JP2004097859A - Catalyst and method for eliminating carbon monoxide - Google Patents

Catalyst and method for eliminating carbon monoxide Download PDF

Info

Publication number
JP2004097859A
JP2004097859A JP2002259264A JP2002259264A JP2004097859A JP 2004097859 A JP2004097859 A JP 2004097859A JP 2002259264 A JP2002259264 A JP 2002259264A JP 2002259264 A JP2002259264 A JP 2002259264A JP 2004097859 A JP2004097859 A JP 2004097859A
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
hydrogen
reaction
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002259264A
Other languages
Japanese (ja)
Inventor
Kiyoshi Otsuka
大塚 潔
Takeshi Takenaka
竹中 壮
Katsuomi Takehira
竹平 勝臣
Tetsuya Shishido
宍戸 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Industrial Promotion Organization
Tokyo Institute of Technology NUC
Original Assignee
Hiroshima Industrial Promotion Organization
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Industrial Promotion Organization, Tokyo Institute of Technology NUC filed Critical Hiroshima Industrial Promotion Organization
Priority to JP2002259264A priority Critical patent/JP2004097859A/en
Publication of JP2004097859A publication Critical patent/JP2004097859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst and method for efficiently eliminating a minute amount of carbon monoxide contained in hydrogen. <P>SOLUTION: In the method, carbon monoxide contained in a hydrogen gas is eliminated by reacting it with the hydrogen gas in the presence of a catalyst comprising at least one metal selected from ruthenium, nickel, and cobalt carried by an inorganic carrier. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一酸化炭素を除去するための触媒及び方法に関するものである。
【0002】
【従来の技術】
近年、化石燃料の燃焼により大気中に二酸化炭素(CO)が蓄積し、地球温暖化が深刻な社会問題となっている。このため化石燃料に代わる炭酸ガスを排出しないクリーンなエネルギー源として水素が注目されている。この水素を燃料とする水素−酸素燃料電池を使用すれば、二酸化炭素を排出することなく、内燃機関に比べ効率よくエネルギーを取り出すことができる。さらに、水素−酸素燃料電池は低温で作動するため、内燃機関と異なり窒素酸化物を発生しない。よって水素−酸素燃料電池は近い将来での実用化が望まれている。
一方、燃料電池の燃料である水素は、天然ガスの水蒸気改質、部分酸化、およびそれに続くシフト反応により合成されているため、ここで得られる水素中には、燃料電池電極被毒物質である一酸化炭素(CO)が少量含まれる。そのため水素中の不純物COの深度除去(CO<20〜100ppm)が求められ、CO深度除去法の開発が活発に行われている。現在開発中のCO除去法のなかで最も有望視されているのは、COを酸素(空気)によりCOに酸化し除去する方法である。この反応には、Au、Pt、Pdに代表される貴金属触媒が有効であることが報告されており、200℃程度でCOの酸化除去が可能である。しかし、この手法ではCOの酸化と同時に水素の酸化も進行し、水素が無駄に消費される点が問題である。さらに、COを完全に除去するには比較的高温を必要とするが、このような反応条件下では水素の酸化が顕著となる。また、この反応ではCOと水素の酸化に対する反応速度は酸素分圧に大きく依存するため、反応系内に加える酸素量の制御が難しい。このように最も有望視されるCOの酸化除去法も解決すべき課題が多い。
【0003】
【発明が解決しようとする課題】
本発明は、水素中に含まれる微量の一酸化炭素を効率的に除去するための触媒及び方法を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
【0005】
即ち、本発明によれば、以下に示す一酸化炭素を除去するための触媒及び方法が提供される。
【0006】
(1)水素ガス中に含まれる一酸化炭素を該水素ガスと反応させて除去するための触媒であって、ルテニウム、ニッケル及びコバルトの中から選ばれる少なくとも1種の金属を無機担体に担持させたことを特徴とする一酸化炭素除去用触媒。
(2)該無機担体が、金属酸化物からなることを特徴とする前記(1)に記載の一酸化炭素除去用触媒。
(3)該無機担体が、酸化チタン、酸化ジルコニウム、酸化アルミニウム及びゼオライトの中から選ばれる少なくとも1種からなることを特徴とする前記(1)に記載の一酸化炭素除去触媒。
(4)水素ガス中に含まれる一酸化炭素を触媒の存在下で該水素ガスと反応させて除去する方法であって、該触媒として前記(1)〜(3)のいずれかに記載の触媒を用いることを特徴とする一酸化炭素の除去方法。
【0007】
【発明の実施の形態】
本発明の触媒は、ルテニウム、ニッケル及びコバルトの中から選ばれる少なくとも1種を無機担体に担持させてなる担持触媒である。この場合、その無機担体としては、従来公知の各種のものを用いることができる。この無機担体には、各種金属酸化物の他、各種ケイ酸塩等が包含される。一般的には、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)及びゼオライトの中から選ばれる少なくとも1種を用いるのが好ましい。また、ゼオライトとしては、ZSM−5(水素型、ナトリウム型等)や、FSM−16等が好ましく用いられる。
【0008】
本発明の触媒において、ルテニウムを含む担持触媒の場合、その担体としては、酸化チタン、水素型ZSM−5、酸化ジルコニウム及び酸化アルミニウムの使用が好ましい。ルテニウムを含む担持触媒の場合、そのルテニウムの含有量(担持量)は、全触媒に対して、2〜20重量%、好ましくは5〜15重量%である。
【0009】
本発明の触媒において、ニッケルやコバルトを含む担持触媒の場合、その担持体としては、前記ルテニウムの場合と同様に、酸化チタン、水素型ZSM−5、酸化ジルコニウム及び酸化アルミニウムの使用が好ましい。ニッケルを含む担持触媒の場合、そのニッケルの含有量は、全触媒に対して、2〜25重量%、好ましくは5〜20重量%である。コバルトを含む担持触媒の場合、そのコバルトの含有量は、全触媒に対して、2〜30重量%、好ましくは5〜20重量%である。
【0010】
本発明の担持触媒において、その担体上の触媒金属の形態は、通常、金属の形態である。また、その担体上の触媒金属は、超微粒子状態であることが好ましく、その粒径は、80nm以下、好ましくは40nm以下である。
【0011】
本発明の触媒は、粉末状である他、顆粒状、円柱状、筒体状、ハニカム状等の各種の形状であることができる。
【0012】
本発明の担持触媒は、従来公知の各種の方法で調製することができる。このような方法には、例えば、含浸法、共沈法、尿素均一沈殿法等が包含される。
【0013】
本発明の触媒を用いて水素ガス中に含まれる一酸化炭素をその水素ガスと反応させて水素化物(メタンやエタン)として除去するには、その水素ガスを本発明の触媒と接触させればよい。この場合、その接触温度(反応温度)は室温〜600℃、好ましくは200〜400℃である。その水素ガスと触媒との接触方式は、通常、固定床方式であるが、流動床方式等の他の方式であってもよく、特に制約されない。
【0014】
水素ガス中に含まれる一酸化炭素の割合は、0.1〜3モル%、特に、1.0〜2.0モル%程度である。
【0015】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0016】
実施例1
(触媒の調製)
各種触媒金属を酸化ケイ素(シリカ)に担持量10重量%で担持させた担持触媒を調製した。
この場合、その触媒調製法としては、含浸法を採用し、触媒金属塩を含む水溶液を80℃でシリカに含浸させ、乾燥し、空気中で焼成することによって触媒を調製した。焼成温度としては、ルテニウム触媒の場合は300℃を用い、他の触媒の場合は600℃を用いた。各触媒は、反応処理前に、500℃での水素還元処理を施した。
【0017】
(CO除去反応)
前記で得た各触媒0.040gを石英製の反応管(内径:8.0mm、長さ:600mm)に充填して触媒管を作製した。
この触媒管に対して、HとCOとHeからなる混合ガスを、流量:61ml・min 、CO分圧[P(CO)]:0.83kPa、水素分圧[P(H)]:33.4kPa、ヘリウム分圧[P(He)]:66.9kPaの条件で流通させた。
【0018】
(反応結果)
前記反応において、いずれの触媒の場合でも、水素とCOとの反応によるメタン(CH)とエタン(C)の生成が確認されたが、その触媒活性は、触媒金属の種類によって変化した。
前記反応におけるCO転化率を触媒金属の種類との関係を次表に示す。
【0019】
【表1】

Figure 2004097859
【0020】
前記表1に示した結果から、触媒金属としては、Ru、Ni及びCoがすぐれた活性を示すことがわかる。
【0021】
実施例2
(触媒の調製)
水0.5リットルに対し、ルテニウムの水溶性塩(RuCl・nHO)0.00247モルを溶かした水溶液中に、金属酸化物、および無機担体4.75gを80℃で300分間浸漬した後、80℃で乾燥し、空気中で300℃で300分間焼成することにより、ルテニウム担持量が5重量%のルテニウム担持触媒を調製した。
【0022】
(COの除去反応)
前記触媒を石英製の反応管(内径:8.0mm、長さ:600mm)に0.040g充填して触媒管を作製した。
次に、この触媒管に対して、水素ガスを500℃で流通させて該触媒金属を還元処理した。
次いで、この触媒管に、HとCOとHeからなる混合ガスを、200℃又は250℃の反応温度で、ガス流量:61ml・min 、P(CO):0.83kPa、P(H):33.4kPa、P(He):66.9kPaの条件で流通させた。
その反応結果を担持触媒の担体との関連で表2に示す。
【0023】
【表2】
Figure 2004097859
【0024】
なお、使用した担体の内容は以下の通りである。
(1)酸化チタン(TiO
触媒学会参照触媒「JRC−TIO4」
(2)酸化ジルコニウム(ZrO
触媒学会参照触媒「JRC−ZRO−1」
(3)酸化ケイ素(SiO
CABOT CORPORATION社製の商品名「CAB−O−SIL AMORPHOUS FUMED SILICA Grade M−5」
(4)水素型ZSM−5(H−ZSM−5)
触媒学会参照触媒「JRC−Z5−1000H」
(5)ナトリウム型ZSM−5(Na−ZSM−5)
触媒学会参照触媒「JRC−Z5−25NA」
(6)FSM−16
当研究室にて調製
【0025】
実施例3
(触媒の調製)
実施例2において、ルテニウム担持量を種々変化させた以外は同様にして、ルテニウムをTiOに担持させた触媒(Ru/TiO)を調製した。
【0026】
(COの除去反応)
前記触媒を石英製の反応管(内径8.0mm、長さ:600mm)に0.040g充填して触媒管を作製した。
次に、この触媒管に対して、水素ガスを500℃で流通させて該触媒金属を還元処理した。
次いで、この触媒管に、HとCOとHeからなる混合ガスを、200℃の反応温度で、ガス流量:61ml・min 、P(CO):0.83kPa、P(H):33.4kPa、P(He):66.9kPaの条件で流通させた。
その反応結果を担持触媒のルテニウム担持量との関連で表3に示す。
【0027】
【表3】
Figure 2004097859
【0028】
実施例4
(触媒の調製)
水0.5リットルに対し、ニッケルの水溶性塩(Ni(NO・6HO)0.00426モルを溶かした水溶液中に、金属酸化物、および無機担体4.75gを80℃で300分間浸漬した後、80℃で乾燥し、空気中で600℃で300分間焼成することにより、ニッケル担持量が5重量%のニッケル担持触媒を調製した。
【0029】
(COの除去反応)
前記触媒を石英製の反応管(内径:8.0mm、長さ:600mm)に0.120g充填して触媒管を作製した。
次に、この触媒管に対して、水素ガスを500℃で流通させて該触媒金属を還元処理した。
次いで、この触媒管に、HとCOとHeからなる混合ガスを、200℃又は250℃の反応温度で、ガス流量:61ml・min 、P(CO):0.83kPa、P(H):33.4kPa、P(He):66.9kPaの条件で流通させた。
その反応結果を担持触媒の担体との関連で表4に示す。
【0030】
【表4】
Figure 2004097859
【0031】
実施例5
(触媒の調製)
実施例2において、ニッケル担持量を種々変化させた以外は同様にして、ニッケルZrOに担持させた触媒(Ni/ZrO)を調製した。
【0032】
(COの除去反応)
前記触媒を石英製の反応管(内径:8.0mm、長さ:600mm)に0.040g充填して触媒管を作製した。
次に、この触媒管に対して、水素ガスを500℃で流通させて該触媒金属を還元処理した。
次いで、この触媒管に、HとCOとHeからなる混合ガスを、200℃の反応温度で、ガス流量:61ml・min 、P(CO):0.83kPa、P(H):33.4kPa、P(He):66.9kPaの条件で流通させた。
その反応結果を担持触媒のニッケル担持量との関連で表5に示す。
【0033】
【表5】
Figure 2004097859
【0034】
実施例6
(触媒の調製)
水0.5リットルに対し、コバルトの水溶性塩(Co(NO・6HO)0.00424モルを溶かした水溶液中に、金属酸化物、および無機担体4.75gを80℃で300分間浸漬した後、80℃で乾燥し、空気中で600℃で300分間焼成することにより、コバルト担持量が5重量%のコバルト担持触媒を調製した。
【0035】
(COの除去反応)
前記触媒を石英製の反応管(内径:8.0mm、長さ:600mm)に0.120g充填して触媒管を作製した。
次に、この触媒管に対して、水素ガスを500℃で流通させて該触媒金属を還元処理した。
次いで、この触媒管に、HとCOとHeからなる混合ガスを、200℃又は250℃の反応温度で、ガス流量:61ml・min 、P(CO):0.83kPa、P(H):33.4kPa、P(He):66.9kPaの条件で流通させた。
その反応結果を担持触媒の担体との関連で表6に示す。
【0036】
【表6】
Figure 2004097859
【0037】
【発明の効果】
本発明によれば、水素ガス中に含まれる微量の一酸化炭素を、比較的低い反応温度でしかも高い除去率で水素化除去することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst and a method for removing carbon monoxide.
[0002]
[Prior art]
In recent years, carbon dioxide (CO 2 ) has accumulated in the atmosphere due to the burning of fossil fuels, and global warming has become a serious social problem. For this reason, hydrogen has attracted attention as a clean energy source that does not emit carbon dioxide gas instead of fossil fuel. If a hydrogen-oxygen fuel cell using hydrogen as a fuel is used, energy can be extracted more efficiently than an internal combustion engine without discharging carbon dioxide. Further, since a hydrogen-oxygen fuel cell operates at a low temperature, it does not generate nitrogen oxides unlike an internal combustion engine. Therefore, hydrogen-oxygen fuel cells are expected to be put to practical use in the near future.
On the other hand, hydrogen, which is the fuel of the fuel cell, is synthesized by steam reforming of natural gas, partial oxidation, and subsequent shift reaction. Contains small amounts of carbon monoxide (CO). Therefore, it is required to remove impurities CO in hydrogen in depth (CO <20 to 100 ppm), and development of a CO depth removal method is being actively conducted. The most promising of the CO removal methods currently under development is a method of removing CO by oxidizing CO into CO 2 with oxygen (air). It has been reported that a noble metal catalyst represented by Au, Pt, and Pd is effective for this reaction, and CO can be oxidized and removed at about 200 ° C. However, this method has a problem in that the oxidation of hydrogen proceeds simultaneously with the oxidation of CO, and the hydrogen is wasted. Further, relatively high temperatures are required to completely remove CO, but under such reaction conditions, the oxidation of hydrogen becomes significant. In addition, in this reaction, the reaction rate for the oxidation of CO and hydrogen greatly depends on the oxygen partial pressure, so that it is difficult to control the amount of oxygen added to the reaction system. Thus, the most promising method for removing CO by oxidation has many problems to be solved.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a catalyst and a method for efficiently removing a trace amount of carbon monoxide contained in hydrogen.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
[0005]
That is, according to the present invention, there are provided the following catalyst and method for removing carbon monoxide.
[0006]
(1) A catalyst for removing carbon monoxide contained in hydrogen gas by reacting with the hydrogen gas, wherein at least one metal selected from ruthenium, nickel and cobalt is supported on an inorganic carrier. A catalyst for removing carbon monoxide.
(2) The catalyst for removing carbon monoxide according to the above (1), wherein the inorganic carrier comprises a metal oxide.
(3) The carbon monoxide removal catalyst according to the above (1), wherein the inorganic carrier comprises at least one selected from titanium oxide, zirconium oxide, aluminum oxide and zeolite.
(4) A method for removing carbon monoxide contained in hydrogen gas by reacting the same with hydrogen gas in the presence of a catalyst, wherein the catalyst according to any one of (1) to (3) above is used as the catalyst. A method for removing carbon monoxide, comprising:
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst of the present invention is a supported catalyst comprising at least one selected from ruthenium, nickel and cobalt supported on an inorganic carrier. In this case, various types of conventionally known inorganic carriers can be used. The inorganic carrier includes various silicates in addition to various metal oxides. Generally, it is preferable to use at least one selected from titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and zeolite. As the zeolite, ZSM-5 (hydrogen type, sodium type, etc.), FSM-16, or the like is preferably used.
[0008]
In the catalyst of the present invention, in the case of a supported catalyst containing ruthenium, it is preferable to use titanium oxide, hydrogen type ZSM-5, zirconium oxide, and aluminum oxide as the carrier. In the case of a supported catalyst containing ruthenium, the content (supported amount) of ruthenium is 2 to 20% by weight, preferably 5 to 15% by weight, based on the whole catalyst.
[0009]
In the catalyst of the present invention, in the case of a supported catalyst containing nickel or cobalt, it is preferable to use titanium oxide, hydrogen type ZSM-5, zirconium oxide, and aluminum oxide as the support, as in the case of ruthenium. In the case of a supported catalyst containing nickel, the content of nickel is 2 to 25% by weight, preferably 5 to 20% by weight, based on the whole catalyst. In the case of a supported catalyst containing cobalt, the cobalt content is 2 to 30% by weight, preferably 5 to 20% by weight, based on the total catalyst.
[0010]
In the supported catalyst of the present invention, the form of the catalytic metal on the support is usually in the form of a metal. The catalyst metal on the carrier is preferably in the form of ultrafine particles, and the particle size is 80 nm or less, preferably 40 nm or less.
[0011]
The catalyst of the present invention may be in various forms such as a granular form, a cylindrical form, a cylindrical form, a honeycomb form, etc., in addition to a powder form.
[0012]
The supported catalyst of the present invention can be prepared by various conventionally known methods. Such a method includes, for example, an impregnation method, a coprecipitation method, a urea uniform precipitation method, and the like.
[0013]
To react carbon monoxide contained in hydrogen gas with the hydrogen gas using the catalyst of the present invention and remove it as a hydride (methane or ethane), contact the hydrogen gas with the catalyst of the present invention. Good. In this case, the contact temperature (reaction temperature) is from room temperature to 600 ° C, preferably from 200 to 400 ° C. The contact system between the hydrogen gas and the catalyst is usually a fixed bed system, but may be another system such as a fluidized bed system and is not particularly limited.
[0014]
The ratio of carbon monoxide contained in the hydrogen gas is about 0.1 to 3 mol%, particularly about 1.0 to 2.0 mol%.
[0015]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0016]
Example 1
(Preparation of catalyst)
A supported catalyst in which various catalyst metals were supported on silicon oxide (silica) at a supported amount of 10% by weight was prepared.
In this case, an impregnation method was employed as a catalyst preparation method, in which silica was impregnated with an aqueous solution containing a catalyst metal salt at 80 ° C., dried, and calcined in air to prepare a catalyst. As the calcination temperature, 300 ° C. was used for a ruthenium catalyst, and 600 ° C. was used for other catalysts. Each catalyst was subjected to a hydrogen reduction treatment at 500 ° C. before the reaction treatment.
[0017]
(CO removal reaction)
0.040 g of each catalyst obtained above was filled in a reaction tube (inner diameter: 8.0 mm, length: 600 mm) made of quartz to prepare a catalyst tube.
For this catalyst tubes, the gas mixture consisting of H 2 and CO and He, flow rate: 61ml · min - 1, CO partial pressure [P (CO)]: 0.83kPa , hydrogen partial pressure [P (H 2) ]: 33.4 kPa, helium partial pressure [P (He)]: 66.9 kPa.
[0018]
(Reaction results)
In the above-mentioned reactions, it was confirmed that methane (CH 4 ) and ethane (C 2 H 6 ) were produced by the reaction between hydrogen and CO in any of the catalysts, but the catalytic activity varied depending on the type of the catalytic metal. did.
The following table shows the relationship between the CO conversion in the above reaction and the type of catalyst metal.
[0019]
[Table 1]
Figure 2004097859
[0020]
From the results shown in Table 1, it can be seen that Ru, Ni and Co exhibit excellent activity as catalyst metals.
[0021]
Example 2
(Preparation of catalyst)
4.75 g of a metal oxide and an inorganic carrier were immersed in an aqueous solution in which 0.00247 mol of a water-soluble ruthenium salt (RuCl 3 .nH 2 O) was dissolved in 0.5 liter of water at 80 ° C. for 300 minutes. Thereafter, the catalyst was dried at 80 ° C. and calcined in air at 300 ° C. for 300 minutes to prepare a ruthenium-supported catalyst having a ruthenium loading of 5% by weight.
[0022]
(Removal reaction of CO)
0.040 g of the catalyst was filled in a quartz reaction tube (inner diameter: 8.0 mm, length: 600 mm) to prepare a catalyst tube.
Next, hydrogen gas was passed through the catalyst tube at 500 ° C. to reduce the catalyst metal.
Next, a mixed gas composed of H 2 , CO and He was charged into the catalyst tube at a reaction temperature of 200 ° C. or 250 ° C., gas flow rate: 61 ml · min 1 , P (CO): 0.83 kPa, P (H 2 ): 33.4 kPa, P (He): 66.9 kPa.
The reaction results are shown in Table 2 in relation to the supported catalyst carrier.
[0023]
[Table 2]
Figure 2004097859
[0024]
The contents of the carrier used are as follows.
(1) Titanium oxide (TiO 2 )
Catalyst Reference Catalyst "JRC-TIO4"
(2) Zirconium oxide (ZrO 2 )
Catalyst Reference Catalyst "JRC-ZRO-1"
(3) Silicon oxide (SiO 2 )
Product name “CAB-O-SIL AMORPHOUS FUMED SILICA Grade M-5” manufactured by CABOT CORPORATION
(4) Hydrogen type ZSM-5 (H-ZSM-5)
Catalyst Reference Catalyst "JRC-Z5-1000H"
(5) Sodium type ZSM-5 (Na-ZSM-5)
Catalytic Society Reference Catalyst "JRC-Z5-25NA"
(6) FSM-16
Prepared in our laboratory
Example 3
(Preparation of catalyst)
In Example 2, except that was varied ruthenium supported amount in the same manner to prepare a catalyst supported ruthenium TiO 2 (Ru / TiO 2) .
[0026]
(Removal reaction of CO)
0.040 g of the above catalyst was filled in a quartz reaction tube (inner diameter 8.0 mm, length: 600 mm) to prepare a catalyst tube.
Next, hydrogen gas was passed through the catalyst tube at 500 ° C. to reduce the catalyst metal.
Then, the catalyst tube, a mixed gas of H 2 and CO and He, at a reaction temperature of 200 ° C., gas flow rate: 61ml · min - 1, P (CO): 0.83kPa, P (H 2): It was distributed under the conditions of 33.4 kPa, P (He): 66.9 kPa.
The reaction results are shown in Table 3 in relation to the supported amount of ruthenium in the supported catalyst.
[0027]
[Table 3]
Figure 2004097859
[0028]
Example 4
(Preparation of catalyst)
4.75 g of a metal oxide and an inorganic carrier were added at 80 ° C. to an aqueous solution in which 0.00426 mol of a water-soluble salt of nickel (Ni (NO 3 ) 2 .6H 2 O) was dissolved in 0.5 liter of water. After immersion for 300 minutes, it was dried at 80 ° C. and calcined in air at 600 ° C. for 300 minutes to prepare a nickel-supported catalyst having a nickel loading of 5% by weight.
[0029]
(Removal reaction of CO)
0.120 g of the catalyst was filled in a quartz reaction tube (inner diameter: 8.0 mm, length: 600 mm) to prepare a catalyst tube.
Next, hydrogen gas was passed through the catalyst tube at 500 ° C. to reduce the catalyst metal.
Next, a mixed gas composed of H 2 , CO and He was charged into the catalyst tube at a reaction temperature of 200 ° C. or 250 ° C., gas flow rate: 61 ml · min 1 , P (CO): 0.83 kPa, P (H 2 ): 33.4 kPa, P (He): 66.9 kPa.
The reaction results are shown in Table 4 in relation to the supported catalyst.
[0030]
[Table 4]
Figure 2004097859
[0031]
Example 5
(Preparation of catalyst)
A catalyst (Ni / ZrO 2 ) supported on nickel ZrO 2 was prepared in the same manner as in Example 2, except that the amount of nickel supported was variously changed.
[0032]
(Removal reaction of CO)
0.040 g of the catalyst was filled in a quartz reaction tube (inner diameter: 8.0 mm, length: 600 mm) to prepare a catalyst tube.
Next, hydrogen gas was passed through the catalyst tube at 500 ° C. to reduce the catalyst metal.
Then, the catalyst tube, a mixed gas of H 2 and CO and He, at a reaction temperature of 200 ° C., gas flow rate: 61ml · min - 1, P (CO): 0.83kPa, P (H 2): It was distributed under the conditions of 33.4 kPa, P (He): 66.9 kPa.
Table 5 shows the results of the reaction in relation to the amount of nickel supported on the supported catalyst.
[0033]
[Table 5]
Figure 2004097859
[0034]
Example 6
(Preparation of catalyst)
In an aqueous solution in which 0.00424 mol of a water-soluble salt of cobalt (Co (NO 3 ) 2 .6H 2 O) is dissolved in 0.5 liter of water, 4.75 g of a metal oxide and an inorganic carrier are added at 80 ° C. After immersion for 300 minutes, it was dried at 80 ° C. and calcined in air at 600 ° C. for 300 minutes to prepare a cobalt-supported catalyst having a cobalt loading of 5% by weight.
[0035]
(Removal reaction of CO)
0.120 g of the catalyst was filled in a quartz reaction tube (inner diameter: 8.0 mm, length: 600 mm) to prepare a catalyst tube.
Next, hydrogen gas was passed through the catalyst tube at 500 ° C. to reduce the catalyst metal.
Then, the catalyst tube, a mixed gas of H 2 and CO and He, at a reaction temperature of 200 ° C. or 250 ° C., gas flow rate: 61ml · min - 1, P (CO): 0.83kPa, P (H 2 ): 33.4 kPa, P (He): 66.9 kPa.
The results of the reaction are shown in Table 6 in relation to the supported catalyst.
[0036]
[Table 6]
Figure 2004097859
[0037]
【The invention's effect】
According to the present invention, a trace amount of carbon monoxide contained in hydrogen gas can be hydrogenated and removed at a relatively low reaction temperature and at a high removal rate.

Claims (4)

水素ガス中に含まれる一酸化炭素を該水素ガスと反応させて除去するための触媒であって、ルテニウム、ニッケル及びコバルトの中から選ばれる少なくとも1種の金属を無機担体に担持させたことを特徴とする一酸化炭素除去用触媒。A catalyst for reacting and removing carbon monoxide contained in hydrogen gas with the hydrogen gas, wherein at least one metal selected from ruthenium, nickel and cobalt is supported on an inorganic carrier. Characteristic catalyst for carbon monoxide removal. 該無機担体が、金属酸化物からなることを特徴とする請求項1に記載の一酸化炭素除去用触媒。2. The catalyst for removing carbon monoxide according to claim 1, wherein the inorganic carrier comprises a metal oxide. 該無機担体が、酸化チタン、酸化ジルコニウム、酸化アルミニウム及びゼオライトの中から選ばれる少なくとも1種からなることを特徴とする請求項1に記載の一酸化炭素除去触媒。The carbon monoxide removal catalyst according to claim 1, wherein the inorganic carrier comprises at least one selected from titanium oxide, zirconium oxide, aluminum oxide, and zeolite. 水素ガス中に含まれる一酸化炭素を触媒の存在下で該水素ガスと反応させて除去する方法であって、該触媒として請求項1〜3のいずれかに記載の触媒を用いることを特徴とする一酸化炭素の除去方法。A method for removing carbon monoxide contained in hydrogen gas by reacting it with the hydrogen gas in the presence of a catalyst, wherein the catalyst according to any one of claims 1 to 3 is used as the catalyst. To remove carbon monoxide.
JP2002259264A 2002-09-04 2002-09-04 Catalyst and method for eliminating carbon monoxide Pending JP2004097859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259264A JP2004097859A (en) 2002-09-04 2002-09-04 Catalyst and method for eliminating carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259264A JP2004097859A (en) 2002-09-04 2002-09-04 Catalyst and method for eliminating carbon monoxide

Publications (1)

Publication Number Publication Date
JP2004097859A true JP2004097859A (en) 2004-04-02

Family

ID=32260348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259264A Pending JP2004097859A (en) 2002-09-04 2002-09-04 Catalyst and method for eliminating carbon monoxide

Country Status (1)

Country Link
JP (1) JP2004097859A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354882B2 (en) 2004-04-01 2008-04-08 Aisin Seiki Kabushiki Kaisha Carbon monoxide removing catalyst and production process for the same as well as carbon monoxide removing apparatus
JP2008155147A (en) * 2006-12-25 2008-07-10 Catalysts & Chem Ind Co Ltd Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
US7560496B2 (en) 2005-01-24 2009-07-14 Basf Aktiengesellschaft Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
CN114302765A (en) * 2019-07-30 2022-04-08 科勒研究有限公司 Method for removing carbon monoxide and/or gaseous sulfur compounds from hydrogen and/or aliphatic hydrocarbons

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354882B2 (en) 2004-04-01 2008-04-08 Aisin Seiki Kabushiki Kaisha Carbon monoxide removing catalyst and production process for the same as well as carbon monoxide removing apparatus
US7560496B2 (en) 2005-01-24 2009-07-14 Basf Aktiengesellschaft Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
JP2008155147A (en) * 2006-12-25 2008-07-10 Catalysts & Chem Ind Co Ltd Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
CN114302765A (en) * 2019-07-30 2022-04-08 科勒研究有限公司 Method for removing carbon monoxide and/or gaseous sulfur compounds from hydrogen and/or aliphatic hydrocarbons
CN114302765B (en) * 2019-07-30 2024-06-11 科勒研究有限公司 Process for removing carbon monoxide and/or gaseous sulphur compounds from hydrogen and/or aliphatic hydrocarbons

Similar Documents

Publication Publication Date Title
US9139433B2 (en) Gold catalysts for co oxidation and water gas shift reactions
JP2013520317A5 (en)
JP5096712B2 (en) Carbon monoxide methanation method
TWI294413B (en) Method for converting co and hydrogen into methane and water
WO2005094988A1 (en) Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
JP2007252988A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2012245438A (en) Catalyst for decomposition of sulfur trioxide and method of generating hydrogen
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus
CN108367278B (en) The method and apparatus strengthened for chemical technology
JP2004097859A (en) Catalyst and method for eliminating carbon monoxide
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP4087621B2 (en) Catalyst for removing carbon monoxide in hydrogen gas
JP4656361B2 (en) Diesel exhaust gas purification device and exhaust gas purification method
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2004244231A (en) Method for lowering carbon monoxide concentration
JP2005034682A (en) Co modification catalyst and its production method
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP2002121007A (en) Hydrogen generating device
JP3622211B2 (en) Methane oxidation method
JP2001149781A (en) Catalyst for selectively oxidizing gaseous carbon monoxide in hydrogen-rich gas and method for removing carbon monoxide using the same
JP4120332B2 (en) Catalyst for selective oxidation of carbon monoxide and oxidation method
TWI222896B (en) Method for removing carbon monoxide from a hydrogen-rich gas mixture by selective oxidation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040521

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715