JP2008161742A - Catalyst for removing carbon monoxide in hydrogen gas - Google Patents

Catalyst for removing carbon monoxide in hydrogen gas Download PDF

Info

Publication number
JP2008161742A
JP2008161742A JP2006350914A JP2006350914A JP2008161742A JP 2008161742 A JP2008161742 A JP 2008161742A JP 2006350914 A JP2006350914 A JP 2006350914A JP 2006350914 A JP2006350914 A JP 2006350914A JP 2008161742 A JP2008161742 A JP 2008161742A
Authority
JP
Japan
Prior art keywords
catalyst
molybdenum
platinum
carbon monoxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006350914A
Other languages
Japanese (ja)
Inventor
Masatoshi Yoshimura
昌寿 吉村
Masashi Endo
昌志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2006350914A priority Critical patent/JP2008161742A/en
Priority to TW096143837A priority patent/TW200838606A/en
Priority to KR1020070137686A priority patent/KR20080061308A/en
Publication of JP2008161742A publication Critical patent/JP2008161742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-activity catalyst which carries a low content noble metal and is capable of efficiently decreasing the concentration of carbon monoxide in hydrogen gas in a water gas shift reaction. <P>SOLUTION: The catalyst for removing carbon monoxide in hydrogen gas is manufactured by subjecting a base catalyst, which is obtained by depositing platinum and molybdenum on a carrier consisting of a metal oxide, to reduction treatment with hydrogen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水性ガスシフト反応に用いられる触媒であって、改質ガス等の水素ガス中に含まれる一酸化炭素(CO)を二酸化炭素(CO)に転化させることにより除去する際に用いる触媒に関する。 The present invention relates to a catalyst used in a water gas shift reaction, which is used to remove carbon monoxide (CO) contained in hydrogen gas such as reformed gas by converting it into carbon dioxide (CO 2 ). About.

近年、固体高分子型燃料電池が注目されている。固体高分子形燃料電池は、アノード側に水素(燃料)を、カソード側に酸素又は空気(酸化剤)を供給し、固体電解質膜(プロトン伝導膜)を介して両者を反応させ、電力を得るものである。電極触媒としては、一般に、アノード、カソード共に白金黒又はカーボン粉末に白金あるいは白金合金を担持した触媒等が用いられている。このアノード側の電極触媒は、水素中にCOが含まれていると、微量であっても被毒され、電池性能の低下を生じることが知られている。従って、水素中のCOを極力除去することが望まれる。   In recent years, polymer electrolyte fuel cells have attracted attention. In the polymer electrolyte fuel cell, hydrogen (fuel) is supplied to the anode side, oxygen or air (oxidant) is supplied to the cathode side, and both are reacted through a solid electrolyte membrane (proton conductive membrane) to obtain electric power. Is. As an electrode catalyst, a catalyst in which platinum or platinum alloy is supported on platinum black or carbon powder is generally used for both the anode and the cathode. It is known that when the anode side electrode catalyst contains CO in hydrogen, it is poisoned even if it is in a very small amount, resulting in a decrease in battery performance. Therefore, it is desirable to remove CO in hydrogen as much as possible.

水素ガス中のCOを除去する方法としては、触媒の存在下で反応系内に酸素を導入し、COを選択的にCOに酸化除去する方法〔下記式(1)〕、および反応系内に水(HO)を添加し、触媒の存在下で水性ガスシフト反応を起こさせて、COをCOに転化させることにより除去する方法〔下記式(2)〕が知られている。
[CO酸化反応]
CO + 1/2O → CO (1)
[水性ガスシフト反応]
CO + HO ⇔ CO + H (2) △H=−41kJ/mol
前者の方法では、反応系内の水素濃度が高い場合には、下記式(3)で示すように系内に導入した酸素が系内に多量に存在する水素と反応してしまう為、選択性の高い触媒が必要である(例えば、特許文献1を参照)。
+ 1/2O → HO (3)
一方、後者の水性ガスシフト反応を用いる方法は、メタン等の炭化水素を原料とする水素を製造方法において、前記炭化水素と水蒸気とを反応させて水素とCOとを含む改質ガスを得た後に、該改質ガス中のCOを除去する方法として広く知られている(例えば、特許文献2を参照)。この水性ガスシフト反応によるCO除去方法は、一般に、反応温度が異なる2段階の工程を組み合わせて行われる。2段階の工程における各反応は、その反応温度により、高温シフト反応、又は低温シフト反応と称されている。
As a method for removing CO in hydrogen gas, oxygen is introduced into the reaction system in the presence of a catalyst, and CO is selectively oxidized and removed to CO 2 (the following formula (1)), and in the reaction system There is known a method of removing water (H 2 O) by adding water (H 2 O) to cause a water gas shift reaction in the presence of a catalyst to convert CO to CO 2 [the following formula (2)].
[CO oxidation reaction]
CO + 1 / 2O 2 → CO 2 (1)
[Water gas shift reaction]
CO + H 2 O CO CO 2 + H 2 (2) ΔH = −41 kJ / mol
In the former method, when the hydrogen concentration in the reaction system is high, the oxygen introduced into the system reacts with a large amount of hydrogen present in the system as shown in the following formula (3). A high catalyst is required (see, for example, Patent Document 1).
H 2 + 1 / 2O 2 → H 2 O (3)
On the other hand, the latter method using a water gas shift reaction is a method for producing hydrogen using a hydrocarbon such as methane as a raw material, after reacting the hydrocarbon and steam to obtain a reformed gas containing hydrogen and CO. It is widely known as a method for removing CO in the reformed gas (see, for example, Patent Document 2). This CO removal method by water gas shift reaction is generally performed by combining two steps with different reaction temperatures. Each reaction in the two-stage process is called a high temperature shift reaction or a low temperature shift reaction depending on the reaction temperature.

前記高温シフト反応に適した触媒としては鉄−クロム系の触媒が、また、低温シフト反応に適した触媒としては銅−亜鉛系の触媒が従来知られている(例えば、特許文献3および特許文献4を参照)。但しこれらの触媒は、反応ガスの空間速度が高い場合にCOを十分に低減できず、また、空気(酸素)に触れると担持金属が酸化され、著しく活性が低下してしまうという問題がある。   As the catalyst suitable for the high temperature shift reaction, an iron-chromium-based catalyst is known, and as the catalyst suitable for the low temperature shift reaction, a copper-zinc based catalyst is conventionally known (for example, Patent Document 3 and Patent Document). 4). However, these catalysts have a problem that CO cannot be sufficiently reduced when the space velocity of the reaction gas is high, and the supported metal is oxidized when exposed to air (oxygen), and the activity is significantly reduced.

そこで、空間速度が高い条件においても活性が高くCOを十分に低減でき、かつ、耐酸化性も有する貴金属系の金属を含む触媒を用いることが提案されている。そのような触媒としては、例えば白金を金属酸化物に担持した触媒に補助活性成分としてレニウム、アルカリ金属、モリブデンなどを添加することにより、活性を向上させた触媒が提案されている(例えば、特許文献5、特許文献6及び特許文献7を参照)。   In view of this, it has been proposed to use a catalyst containing a noble metal-based metal that has high activity and can sufficiently reduce CO even under conditions with a high space velocity and has oxidation resistance. As such a catalyst, for example, a catalyst whose activity is improved by adding rhenium, alkali metal, molybdenum or the like as an auxiliary active component to a catalyst in which platinum is supported on a metal oxide has been proposed (for example, a patent) (See Literature 5, Patent Literature 6, and Patent Literature 7).

しかしながら、これらの貴金属触媒においては、高価な貴金属を多量に必要とすることから、コスト面から普及が妨げられてきた。このような問題を解決するためには、少量の貴金属含有量においても高活性な貴金属触媒の開発が望まれていた。
英国特許第1,116,585号明細書 特開2000−302405号公報 特公昭59−46883号公報 特開昭53−141191号公報 特許第3215680号公報 特開2005−246116号公報 特開2002−273227号公報
However, since these noble metal catalysts require a large amount of expensive noble metal, their spread has been hindered from the viewpoint of cost. In order to solve such problems, it has been desired to develop a highly active noble metal catalyst even with a small amount of noble metal content.
British Patent 1,116,585 JP 2000-302405 A Japanese Patent Publication No.59-46883 JP-A-53-141191 Japanese Patent No. 3215680 JP-A-2005-246116 JP 2002-273227 A

本発明の課題は、上記水性ガスシフト反応において、水素ガス中のCO濃度を効率的に低減させることができる高活性な低貴金属担持触媒を提供することである。   The subject of this invention is providing the highly active low noble metal carrying | support catalyst which can reduce the CO density | concentration in hydrogen gas efficiently in the said water gas shift reaction.

上記課題を解決するため、本発明は、金属酸化物からなる担体に白金およびモリブデンを担持させてなる基本触媒を水素還元処理して製造したことを特徴とする、水素ガス中の一酸化炭素(CO)除去用触媒を提供する。   In order to solve the above-mentioned problems, the present invention provides a carbon monoxide in hydrogen gas produced by hydrogen reduction treatment of a basic catalyst in which platinum and molybdenum are supported on a support made of a metal oxide ( A CO) removal catalyst is provided.

本発明のCO除去用触媒は、貴金属使用量が少なくても、改質ガス等の水素リッチなガスに含まれるCOを水性ガスシフト反応によってCOに転化させて除去する際の触媒活性を高く維持することができる。本発明のCO除去用触媒は、例えば、燃料電池の燃料用の水素ガスの製造に有用である。 The catalyst for removing CO of the present invention maintains high catalytic activity when removing CO by converting it into CO 2 by water gas shift reaction even if the amount of noble metal used is small. can do. The CO removal catalyst of the present invention is useful, for example, in the production of hydrogen gas for fuel in fuel cells.

本発明のCO除去用触媒の製造方法について、以下に詳述する。
[担体]
本発明では、金属酸化物からなる担体を用いる。前記担体としては、通常、粒径2〜4mm径程度の大きさの粒状、ペレット状等の形状で、多孔質のものが好ましく用いられる。金属酸化物が粉末の場合は、多孔質体に担持させることができる。
上記金属酸化物としては、例えば、ジルコニア、チタニア、アルミナ、シリカ、シリカ・アルミナ、ゼオライト、希土類元素の酸化物、例えば酸化ランタン、セリア、酸化ネオジウム等が挙げられる。これらの金属酸化物を一種単独で使用してもよいし、これら2種以上の混合物若しくは複合酸化物を使用することができる。これらの中でも触媒調製が比較的容易であることなどからジルコニア、チタニア、アルミナ、希土類元素の酸化物、又はこれらの混合物若しくは複合酸化物が好ましく、特にジルコニア、又はジルコニアと希土類元素の酸化物との混合物若しくは複合酸化物が好ましい。
The method for producing the CO removal catalyst of the present invention will be described in detail below.
[Carrier]
In the present invention, a carrier made of a metal oxide is used. As the carrier, usually a porous material having a particle size of about 2 to 4 mm, a pellet shape or the like is preferably used. When the metal oxide is a powder, it can be supported on a porous body.
Examples of the metal oxide include zirconia, titania, alumina, silica, silica / alumina, zeolite, rare earth oxides such as lanthanum oxide, ceria, and neodymium oxide. These metal oxides may be used alone, or a mixture or composite oxide of two or more of these may be used. Among these, zirconia, titania, alumina, rare earth element oxides, or mixtures or composite oxides thereof are preferable because the catalyst preparation is relatively easy. Particularly, zirconia or zirconia and rare earth element oxides are preferable. Mixtures or composite oxides are preferred.

[主活性成分の担持]
上記担体には白金が担持される。白金は、本発明の触媒の主たる活性成分である。
白金の担持量は、本発明の触媒に含まれる上記担体と白金(白金金属換算量)との合計重量に対する白金の量が、通常、白金金属換算で0.01〜20.0重量%、好ましくは0.01〜10.0重量%、更に好ましくは0.1〜5.0重量%、特に好ましくは0.2〜2.0重量%となる量である。この白金の担時量が少なすぎると、水性ガスシフト反応によって水素ガス中のCOをCOに転化させて除去する際の触媒活性を十分に得ることが困難であり、逆に多すぎても触媒活性の更なる向上が期待できないばかりか、経済性の点で不利となる。
白金は、金属、酸化物またはこれらの混合物として上記担体の表面に担持されていればよい。本発明触媒の製造に際して、基本触媒を水素ガス等による還元処理を行うので、白金酸化物が含まれている場合であっても、触媒活性を有する白金金属とすることができるから、何ら支障はない。
白金の担持方法としては特に制限はなく、公知の方法が採用される。例えば、ジニトロジアンミン白金[Pt(NO(NH]の硝酸溶液、または塩化白金酸六水和物等の水溶液を上記担体に滴下して加え、十分に含浸させた後に、乾燥させ、次いで300〜700℃、好ましくは400〜600℃の温度で、30分〜2時間程度焼成することにより、白金金属等を上記担体上に担持させることができる。
[Supporting main active ingredient]
Platinum is supported on the carrier. Platinum is the main active component of the catalyst of the present invention.
The amount of platinum supported is generally 0.01 to 20.0% by weight, preferably in terms of platinum metal, with respect to the total weight of the carrier and platinum (in terms of platinum metal) contained in the catalyst of the present invention. Is an amount of 0.01 to 10.0% by weight, more preferably 0.1 to 5.0% by weight, particularly preferably 0.2 to 2.0% by weight. If the amount of platinum loaded is too small, it is difficult to obtain sufficient catalytic activity for removing CO by converting CO in hydrogen gas to CO 2 by a water gas shift reaction. Not only can further improvement in activity be expected, it is also disadvantageous in terms of economy.
Platinum should just be carry | supported on the surface of the said support | carrier as a metal, an oxide, or these mixtures. In the production of the catalyst of the present invention, since the basic catalyst is reduced with hydrogen gas or the like, even if it contains platinum oxide, it can be made a platinum metal having catalytic activity. Absent.
There is no restriction | limiting in particular as a carrying | support method of platinum, A well-known method is employ | adopted. For example, a nitric acid solution of dinitrodiammine platinum [Pt (NO 2 ) 2 (NH 3 ) 2 ] or an aqueous solution such as chloroplatinic acid hexahydrate is added dropwise to the carrier, sufficiently impregnated, and then dried. Next, by baking at a temperature of 300 to 700 ° C., preferably 400 to 600 ° C. for about 30 minutes to 2 hours, platinum metal or the like can be supported on the carrier.

[モリブデンの担持]
本発明の触媒は、上記主活性成分と共に、補助活性成分としてモリブデンを含有する。モリブデンは、金属、酸化物、水酸化物等の無機化合物、又はこれらの混合物の形態で基本触媒に含まれていればよい。
モリブデンの担持量は、本発明の触媒に含まれる上記担体とモリブデン(モリブデン金属換算量)との合計重量に対するモリブデンの量が、モリブデン金属換算で通常0.01〜20.0重量%、好ましくは0.01〜10.0重量%、更に好ましくは0.1〜10.0重量%、特に好ましくは0.1〜5.0重量%となる量である。このモリブデンの担時量が少なすぎると水性ガスシフト反応の向上に寄与する作用が十分でなく、逆に多すぎると前記効果の更なる向上が期待できないばかりか、水性ガスシフト反応の低下を招く。
[Molybdenum support]
The catalyst of the present invention contains molybdenum as an auxiliary active component together with the main active component. Molybdenum may be contained in the basic catalyst in the form of an inorganic compound such as a metal, oxide, hydroxide, or a mixture thereof.
The supported amount of molybdenum is such that the amount of molybdenum relative to the total weight of the support and molybdenum (molybdenum metal equivalent) contained in the catalyst of the present invention is usually 0.01 to 20.0% by weight in terms of molybdenum metal, preferably The amount is 0.01 to 10.0% by weight, more preferably 0.1 to 10.0% by weight, and particularly preferably 0.1 to 5.0% by weight. If the amount of molybdenum loaded is too small, the effect of contributing to the improvement of the water gas shift reaction is not sufficient. Conversely, if the amount is too large, further improvement of the effect cannot be expected, and the water gas shift reaction is reduced.

[基本触媒の調製]
本発明の基本触媒を調製する際には、先ず、上述のようにして上記担体にまず白金を担持させ、次に、補助活性成分であるモリブデンを担持させる方法が採用できる。モリブデンは、金属、酸化物等の無機化合物、又はこれらの混合物として上記担体に担持されていればよい。
モリブデンの担持方法としては特に制限はなく、公知の方法が採用される。モリブデン金属あるいはモリブデン酸化物の前駆体としては、七モリブデン酸六アンモニウム四水和物などの無機化合物、アセチルアセトンモリブデニルなど有機金属化合物が挙げられる。上記担持方法として、例えば、七モリブデン酸六アンモニウム四水和物の水溶液を上記主活性成分担持担体に滴下・含浸させた後、上記担持担体を100〜110℃の温度で乾燥し、次に300〜700℃、好ましくは400〜600℃の温度で、30分〜2時間焼成する方法が挙げられる。なお、含モリブデン水溶液の滴下・含浸・乾燥後の焼成は行わず、乾燥後直接、後述する水素還元処理を行ってもよい。
[Preparation of basic catalyst]
When preparing the basic catalyst of the present invention, it is possible to employ a method in which platinum is first supported on the carrier as described above, and then molybdenum, which is an auxiliary active component, is supported. Molybdenum should just be carry | supported by the said support | carrier as inorganic compounds, such as a metal and an oxide, or these mixtures.
There is no restriction | limiting in particular as a loading method of molybdenum, A well-known method is employ | adopted. Examples of the precursor of molybdenum metal or molybdenum oxide include inorganic compounds such as hexaammonium heptamolybdate tetrahydrate and organic metal compounds such as acetylacetone molybdenyl. As the supporting method, for example, an aqueous solution of hexaammonium hexamolybdate tetrahydrate is dropped and impregnated on the main active ingredient supporting carrier, and then the supporting carrier is dried at a temperature of 100 to 110 ° C., and then 300 A method of baking at a temperature of ˜700 ° C., preferably 400 ° C. to 600 ° C. for 30 minutes to 2 hours can be mentioned. In addition, you may perform the hydrogen reduction process mentioned later directly after drying, without performing baking after dripping, impregnation, and drying of molybdenum-containing aqueous solution.

[水素還元処理]
本発明の触媒の製造法は、上記主活性成分および補助活性成分を担持した担体から成る基本触媒を、高温にて水素還元処理することに特徴を有する。高温還元処理は、還元雰囲気中で300〜700℃、好ましくは400〜600℃の温度で、30分〜5時間行うのが好ましい。還元雰囲気としては、水素を1〜100容量%、好ましくは5〜25容量%含む、窒素あるいはアルゴンなどの不活性ガス雰囲気が挙げられる。
[Hydrogen reduction treatment]
The method for producing a catalyst of the present invention is characterized in that a basic catalyst comprising a carrier carrying the main active component and auxiliary active component is subjected to hydrogen reduction treatment at a high temperature. The high temperature reduction treatment is preferably performed in a reducing atmosphere at a temperature of 300 to 700 ° C., preferably 400 to 600 ° C., for 30 minutes to 5 hours. The reducing atmosphere includes an inert gas atmosphere such as nitrogen or argon containing 1 to 100% by volume, preferably 5 to 25% by volume of hydrogen.

[本発明触媒の特徴]
上記のようにして得られた本発明の触媒は、金属酸化物からなる担体に白金を担持させ、更に補助活性成分としてモリブデンを金属又は無機化合物の形態で担持させ、そしてさらに高温還元処理することで、白金の水性ガスシフト反応によるCOのCOへの転化・除去の触媒活性を向上させることができるものである。
[Characteristics of the catalyst of the present invention]
The catalyst of the present invention obtained as described above has platinum supported on a support made of a metal oxide, further supports molybdenum in the form of a metal or an inorganic compound as an auxiliary active component, and is further subjected to a high temperature reduction treatment. Thus, the catalytic activity of the conversion / removal of CO to CO 2 by the water gas shift reaction of platinum can be improved.

[実施例−1]
(触媒調製)
ジルコニア粒状担体(第一稀元素化学工業社製:RSC−HP)990gを容器に入れ、ジニトロジアンミン白金硝酸水溶液(濃度:37g/L(白金金属換算))270mLを滴下・含浸させ、滴下終了後1時間放置した。その後、乾燥器を用い、空気中で110℃×2時間乾燥した。続いて、焼成炉内において大気雰囲気下、室温から500℃まで1時間で昇温し、空気中で500℃×1時間の焼成処理を行い、白金を担持したジルコニア粒状担体(白金担持量:ジルコニア担体と白金金属との合計量の1重量%、14g/L)を調製した。これを「基本触媒A」と云う。
上記で得られた基本触媒A100gを容器に採り、モリブデン換算濃度0.13mol/Lの七モリブデン酸六アンモニウム四水和物水溶液27mL(モリブデン0.33g)を滴下・含浸させ、滴下終了後、1時間放置した。その後、乾燥器を用い、空気中で110℃にて2時間乾燥した。続いて、焼成炉内において室温から500℃まで1時間で昇温し、500℃にて1時間の焼成処理を行い、白金(触媒総重量に対し1重量%)およびモリブデン(触媒総重量に対し0.33重量%)を担持したジルコニア粒状担体を調製した。これを「基本触媒B」と云う。
さらに、上記で得られた基本触媒Bを15ml反応管に充填し、H(20容量%)およびN(80容量%)の混合ガスを流しながら、室温から500℃まで1時間で昇温させた後、1時間同温度を保持して水素還元処理を行った。
(触媒評価)
次に、上記混合ガスをNガスに切替え、加熱を止め、100℃以下になるまで降温させた。温度が100℃以下に下がったら、Nガスの供給を止めて、次に、H(60容量%)、CO(9容量%)、CO(6容量%)、および水蒸気(25容量%)の混合ガスを空間速度5,000h−1の条件で供給した。触媒および導入する混合ガスを所定の温度まで加熱し、反応管出口のCO濃度(容量%)を、水蒸気を除いた測定条件下で、非分散型赤外線法を測定原理としたガス分析計(ベスト測器社製:Bex-2201E)を用いて測定した。CO除去性能の評価は、入り口ガスの温度で180℃から250℃の範囲で行った。また、反応管出口のCH含有量(ppm)を、同様の手法および同一の測定機器を用いて測定した。
[Example-1]
(Catalyst preparation)
990 g of a zirconia granular carrier (Daiichi Rare Element Chemical Co., Ltd .: RSC-HP) is put in a container, and 270 mL of dinitrodiammine platinum nitrate aqueous solution (concentration: 37 g / L (in terms of platinum metal)) is dropped and impregnated. Left for 1 hour. Then, it dried at 110 degreeC * 2 hours in the air using the dryer. Subsequently, in a firing furnace, the temperature is raised from room temperature to 500 ° C. in an air atmosphere in 1 hour, and a firing treatment is performed in air at 500 ° C. for 1 hour to support a zirconia granular carrier carrying platinum (platinum carrying amount: zirconia). 1% by weight of the total amount of support and platinum metal, 14 g / L) was prepared. This is referred to as “basic catalyst A”.
100 g of the basic catalyst A obtained above was put into a container, and 27 mL of molybdenum hexamolybdate tetrahydrate aqueous solution (molybdenum 0.33 g) having a molybdenum equivalent concentration of 0.13 mol / L was dropped and impregnated. Left for hours. Then, it dried in air at 110 degreeC for 2 hours using the dryer. Subsequently, the temperature was raised from room temperature to 500 ° C. in a firing furnace in 1 hour, and the firing treatment was performed at 500 ° C. for 1 hour. A zirconia granular carrier supporting 0.33% by weight) was prepared. This is referred to as “basic catalyst B”.
Further, the basic catalyst B obtained above was filled in a 15 ml reaction tube, and the temperature was raised from room temperature to 500 ° C. over 1 hour while flowing a mixed gas of H 2 (20% by volume) and N 2 (80% by volume). After that, hydrogen reduction treatment was performed while maintaining the same temperature for 1 hour.
(Catalyst evaluation)
Next, the mixed gas was switched to N 2 gas, heating was stopped, and the temperature was lowered to 100 ° C. or lower. When the temperature drops below 100 ° C., the supply of N 2 gas is stopped and then H 2 (60% by volume), CO 2 (9% by volume), CO (6% by volume), and water vapor (25% by volume) ) Was supplied under the condition of a space velocity of 5,000 h −1 . Gas analyzer (best) using the non-dispersive infrared method as the measurement principle, heating the catalyst and the mixed gas to be introduced to the specified temperature, and measuring the CO concentration (volume%) at the outlet of the reaction tube under the measurement conditions excluding water vapor It was measured using Sokki Co., Ltd. product: Bex-2201E). The evaluation of the CO removal performance was performed in the range of 180 ° C. to 250 ° C. at the inlet gas temperature. Further, the CH 4 content (ppm) at the outlet of the reaction tube was measured using the same method and the same measuring device.

[実施例−2]
実施例−1において、基本触媒Bを還元処理温度500℃に代えて400℃にて還元処理を行い、引き続きCO除去性能を評価した。
[Example-2]
In Example-1, the basic catalyst B was subjected to reduction treatment at 400 ° C. instead of the reduction treatment temperature of 500 ° C., and the CO removal performance was subsequently evaluated.

[実施例−3]
実施例−1において、基本触媒Bを還元処理温度500℃に代えて、600℃にて還元処理を行い、引き続きCO除去性能を評価した。
[Example-3]
In Example-1, the basic catalyst B was subjected to reduction treatment at 600 ° C. instead of the reduction treatment temperature of 500 ° C., and the CO removal performance was subsequently evaluated.

[実施例−4]
実施例−1におけるジルコニア担体に代えて、ジルコニア系複合酸化物粉末(第一稀元素化学工業社製:NZI−01、組成(wt%):ZrO2/CeO2/Nd2O3=65/25/10)を600cpsiのコージーライトハニカムに150g/L担持したものを使用した以外は実施例―1と同様の方法で白金担持量が14g/L(触媒粉末総重量に対し8.3重量%)、モリブテン担持量が4.7g/L(触媒粉末総重量に対し2.8重量%)となるように触媒を調製し、性能評価した。
[Example-4]
Instead of the zirconia support in Example-1, zirconia composite oxide powder (Daiichi Rare Element Chemical Industries, Ltd .: NZI-01, composition (wt%): ZrO 2 / CeO 2 / Nd 2 O 3 = 65 / 25/10) was supported on a 600 cpsi cordierite honeycomb at 150 g / L, and the platinum loading was 14 g / L in the same manner as in Example 1 (8.3 wt% based on the total catalyst powder weight). ), A catalyst was prepared such that the amount of molybdenum loaded was 4.7 g / L (2.8% by weight based on the total weight of the catalyst powder), and the performance was evaluated.

[比較例−1]
実施例−1記載の手順において水素還元処理を行わず、基本触媒BのCO除去性能を評価した。
上記実施例−1〜実施例−4及び比較例−1で用いた担体の種類と水素還元処理温度とを、表1にまとめて示す。
[Comparative Example-1]
The hydrogen reduction treatment was not performed in the procedure described in Example 1, and the CO removal performance of the basic catalyst B was evaluated.
Table 1 summarizes the types of carriers and the hydrogen reduction treatment temperatures used in Examples 1 to 4 and Comparative Example 1.

Figure 2008161742
Figure 2008161742

[測定結果]
上記の実施例−1〜−4および比較例−1の触媒についての上記測定結果を図1に示す。図1の結果より、400℃以上、特に500℃以上の高温での水素還元処理がCO除去性能の向上に大きな効果があることが確認された。また、ジルコニア系複合酸化物粉末を用いて調製した触媒においても良好なCO除去性能が得られることが確認された。
なお、副反応であるCOのメタネーション反応によるCHの生成量については、いずれの触媒を用いても100ppm以下であり、COの低減には寄与していないことが確認されている。
[Measurement result]
The said measurement result about the catalyst of said Examples -1 to -4 and Comparative Example-1 is shown in FIG. From the result of FIG. 1, it was confirmed that hydrogen reduction treatment at a high temperature of 400 ° C. or higher, particularly 500 ° C. or higher has a great effect on improving CO removal performance. It was also confirmed that good CO removal performance was obtained even with a catalyst prepared using zirconia composite oxide powder.
The amount of CH 4 produced by the CO methanation reaction, which is a side reaction, is 100 ppm or less regardless of which catalyst is used, and it has been confirmed that it does not contribute to the reduction of CO.

従って、本発明に係るCO除去用触媒の製造方法は、水性ガスシフト反応におけるシフト反応の活性を大きく向上させるものである。   Therefore, the method for producing a CO removal catalyst according to the present invention greatly improves the activity of the shift reaction in the water gas shift reaction.

実施例−1〜実施例−4および比較例−1で得た触媒の各入り口ガス温度におけるCO除去性能を示す図である。It is a figure which shows CO removal performance in each inlet-gas temperature of the catalyst obtained in Example-1-Example-4 and Comparative Example-1.

Claims (7)

金属酸化物からなる担体に白金およびモリブデンを担持させてなる基本触媒を水素還元処理して製造したことを特徴とする、水素ガス中の一酸化炭素除去用触媒。   A catalyst for removing carbon monoxide in hydrogen gas, which is produced by hydrogen reduction treatment of a basic catalyst in which platinum and molybdenum are supported on a metal oxide support. 水素還元処理の温度が300℃以上で700℃以下である請求項1に記載の一酸化炭素除去用触媒。   The catalyst for removing carbon monoxide according to claim 1, wherein the temperature of the hydrogen reduction treatment is 300 ° C or higher and 700 ° C or lower. 金属酸化物からなる担体が、ジルコニア、又はジルコニアと1種又は2種以上の希土類元素の酸化物とから成る混合物若しくは複合酸化物である請求項1又は2に記載の一酸化炭素除去用触媒。   The catalyst for removing carbon monoxide according to claim 1 or 2, wherein the support made of a metal oxide is zirconia, or a mixture or composite oxide composed of zirconia and an oxide of one or more rare earth elements. 上記基本触媒中の上記担体に担持されたモリブデンが金属又は無機化合物の形態にある請求項1〜3のいずれか1項記載の一酸化炭素除去用触媒。   The catalyst for removing carbon monoxide according to any one of claims 1 to 3, wherein the molybdenum supported on the carrier in the basic catalyst is in the form of a metal or an inorganic compound. 白金の担持量が、上記担体と白金との合計重量に対して白金金属換算で0.01〜20.0重量%である、請求項1〜4のいずれか1項記載の一酸化炭素除去用触媒。   The removal amount of carbon monoxide according to any one of claims 1 to 4, wherein a supported amount of platinum is 0.01 to 20.0% by weight in terms of platinum metal with respect to a total weight of the support and platinum. catalyst. モリブデンの担持量が、上記担体とモリブデンとの合計重量に対してモリブデン金属換算で0.01〜20.0重量%である、請求項1〜5のいずれか1項記載の一酸化炭素除去用触媒。   The removal amount of carbon monoxide according to any one of claims 1 to 5, wherein the supported amount of molybdenum is 0.01 to 20.0 wt% in terms of molybdenum metal with respect to the total weight of the support and molybdenum. catalyst. 金属酸化物からなる担体に白金を担持させ、次にモリブデンを上記担体に担持させて基本触媒を調製し、次いで上記基本触媒を300℃以上で700℃以下の温度で水素還元処理することを特徴とする、水素ガス中の一酸化炭素除去用触媒の製造法。   It is characterized in that platinum is supported on a support made of a metal oxide, then molybdenum is supported on the support to prepare a basic catalyst, and then the basic catalyst is subjected to hydrogen reduction treatment at a temperature of 300 ° C. to 700 ° C. A method for producing a catalyst for removing carbon monoxide in hydrogen gas.
JP2006350914A 2006-12-27 2006-12-27 Catalyst for removing carbon monoxide in hydrogen gas Pending JP2008161742A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006350914A JP2008161742A (en) 2006-12-27 2006-12-27 Catalyst for removing carbon monoxide in hydrogen gas
TW096143837A TW200838606A (en) 2006-12-27 2007-11-20 Catalyst for removing carbon monoxide from hydrogen gas
KR1020070137686A KR20080061308A (en) 2006-12-27 2007-12-26 Catalyst for removing carbon monoxide from hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350914A JP2008161742A (en) 2006-12-27 2006-12-27 Catalyst for removing carbon monoxide in hydrogen gas

Publications (1)

Publication Number Publication Date
JP2008161742A true JP2008161742A (en) 2008-07-17

Family

ID=39691924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350914A Pending JP2008161742A (en) 2006-12-27 2006-12-27 Catalyst for removing carbon monoxide in hydrogen gas

Country Status (3)

Country Link
JP (1) JP2008161742A (en)
KR (1) KR20080061308A (en)
TW (1) TW200838606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116531A1 (en) * 2009-04-10 2010-10-14 三菱重工業株式会社 Co shift catalyst, co shift reactor, and gasified gas purification method
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide
WO2023082321A1 (en) * 2021-11-11 2023-05-19 苏州金宏气体股份有限公司 Platinum/molybdenum catalytic material for dehydrogenation, and preparation method therefor and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116531A1 (en) * 2009-04-10 2010-10-14 三菱重工業株式会社 Co shift catalyst, co shift reactor, and gasified gas purification method
JP5404774B2 (en) * 2009-04-10 2014-02-05 三菱重工業株式会社 CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
US8992871B2 (en) 2009-04-10 2015-03-31 Mitsubishi Heavy Industries, Ltd. CO shift catalyst, CO shift reactor, and method for purifying gasified gas
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide
WO2023082321A1 (en) * 2021-11-11 2023-05-19 苏州金宏气体股份有限公司 Platinum/molybdenum catalytic material for dehydrogenation, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
KR20080061308A (en) 2008-07-02
TW200838606A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
KR100723394B1 (en) Non-pyrophoric catalyst for water-gas shift reaction and method of producing the same
TWI294413B (en) Method for converting co and hydrogen into methane and water
US7700512B2 (en) Carbon monoxide selective oxidizing catalyst and manufacturing method for the same
JPWO2005094988A1 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
JP2008056539A (en) Carbon monoxide methanation method
KR101109394B1 (en) Catalyst for Removal of Carbon Monoxide from Hydrogen Gas
JP2008155111A (en) Acid resistant electrode catalyst
JP2005050760A (en) Anode electrode catalyst for solid polymer electrolytic fuel cell
US8298984B2 (en) Non-pyrophoric catalyst for water-gas shift reaction and method of preparing the same
KR101410856B1 (en) Method for removing CO, H2 and/or CH4 from the anode waste gas of a fuel cell with mixed oxide catalysts comprising Cu, Mn and optionally at least one rare earth metal
JP4824332B2 (en) Carbon monoxide removal catalyst
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP4087621B2 (en) Catalyst for removing carbon monoxide in hydrogen gas
JP5105709B2 (en) Water gas shift reaction catalyst
JPH1085586A (en) Functional material, oxidizing catalyst, combustion catalyst, methanol modified catalyst and electrode catalyst
US20040156771A1 (en) Method of reducing carbon monoxide concentration
CN114602496A (en) Nano-carbon-loaded platinum-iron bimetallic catalyst, preparation method thereof and application thereof in CO selective oxidation reaction under hydrogen-rich atmosphere
JP4250971B2 (en) Inorganic material and shift catalyst using the same
CN112952152A (en) Application of monodisperse noble metal catalyst in CO pre-oxidation of high-activity hydrogen-oxygen fuel cell and fuel cell
JP2001149781A (en) Catalyst for selectively oxidizing gaseous carbon monoxide in hydrogen-rich gas and method for removing carbon monoxide using the same
JP2007160254A (en) Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
JP2004066173A (en) Emission gas purification catalyst and emission gas purification reactor
JP3975803B2 (en) Method for producing CO selective oxidation catalyst
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same