C. for 6 hours, the mixture was calcined at 600 ° C. for 4 hours in the atmosphere to prepare a methanation catalyst (R3).

活性試験
実施例1において還元温度を600℃とした以外は同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表に示した。
Activity Test An activity test was conducted in the same manner as in Example 1 except that the reduction temperature was 600 ° C., and the CO concentration, CO 2 concentration and CH 4 concentration were shown in the table.

Figure 2008155147
Figure 2008155147

Claims (7)

Niおよび/またはCo金属が金属酸化物担体に担持されてなり、Niおよび/またはCo金属の平均粒子径が0.5〜3nmの範囲にあり、Niおよび/またはCo金属の担持量が触媒中に5.0〜15重量%の範囲にあることを特徴とする一酸化炭素メタネーション用触媒。   Ni and / or Co metal is supported on a metal oxide support, the average particle size of Ni and / or Co metal is in the range of 0.5 to 3 nm, and the supported amount of Ni and / or Co metal is in the catalyst. The catalyst for carbon monoxide methanation characterized by being in the range of 5.0 to 15% by weight. さらに、4B族、6A族および7A族から選ばれる1種以上の金属を含み、該金属の含有量が0.1〜5重量%の範囲にあることを特徴とする請求項1に記載の一酸化炭素メタネーション用触媒。   Furthermore, it contains 1 or more types of metals chosen from 4B group, 6A group, and 7A group, The content of this metal exists in the range of 0.1-5 weight%, The one of Claim 1 characterized by the above-mentioned. Catalyst for carbon oxide methanation. 前記4B族の金属がSnであり、6A族の金属がMo、Wであり、7A族の金属がReで
あり、これら金属の含有量がNiおよび/またはCo金属の1〜5重量%の範囲にあることを特徴とする請求項1または2に記載の一酸化炭素メタネーション用触媒。
The group 4B metal is Sn, the group 6A metal is Mo, W, the group 7A metal is Re, and the content of these metals is in the range of 1 to 5% by weight of the Ni and / or Co metal. The catalyst for carbon monoxide methanation according to claim 1 or 2, wherein
前記金属酸化物担体がLa23、CeO2、ZrO2、Al23、TiO2、MgO、SiO2
ら選ばれる1種以上の酸化物、または複合酸化物であることを特徴とする請求項1〜3のいずれかに記載の一酸化炭素メタネーション用触媒。
The metal oxide support is one or more oxides selected from La 2 O 3 , CeO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , MgO, and SiO 2 , or a composite oxide. The catalyst for carbon monoxide methanation in any one of Claims 1-3.
CO吸着量が6〜25cm3/g・Catの範囲にあることを特徴とする請求項1〜4のいずれかに記載の一酸化炭素メタネーション用触媒。 The catalyst for carbon monoxide methanation according to any one of claims 1 to 4, wherein the CO adsorption amount is in the range of 6 to 25 cm 3 / g · Cat. 請求項1〜5のいずれかに記載のメタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させることを特徴とする一酸化炭素のメタネーション方法。   A methanation method for carbon monoxide, comprising contacting the methanation catalyst according to any one of claims 1 to 5 with a hydrogen gas containing carbon monoxide gas. 前記、接触させる際の温度(反応温度)が130〜200℃の範囲にあることを特徴とする請求項6に記載の一酸化炭素のメタネーション方法。   7. The carbon monoxide methanation method according to claim 6, wherein the temperature (reaction temperature) at the time of contacting is in the range of 130 to 200 ° C.
JP2006347908A 2006-12-25 2006-12-25 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst Active JP4864688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347908A JP4864688B2 (en) 2006-12-25 2006-12-25 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347908A JP4864688B2 (en) 2006-12-25 2006-12-25 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Publications (2)

Publication Number Publication Date
JP2008155147A true JP2008155147A (en) 2008-07-10
JP4864688B2 JP4864688B2 (en) 2012-02-01

Family

ID=39656651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347908A Active JP4864688B2 (en) 2006-12-25 2006-12-25 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Country Status (1)

Country Link
JP (1) JP4864688B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252988A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
US20090042998A1 (en) * 2007-08-03 2009-02-12 Daiki Ataka Engineering Co., Ltd. Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP2011206770A (en) * 2011-06-02 2011-10-20 Daiki Ataka Engineering Co Ltd Method of manufacturing methanation catalyst of carbon oxide, and methanation method using the catalyst
WO2014157055A1 (en) * 2013-03-25 2014-10-02 三井金属鉱業株式会社 Carbon monoxide methanation catalyst composition, and carbon monoxide methanation catalyst
CN104525205A (en) * 2014-12-18 2015-04-22 中国华能集团清洁能源技术研究院有限公司 Preparation method of polyhydroxy phenyl improved type methanation catalyst
KR20170130561A (en) * 2015-03-26 2017-11-28 바스프 에스이 Ruthenium-rhenium-based catalyst, and a method of selective methanation of carbon monoxide
US9975099B2 (en) 2016-03-16 2018-05-22 Kabushiki Kaisha Toshiba Fuel synthesis catalyst and fuel synthesis system
JP2019155227A (en) * 2018-03-08 2019-09-19 日立化成株式会社 Co2 methanation catalyst and carbon dioxide reduction method using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697541A (en) * 1979-12-29 1981-08-06 Ruhrchemie Ag Manufacture of catalyst converted into methane
JPS58193734A (en) * 1982-04-23 1983-11-11 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Nickel catalyst on alumina
JPS6236004A (en) * 1985-08-07 1987-02-17 Toyo C C I Kk Method for removing trace carbon oxide in hydrogen-rich gas
JPH11179204A (en) * 1997-12-19 1999-07-06 Cosmo Sogo Kenkyusho Kk Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2000256003A (en) * 1999-03-08 2000-09-19 Osaka Gas Co Ltd Method for removing co in hydrogen enriched gas
JP2004097859A (en) * 2002-09-04 2004-04-02 Tokyo Inst Of Technol Catalyst and method for eliminating carbon monoxide
JP2006239551A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Co methanizing catalyst, co removing catalyst device and fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697541A (en) * 1979-12-29 1981-08-06 Ruhrchemie Ag Manufacture of catalyst converted into methane
JPS58193734A (en) * 1982-04-23 1983-11-11 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Nickel catalyst on alumina
JPS6236004A (en) * 1985-08-07 1987-02-17 Toyo C C I Kk Method for removing trace carbon oxide in hydrogen-rich gas
JPH11179204A (en) * 1997-12-19 1999-07-06 Cosmo Sogo Kenkyusho Kk Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2000256003A (en) * 1999-03-08 2000-09-19 Osaka Gas Co Ltd Method for removing co in hydrogen enriched gas
JP2004097859A (en) * 2002-09-04 2004-04-02 Tokyo Inst Of Technol Catalyst and method for eliminating carbon monoxide
JP2006239551A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Co methanizing catalyst, co removing catalyst device and fuel cell system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252988A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
US9617196B2 (en) * 2007-08-03 2017-04-11 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US20090042998A1 (en) * 2007-08-03 2009-02-12 Daiki Ataka Engineering Co., Ltd. Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US9732010B2 (en) 2007-08-03 2017-08-15 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US9731278B2 (en) 2007-08-03 2017-08-15 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP2011206770A (en) * 2011-06-02 2011-10-20 Daiki Ataka Engineering Co Ltd Method of manufacturing methanation catalyst of carbon oxide, and methanation method using the catalyst
WO2014157055A1 (en) * 2013-03-25 2014-10-02 三井金属鉱業株式会社 Carbon monoxide methanation catalyst composition, and carbon monoxide methanation catalyst
JPWO2014157055A1 (en) * 2013-03-25 2017-02-16 三井金属鉱業株式会社 Carbon monoxide methanation catalyst composition and carbon monoxide methanation catalyst
CN104525205A (en) * 2014-12-18 2015-04-22 中国华能集团清洁能源技术研究院有限公司 Preparation method of polyhydroxy phenyl improved type methanation catalyst
KR20170130561A (en) * 2015-03-26 2017-11-28 바스프 에스이 Ruthenium-rhenium-based catalyst, and a method of selective methanation of carbon monoxide
JP2018514372A (en) * 2015-03-26 2018-06-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Ruthenium-rhenium catalyst for selective methanation of carbon monoxide
US10780422B2 (en) 2015-03-26 2020-09-22 Basf Se Rhenium-doped catalyst and a method for the selective methanation of carbon monoxide
KR102611732B1 (en) * 2015-03-26 2023-12-07 헐트버그 케미스트리 앤드 엔지니어링 에이비 Ruthenium-rhenium-based catalyst and method for selective methanation of carbon monoxide
US9975099B2 (en) 2016-03-16 2018-05-22 Kabushiki Kaisha Toshiba Fuel synthesis catalyst and fuel synthesis system
JP2019155227A (en) * 2018-03-08 2019-09-19 日立化成株式会社 Co2 methanation catalyst and carbon dioxide reduction method using the same

Also Published As

Publication number Publication date
JP4864688B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4864688B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP5096712B2 (en) Carbon monoxide methanation method
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP4689508B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP4772659B2 (en) Catalyst for removing carbon monoxide and method for producing the same
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP5126762B2 (en) Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst
JP4994686B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP4912706B2 (en) Carbon monoxide methanation method
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
JP4120862B2 (en) Catalyst for CO shift reaction
JP4857137B2 (en) Method for producing carbon monoxide removal catalyst
JP5322733B2 (en) Method for producing catalyst for selective oxidation reaction of carbon monoxide
JP2000317307A (en) Catalyst for decomposing nitrous oxide and its using method
EP2452916B1 (en) Method for oxidizing CO using a gold containing catalyst
JP2006043608A (en) Shift catalyst and method for producing it
JP2002273222A (en) Catalyst for removing co
JP2005334751A (en) Carbon monoxide selective oxidation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4864688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250