JP2005050760A - Anode electrode catalyst for solid polymer electrolytic fuel cell - Google Patents

Anode electrode catalyst for solid polymer electrolytic fuel cell Download PDF

Info

Publication number
JP2005050760A
JP2005050760A JP2003284043A JP2003284043A JP2005050760A JP 2005050760 A JP2005050760 A JP 2005050760A JP 2003284043 A JP2003284043 A JP 2003284043A JP 2003284043 A JP2003284043 A JP 2003284043A JP 2005050760 A JP2005050760 A JP 2005050760A
Authority
JP
Japan
Prior art keywords
composite oxide
fuel cell
anode electrode
solid polymer
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003284043A
Other languages
Japanese (ja)
Inventor
Tetsuya Inagaki
哲也 稲垣
Fumio Munakata
文男 宗像
Shigeki Komine
重樹 小峰
Yoshiaki Fujie
良紀 藤江
Toshio Kawachi
俊雄 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2003284043A priority Critical patent/JP2005050760A/en
Publication of JP2005050760A publication Critical patent/JP2005050760A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode electrode catalyst wherein not only high output power can be obtained in a solid polymer electrolytic fuel cell or a methanol fuel cell, but also poisoning of Pt in an anode electrode can be prevented and an overvoltage of the solid polymer electrolyte fuel cell can be reduced by improving carbon monoxide-proof poisoning performance of the anode electrode. <P>SOLUTION: The anode electrode catalyst for the solid polymer electrolytic fuel cell is represented by the chemical formula (1) (A denotes at least one element selected from the group consisting of alkaline earth metal elements, alkali metal elements, lanthanides, yttrium and scandium, and B denotes at least one element selected from transition metal elements and tin, while y≤0.6 and δ denotes an oxygen defective amount or an oxygen excess amount), and composed of a composite oxide with a perovskite structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子電解質型燃料電池に関し、さらに詳しくは固体高分子電解質型燃料電池の燃料(アノード)極に適用される固体高分子電解質型燃料電池用耐一酸化炭素被毒触媒、該触媒を用いた固体高分子電解質型燃料電池に関する。   The present invention relates to a solid polymer electrolyte fuel cell, and more specifically, a carbon monoxide-resistant poisoning catalyst for a solid polymer electrolyte fuel cell applied to a fuel (anode) electrode of a solid polymer electrolyte fuel cell, The present invention relates to a solid polymer electrolyte fuel cell using a catalyst.

固体高分子型燃料電池は、出力密度が高く、低温で動作し、有害物質を含む排気ガスをほとんど放出せず、大型化だけでなく小型化も容易なため、定置型および車載型のみならず過般用途にも適用できる低公害型電力源として注目されている。   Solid polymer fuel cells have high power density, operate at low temperatures, emit almost no exhaust gas containing harmful substances, and are easy to downsize as well as stationary and in-vehicle. It attracts attention as a low-pollution power source that can be applied to general purposes.

一般に固体高分子型燃料電池の燃料源としては、圧縮水素や水素吸蔵合金、または水素吸蔵物質に貯蔵された高純度水素を使用するほかに、炭化水素ガス、アルコール等の水素を含む有機物質を予め改質器で改質して得られる水素富化ガスが使用されている。また、メタノール燃料電池では改質された水素富化ガスを用いること無しにメタノールを直接アノード電極で反応させている。しかし、燃料電池の動作開始時等、低温で作動させた場合に水素富化ガス中に存在、またはメタノールの分解がスムーズに起こらないために生成する一酸化炭素、炭化ガス、炭素等の不純物が、アノード電極触媒中のPtを被毒して分極を増大させ、過電圧による出力低下が生じることが知られている。   In general, as a fuel source for polymer electrolyte fuel cells, in addition to using compressed hydrogen, hydrogen storage alloys, or high-purity hydrogen stored in hydrogen storage materials, organic materials containing hydrogen such as hydrocarbon gases and alcohols are used. Hydrogen-enriched gas obtained by reforming with a reformer in advance is used. In the methanol fuel cell, methanol is directly reacted at the anode electrode without using the reformed hydrogen-enriched gas. However, impurities such as carbon monoxide, carbon dioxide, and carbon that are present in the hydrogen-enriched gas when it is operated at low temperatures such as when the fuel cell starts operating or because methanol does not decompose smoothly It is known that Pt in the anode electrode catalyst is poisoned to increase the polarization, and the output is reduced due to overvoltage.

また、固体高分子電解質型燃料電池では、燃料ガスを水で加湿する必要があるため、アノード電極側は、水蒸気雰囲気にあり、メタノール燃料電池においてもメタノールの分解反応に水を用いているため、やはりアノード電極側は、水蒸気雰囲気にある。   Further, in the solid polymer electrolyte fuel cell, since it is necessary to humidify the fuel gas with water, the anode electrode side is in a water vapor atmosphere, and water is also used for the decomposition reaction of methanol in the methanol fuel cell. Again, the anode electrode side is in a water vapor atmosphere.

Pt触媒の被毒による出力低下を防ぐために、PtをPd、Rh、Au、Ir、Ru等の貴金属や、Sn、W、Cr、Mn、Fe、Co、Ni、Cu等の卑金属と合金化したアノード電極が知られている(例えば、特許文献1参照。)が、アノード電極中のPtを被毒した不純物を除去するには十分な触媒活性が得られず、一酸化炭素によるアノード電極中のPt被毒は大きな問題となっている。   Pt was alloyed with noble metals such as Pd, Rh, Au, Ir, and Ru and base metals such as Sn, W, Cr, Mn, Fe, Co, Ni, and Cu in order to prevent a decrease in output due to poisoning of the Pt catalyst. Although an anode electrode is known (for example, refer to Patent Document 1), sufficient catalytic activity cannot be obtained to remove impurities poisoned with Pt in the anode electrode, and carbon monoxide in the anode electrode Pt poisoning is a major problem.

改質された水素富化ガス中の一酸化炭素を除去するために、水素富化ガス中に一酸化炭素と等モル量程度の酸素を混入し、貴金属をアルミナ、チタニア、ジルコニア、アルミナ水和物等に担持させた触媒によって、選択的に一酸化炭素を除去し、水素富化ガス中の一酸化炭素濃度を軽減するような一酸化炭素選択酸化反応器が知られている(例えば、特許文献2参照)。しかしながら、限られた空間のために一酸化炭素選択酸化反応器を設置できない環境下で固体高分子型燃料電池を用いる場合、もしくは用いることを避けたい場合、水素富化ガスを用いないメタノール燃料電池を用いる場合、また反応器を持ってしても、十分に一酸化炭素が除去されない場合には、アノード電極中の耐一酸化炭素被毒性に頼らざるを得ない。
特開2001−68120号公報 特開平8−295503号公報
In order to remove carbon monoxide in the reformed hydrogen-enriched gas, oxygen equivalent to carbon monoxide is mixed in the hydrogen-enriched gas, and precious metals are hydrated with alumina, titania, zirconia, and alumina. A carbon monoxide selective oxidation reactor is known that selectively removes carbon monoxide and reduces the carbon monoxide concentration in the hydrogen-enriched gas using a catalyst supported on a product (for example, patents). Reference 2). However, when using a polymer electrolyte fuel cell in an environment where a carbon monoxide selective oxidation reactor cannot be installed due to limited space, or when it is desired to avoid using it, a methanol fuel cell that does not use a hydrogen-enriched gas When carbon monoxide is not sufficiently removed even if a reactor is used, the carbon monoxide poisoning resistance in the anode electrode must be relied upon.
JP 2001-68120 A JP-A-8-295503

固体高分子型燃料電池、メタノール燃料電池を、たとえば車載用、可搬用途等の限定された空間で使用する観点からは、燃料電池の小型化が必須であり、屋外、工場等の比較的大きな空間で用いる場合にも、容積、重量あたりの発電量の増加という点から小型化を図る必要があり、また一酸化炭素選択酸化反応器を用いたとしても十分に一酸化炭素が除去されない場合には、アノード電極を被毒する燃料中の一酸化炭素を高効率に除去しなくてはならず、アノード電極の耐被毒性能を向上することによって、固体高分子電解質型燃料電池の出力を向上させることが望まれる。   From the viewpoint of using a polymer electrolyte fuel cell and a methanol fuel cell in a limited space such as in-vehicle use or portable use, it is essential to reduce the size of the fuel cell. Even when used in space, it is necessary to reduce the size in terms of increased power generation per unit volume and weight, and when carbon monoxide is not sufficiently removed even if a carbon monoxide selective oxidation reactor is used. Must efficiently remove carbon monoxide in the fuel poisoning the anode electrode, and improve the output of the solid polymer electrolyte fuel cell by improving the poisoning resistance of the anode electrode It is hoped that

本発明は、上記の課題を解決するために、固体高分子電解質型燃料電池、メタノール燃料電池として高出力が得られるのみならず、アノード電極の耐一酸化炭素被毒性能を向上させることによって、アノード電極のPtの被毒を防止し、固体高分子電解質型燃料電池の過電圧を低下させるアノード電極触媒を提供することを目的としている。そしてそのアノード電極触媒を用いることにより、燃料電池の出力を向上されてなる固体高分子電解質型燃料電池を提供することを目的としている。   In order to solve the above problems, the present invention not only provides a high output as a solid polymer electrolyte fuel cell and a methanol fuel cell, but also improves the carbon monoxide poisoning performance of the anode electrode, An object of the present invention is to provide an anode electrode catalyst that prevents Pt poisoning of the anode electrode and reduces the overvoltage of the solid polymer electrolyte fuel cell. An object of the present invention is to provide a solid polymer electrolyte fuel cell in which the output of the fuel cell is improved by using the anode electrode catalyst.

以上の目的を達成するために、本発明者らは、Tiを含み、酸素が欠損した複合酸化物と、Ptなどの貴金属を組み合わせた触媒が、アノード電極での耐一酸化炭素被毒性能を向上させ、燃料電池の特性向上に対して有効であることを見出し、本発明を完成するに至ったものである。   In order to achieve the above object, the present inventors have proposed that a catalyst comprising a composite oxide containing Ti and lacking oxygen and a noble metal such as Pt has a carbon monoxide poisoning performance at the anode electrode. It has been found that it is effective for improving the characteristics of the fuel cell, and the present invention has been completed.

本発明の固体高分子電解質型燃料電池アノード電極触媒(以下、耐一酸化炭素被毒触媒ともいう)において用いられる複合酸化物には、Tiが含まれている必要があるが、その構造において下記化学式(1)   The composite oxide used in the solid polymer electrolyte fuel cell anode electrode catalyst (hereinafter also referred to as a carbon monoxide-resistant poisoning catalyst) of the present invention needs to contain Ti. Chemical formula (1)

Figure 2005050760
Figure 2005050760

(式中のAはアルカリ土類金属元素、アルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示し、Bは遷移金属元素およびスズより選ばれた少なくとも1種の元素を示し、0≦y≦0.6である。δは酸素欠損量または酸素過剰量を表す。)で表され、ペロブスカイト構造を有する複合酸化物であり、Pt、Ru、Pd、Ag等の貴金属と組み合わせて用いられること望ましい。さらに好ましくは、上記化学式(1)のAが下記式(2) (In the formula, A represents at least one element selected from the group consisting of alkaline earth metal elements, alkali metal elements, lanthanoids, yttrium and scandium, and B represents at least one element selected from transition metal elements and tin. And 0 ≦ y ≦ 0.6, where δ represents the amount of oxygen deficiency or oxygen excess, and is a complex oxide having a perovskite structure, such as Pt, Ru, Pd, Ag, etc. It is desirable to be used in combination with noble metals. More preferably, A in the chemical formula (1) is represented by the following formula (2):

Figure 2005050760
Figure 2005050760

(式中のA’は、アルカリ土類金属元素より選ばれてなる少なくとも1種の元素を示し、A”は、アルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれてなる少なくとも1種の元素を示す。)で表されるTiを含んだペロブスカイト構造を有する複合酸化物である。すなわち、下記化学式(1’) (In the formula, A ′ represents at least one element selected from alkaline earth metal elements, and A ″ represents at least one element selected from the group consisting of alkali metal elements, lanthanoids, yttrium, and scandium. A composite oxide having a perovskite structure containing Ti represented by the following chemical formula (1 ′):

Figure 2005050760
Figure 2005050760

で表されるTiを含んだペロブスカイト構造を有する複合酸化物であることが好ましい。さらに、本発明の固体高分子電解質型燃料電池アノード電極触媒では、上記複合酸化物と、Pt、Ru、Pd等の貴金属から構成される触媒が、高い電子伝導性を示すために、固体高分子電解質型燃料電池のアノード電極において用いられ、水蒸気雰囲気中で動作する耐一酸化炭素被毒触媒として極めて有効である。 A composite oxide having a perovskite structure containing Ti represented by: Furthermore, in the solid polymer electrolyte fuel cell anode electrode catalyst of the present invention, since the catalyst composed of the composite oxide and a noble metal such as Pt, Ru, Pd exhibits high electron conductivity, the solid polymer It is used in the anode electrode of an electrolyte fuel cell and is extremely effective as a carbon monoxide-resistant poisoning catalyst that operates in a water vapor atmosphere.

上記化学式(1’)において、A’はアルカリ土類金属元素より選ばれた少なくとも1種の元素を示し、A”はアルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示し、xが0≦x≦0.2であり、Bは遷移金属元素およびスズより選ばれた少なくとも1種の元素を示し、0≦y≦0.6である必要がある。x、yともに上記に規定する範囲を外れると酸素が過剰に欠損する、また、ペロブスカイト構造を保てなくなる。   In the chemical formula (1 ′), A ′ represents at least one element selected from alkaline earth metal elements, and A ″ represents at least one element selected from the group consisting of alkali metal elements, lanthanoids, yttrium, and scandium. X is 0 ≦ x ≦ 0.2, B is at least one element selected from a transition metal element and tin, and 0 ≦ y ≦ 0.6. If y and y are out of the range defined above, oxygen is lost excessively and the perovskite structure cannot be maintained.

上記式(1)ないし(1’)における酸素欠損量または酸素過剰量を表すδは、特に規定はないが、ペロブスカイト構造を維持するために、δ<0.5であることが望ましい。δの範囲としては、好ましくは−0.15<δ<0.5である。また特に好ましくは−0.05<δ<0.2である。すなわち、上記式(1)ないし(1’)の複合酸化物では、酸素が欠損している必要はなく(すなわち、0<δである必要はなく、例えば、後述する実施例2、4、7のように0>δであってもよいし、δ=0であってもよい。)、δはペロブスカイト構造を維持するためだけにその範囲を限定されるものである。逆に言えばペロブスカイト構造が維持される限りδはその条件を満たしているとも言える。よって、δが上記に規定するδ<0.5の範囲を多少外れても複合酸化物がペロブスカイト構造を有するものであれば、本発明の範囲に含まれるものである。この酸素欠損量または酸素過剰量δは、化学滴定によって調べることができる(後述する実施例でも当該測定法により調べた)。また、複合酸化物のペロブスカイト構造の確認は粉末X線回折測定によって行うことができる(後述する実施例でも当該測定法により調べた)。   Δ representing the amount of oxygen deficiency or oxygen excess in the above formulas (1) to (1 ′) is not particularly defined, but it is desirable that δ <0.5 in order to maintain the perovskite structure. The range of δ is preferably −0.15 <δ <0.5. Particularly preferably, -0.05 <δ <0.2. That is, in the composite oxides of the above formulas (1) to (1 ′), oxygen does not need to be deficient (that is, it is not necessary that 0 <δ, for example, Examples 2, 4, and 7 described later). In this case, 0> δ may be satisfied, or δ = 0 may be satisfied.), Δ is limited in scope only to maintain the perovskite structure. Conversely, as long as the perovskite structure is maintained, δ satisfies the condition. Therefore, even if δ slightly deviates from the range of δ <0.5 defined above, any composite oxide having a perovskite structure is included in the scope of the present invention. This oxygen deficiency or oxygen excess δ can be examined by chemical titration (in the examples described later, it was also examined by the measurement method). In addition, confirmation of the perovskite structure of the composite oxide can be performed by powder X-ray diffraction measurement (in the examples described later, this measurement method was also used).

ここで、本発明で言う遷移金属元素とは、元素番号23番のV〜29番のCu、40番のZr〜47番のAg、72番のHf〜79番のAu、89番のAc〜103番のLrまでの元素をいう。すなわち、通常、遷移金属元素に含まれる希土類元素(元素番号21番のスカンジウム(Sc)、元素番号39番のイットリウム(Y)および元素番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイド)及び元素番号22番のチタン(Ti)は含まないものとする。   Here, the transition metal elements referred to in the present invention are element numbers 23 to V to 29, Cu to 40, Zr to 47 to Ag, 72 to Hf to 79, Au, 89 to Ac. Elements up to 103rd Lr. That is, usually, rare earth elements contained in transition metal elements (element No. 21 scandium (Sc), element No. 39 yttrium (Y) and element No. 57 lanthanum (La) to No. 71 lutetium (Lu)) Lanthanoids) and titanium (Ti) with element number 22 are not included.

アルカリ金属元素は、周期表1族の金属元素をいい、Li、Na、K、Rb、Cs、Frをいう。アルカリ土類金属元素は、周期表2族の金属元素のうち、Be、Mgを除く、Ca、Sr、Ba、Raをいう。   An alkali metal element refers to a metal element belonging to Group 1 of the periodic table, and refers to Li, Na, K, Rb, Cs, and Fr. The alkaline earth metal element refers to Ca, Sr, Ba, and Ra, excluding Be and Mg, among the metal elements of Group 2 of the periodic table.

上記複合酸化物の陽イオン元素のAサイトとしては、化学式(2);A’1−xA”で表されるものが好ましく、このうち、A’としては、イオン半径の観点から、Sr、Baが特に望ましい。A”としては、イオン半径の観点から、La、Nd、Pr、K、Csが特に望ましい。また、Aサイトとしては、上記化学式(2)のほかにも、Sr単独で用いたものも好適な複合酸化物となり得るものである。すなわち、Aサイトに用いられる元素のうち、アルカリ金属元素としては、Cs、Kが、アルカリ土類金属元素としては、Ba、Srが、ランタノイドとしては、La、Ndが特に好ましい元素と言える。この複合酸化物の陽イオン元素のBサイトとしては、Tiを含むものであればよく、単独で用いてもよいほか、さらに該Tiとの組合せにおいて、イオン半径の観点から、Snを組み合わせるのが特に好ましい。 The A site of the cation element of the composite oxide is preferably represented by the chemical formula (2); A ′ 1-x A ″ x. Among these, A ′ is Sr from the viewpoint of the ionic radius. Ba is particularly desirable. As A ″, La, Nd, Pr, K, and Cs are particularly desirable from the viewpoint of ionic radius. Further, as the A site, in addition to the above chemical formula (2), those using Sr alone can be a suitable composite oxide. That is, among the elements used in the A site, Cs and K are particularly preferable as the alkali metal elements, Ba and Sr are particularly preferable as the alkaline earth metal elements, and La and Nd are particularly preferable as the lanthanoid elements. As the B site of the cation element of this composite oxide, any material may be used as long as it contains Ti, and it may be used alone. Further, in combination with Ti, Sn is combined from the viewpoint of ionic radius. Particularly preferred.

この耐一酸化炭素被毒触媒用複合酸化物は、一般的な固相反応法を用いても作製できるが、より活性の高い粉末を得るためには、クエン酸塩法、シュウ酸塩法のような液相法を用いることが望ましく、得られた二次粒子の平均粒径は、5μm以下であることが好ましく、1μm以下であることがより望ましい。得られた二次粒子の平均粒径が5μmを超える場合には比表面積が減少し、活性が低下する。なお、耐一酸化炭素被毒触媒用複合酸化物の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定することができる。すなわち、得られる耐一酸化炭素被毒触媒用複合酸化物の微粉末は、凝集等して二次粒子を形成する、もしくは凝集等してアグロマレート(集塊物)を形成し、それが二次的に集まって二次粒子を形成したものである。   This composite oxide for carbon monoxide-resistant poisoning catalyst can also be produced using a general solid phase reaction method, but in order to obtain a more active powder, the citrate method or oxalate method can be used. Such a liquid phase method is desirably used, and the average particle size of the obtained secondary particles is preferably 5 μm or less, and more preferably 1 μm or less. When the average particle diameter of the obtained secondary particles exceeds 5 μm, the specific surface area decreases and the activity decreases. The average particle size of the secondary particles of the composite oxide for carbon monoxide resistant catalyst can be measured by a light scattering type particle size distribution meter. That is, the obtained fine powder of the composite oxide for a carbon monoxide-resistant poisoning catalyst is agglomerated to form secondary particles, or agglomerated to form agglomerates (aggregates), which are secondary Are gathered together to form secondary particles.

この複合酸化物と組み合わせて用いられる金属は、少なくとも1種の貴金属である必要があり、複合酸化物に対して、重量比として、少なくとも0.1wt%、好ましくは0.5〜10wt%の範囲で用いられることが望ましい。ここで、この複合酸化物と組み合わせて用いられる貴金属の使用量が、0.1wt%未満の場合には十分な活性が得られないおそれがある。なお、貴金属の使用量の上限値については、特に制限されないが、凝集による比表面積低下を防止する観点から、15wt%とするのが望ましい。この複合酸化物と組み合わせて用いられる貴金属の使用の方法、形状、形態は問わないが、それら貴金属の微粒子が、複合酸化物の二次粒子中に含浸、または二次粒子の表面に分布していることが望ましい。かかる貴金属を微粒子形態で用いる場合には、該貴金属微粒子の平均粒径は100nm以下、好ましくは10nm以下である。該貴金属微粒子の平均粒径が200nmを超える場合には、貴金属微粒子の表面積(触媒としての作用面積)が十分でなく、また複合酸化物の二次粒子中の間隙に含浸させるのが困難となったり、複合酸化物の二次粒子表面への均一な分布が困難となる。なお、貴金属微粒子の平均粒径の下限値は特に制限されるべきものではない。この貴金属の微粒子の平均粒径は、例えば、透過型電子顕微鏡などを用いて測定することができる。貴金属微粒子の粒径は、絶対最大長を用いるものとする。   The metal used in combination with the composite oxide must be at least one kind of noble metal, and the weight ratio with respect to the composite oxide is at least 0.1 wt%, preferably in the range of 0.5 to 10 wt%. It is desirable to be used in. Here, if the amount of the noble metal used in combination with the composite oxide is less than 0.1 wt%, sufficient activity may not be obtained. In addition, although there is no restriction | limiting in particular about the upper limit of the usage-amount of a noble metal, It is desirable to set it as 15 wt% from a viewpoint of preventing the specific surface area fall by aggregation. The method, shape and form of the noble metal used in combination with the composite oxide are not limited, but the fine particles of the noble metal are impregnated in the composite oxide secondary particles or distributed on the surface of the secondary particles. It is desirable. When such noble metal is used in the form of fine particles, the average particle diameter of the noble metal fine particles is 100 nm or less, preferably 10 nm or less. When the average particle diameter of the noble metal fine particles exceeds 200 nm, the surface area (acting area as a catalyst) of the noble metal fine particles is not sufficient, and it becomes difficult to impregnate the gaps in the secondary particles of the composite oxide. In other words, it is difficult to uniformly distribute the composite oxide on the secondary particle surface. In addition, the lower limit of the average particle diameter of the noble metal fine particles is not particularly limited. The average particle diameter of the noble metal fine particles can be measured using, for example, a transmission electron microscope. The absolute maximum length is used as the particle diameter of the noble metal fine particles.

本発明において、上記複合酸化物と組み合わせて用いられる貴金属(合金を含む)は、Au、Ag、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)の金属及びこれらの合金の中から使用目的に応じて、最適なものを適宜選択して使用することができるものであるが、耐久性、安定性という観点から、Pt、Rh、Pd、Ru、Agからなる群より選ばれてなる少なくとも1種のものが望ましく、より好ましくはPtである。   In the present invention, noble metals (including alloys) used in combination with the above complex oxide are Au, Ag, platinum group metals (Ru, Rh, Pd, Os, Ir, Pt) and alloys thereof. Depending on the purpose of use, the optimum one can be selected and used as appropriate, but from the viewpoint of durability and stability, it is selected from the group consisting of Pt, Rh, Pd, Ru, and Ag. At least one is desirable, more preferably Pt.

上記の耐一酸化炭素被毒触媒は、燃料電池のアノード電極において、改質された水素富化ガス中に存在する、あるいはメタノールの分解過程で生じるような一酸化炭素の少なくとも一部を酸化するために用いられる。   The above-described carbon monoxide-resistant poisoning catalyst oxidizes at least a part of carbon monoxide present in the reformed hydrogen-enriched gas or generated in the decomposition process of methanol at the anode electrode of the fuel cell. Used for.

上記の耐一酸化炭素被毒触媒は、例えば、Ptなどの貴金属を複合酸化物の二次粒子中に含浸させた粉末をペースト状に加工し、スルホン酸膜を電解質とし、カーボン、またはカーボンと触媒作用のある金属との複合体を電極とした、固体高分子電解質型燃料電池のアノード極のカーボン電極上に塗布し、アノード極に存在する触媒作用のある金属の一酸化炭素による被毒を防止するために用いられる。ここでいう、カーボンと触媒作用のある金属としては、例えば、Pt、Ruなどが挙げられるが、これらに何ら制限されるものではない。   The above-mentioned carbon monoxide-resistant poisoning catalyst is, for example, a powder obtained by impregnating secondary particles of a composite oxide with a noble metal such as Pt into a paste, and using a sulfonic acid film as an electrolyte, carbon, or carbon and It is applied onto the carbon electrode of the anode electrode of a solid polymer electrolyte fuel cell using a composite with a catalytic metal as an electrode, and poisoning by carbon monoxide with a catalytic metal existing in the anode electrode is applied. Used to prevent. Examples of the metal having a catalytic action with carbon here include Pt and Ru, but are not limited thereto.

本発明では、上記化学式(1)で表され、ペロブスカイト構造を有する複合酸化物を固体高分子電解質型燃料電池アノード電極触媒として用いることにより、好ましくは上記化学式(1)と、少なくとも1種の貴金属から構成されるものを該アノード電極触媒として用いることにより、より好ましくは上記化学式(1’)で表され、ペロブスカイト構造を有する複合酸化物と、少なくとも1種の貴金属を、複合酸化物に対して、重量比として、少なくとも0.1wt%用いて構成されたことを特徴とする固体高分子電解質型燃料電池アノード電極触媒を用いることにより、金属または単純な酸化物(後述する比較例1、2参照のこと)にPtなどを担持させた場合に比べて、低温でも高い効率で一酸化炭素を二酸化炭素に浄化することが可能である。その結果、上記触媒を、スルホン酸膜を電解質とし、カーボン、またはカーボンと触媒作用のある金属との複合体を電極とした固体高分子電解質型燃料電池のアノード電極と組み合わせて用いることにより、アノード電極の耐一酸化炭素被毒性が向上し、固体高分子電解質型燃料電池の出力向上が可能である。   In the present invention, by using a composite oxide represented by the chemical formula (1) and having a perovskite structure as a solid polymer electrolyte fuel cell anode electrode catalyst, preferably the chemical formula (1) and at least one noble metal are used. More preferably, a composite oxide represented by the above chemical formula (1 ′) having a perovskite structure and at least one noble metal are used with respect to the composite oxide. By using a solid polymer electrolyte fuel cell anode electrode catalyst characterized in that the weight ratio is at least 0.1 wt%, a metal or a simple oxide (see Comparative Examples 1 and 2 described later) Carbon monoxide can be purified to carbon dioxide with high efficiency even at low temperatures compared to the case where Pt is supported on A. As a result, the catalyst is used in combination with an anode electrode of a solid polymer electrolyte fuel cell using a sulfonic acid membrane as an electrolyte and carbon or a composite of carbon and a catalytic metal as an electrode. The carbon monoxide resistance of the electrode is improved, and the output of the solid polymer electrolyte fuel cell can be improved.

本発明の固体高分子電解質型燃料電池用のアノード電極触媒は、Tiを含む上記一般式(1)で表され、ペロブスカイト構造を有する複合酸化物を用いてなることを特徴とするものである。好ましくは該複合酸化物とPt等の貴金属から構成されており、より好ましくは上記化学式(1’)で表され、ペロブスカイト構造を有する複合酸化物と、少なくとも1種の貴金属を、該複合酸化物に対して、重量比として、少なくとも0.1wt%用いて構成されてなるものである。これにより、水素富化ガス中の一酸化炭素を、水蒸気雰囲気中にて選択的に酸化し、二酸化炭素に浄化することによってアノード電極の一酸化炭素被毒を防止することができる。   The anode electrode catalyst for a solid polymer electrolyte fuel cell according to the present invention is characterized by using a composite oxide represented by the above general formula (1) containing Ti and having a perovskite structure. Preferably, the composite oxide is composed of a noble metal such as Pt, more preferably the composite oxide represented by the chemical formula (1 ′) and having a perovskite structure, and at least one kind of noble metal. On the other hand, the weight ratio is at least 0.1 wt%. Thus, carbon monoxide poisoning in the anode electrode can be prevented by selectively oxidizing carbon monoxide in the hydrogen-enriched gas in a water vapor atmosphere and purifying it into carbon dioxide.

Tiを含み、化学式(1);A(Ti1−y)O3−δ(式中のAはアルカリ土類金属元素、アルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示し、Bは遷移金属元素およびスズより選ばれた少なくとも1種の元素を示し、0≦y≦0.6であり、δは酸素欠損量または酸素過剰量を表す。)で表されるペロブスカイト構造を有する複合酸化物ないし化学式(1’);(A’1−xA”)(Ti1−y)O3−δ(式中のA’はアルカリ土類金属元素より選ばれた少なくとも1種の元素を示し、A”はアルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示し、xが0≦x≦0.2であり、Bは遷移金属元素およびスズより選ばれた少なくとも1種類の元素を示し、0≦y≦0.6であり、δは酸素欠損量または酸素過剰量を表す。)で表されるペロブスカイト構造を有する複合酸化物は、固相反応法、クエン酸法やペチニ法といったほとんどすべての酸化物の合成法を用いて得ることが出来、その粉末は、二次粒子径の平均値において、大きくとも5μm以下の微粉末であり、粉末としてのみならず、粒状やペレット状の形状に成型して用いること、スラリーやペーストにしてアノード電極に塗布するなどして用いることもできる。 Including Ti, chemical formula (1); A (Ti 1-y B y ) O 3-δ (where A is selected from the group consisting of alkaline earth metal elements, alkali metal elements, lanthanoids, yttrium and scandium) (At least one element is represented, B represents at least one element selected from a transition metal element and tin, 0 ≦ y ≦ 0.6, and δ represents an oxygen deficiency amount or an oxygen excess amount.) A complex oxide having a perovskite structure represented by the formula (1 ′); (A ′ 1−x A ″ x ) (Ti 1−y B y ) O 3−δ (where A ′ is an alkaline earth) A "represents at least one element selected from metal elements, A" represents at least one element selected from the group consisting of alkali metal elements, lanthanoids, yttrium and scandium, and x is 0≤x≤0.2 And B Represents at least one element selected from a transition metal element and tin, 0 ≦ y ≦ 0.6, and δ represents an oxygen deficiency amount or an oxygen excess amount.) A composite having a perovskite structure Oxides can be obtained by using almost all oxide synthesis methods such as solid phase reaction method, citric acid method and petini method, and the powder has an average secondary particle size of 5 μm or less at most. It is a fine powder and can be used not only as a powder, but also in a granular or pellet shape, or applied to an anode electrode as a slurry or paste.

上記化学式(1)ないし(1’)におけるδは、ペロブスカイト構造を維持するために、δ<0.5であることが望ましい。δの範囲としては、好ましくは−0.15<δ<0.5である。また特に好ましくは−0.05<δ<0.2である。   In the chemical formulas (1) to (1 ′), δ is preferably δ <0.5 in order to maintain the perovskite structure. The range of δ is preferably −0.15 <δ <0.5. Particularly preferably, -0.05 <δ <0.2.

このアノード電極触媒用の複合酸化物は、一般的な固相反応法を用いても作製できるが、より活性の高い粉末を得るためには、クエン酸塩法、シュウ酸塩法のような液相法を用いることが望ましく、得られた二次粒子径は5μm以下である必要があり、1μm以下であることが望ましい。これら液相法の製造方法は、既に公知な製法として確立されており、クエン酸塩法は、後述する実施例に記載した特開平2−74505号公報に記載された方法と同様にして製造することができるものであり、シュウ酸塩法に関しても、同様に従来公知の製法を用いて製造することができる。   The composite oxide for the anode electrode catalyst can be prepared by using a general solid phase reaction method, but in order to obtain a more active powder, a liquid such as a citrate method or an oxalate method is used. It is desirable to use a phase method, and the obtained secondary particle size needs to be 5 μm or less, and desirably 1 μm or less. Production methods for these liquid phase methods have already been established as known production methods, and the citrate method is produced in the same manner as the method described in JP-A-2-74505 described in Examples described later. As for the oxalate method, it can be similarly produced using a conventionally known production method.

このアノード電極触媒用の複合酸化物と組み合わせて用いられる金属は、少なくとも1種の貴金属(合金を含む)からなる必要があり、該複合酸化物に対して、重量比として、0.1wt%以上、好ましくは0.5〜10wt%の範囲で用いるのが望ましい。上記複合酸化物と組み合わせて用いられる貴金属の使用の方法、形状、形態は問わないが、それら貴金属の微粒子が、複合酸化物の二次粒子中に含浸、または二次粒子の表面に分布していることが望ましい。該貴金属としては、特に制限されるものではないが、Pt、Rh、Pd、RuおよびAgよりなる群から選ばれた少なくとも1種の金属(合金を含む)が耐久性、安定性という観点から望ましく、特に望ましくはPtである。   The metal used in combination with the composite oxide for the anode electrode catalyst must be composed of at least one kind of noble metal (including an alloy), and the weight ratio is 0.1 wt% or more with respect to the composite oxide. It is desirable to use in the range of 0.5 to 10 wt%. The method, shape and form of the noble metal used in combination with the composite oxide are not limited, but the fine particles of the noble metal are impregnated in the composite oxide secondary particles or distributed on the surface of the secondary particles. It is desirable. The noble metal is not particularly limited, but at least one metal (including an alloy) selected from the group consisting of Pt, Rh, Pd, Ru and Ag is desirable from the viewpoint of durability and stability. Particularly preferred is Pt.

このように、Tiを含み、酸素を欠損させた上記化学式(1)ないし(1’)で表される複合酸化物とPtなどの貴金属を組み合わせることによって、Ptなどの貴金属の電子状態が変化し、一酸化炭素の吸着性に変化を与えると同時に、一酸化炭素と反応しやすいように、酸素が活性化する。この作用に基づいて、本発明を完成するに至ったものである。   As described above, by combining the complex oxide represented by the above chemical formulas (1) to (1 ′) containing Ti and oxygen-deficient with the noble metal such as Pt, the electronic state of the noble metal such as Pt is changed. In addition, oxygen is activated so that the adsorption property of carbon monoxide is changed, and at the same time, the carbon monoxide is easily reacted. Based on this action, the present invention has been completed.

上記の作用に基づいて一酸化炭素を浄化するアノード電極触媒は、たとえば、Ptなどの貴金属を上記複合酸化物の二次粒子中に含浸させた粉末をペースト状に加工し、スルホン酸膜を電解質とし、カーボン、またはカーボンと触媒作用のある金属との複合体を電極とした、固体高分子電解質型燃料電池のアノード極のカーボン電極上に塗布するなどして用いられる。   The anode electrode catalyst for purifying carbon monoxide based on the above action is obtained by, for example, processing a powder obtained by impregnating secondary particles of the composite oxide with a noble metal such as Pt into a paste, and converting the sulfonic acid membrane into an electrolyte. In addition, carbon or a composite of carbon and a metal having a catalytic action is used as an electrode and is applied onto a carbon electrode of an anode electrode of a solid polymer electrolyte fuel cell.

すなわち、本発明に係る固体高分子型燃料電池としては、上述してなる本発明の固体高分子電解質型燃料電池アノード電極触媒を用いてなるものであればよく、特に制限されるべきものではないが、好ましくは、更に、スルホン酸膜を電解質とし、カーボンまたはカーボンと触媒作用のある金属との複合体を電極としてなるものが望ましい。   That is, the polymer electrolyte fuel cell according to the present invention is not particularly limited as long as it uses the solid polymer electrolyte fuel cell anode electrode catalyst of the present invention described above. However, it is preferable that a sulfonic acid membrane is used as an electrolyte and carbon or a composite of carbon and a metal having a catalytic action is used as an electrode.

上記電解質として好適に用いられるスルホン酸膜としては、例えば、パーフルオロスルホン酸膜、具体的には、下記化学構造式において、m≧1、n=2、x=5〜13.5、y=1000であるデュポン社製のNafion(登録商標)117;m=0、n=1〜5である旭硝子株式会社製のFlemion(登録商標);m=0、3、n=2〜5、x=1.5〜14である旭化成株式会社製のAciplex(登録商標)などの市販されているパーフルオロスルホン酸系膜などが利用できるが、これらに何ら制限されるものではない。   Examples of the sulfonic acid membrane suitably used as the electrolyte include, for example, a perfluorosulfonic acid membrane, specifically, in the following chemical structural formula, m ≧ 1, n = 2, x = 5 to 13.5, y = Nafion (registered trademark) 117 manufactured by DuPont, which is 1000; Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., where m = 0 and n = 1-5; m = 0, 3, n = 2-5, x = Commercially available perfluorosulfonic acid-based membranes such as Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., which are 1.5 to 14, can be used, but are not limited thereto.

Figure 2005050760
Figure 2005050760

また、上記電極として好適に用いられるカーボンまたはカーボンと触媒作用のある金属との複合体としても、特に制限されるものではない。このうち、複合体としては、電極のうちアノード(燃料極)では、上記した本発明のカソード電極触媒をカーボンと触媒作用のある金属として用いて薄膜に成型した触媒層と、この触媒層を支持する多孔質のカーボンペーパーあるいはカーボン布からなるものなどが挙げられる。また、カソード(空気極)としては、例えば、既存の貴金属担持カーボン触媒粉末などをカーボンと触媒作用のある金属として用いて薄膜に成型した触媒層と、この触媒層を支持する多孔質のカーボンペーパーあるいはカーボン布からなるものなどが挙げられる。   Further, the carbon suitably used as the electrode or a composite of carbon and a catalytic metal is not particularly limited. Among these, as a composite, the anode (fuel electrode) of the electrodes supports a catalyst layer formed into a thin film using the above-described cathode electrode catalyst of the present invention as carbon and a metal having a catalytic action, and supports this catalyst layer. And porous carbon paper or carbon cloth. As the cathode (air electrode), for example, a catalyst layer formed into a thin film using an existing noble metal-supported carbon catalyst powder or the like as a metal having a catalytic action with carbon, and porous carbon paper supporting this catalyst layer Or what consists of carbon cloth is mentioned.

また、これらの電極をその触媒層が上記電解質膜と接するようにして膜の両面に配し、これらを熱圧着で一体化して、膜/電極接合体(MEA)として用いても良い。該MEAの製造法などに関しても、特に制限されるものではなく、従来既知の製造技術を用いて作成することができる。すなわち、本発明の固体高分子型燃料電池では、上記構成要件以外の要件に関しては、何ら制限されるべきものではなく、従来公知の固体高分子型燃料電池構成要件の中から適宜選択して幅広く適用できるものである。さらに、こうした電池の製造に関しても既存の製造技術等を幅広く適用できるものである。   Alternatively, these electrodes may be arranged on both surfaces of the membrane so that the catalyst layer is in contact with the electrolyte membrane, and these may be integrated by thermocompression bonding and used as a membrane / electrode assembly (MEA). The MEA production method and the like are not particularly limited, and can be prepared using a conventionally known production technique. That is, in the polymer electrolyte fuel cell of the present invention, the requirements other than the above-mentioned configuration requirements should not be limited at all, and can be selected from a wide range of conventionally known polymer electrolyte fuel cell configuration requirements. Applicable. Furthermore, existing manufacturing techniques can be widely applied to the manufacture of such batteries.

以下に本発明を実施例、比較例によって詳細に説明するが、本発明はこれら実施例に限定されるものではなく、金属を複合酸化物中に含浸させることは、必ずしも必要ではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples. However, the present invention is not limited to these examples, and it is not always necessary to impregnate a complex oxide with a metal.

(実施例1)SrTiO3−δ+0.5%Pt
ストロンチウムの炭酸塩、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:Ti=1:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ0.01であった。また、この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
Example 1 SrTiO 3 -δ + 0.5% Pt
Starting from strontium carbonate and titanium alkoxide, the composition ratio (atomic ratio) is Sr: Ti = 1: 1, and in the same manner as described in JP-A-2-74505, After producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1200 ° C. for 10 hours in the air, the powder obtained is pulverized with a ball mill and an average particle size of 5 μm A composite oxide fine powder having a particle size adjusted as follows was obtained. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was 0.01 as determined by chemical titration. The perovskite structure of this composite oxide fine powder was confirmed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(実施例2)Sr0.95La0.05TiO3−δ+0.5%Pt
ストロンチウム、ランタンの炭酸塩、もしくは水酸化物、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:La:Ti=0.95:0.05:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ−0.02(つまり、複合酸化物微粉末の組成は、Sr0.95La0.05TiO3.02であり、酸素が過剰な状態であった。)であった。この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 2) Sr 0.95 La 0.05 TiO 3-δ + 0.5% Pt
Starting from strontium, lanthanum carbonate or hydroxide, titanium alkoxide, the composition ratio (atomic ratio) is Sr: La: Ti = 0.95: 0.05: 1. In the same manner as described in Japanese Patent No. 2-74505, after producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1200 ° C. for 10 hours are performed in the air. The powder obtained was pulverized with a ball mill to obtain a composite oxide fine powder having an average particle size adjusted to 5 μm or less. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was determined by chemical titration to be −0.02 (that is, the composition of the composite oxide fine powder was Sr 0.95 La 0.05 TiO 3. .02 and oxygen was in excess. Confirmation of the perovskite structure of the composite oxide fine powder was performed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution, and at 450 ° C. for 6 hours. Was fired and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(実施例3)SrTiO3−δ+0.25%Pt+0.25%Ag
ストロンチウムの炭酸塩、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:Ti=1:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ0.01であった。また、この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.25wt%、Agの重量が担体である該複合酸化物微粉末に対して0.25wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液、硝酸銀溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、PtとAgを担持した複合酸化物微粉末を得た。このPt・Ag担持複合酸化物微粉末のPt及びAg微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt・Ag担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 3) SrTiO 3 -δ + 0.25% Pt + 0.25% Ag
Starting from strontium carbonate and titanium alkoxide, the composition ratio (atomic ratio) is Sr: Ti = 1: 1, and in the same manner as described in JP-A-2-74505, After producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1200 ° C. for 10 hours in the air, the powder obtained is pulverized with a ball mill and an average particle size of 5 μm A composite oxide fine powder having a particle size adjusted as follows was obtained. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was 0.01 as determined by chemical titration. The perovskite structure of this composite oxide fine powder was confirmed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. In this composite oxide fine powder, the weight of Pt is 0.25 wt% with respect to the composite oxide fine powder as a support, and the weight of Ag is 0.25 wt% with respect to the composite oxide fine powder as a support. The mixture was impregnated with a neutralized dinitrodiamine platinum nitric acid solution and silver nitrate solution, fired at 450 ° C. for 6 hours, and further pulverized to obtain a composite oxide fine powder carrying Pt and Ag. The average particle size of Pt and Ag fine particles of this Pt / Ag-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt / Ag-supported composite oxide powder is placed in a quartz reactor as a carbon monoxide poisoning catalyst, and a mixed gas containing water vapor and carbon monoxide whose flow rate is adjusted is allowed to flow into the reactor, and the discharged gas is discharged. Component analysis was performed by gas chromatography to evaluate the performance of the carbon monoxide poisoning catalyst.

(実施例4)Sr0.95Nd0.05TiO3−δ+0.5%Pt
ストロンチウムおよびネオジウムの炭酸塩、または水酸化物、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:Nd:Ti=0.95:0.05:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ−0.01(つまり、複合酸化物微粉末の組成は、Sr0.95La0.05TiO3.01であり、酸素が過剰な状態であった。)であった。この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 4) Sr 0.95 Nd 0.05 TiO 3-δ + 0.5% Pt
Starting from strontium and neodymium carbonates, or hydroxides and alkoxides of titanium, the composition ratio (atomic ratio) is Sr: Nd: Ti = 0.95: 0.05: 1. In the same manner as described in Japanese Patent No. 2-74505, after producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1200 ° C. for 10 hours are performed in the air. The powder obtained was pulverized with a ball mill to obtain a composite oxide fine powder having an average particle size adjusted to 5 μm or less. The oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was -0.01 (that is, the composition of the composite oxide fine powder was Sr 0.95 La 0.05 TiO 3. .01 and oxygen was in excess. Confirmation of the perovskite structure of the composite oxide fine powder was performed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(実施例5)Ca0.95Pr0.05TiO3−δ+0.5%Pt
カルシウムおよびプラセオジウムの炭酸塩、または水酸化物、チタンのアルコキシドを出発原料とし、組成比(原子比)がCa:Pr:Ti=0.95:0.05:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ0.01であった。また、この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 5) Ca 0.95 Pr 0.05 TiO 3 -δ + 0.5% Pt
Starting from calcium and praseodymium carbonates or hydroxides and alkoxides of titanium, the composition ratio (atomic ratio) is Ca: Pr: Ti = 0.95: 0.05: 1. In the same manner as described in Japanese Patent No. 2-74505, after producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1200 ° C. for 10 hours are performed in the air. The powder obtained was pulverized with a ball mill to obtain a composite oxide fine powder having an average particle size adjusted to 5 μm or less. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was 0.01 as determined by chemical titration. The perovskite structure of this composite oxide fine powder was confirmed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(実施例6)Ba0.970.03TiO3−δ+0.5%Pt
バリウムおよびカリウムの炭酸塩、または水酸化物、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:Nd:Ti=0.97:0.03:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1150℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ0.02であった。また、この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 6) Ba 0.97 K 0.03 TiO 3-δ + 0.5% Pt
Starting from barium and potassium carbonate, hydroxide, or titanium alkoxide, the composition ratio (atomic ratio) is Sr: Nd: Ti = 0.97: 0.03: 1. In the same manner as described in Japanese Patent No. 2-74505, after producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1150 ° C. for 10 hours in the air The powder obtained was pulverized with a ball mill to obtain a composite oxide fine powder having an average particle size adjusted to 5 μm or less. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was 0.02 as determined by chemical titration. The perovskite structure of this composite oxide fine powder was confirmed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(実施例7)Sr0.95La0.05Ti0.7Sn0.33−δ+0.5%Pt
ストロンチウム、ランタンおよびスズの炭酸塩、または水酸化物、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:La:Ti:Sn=0.95:0.05:0.7:0.3となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1150℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ−0.03(つまり、複合酸化物微粉末の組成は、Sr0.95La0.05TiO3.03であり、酸素が過剰な状態であった。)であった。この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 7) Sr 0.95 La 0.05 Ti 0.7 Sn 0.3 O 3-δ + 0.5% Pt
Starting from strontium, lanthanum and tin carbonates, or hydroxides and titanium alkoxides, the composition ratio (atomic ratio) is Sr: La: Ti: Sn = 0.95: 0.05: 0.7: 0. .3, and in the same manner as described in JP-A-2-74505, after reacting with citric acid to produce a composite citrate powder, calcining at 600 ° C. for 10 hours, 1150 ° C. The powder obtained by firing for 10 hours in the air was pulverized with a ball mill to obtain a fine composite oxide powder having an average particle size adjusted to 5 μm or less. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was determined by chemical titration to be −0.03 (that is, the composition of the composite oxide fine powder was Sr 0.95 La 0.05 TiO 3. 0.03 and oxygen was in excess. Confirmation of the perovskite structure of the composite oxide fine powder was performed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(実施例8)Sr0.95La0.05TiO3−δ+5.0%Pt
ストロンチウム、ランタンの炭酸塩、もしくは水酸化物、チタンのアルコキシドを出発原料とし、組成比(原子比)がSr:La:Ti=0.95:0.05:1となるように加え、特開平2−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ−0.02(つまり、複合酸化物微粉末の組成は、Sr0.95La0.05TiO3.02であり、酸素が過剰な状態であった。)であった。また、この複合酸化物微粉末のペロブスカイト構造の確認は粉末X線回折測定によった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して5.0wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末をとして石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Example 8) Sr 0.95 La 0.05 TiO 3-δ + 5.0% Pt
Starting from strontium, lanthanum carbonate or hydroxide, titanium alkoxide, the composition ratio (atomic ratio) is Sr: La: Ti = 0.95: 0.05: 1. In the same manner as described in Japanese Patent No. 2-74505, after producing a composite citrate powder by reacting with citric acid, calcining at 600 ° C. for 10 hours and firing at 1200 ° C. for 10 hours are performed in the air. The powder obtained was pulverized with a ball mill to obtain a composite oxide fine powder having an average particle size adjusted to 5 μm or less. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was determined by chemical titration to be −0.02 (that is, the composition of the composite oxide fine powder was Sr 0.95 La 0.05 TiO 3. .02 and oxygen was in excess. The perovskite structure of this composite oxide fine powder was confirmed by powder X-ray diffraction measurement. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. This composite oxide fine powder was adjusted so that the weight of Pt was 5.0 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This Pt-supported composite oxide fine powder is placed in a quartz reaction vessel, a mixed gas containing water vapor and carbon monoxide whose flow rate is adjusted is flowed into the reaction vessel, and the discharged gas is subjected to component analysis by gas chromatography, The performance of carbon monoxide poisoning catalyst was evaluated.

(比較例1)TiO+0.5%Pt
市販品のチタニアに、Ptの重量が担体であるチタニアに対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した酸化物微粉末を得た。このPt担持酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
Comparative Example 1 TiO 2 + 0.5% Pt
A commercially available titania was adjusted so that the weight of Pt was 0.5 wt% with respect to titania as a carrier, impregnated with a neutralized dinitrodiamine platinum nitric acid solution, and baked at 450 ° C. for 6 hours. Further, pulverization was performed to obtain oxide fine powder supporting Pt. The average particle diameter of the Pt fine particles of this Pt-supported oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported oxide powder is placed in a quartz reactor as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is passed through the reactor, and the exhausted gas is subjected to gas chromatography. The component analysis was carried out to evaluate the performance of the carbon monoxide-resistant poisoning catalyst.

(比較例2)Al+0.5%Pt
市販品のアルミナに、Ptの重量が担体であるアルミナに対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した酸化物微粉末を得た。このPt担持酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
Comparative Example 2 Al 2 O 3 + 0.5% Pt
Adjust the commercially available alumina so that the weight of Pt is 0.5 wt% with respect to the alumina as the carrier, impregnate the neutralized dinitrodiamine platinum nitric acid solution, perform firing at 450 ° C. for 6 hours, Further, pulverization was performed to obtain oxide fine powder supporting Pt. The average particle diameter of the Pt fine particles of this Pt-supported oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported oxide powder is placed in a quartz reactor as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is passed through the reactor, and the exhausted gas is subjected to gas chromatography. The component analysis was carried out to evaluate the performance of the carbon monoxide-resistant poisoning catalyst.

(比較例3)Sr0.95La0.05MnO3−δ+0.5%Pt
ストロンチウム、ランタン、マンガンの炭酸塩、もしくは水酸化物を出発原料とし、組成比(原子比)がSr:La:Mn=0.95:0.05:1となるように加え、特開平−74505号公報に記載された方法と同様にして、クエン酸と反応させ複合クエン酸塩粉末を製造後、600℃で10時間の仮焼、1200℃で10時間の焼成を大気中で行って得られた粉末をボールミルで粉砕し、平均粒径5μm以下に粒度調整された複合酸化物微粉末を得た。得られた複合酸化物微粉末の酸素欠損量または酸素過剰量δは化学滴定によって調べたところ0.1であった。また、この複合酸化物微粉末の構造の確認は粉末X線回折測定により行い、当該複合酸化物もペロブスカイト構造を有することがわかった。この複合酸化物微粉末の二次粒子の平均粒径は、光散乱方式の粒度分布計によって測定した結果、1μmであった。この複合酸化物微粉末に、Ptの重量が担体である該複合酸化物微粉末に対して0.5wt%となるように調整し、中和したジニトロジアミン白金硝酸溶液を含浸させ、450℃で6時間の焼成を行い、さらに粉砕し、Ptを担持した複合酸化物微粉末を得た。このPt担持複合酸化物微粉末のPt微粒子の平均粒径は、透過型電子顕微鏡を用いて測定した結果、5nmであった。このPt担持複合酸化物微粉末を耐一酸化炭素被毒触媒として石英反応菅内に配置し、流量調整された水蒸気と一酸化炭素を含む混合ガスを反応菅に流し、排出されたガスをガスクロマトグラフィーによって成分分析を行い、耐一酸化炭素被毒触媒の性能評価を行った。
(Comparative Example 3) Sr 0.95 La 0.05 MnO 3-δ + 0.5% Pt
Starting from strontium, lanthanum, manganese carbonate or hydroxide, the composition ratio (atomic ratio) is Sr: La: Mn = 0.95: 0.05: 1. In the same manner as in the method described in the publication No. 1, the composite citrate powder is produced by reacting with citric acid, and then calcined at 600 ° C. for 10 hours and calcined at 1200 ° C. for 10 hours in the air. The powder was pulverized with a ball mill to obtain a composite oxide fine powder having an average particle size of 5 μm or less. The amount of oxygen deficiency or oxygen excess δ of the obtained composite oxide fine powder was 0.1 by chemical titration. The structure of the composite oxide fine powder was confirmed by powder X-ray diffraction measurement, and it was found that the composite oxide also had a perovskite structure. The average particle diameter of the secondary particles of the composite oxide fine powder was 1 μm as a result of measurement by a light scattering type particle size distribution meter. The composite oxide fine powder was adjusted so that the weight of Pt was 0.5 wt% with respect to the composite oxide fine powder as a carrier, and impregnated with a neutralized dinitrodiamine platinum nitric acid solution at 450 ° C. Firing was performed for 6 hours, and further pulverized to obtain a fine powder of composite oxide carrying Pt. The average particle size of the Pt fine particles of this Pt-supported composite oxide fine powder was 5 nm as a result of measurement using a transmission electron microscope. This fine Pt-supported composite oxide powder is placed in a quartz reaction vessel as a carbon monoxide-resistant poisoning catalyst, a mixed gas containing water vapor and carbon monoxide whose flow rate has been adjusted is allowed to flow into the reaction vessel, and the discharged gas is gas chromatographed. The components were analyzed by chromatography, and the performance of the carbon monoxide-resistant catalyst was evaluated.

(試験例)
実施例1〜8および比較例1〜3で得られた耐一酸化炭素被毒触媒性能を、下記の条件下で評価を行うことにより判断した。
(Test example)
The carbon monoxide-resistant poisoning catalyst performance obtained in Examples 1 to 8 and Comparative Examples 1 to 3 was judged by evaluating under the following conditions.

(耐一酸化炭素被毒性能)
水素富化ガス中における触媒の耐一酸化炭素被毒性能は、触媒反応前の入力ガス中の一酸化炭素濃度、触媒反応後の出力ガス中の一酸化炭素濃度、二酸化炭素濃度をガスクロマトグラフィーによって分析することで評価した。
(Carbon monoxide poisoning resistance)
The carbon monoxide poisoning performance of the catalyst in hydrogen-enriched gas is determined by gas chromatography using the carbon monoxide concentration in the input gas before the catalytic reaction, the carbon monoxide concentration in the output gas after the catalytic reaction, and the carbon dioxide concentration. It was evaluated by analyzing by.

(ガス分析反応条件)
水蒸気と一酸化炭素を含み、表1のように組成を調整したガスを190℃に予熱しながら、流量20L/hrにて、0.5ccの触媒を設置した石英反応菅に流通させて、一酸化炭素を酸化させ、二酸化炭素に改質させた。改質前と改質後のガスに含まれる一酸化炭素濃度、および二酸化炭素濃度を基に、触媒の一酸化炭素浄化率を求めた。
(Gas analysis reaction conditions)
A gas containing water vapor and carbon monoxide and having a composition adjusted as shown in Table 1 was preheated to 190 ° C. and passed through a quartz reactor equipped with a 0.5 cc catalyst at a flow rate of 20 L / hr. Carbon oxide was oxidized and modified to carbon dioxide. Based on the concentration of carbon monoxide and the concentration of carbon dioxide contained in the gas before and after reforming, the carbon monoxide purification rate of the catalyst was determined.

以上のようにして得られたガス分析による一酸化炭素浄化率を実施例1〜8および比較例1〜3について表2に示す。   The carbon monoxide purification rate by gas analysis obtained as described above is shown in Table 2 for Examples 1 to 8 and Comparative Examples 1 to 3.

Figure 2005050760
Figure 2005050760

Figure 2005050760
Figure 2005050760

これらの結果から明らかなように、本発明における耐一酸化炭素被毒触媒材料において、上記化学式(1)、とりわけ式(1)中のAがA’1−xA”である、下記化学式(1’) As is apparent from these results, in the carbon monoxide-resistant poisoning catalyst material of the present invention, the chemical formula (1), particularly A in formula (1) is A ′ 1-x A ″ x (1 ')

Figure 2005050760
Figure 2005050760

で表されるペロブスカイト構造を有する複合酸化物(式中のA’はアルカリ土類金属元素より選ばれた少なくとも1種の元素を示し、A”はアルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示し、xが0≦x≦0.2であり、Bは遷移金属元素およびスズより選ばれた少なくとも1種の元素を示し、0≦y≦0.6である。更にδに特に規定はなく、酸素欠損量または酸素過剰量を表す。好ましくはペロブスカイト構造を維持するために、δ<0.5である。)と、少なくとも1種の貴金属(合金を含む)を、複合酸化物に対して、重量比として、少なくとも0.1wt%用いて構成されたことを特徴とする固体高分子電解質型燃料電池アノード電極触媒を用いることにより、高い効率で一酸化炭素を二酸化炭素に浄化することが可能であり、スルホン酸膜を電解質とし、カーボン、またはカーボンと触媒作用のある金属との複合体を電極とした、固体高分子電解質型燃料電池のアノード電極と組み合わせて用いることにより、アノード極の耐一酸化炭素被毒性が向上し、固体高分子電解質型燃料電池の出力を向上させることが可能である。 (A ′ represents at least one element selected from alkaline earth metal elements, and A ″ represents a group consisting of an alkali metal element, a lanthanoid, yttrium, and scandium) X represents 0 ≦ x ≦ 0.2, B represents at least one element selected from a transition metal element and tin, and 0 ≦ y ≦ 0.6 Further, δ is not particularly defined and represents an oxygen deficiency or oxygen excess (preferably δ <0.5 in order to maintain a perovskite structure) and at least one noble metal (alloy). By using a solid polymer electrolyte fuel cell anode electrode catalyst characterized by comprising at least 0.1 wt% as a weight ratio with respect to the composite oxide It is possible to purify carbon monoxide to carbon dioxide with high efficiency, solid polymer electrolyte type using sulfonic acid membrane as electrolyte and carbon or composite of carbon and catalytic metal as electrode By using in combination with the anode electrode of the fuel cell, the carbon monoxide poisoning resistance of the anode electrode can be improved, and the output of the solid polymer electrolyte fuel cell can be improved.

Claims (6)

下記化学式(1)
Figure 2005050760
(式中のAはアルカリ土類金属元素、アルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示し、Bは遷移金属元素およびスズより選ばれた少なくとも1種の元素を示し、0≦y≦0.6であり、δは酸素欠損量または酸素過剰量を表す。)で表され、ペロブスカイト構造を有する複合酸化物を用いてなることを特徴とする固体高分子電解質型燃料電池アノード電極触媒。
The following chemical formula (1)
Figure 2005050760
(In the formula, A represents at least one element selected from the group consisting of alkaline earth metal elements, alkali metal elements, lanthanoids, yttrium and scandium, and B represents at least one element selected from transition metal elements and tin. Wherein 0 ≦ y ≦ 0.6, and δ represents an oxygen deficiency amount or oxygen excess amount), and a composite oxide having a perovskite structure is used. Molecular electrolyte fuel cell anode electrode catalyst.
前記複合酸化物と、
少なくとも1種の貴金属から構成されることを特徴とする請求項1に記載の固体高分子電解質型燃料電池アノード電極触媒。
The composite oxide;
2. The solid polymer electrolyte fuel cell anode electrode catalyst according to claim 1, comprising at least one kind of noble metal.
前記化学式(1)において、Aが下記化学式(2)
Figure 2005050760
で表され、ペロブスカイト構造を有する複合酸化物、すなわち、化学式(1’)
Figure 2005050760
(式中のA’はアルカリ土類金属元素より選ばれた少なくとも1種の元素を示し、A”はアルカリ金属元素、ランタノイド、イットリウムおよびスカンジウムよりなる群から選ばれた少なくとも1種の元素を示す。)で表され、ペロブスカイト構造を有する複合酸化物に、前記貴金属が担持されたことを特徴とする請求項1または2に記載の固体高分子電解質型燃料電池アノード電極触媒。
In the chemical formula (1), A represents the following chemical formula (2)
Figure 2005050760
And a composite oxide having a perovskite structure, that is, chemical formula (1 ′)
Figure 2005050760
(A ′ in the formula represents at least one element selected from alkaline earth metal elements, and A ″ represents at least one element selected from the group consisting of alkali metal elements, lanthanoids, yttrium, and scandium. The solid polymer electrolyte fuel cell anode electrode catalyst according to claim 1 or 2, wherein the noble metal is supported on a composite oxide represented by (2) and having a perovskite structure.
前記化学式(2)において、xが0≦x≦0.2であることを特徴とする請求項3に記載の固体高分子電解質型燃料電池アノード電極触媒。   4. The solid polymer electrolyte fuel cell anode electrode catalyst according to claim 3, wherein x is 0 ≦ x ≦ 0.2 in the chemical formula (2). 5. 前記複合酸化物に、
少なくとも1種の貴金属を、複合酸化物に対して、重量比として、少なくとも0.1wt%用いて構成されることを特徴とする請求項1〜4のいずれか1項に記載の固体高分子電解質型燃料電池アノード電極触媒。
In the composite oxide,
5. The solid polymer electrolyte according to claim 1, wherein at least one precious metal is used in a weight ratio of at least 0.1 wt% with respect to the composite oxide. Type fuel cell anode electrode catalyst.
請求項1〜5で示される少なくとも1種の固体高分子電解質型燃料電池アノード電極触媒を用い、スルホン酸膜を電解質とし、カーボン、またはカーボンと触媒作用のある金属との複合体を電極とした固体高分子電解質型燃料電池。   The at least one solid polymer electrolyte fuel cell anode electrode catalyst shown in claims 1 to 5 is used, a sulfonic acid membrane is used as an electrolyte, and carbon or a composite of carbon and a catalytic metal is used as an electrode. Solid polymer electrolyte fuel cell.
JP2003284043A 2003-07-31 2003-07-31 Anode electrode catalyst for solid polymer electrolytic fuel cell Withdrawn JP2005050760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284043A JP2005050760A (en) 2003-07-31 2003-07-31 Anode electrode catalyst for solid polymer electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284043A JP2005050760A (en) 2003-07-31 2003-07-31 Anode electrode catalyst for solid polymer electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JP2005050760A true JP2005050760A (en) 2005-02-24

Family

ID=34268764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284043A Withdrawn JP2005050760A (en) 2003-07-31 2003-07-31 Anode electrode catalyst for solid polymer electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JP2005050760A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012284A (en) * 2005-06-28 2007-01-18 Toshiba Corp Electrode catalyst, manufacturing method thereof, fuel electrode, and fuel cell apparatus
WO2007145215A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
FR2930075A1 (en) * 2008-04-14 2009-10-16 Commissariat Energie Atomique TITANATES OF PEROVSKITE OR DERIVED STRUCTURE AND ITS APPLICATIONS
JP2010238546A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
JP2010238547A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Catalyst carrier for fuel cell, catalyst for fuel cell, and electrode for fuel cell
FR2944784A1 (en) * 2009-04-27 2010-10-29 Commissariat Energie Atomique DOUBLELY SUBSTITUTED BARIUM TITANATES WITH CERIUM AND IRON OR MANGANESE OF PEROVSKITE STRUCTURE
US7862932B2 (en) 2005-03-15 2011-01-04 Kabushiki Kaisha Toshiba Catalyst, electrode, membrane electrode assembly and fuel cell
WO2011059115A1 (en) * 2009-11-16 2011-05-19 住友化学株式会社 Membrane electrode assembly and fuel cell using same
EP2523243A1 (en) 2007-03-09 2012-11-14 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel battery using the same
JP2021136113A (en) * 2020-02-26 2021-09-13 株式会社豊田中央研究所 Poisoning substance extraction device and poisoning state evaluation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862932B2 (en) 2005-03-15 2011-01-04 Kabushiki Kaisha Toshiba Catalyst, electrode, membrane electrode assembly and fuel cell
JP2007012284A (en) * 2005-06-28 2007-01-18 Toshiba Corp Electrode catalyst, manufacturing method thereof, fuel electrode, and fuel cell apparatus
WO2007145215A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
US8007691B2 (en) 2006-06-13 2011-08-30 Hitachi Maxell Energy, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
EP2523243A1 (en) 2007-03-09 2012-11-14 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel battery using the same
FR2930075A1 (en) * 2008-04-14 2009-10-16 Commissariat Energie Atomique TITANATES OF PEROVSKITE OR DERIVED STRUCTURE AND ITS APPLICATIONS
JP2009263225A (en) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique Titanate of perovskite or derived structure thereof, and use thereof
US8247113B2 (en) 2008-04-14 2012-08-21 Commissariat A L'energie Atomique Titanates of perovskite or derived structure and applications thereof
EP2110873A1 (en) * 2008-04-14 2009-10-21 Commissariat à l'Energie Atomique Titanates with perovskite or derivative structure and applications thereof
JP2010238547A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Catalyst carrier for fuel cell, catalyst for fuel cell, and electrode for fuel cell
JP2010238546A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
FR2944784A1 (en) * 2009-04-27 2010-10-29 Commissariat Energie Atomique DOUBLELY SUBSTITUTED BARIUM TITANATES WITH CERIUM AND IRON OR MANGANESE OF PEROVSKITE STRUCTURE
WO2011059115A1 (en) * 2009-11-16 2011-05-19 住友化学株式会社 Membrane electrode assembly and fuel cell using same
JP2021136113A (en) * 2020-02-26 2021-09-13 株式会社豊田中央研究所 Poisoning substance extraction device and poisoning state evaluation method
JP7222944B2 (en) 2020-02-26 2023-02-15 株式会社豊田中央研究所 Poisoning substance extraction device, poisoning state evaluation method, and poisoning state evaluation device

Similar Documents

Publication Publication Date Title
CA2627312C (en) Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
JP5182850B2 (en) Perovskite complex oxide
US8398884B2 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
JP4901143B2 (en) Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst
JP2013154346A (en) Composite material, catalyst containing the same, fuel cell and lithium air cell containing the same
JP2007216221A (en) Carbon monoxide oxidation catalyst for modification device of fuel cell system and its production method, and fuel cell system
JP2005050760A (en) Anode electrode catalyst for solid polymer electrolytic fuel cell
JP2008155111A (en) Acid resistant electrode catalyst
KR101109394B1 (en) Catalyst for Removal of Carbon Monoxide from Hydrogen Gas
JP2005050759A (en) Cathode reaction catalyst for solid polymer electrolytic fuel cell
US20090081511A1 (en) Electrode Catalyst for Fuel Cell
US8298984B2 (en) Non-pyrophoric catalyst for water-gas shift reaction and method of preparing the same
JP2005046808A (en) Catalyst for generating hydrogen
JP5105709B2 (en) Water gas shift reaction catalyst
JP2003144930A (en) Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP2003268386A (en) Method of desulfurization of hydrocarbon, and fuel cell system
JP2006346535A (en) Co removal catalyst and fuel cell system
JP2006294601A (en) Electrocatalyst for fuel cell
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP4127685B2 (en) Carbon monoxide selective methanator, carbon monoxide shift reactor and fuel cell system
JP2009070733A (en) Manufacturing method of single-chamber fuel cell and modified manganese oxide
KR100786870B1 (en) Catalyst for oxidizing carbon monoxide for reformer used in for fuel cell, and fuel cell system comprising same
JPH11165070A (en) Selective oxidation catalyst for co in gaseous hydrogen its production and removing method of co in gaseous hydrogen
JP2004230223A (en) Co oxidation catalyst and production method therefor
JP2004130188A (en) Layered catalyst and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003