JP2010279911A - Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst - Google Patents
Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst Download PDFInfo
- Publication number
- JP2010279911A JP2010279911A JP2009136004A JP2009136004A JP2010279911A JP 2010279911 A JP2010279911 A JP 2010279911A JP 2009136004 A JP2009136004 A JP 2009136004A JP 2009136004 A JP2009136004 A JP 2009136004A JP 2010279911 A JP2010279911 A JP 2010279911A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- cerium
- mixed oxide
- honeycomb carrier
- hydrogen production
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 239
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 91
- 239000001257 hydrogen Substances 0.000 title claims abstract description 81
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 81
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 150000002431 hydrogen Chemical class 0.000 title abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 81
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 77
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims description 105
- 239000002184 metal Substances 0.000 claims description 102
- 239000002002 slurry Substances 0.000 claims description 68
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 37
- 239000007864 aqueous solution Substances 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 21
- 150000002430 hydrocarbons Chemical class 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 19
- 238000006057 reforming reaction Methods 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 229910052723 transition metal Inorganic materials 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 238000005470 impregnation Methods 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 239000006104 solid solution Substances 0.000 claims description 9
- 150000003624 transition metals Chemical class 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 239000011247 coating layer Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 150000001785 cerium compounds Chemical class 0.000 claims description 5
- 238000000975 co-precipitation Methods 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 5
- 238000010298 pulverizing process Methods 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 238000003746 solid phase reaction Methods 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000004453 electron probe microanalysis Methods 0.000 claims 1
- 230000003100 immobilizing effect Effects 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 26
- 239000002994 raw material Substances 0.000 abstract description 22
- 150000003464 sulfur compounds Chemical class 0.000 abstract description 16
- 231100000572 poisoning Toxicity 0.000 abstract description 15
- 230000000607 poisoning effect Effects 0.000 abstract description 15
- -1 hydrocarbon group compound Chemical class 0.000 abstract description 11
- 238000002407 reforming Methods 0.000 abstract description 7
- 238000004939 coking Methods 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000009466 transformation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 39
- 239000007789 gas Substances 0.000 description 34
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 229910052707 ruthenium Inorganic materials 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 238000001035 drying Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 229910000420 cerium oxide Inorganic materials 0.000 description 14
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 14
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 14
- 238000010304 firing Methods 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 7
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 229910052703 rhodium Inorganic materials 0.000 description 7
- 239000010948 rhodium Substances 0.000 description 7
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 7
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 238000000629 steam reforming Methods 0.000 description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 description 6
- 238000001354 calcination Methods 0.000 description 5
- WITQLILIVJASEQ-UHFFFAOYSA-N cerium nickel Chemical compound [Ni].[Ce] WITQLILIVJASEQ-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 150000003754 zirconium Chemical class 0.000 description 5
- 150000000703 Cerium Chemical class 0.000 description 4
- YOSLGHBNHHKHST-UHFFFAOYSA-N cerium manganese Chemical compound [Mn].[Mn].[Mn].[Mn].[Mn].[Ce] YOSLGHBNHHKHST-UHFFFAOYSA-N 0.000 description 4
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 4
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- 231100000614 poison Toxicity 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- FZMFJORHWIAQFU-UHFFFAOYSA-N [Y].[Zr].[Ce] Chemical compound [Y].[Zr].[Ce] FZMFJORHWIAQFU-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- GSVIBLVMWGSPRZ-UHFFFAOYSA-N cerium iron Chemical compound [Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Ce].[Ce] GSVIBLVMWGSPRZ-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002574 poison Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000007581 slurry coating method Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- SLPMWOSBXIRBOE-UHFFFAOYSA-N [N+](=O)(O)[O-].[N+](=O)([O-])[Pt](N)(N)[N+](=O)[O-] Chemical compound [N+](=O)(O)[O-].[N+](=O)([O-])[Pt](N)(N)[N+](=O)[O-] SLPMWOSBXIRBOE-UHFFFAOYSA-N 0.000 description 1
- LENJPRSQISBMDN-UHFFFAOYSA-N [Y].[Ce] Chemical compound [Y].[Ce] LENJPRSQISBMDN-UHFFFAOYSA-N 0.000 description 1
- XSLHKGUJDDLGJK-UHFFFAOYSA-N [Y].[Ni].[Ce] Chemical compound [Y].[Ni].[Ce] XSLHKGUJDDLGJK-UHFFFAOYSA-N 0.000 description 1
- UFNRFBFHJJPDNF-UHFFFAOYSA-N [Zn].[Ce] Chemical compound [Zn].[Ce] UFNRFBFHJJPDNF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- KFVLFWWLSIOANK-UHFFFAOYSA-N cerium cobalt Chemical compound [Co].[Co].[Co].[Co].[Co].[Ce] KFVLFWWLSIOANK-UHFFFAOYSA-N 0.000 description 1
- HSVOJGUOHFQJDO-UHFFFAOYSA-N cerium copper manganese Chemical compound [Mn][Cu][Ce] HSVOJGUOHFQJDO-UHFFFAOYSA-N 0.000 description 1
- QVYLLVQWCWOYCF-UHFFFAOYSA-N cerium iron manganese Chemical compound [Mn][Fe][Ce] QVYLLVQWCWOYCF-UHFFFAOYSA-N 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002504 iridium compounds Chemical class 0.000 description 1
- GSNZLGXNWYUHMI-UHFFFAOYSA-N iridium(3+);trinitrate Chemical compound [Ir+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GSNZLGXNWYUHMI-UHFFFAOYSA-N 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 1
- UYXRCZUOJAYSQR-UHFFFAOYSA-N nitric acid;platinum Chemical compound [Pt].O[N+]([O-])=O UYXRCZUOJAYSQR-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- BBMRFTLCEAZQEQ-UHFFFAOYSA-N oxalic acid;oxozirconium Chemical compound [Zr]=O.OC(=O)C(O)=O BBMRFTLCEAZQEQ-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RGRFMLCXNGPERX-UHFFFAOYSA-L oxozirconium(2+) carbonate Chemical compound [Zr+2]=O.[O-]C([O-])=O RGRFMLCXNGPERX-UHFFFAOYSA-L 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003284 rhodium compounds Chemical class 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 150000003304 ruthenium compounds Chemical class 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- DVUVKWLUHXXIHK-UHFFFAOYSA-N tetraazanium;tetrahydroxide Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[OH-].[OH-].[OH-].[OH-] DVUVKWLUHXXIHK-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
- XJUNLJFOHNHSAR-UHFFFAOYSA-J zirconium(4+);dicarbonate Chemical compound [Zr+4].[O-]C([O-])=O.[O-]C([O-])=O XJUNLJFOHNHSAR-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
本発明は、炭化水素系化合物を改質して水素含有ガスを製造する水素製造用触媒およびその触媒の製造方法に関する。 The present invention relates to a hydrogen production catalyst for producing a hydrogen-containing gas by reforming a hydrocarbon compound, and a method for producing the catalyst.
主に水素と一酸化炭素からなる水素含有ガス(合成ガス)は、水素ガス製造用の他に還元用ガス、更には各種化学製品の原料等として広く活用されており、最近では、燃料電池用燃料等としても実用化研究が進められている。このような水素含有ガスは、炭化水素系化合物の水蒸気改質によって得られることが知られている。天然ガスの主成分であるメタンを原料とした場合の水蒸気改質反応を下式に示した。 Hydrogen-containing gas (syngas) mainly composed of hydrogen and carbon monoxide is widely used as a reducing gas in addition to hydrogen gas production, and as a raw material for various chemical products. Recently, it is used for fuel cells. Research into practical use is also in progress as a fuel. It is known that such a hydrogen-containing gas can be obtained by steam reforming of a hydrocarbon compound. The steam reforming reaction when methane, the main component of natural gas, is used as a raw material is shown in the following equation.
また改質反応の原料となる炭化水素系化合物には、メタノール、LPガス、天然ガス、ガソリン、軽油、灯油等が挙げられるが、特に家庭用の燃料電池向けの水素源としてはインフラの点で都市ガス、LPガスおよび灯油を使用することが好ましい。しかしながら、都市ガスやLPガスに付臭剤として含まれるメルカプタン類などの硫黄系化合物や灯油に含まれる硫黄系化合物は微量存在するだけで水蒸気改質触媒や後段のCO変成触媒の触媒被毒物質となることが知られており、触媒の耐硫黄被毒性の向上が望まれている。そこで原料に含まれる硫黄系化合物による水素製造用触媒の劣化を回避するための手段として、改質器の前段に前処理脱硫装置を併設し、原料ガスから予め硫黄分を除去してから改質反応に供する等の防止策が提案されている。しかしながらこれら防止策を講じる場合、前処理脱硫装置の設置や維持管理に費用が発生するため、水素製造コストが上昇するという問題が新たに生じてくる。 The hydrocarbon compounds used as the raw material for the reforming reaction include methanol, LP gas, natural gas, gasoline, light oil, kerosene, etc., but especially as a hydrogen source for household fuel cells, in terms of infrastructure. Preference is given to using city gas, LP gas and kerosene. However, only a very small amount of sulfur compounds such as mercaptans contained in city gas and LP gas as odorants and sulfur compounds contained in kerosene are catalyst poisons for steam reforming catalysts and subsequent CO conversion catalysts. Therefore, it is desired to improve sulfur poisoning resistance of the catalyst. Therefore, as a means of avoiding deterioration of the catalyst for hydrogen production due to sulfur compounds contained in the raw material, a pretreatment desulfurization device is installed in front of the reformer to remove the sulfur content from the raw material gas before reforming. Preventive measures such as use for reaction have been proposed. However, when these preventive measures are taken, a new problem arises in that the cost of hydrogen production rises because of the expense of installing and maintaining the pretreatment desulfurization apparatus.
これに対し、硫黄系化合物を含有する原料の改質反応において、硫黄被毒による触媒劣化を抑制した触媒として、白金およびロジウムを含有する触媒が提案されている(特許文献1)。該文献では、特にロジウムは耐硫黄被毒性の向上に有効的であることが開示されている。同様に、炭化水素化合物類の原料に硫黄系化合物が一定濃度以上含有する場合においても長期間の触媒安定性を確保できる手段として、ルテニウムに加えてロジウムを含有する水蒸気改質触媒が提案されている(特許文献2)。 On the other hand, a catalyst containing platinum and rhodium has been proposed as a catalyst that suppresses catalyst deterioration due to sulfur poisoning in a reforming reaction of a raw material containing a sulfur compound (Patent Document 1). This document discloses that rhodium is particularly effective in improving sulfur poisoning resistance. Similarly, a steam reforming catalyst containing rhodium in addition to ruthenium has been proposed as a means for ensuring long-term catalyst stability even when a sulfur compound is contained in a raw material of hydrocarbon compounds above a certain concentration. (Patent Document 2).
ロジウム含有触媒は耐硫黄被毒性に優れ、耐酸化性も優れているが、ロジウムは白金族金属の中でも非常に高価な貴金属であるため触媒単価の大幅な上昇を招く可能性がある。 The rhodium-containing catalyst is excellent in sulfur poisoning resistance and oxidation resistance. However, rhodium is a very expensive noble metal among platinum group metals, which may cause a significant increase in the unit cost of the catalyst.
水素製造用触媒は高温高湿度条件で使用されるため触媒成分のシンタリングによる熱劣化や原料ガスに含まれる硫黄化合物による被毒劣化が生じるため耐久性の向上が望まれている。また触媒寿命は、改質時の反応温度にも依存し、低温で効率的に改質反応が進行すれば触媒寿命を延長することができる。 Since the catalyst for hydrogen production is used under high-temperature and high-humidity conditions, thermal deterioration due to sintering of catalyst components and poisoning deterioration due to sulfur compounds contained in the raw material gas occur, so that improvement in durability is desired. Further, the catalyst life depends on the reaction temperature at the time of reforming, and if the reforming reaction proceeds efficiently at a low temperature, the catalyst life can be extended.
本発明は上記事情に鑑みてなされたものであって、その目的は、原料である炭化水素系化合物に含まれる硫黄化合物による被毒、燃料電池システムの稼動停止の繰り返しでの温度や雰囲気変化による触媒成分変質やコーキングに対して長期耐久性を有した水素製造用触媒、およびその触媒の製造方法を提供することである。 The present invention has been made in view of the above circumstances, and its purpose is due to changes in temperature and atmosphere due to poisoning by sulfur compounds contained in the hydrocarbon-based compounds as raw materials and repeated shutdown of the fuel cell system. It is to provide a hydrogen production catalyst having long-term durability against catalyst component alteration and coking, and a method for producing the catalyst.
本発明者らは、炭化水素系化合物の改質反応について詳細に検討した結果、活性アルミナとセリウム系均密混合酸化物を含有する触媒組成物をハニカム担体に担持した触媒を用いることにより耐硫黄被毒性が改善すると共に、低温活性の向上により熱的負荷が抑制され、触媒寿命を大幅に延長できることを見出し、本発明を完成させた。前記セリウム系均密混合酸化物とはマンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウムおよびジルコニウムから選ばれる少なくとも1種の遷移金属とセリウムとの複合酸化物、固溶体または混合酸化物(以下、これらを合わせてセリウム系均密混合酸化物と称する)である。 As a result of detailed investigations on the reforming reaction of hydrocarbon compounds, the present inventors have found that sulfur resistance is improved by using a catalyst in which a catalyst composition containing activated alumina and a cerium-based dense mixed oxide is supported on a honeycomb carrier. The present inventors completed the present invention by finding that the poisoning is improved and the thermal load is suppressed by the improvement of the low temperature activity and the catalyst life can be greatly extended. The cerium-based dense mixed oxide is a complex oxide, solid solution or mixed oxide of cerium and at least one transition metal selected from manganese, iron, cobalt, nickel, copper, zinc, yttrium, and zirconium (hereinafter referred to as a “mixed oxide”). These are collectively referred to as a cerium-based dense mixed oxide).
本発明の水素製造用触媒によれば、原料ガスが硫黄系化合物を含む場合であっても、低温で改質反応を行うことができ、かつ硫黄化合物による被毒を抑制できる。このため、本発明の水素製造用用触媒は燃料電池向けに使用でき、例えば家庭用の固体高分子型燃料電池や固体酸化物型燃料電池への組み込みに適する。 According to the hydrogen production catalyst of the present invention, even when the raw material gas contains a sulfur compound, the reforming reaction can be performed at a low temperature, and poisoning by the sulfur compound can be suppressed. Therefore, the hydrogen production catalyst of the present invention can be used for fuel cells, and is suitable for incorporation into, for example, household polymer electrolyte fuel cells and solid oxide fuel cells.
本発明の水素製造用触媒は活性アルミナ及びセリウム系均密混合酸化物を含有する触媒組成物がハニカム担体に担持されており、前記セリウム系均密混合酸化物がマンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウムおよびジルコニウムから選ばれる少なくとも1種の遷移金属とセリウムとの複合酸化物、固溶体または混合酸化物であることを特徴とする水素製造用触媒である。本水素製造用触媒は改質反応により炭化水素系化合物から水素を生成することができる。以下に本発明を詳細に説明する。 In the hydrogen production catalyst of the present invention, a catalyst composition containing activated alumina and a cerium-based dense mixed oxide is supported on a honeycomb carrier, and the cerium-based dense mixed oxide is manganese, iron, cobalt, nickel, A catalyst for hydrogen production, which is a complex oxide, solid solution or mixed oxide of at least one transition metal selected from copper, zinc, yttrium and zirconium and cerium. The present hydrogen production catalyst can generate hydrogen from a hydrocarbon compound by a reforming reaction. The present invention is described in detail below.
本発明に用いる水素製造用触媒は活性アルミナ及びセリウム系均密混合酸化物を含有するものである。セリウム系均密混合酸化物は活性アルミナが100質量部に対してセリウム系均密混合酸化物を10〜200質量部、より好ましくは30〜150質量部、特に好ましくは50〜100質量部の比率で触媒組成物中に添加することが好ましい。セリウム系均密混合酸化物の含有量が10質量部未満である場合は水素製造用触媒の初期性能や耐久性能が不十分となり、200質量部を超えてもコストに見合う性能向上効果が得られない。一般に使用されている二酸化セリウムと比較してセリウム系均密混合酸化物は触媒組成物中の含有率を大幅に高めることが可能であり、それにより著しい耐久性の改善効果が得られるものである。このように高い含有率でセリウム系均密混合酸化物を添加することにより、熱的な触媒活性の低下抑止効果のみならず、硫黄などの触媒毒成分による被毒の低減及び炭素析出の抑止にも有効に作用し、長期間安定して優れた触媒作用を維持することができる。 The hydrogen production catalyst used in the present invention contains activated alumina and a cerium-based dense mixed oxide. The ratio of the cerium-based homogeneous mixed oxide is 10 to 200 parts by mass, more preferably 30 to 150 parts by mass, and particularly preferably 50 to 100 parts by mass with respect to 100 parts by mass of the activated alumina. It is preferable to add to the catalyst composition. When the content of the cerium-based dense mixed oxide is less than 10 parts by mass, the initial performance and durability of the catalyst for hydrogen production become insufficient, and even if it exceeds 200 parts by mass, a performance improvement effect commensurate with the cost is obtained. Absent. Compared with commonly used cerium dioxide, the cerium-based dense mixed oxide can greatly increase the content in the catalyst composition, and can thereby provide a significant durability improvement effect. . By adding the cerium-based dense mixed oxide at such a high content rate, not only the thermal catalytic activity decrease suppression effect, but also the poisoning reduction by sulfur and other catalyst poison components and the carbon deposition suppression Can effectively act, and can maintain an excellent catalytic action stably for a long period of time.
本発明に使用されるセリウム系均密混合酸化物はマンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウムおよびジルコニウムから選ばれる少なくとも1種の遷移金属とセリウムより構成されているが、好ましくはセリウムと前記遷移金属との複合酸化物またはセリウムと遷移金属との固溶体であることが好ましい。セリウムと遷移金属が複合酸化物を形成していることは、X線回折分析において含有比率の少ない方の酸化物のピークが検出されないか非常にアモルファスなピークになっていることで確認することができる。またセリウムと遷移金属が固溶体を形成している場合は、その含有比率によってX線回折ピークのシフトが生じることによって確認することができる。また前記複合酸化物や固溶体のX線回折ピークに加えて単独酸化物のピークが検出される混合酸化物であってもよい。混合酸化物である場合は、複合酸化物や固溶体のX線回折のメインピークに対して単独酸化物の回折ピークの強度比が70%以下、好ましくは50%以下であることが好ましい。 The cerium-based dense mixed oxide used in the present invention is composed of at least one transition metal selected from manganese, iron, cobalt, nickel, copper, zinc, yttrium and zirconium, and preferably cerium. And a transition oxide of the transition metal or a solid solution of cerium and the transition metal. The fact that cerium and transition metal form a complex oxide can be confirmed by the fact that the peak of the oxide with the lower content ratio is not detected or is a very amorphous peak in X-ray diffraction analysis. it can. In addition, when cerium and a transition metal form a solid solution, it can be confirmed by a shift of the X-ray diffraction peak depending on the content ratio. Moreover, in addition to the X-ray diffraction peak of the complex oxide or solid solution, a mixed oxide in which a single oxide peak is detected may be used. In the case of a mixed oxide, the intensity ratio of the diffraction peak of the single oxide to the main peak of X-ray diffraction of the composite oxide or solid solution is 70% or less, preferably 50% or less.
セリウム系均密混合酸化物とは具体的にはセリウム−マンガン均密混合酸化物、セリウム−鉄均密混合酸化物、セリウム−コバルト均密混合酸化物、セリウム−ニッケル均密混合酸化物、セリウム−銅均密混合酸化物、セリウム−亜鉛均密混合酸化物、セリウム−イットリウム均密混合酸化物、セリウム−ジルコニウム均密混合酸化物などの2成分系やセリウム−マンガン−銅均密混合酸化物、セリウム−マンガン−鉄均密混合酸化物、セリウム−ニッケル−イットリウム均密混合酸化物やセリウム−ジルコニウム−イットリウム均密混合酸化物などの3成分系等を挙げることができる。好ましいセリウム系均密混合酸化物としてはセリウム−マンガン均密混合酸化物、セリウム−ニッケル均密混合酸化物、セリウム−ジルコニウム均密混合酸化物およびセリウム−ジルコニウム−イットリウム均密混合酸化物であり、なかでもセリウム−ジルコニウム均密混合酸化物およびセリウム−ジルコニウム−イットリウム均密混合酸化物が好ましい。 Specifically, the cerium-based dense mixed oxide is a cerium-manganese dense mixed oxide, a cerium-iron dense mixed oxide, a cerium-cobalt dense mixed oxide, a cerium-nickel dense mixed oxide, and cerium. -Two-component systems such as copper dense mixed oxide, cerium-zinc dense mixed oxide, cerium-yttrium dense mixed oxide, cerium-zirconium dense mixed oxide, and cerium-manganese-copper dense mixed oxide And cerium-manganese-iron dense mixed oxide, cerium-nickel-yttrium dense mixed oxide, and cerium-zirconium-yttrium dense mixed oxide. Preferred cerium-based dense mixed oxides are cerium-manganese dense mixed oxide, cerium-nickel dense mixed oxide, cerium-zirconium dense mixed oxide and cerium-zirconium-yttrium dense mixed oxide, Of these, cerium-zirconium dense mixed oxide and cerium-zirconium-yttrium dense mixed oxide are preferable.
セリウム系均密混合酸化物はセリウム化合物と遷移金属元素含有化合物の固相反応法、共沈法、沈着法、薬液混合法、含浸法などによって調製されるものであり、セリウムの含有率が30〜98モル%であることが好ましい。より好ましいセリウムの含有率は50〜90モル%、更に好ましくは60〜85モル%である。セリウム系均密混合酸化物におけるセリウムの含有率が30モル%未満である場合は触媒組成物中のセリウム含有率が少なくなり耐硫黄被毒性の低下やコーキングが生じやすくなり、セリウムの含有率が98モル%を超える場合は他元素の含有率が少なくなり十分な耐久性能改善効果が得られなくなる。 The cerium-based dense mixed oxide is prepared by a solid-phase reaction method, a coprecipitation method, a deposition method, a chemical solution mixing method, an impregnation method, or the like of a cerium compound and a transition metal element-containing compound. It is preferable that it is -98 mol%. More preferably, the content of cerium is 50 to 90 mol%, more preferably 60 to 85 mol%. When the cerium content in the cerium-based dense mixed oxide is less than 30 mol%, the cerium content in the catalyst composition is decreased, sulfur poisoning resistance is reduced and coking is likely to occur. When it exceeds 98 mol%, the content of other elements decreases and a sufficient durability performance improvement effect cannot be obtained.
セリウム系均密混合酸化物の比表面積は20〜100m2/g、より好ましくは30〜70m2/gであることが好ましい。比表面積が20m2/gより小さい場合は、反応ガスとの接触効率が低下し十分な初期活性が得られず、100m2/gを超える場合は高温反応においてシンタリングしやすく使用により急激な性能低下を招く可能性がある。特に好ましくはセリウム系均密混合酸化物の調製において700℃5時間以上の焼成後において比表面積が30m2/g以上であるセリウム系均密混合酸化物を触媒組成物に含有していることが好ましい。 The specific surface area of the cerium-based dense mixed oxide is preferably 20 to 100 m 2 / g, more preferably 30 to 70 m 2 / g. When the specific surface area is smaller than 20 m 2 / g, the contact efficiency with the reaction gas is lowered and sufficient initial activity cannot be obtained. When the specific surface area exceeds 100 m 2 / g, it is easy to sinter in a high temperature reaction, resulting in rapid performance due to use. There is a possibility of degrading. Particularly preferably, the catalyst composition contains a cerium-based dense mixed oxide having a specific surface area of 30 m 2 / g or more after calcination at 700 ° C. for 5 hours or longer in the preparation of the cerium-based dense mixed oxide. preferable.
次に本発明に用いられる活性アルミナとしては、γ−アルミナ、δ−アルミナ、θ−アルミナやη−アルミナ等を挙げることができる。なかでも、比表面積が50〜250m2/gのγ−アルミナまたはδ−アルミナが好適に用いられる。特にγ−アルミナは、BET比表面積が大きく、反応ガスとの接触面積が大きくなるため改質反応が促進され、また高温耐熱性に優れていることから、特に好適に用いられる。 Next, examples of the activated alumina used in the present invention include γ-alumina, δ-alumina, θ-alumina, and η-alumina. Among these, γ-alumina or δ-alumina having a specific surface area of 50 to 250 m 2 / g is preferably used. In particular, γ-alumina is particularly preferably used because it has a large BET specific surface area and a large contact area with the reaction gas, so that the reforming reaction is promoted and the high temperature heat resistance is excellent.
活性アルミナは、市販の酸化アルミニウム粉体が使用できる。また焼成することにより活性アルミナとなるベーマイトや擬ベーマイト状態のアルミナ水和物、水酸化アルミニウムなどを用いてもよい。また、硝酸アルミニウム等のアルミニウム塩水溶液にアルカリ性化合物を加えて水酸化物の沈殿を生成させ、これを乾燥、焼成して得られる活性アルミナでもよい。また、アルミニウムイソプロポキシドなどのアルコキシドを加水分解してアルミナゲルを調製し、これを乾燥、焼成するゾル・ゲル法によって得られる活性アルミナでもよい。また触媒組成物中にベーマイト、硝酸アルミニウムやアルミナゾルなどの活性アルミナの前駆体として添加してハニカム担体に担持してから、焼成して活性アルミナに転換してもよい。 As the activated alumina, commercially available aluminum oxide powder can be used. Alternatively, boehmite that becomes activated alumina by firing, alumina hydrate in a pseudo boehmite state, aluminum hydroxide, or the like may be used. Alternatively, activated alumina obtained by adding an alkaline compound to an aluminum salt aqueous solution such as aluminum nitrate to form a precipitate of hydroxide, and drying and firing the precipitate may be used. Alternatively, activated alumina obtained by a sol-gel method in which an alkoxide such as aluminum isopropoxide is hydrolyzed to prepare an alumina gel, which is dried and fired may be used. Further, it may be added to the catalyst composition as a precursor of activated alumina such as boehmite, aluminum nitrate or alumina sol and supported on the honeycomb carrier, and then calcined to be converted into activated alumina.
また活性アルミナにマグネシウム、カルシウム、バリウムなどのアルカリ土類金属、ランタン、セリウム、ネオジウムなどの希土類元素を添加し、活性アルミナの熱安定性を向上させることもできる。活性アルミナに添加する元素としては活性アルミナが100質量部に対して上記元素を酸化物として1〜20質量部、好ましくは3〜10質量部添加することが好ましい。特にバリウムおよびランタンの添加が好ましく、熱安定化された活性アルミナは800℃以上の高温雰囲気においても曝されても不活性なα−アルミナへの結晶変化を抑制することができる。 Moreover, alkaline earth metals such as magnesium, calcium and barium, and rare earth elements such as lanthanum, cerium and neodymium can be added to the activated alumina to improve the thermal stability of the activated alumina. As an element to be added to the activated alumina, it is preferable to add 1 to 20 parts by mass, preferably 3 to 10 parts by mass of the above element as an oxide with respect to 100 parts by mass of activated alumina. In particular, addition of barium and lanthanum is preferable, and the heat-stabilized activated alumina can suppress the crystal change to inactive α-alumina even when exposed to a high temperature atmosphere of 800 ° C. or higher.
本発明の水素製造用触媒は活性アルミナ及びセリウム系均密混合酸化物に加えて、パラジウム、白金、ロジウム、ルテニウム、オスミウム、イリジウムよりなる群から選ばれる少なくとも1種の白金族金属元素を含有することが好ましい。この際、ハニカム担体の単位容積あたりの白金族金属含有量は0.2〜20g/Lであり、より好ましくは0.3〜10g/Lであることが好ましい。本発明のセリウム系均密混合酸化物の使用により白金族金属の分散性や耐熱性が著しく改善され、白金族金属の使用量を大幅に低減することができる。また白金族金属の硫黄被毒に対してもセリウム均密混合酸化物と白金族金属の相乗効果により少ない白金族金属の使用量にて低温で高活性が得られ、かつ長期耐久性を持続することができる。 The catalyst for hydrogen production of the present invention contains at least one platinum group metal element selected from the group consisting of palladium, platinum, rhodium, ruthenium, osmium and iridium in addition to activated alumina and a cerium-based dense mixed oxide. It is preferable. At this time, the platinum group metal content per unit volume of the honeycomb carrier is 0.2 to 20 g / L, and more preferably 0.3 to 10 g / L. By using the cerium-based dense mixed oxide of the present invention, the dispersibility and heat resistance of the platinum group metal are remarkably improved, and the amount of platinum group metal used can be greatly reduced. Also, against platinum poisoning of platinum group metals, the synergistic effect of cerium dense mixed oxides and platinum group metals enables high activity at low temperatures with a small amount of platinum group metals used and long-term durability. be able to.
白金族金属元素化合物として、例えば、ルテニウム化合物では、塩化ルテニウム水溶液、硝酸ルテニウム水溶液、ロジウム化合物では塩化ロジウム水溶液、硝酸ロジウム水溶液、イリジウム化合物では塩化イリジウム水溶液、硝酸イリジウム水溶液、白金化合物では塩化白金酸水溶液、ジニトロジアミノ白金硝酸水溶液等が使用できる。 Examples of platinum group metal element compounds include ruthenium compounds, ruthenium chloride aqueous solutions, ruthenium nitrate aqueous solutions, rhodium compounds, rhodium chloride aqueous solutions, rhodium nitrate aqueous solutions, iridium compounds, iridium chloride aqueous solutions, iridium nitrate aqueous solutions, platinum compounds, chloroplatinic acid aqueous solutions. Dinitrodiaminoplatinum nitric acid aqueous solution or the like can be used.
添加する白金族金属元素としては少なくともルテニウムを含有していることが好ましい。またルテニウムと他の白金族金属を組み合わせて使用することにより、更に低温活性の向上や耐硫黄被毒性の改善効果が得られる。他の白金族金属としては白金、パラジウムまたはロジウムの添加が好ましい。ルテニウムとルテニウム以外の白金族金属元素の質量比は100:0〜70:30、好ましくは97:3〜90:10である。ルテニウム以外の白金族金属元素の比率が増加すると改質反応における水素への選択性の低下や触媒材料費高騰を招く可能性があるため好ましくない。なお、白金族金属は活性アルミナ、セリウム系均密混合酸化物のいずれに担持されていてもよい。例えば予め活性アルミナおよび/またはセリウム均密混合酸化物に白金族金属が担持された粉末を湿式粉砕してハニカム担体に被覆したり、湿式粉砕の際にスラリーに白金族金属の水溶液を触媒組成物に添加してハニカム担体に被覆したり、ハニカム担体に活性アルミナやセリウム系均密混合酸化物を被覆してから白金族金属を担持してもよい。 The platinum group metal element to be added preferably contains at least ruthenium. Further, by using a combination of ruthenium and other platinum group metals, further improvement in low temperature activity and improvement in sulfur poisoning resistance can be obtained. As other platinum group metals, addition of platinum, palladium or rhodium is preferred. The mass ratio of ruthenium and platinum group metal elements other than ruthenium is 100: 0 to 70:30, preferably 97: 3 to 90:10. An increase in the ratio of platinum group metal elements other than ruthenium is not preferable because it may lead to a decrease in selectivity to hydrogen in the reforming reaction and an increase in catalyst material costs. The platinum group metal may be supported on either activated alumina or cerium-based dense mixed oxide. For example, a powder in which a platinum group metal is supported on activated alumina and / or a cerium dense mixed oxide in advance is wet pulverized to coat a honeycomb carrier, or an aqueous solution of a platinum group metal is added to a slurry during wet pulverization. The platinum carrier metal may be supported after the honeycomb carrier is coated by adding to the honeycomb carrier, or after the honeycomb carrier is coated with activated alumina or a cerium-based dense mixed oxide.
本発明の水素製造用触媒は上記のように活性アルミナ、セリウム系均密混合酸化物や白金族金属を含有する触媒組成物をハニカム担体に担持されてなる。本発明に使用できるハニカム担体としてはコージライトやムライトのようなセラミック製ハニカム担体やステンレス製のメタルハニカムなどが使用することができる。特に、アルミニウムを含有したフェライト系ステンレス(Fe−Cr−Al)薄鋼板からなる平板と波板とを交互に重ね合わせて、渦巻状に積層したメタルハニカム担体を使用することが好ましい。水蒸気改質反応による燃料電池システムは始動時に外部加熱で触媒を500℃以上に昇温する必要があるが、軽量で伝熱性が良好なメタルハニカム担体を担体に用いることで触媒温度が速やか昇温され短時間でのスタートアップが可能となり改質反応の水素製造用触媒として適している。メタルハニカム担体のセル数は100〜600セル/inch2(1平方インチ当たりのセル数)であり、ステンレス薄鋼板の箔厚が10〜50μmであることが好ましい。より好ましくはセル数が200〜400セル/inch2であり、ステンレス薄鋼板の箔厚が20〜30μmである。メタルハニカム担体のセル数が100セル/inch2以下である場合は単位容積当たりのガスとの接触面積が小さくなるため十分な反応速度が得られ難くなり、600セル/inch2を越える場合は触媒組成物の担持に際して目詰まりが生じやすくなるため好ましくない。またステンレス薄鋼板の箔厚が10μm未満の場合はハニカムの機械的強度の低下を招く可能性があり、50μmを超える場合は触媒重量が重たくなり伝熱性が低下するので好ましくない。 As described above, the catalyst for hydrogen production of the present invention is formed by supporting a catalyst composition containing activated alumina, a cerium-based intimate mixed oxide or a platinum group metal on a honeycomb carrier. As the honeycomb carrier that can be used in the present invention, a ceramic honeycomb carrier such as cordierite or mullite, a stainless metal honeycomb, or the like can be used. In particular, it is preferable to use a metal honeycomb carrier in which flat plates and corrugated plates made of a ferritic stainless steel (Fe—Cr—Al) thin steel sheet containing aluminum are alternately stacked and stacked in a spiral shape. The fuel cell system based on the steam reforming reaction requires the catalyst to be heated to 500 ° C. or more by external heating at the start, but the catalyst temperature is quickly raised by using a lightweight and good heat transfer metal honeycomb carrier as the carrier. This makes it possible to start up in a short time and is suitable as a hydrogen production catalyst for reforming reactions. The number of cells of the metal honeycomb carrier is 100 to 600 cells / inch 2 (number of cells per square inch), and the foil thickness of the stainless steel sheet is preferably 10 to 50 μm. More preferably, the number of cells is 200 to 400 cells / inch 2 , and the foil thickness of the stainless steel sheet is 20 to 30 μm. When the number of cells of the metal honeycomb carrier is 100 cells / inch 2 or less, the contact area with the gas per unit volume is small, so that it is difficult to obtain a sufficient reaction rate. When the number of cells exceeds 600 cells / inch 2 , the catalyst Since clogging is likely to occur during loading of the composition, it is not preferable. Further, when the foil thickness of the stainless steel sheet is less than 10 μm, the mechanical strength of the honeycomb may be lowered, and when it exceeds 50 μm, the catalyst weight becomes heavier and the heat conductivity is lowered, which is not preferable.
上記のようなメタルハニカム担体を担体として用いることにより、工業的水素製造用触媒として一般に使用されているペレット形状の触媒と比較して幾何学表面積が著しく大きくなるため、ガスとの接触効率が高くなり触媒単位容積当たりの水素製造速度を高めることができる。またメタルハニカム担体の幾何学表面積は1500m2/m3以上であることが好ましく、より好ましくは2500m2/m3以上である。 By using the metal honeycomb carrier as described above as a carrier, the geometric surface area is remarkably larger than that of a pellet-shaped catalyst generally used as a catalyst for industrial hydrogen production, so the contact efficiency with gas is high. It is possible to increase the hydrogen production rate per unit volume of the catalyst. The geometric surface area of the metal honeycomb carrier is preferably 1500 m 2 / m 3 or more, more preferably 2500 m 2 / m 3 or more.
またメタルハニカム担体に触媒組成物を被覆して形成された触媒コート層を、EPMAを用いて測定した平均粒子径が0.5〜10μmであることが好ましい。より好ましくは平均粒子径が1〜5μmであることが好ましい。なお、触媒コート層の平均粒子径は以下の測定方法により求めることができる。 Moreover, it is preferable that the average particle diameter which measured the catalyst coat layer formed by coat | covering a catalyst composition on a metal honeycomb support | carrier using EPMA is 0.5-10 micrometers. More preferably, the average particle diameter is 1 to 5 μm. In addition, the average particle diameter of a catalyst coat layer can be calculated | required with the following measuring methods.
<触媒コート層の平均粒子径測定方法>
EPMA(Electron Probe Micro Analyzer)を用い、完成触媒の触媒コート層を5000倍の倍率で、アルミナ、セリウム、遷移金属などの触媒組成物構成元素のX線像を無作為に30ヶ所撮影し、これら写真中の当該元素の分布より各粒子径を測定し、その測定値に基づいて平均粒子径を求める。
<Method for Measuring Average Particle Diameter of Catalyst Coat Layer>
Using EPMA (Electron Probe Micro Analyzer), the catalyst coat layer of the finished catalyst was taken at a magnification of 5000 times, and 30 X-ray images of the constituent elements of the catalyst composition such as alumina, cerium, transition metal, etc. were taken at random. Each particle diameter is measured from the distribution of the element in the photograph, and the average particle diameter is obtained based on the measured value.
このようにしてもとめた触媒コート層の平均粒子径が0.5μm未満である場合は、触媒組成物担持工程の乾燥や焼成においてコート層にクラックが生じやすくなり、使用時に触媒成分が剥離したり、スラリーの安定性が不十分となりゲル化してメタルハニカム担体との接着性の低下を招いたりする可能性がある。またコート層の平均粒径が10μmを超える場合は緻密なコート層の形成が困難となりメタルハニカム担体との十分な接着性が得られない。 When the average particle diameter of the catalyst coat layer thus stopped is less than 0.5 μm, cracks are likely to occur in the coat layer during drying and firing in the catalyst composition supporting step, and the catalyst component may be peeled off during use. Further, the stability of the slurry may become insufficient, causing gelation and a decrease in adhesiveness with the metal honeycomb carrier. On the other hand, when the average particle size of the coat layer exceeds 10 μm, it is difficult to form a dense coat layer and sufficient adhesion to the metal honeycomb carrier cannot be obtained.
また触媒組成物はハニカム担体の単位容積当たりに100〜300g(g/L:触媒1リットル当たりの質量、以下同じ)で担持されており、より好ましくは150〜250g/Lで担持されていることが好ましい。触媒組成物の単位容積当たりの担持量が100g/L未満である場合は触媒コート層の厚みが薄くなり、ガス拡散が不十分となって反応効率の低下を招くため好ましくない。また300g/Lを超える場合は触媒製造が困難であり、セルの閉塞による圧損上昇や使用時に炭素析出等の不具合が生じやすくなる可能性がある。さらにハニカム担体に担持されている触媒コート層の平均厚みは50〜200μm、好ましくは80〜150μmであることが好ましい。触媒コート層の平均厚みは前述と同様にEPMAを用いて測定することが可能である。 The catalyst composition is supported at 100 to 300 g (g / L: mass per liter of catalyst, hereinafter the same) per unit volume of the honeycomb carrier, more preferably 150 to 250 g / L. Is preferred. When the supported amount per unit volume of the catalyst composition is less than 100 g / L, the thickness of the catalyst coat layer becomes thin, gas diffusion becomes insufficient, and the reaction efficiency is lowered, which is not preferable. On the other hand, if it exceeds 300 g / L, it is difficult to produce the catalyst, and there is a possibility that problems such as an increase in pressure loss due to cell blockage and carbon deposition during use are likely to occur. Furthermore, the average thickness of the catalyst coat layer supported on the honeycomb carrier is preferably 50 to 200 μm, and more preferably 80 to 150 μm. The average thickness of the catalyst coat layer can be measured using EPMA as described above.
(水素製造用触媒の製造方法)
本発明の水素製造用触媒の製造方法は活性アルミナとセリウム系均密混合酸化物とを混合し湿式粉砕して得られたスラリーをハニカム担体に被覆する工程を有するものである。最初に本水素製造用触媒の特徴となるセリウム系均密混合酸化物の調製方法について説明する。セリウム系均密混合酸化物の調製方法としては各種セリウム化合物と遷移金属元素含有化合物とを固相反応法、共沈法、沈着法、薬液混合法、含浸法などによって調製することができる。以下に、セリウム−ジルコニウム均密混合酸化物の場合を例として具体的な調製例を示す。
(1)セリウム酸化物とジルコニウム酸化物とを混合した後、焼成して固相反応する。
(2)セリウム塩水溶液とジルコニウム塩水溶液とを混合した後、乾燥、焼成する。
(3)セリウム塩水溶液とジルコニウム塩水溶液とを混合し、アンモニウム化合物などを添加して加水分解により共沈させた後、乾燥、焼成する。
(4)セリウム酸化物にジルコニウム塩水溶液を浸し混合した後、乾燥、焼成する、あるいはジルコニウム酸化物にセリウム塩水溶液を浸して混合した後、乾燥、焼成する。
(5)セリウム酸化物の前駆体にジルコニウム塩水溶液を浸した後、混合、乾燥、焼成する、あるいはジルコニウム酸化物の前駆体にセリウム塩水溶液を浸した後、混合、乾燥、焼成する。
(Method for producing a catalyst for hydrogen production)
The method for producing a catalyst for hydrogen production of the present invention comprises a step of coating a honeycomb carrier with a slurry obtained by mixing activated alumina and a cerium-based intimate mixed oxide and wet-grinding. First, a method for preparing a cerium-based dense mixed oxide, which is a feature of the present hydrogen production catalyst, will be described. As a method for preparing the cerium-based dense mixed oxide, various cerium compounds and transition metal element-containing compounds can be prepared by a solid phase reaction method, a coprecipitation method, a deposition method, a chemical solution mixing method, an impregnation method, and the like. Hereinafter, specific preparation examples will be described by taking the case of a cerium-zirconium homogeneous mixed oxide as an example.
(1) After mixing cerium oxide and zirconium oxide, firing and solid phase reaction.
(2) After mixing a cerium salt aqueous solution and a zirconium salt aqueous solution, drying and baking.
(3) A cerium salt aqueous solution and a zirconium salt aqueous solution are mixed, an ammonium compound or the like is added and coprecipitated by hydrolysis, and then dried and fired.
(4) After immersing and mixing the zirconium salt aqueous solution in cerium oxide, drying and firing, or immersing and mixing the cerium salt aqueous solution in zirconium oxide, followed by drying and firing.
(5) After immersing the zirconium salt aqueous solution in the cerium oxide precursor, mixing, drying and firing, or immersing the cerium salt aqueous solution in the zirconium oxide precursor, then mixing, drying and firing.
この際、原料となるセリウム化合物としては、市販の酸化セリウム以外に、硝酸セリウム、塩化セリウム、硫酸セリウム、酢酸セリウムなどの水溶性のセリウム塩化合物や前記酸化セリウムの前駆体である酸化セリウムゾル、水酸化セリウムや炭酸セリウムなどを用いることができる。 In this case, as a cerium compound as a raw material, in addition to commercially available cerium oxide, water-soluble cerium salt compounds such as cerium nitrate, cerium chloride, cerium sulfate, cerium acetate, cerium oxide sol which is a precursor of the cerium oxide, water Cerium oxide, cerium carbonate, or the like can be used.
またジルコニウム化合物としては、市販の酸化ジルコニウム以外に、四塩化ジルコニウム、塩化ジルコニル(オキシ塩化ジルコニウム)、硫酸ジルコニル、硝酸ジルコニウム、硝酸ジルコニル、酢酸ジルコニウム、酢酸ジルコニル、シュウ酸ジルコニルなどの水溶性のジルコニウム塩化合物や前記ジルコニウム酸化物の前駆体として酸化ジルコニウムゾル、炭酸ジルコニウム、炭酸ジルコニルなどの炭酸塩や部分加水分解生成物を用いることができる。 In addition to commercially available zirconium oxide, zirconium compounds include water-soluble zirconium salts such as zirconium tetrachloride, zirconyl chloride (zirconium oxychloride), zirconyl sulfate, zirconium nitrate, zirconyl nitrate, zirconium acetate, zirconyl acetate, and zirconyl oxalate. Carbonates such as zirconium oxide sol, zirconium carbonate, zirconyl carbonate, and partial hydrolysis products can be used as the compound and the precursor of the zirconium oxide.
上記(1)〜(5)の方法においてジルコニウム化合物の代わりにマンガン、鉄、コバルト、ニッケル、銅、亜鉛またはイットリウムを含有する遷移金属元素化合物を選定することにより同様に他のセリウム系均密混合酸化物を容易に調製することができる。なお、セリウム化合物と遷移金属元素化合物の添加比率は調製後の混合酸化物における酸化セリウムの含有率が30〜98モル%となるように配合する。 In the above methods (1) to (5), other cerium-based intimate mixing is similarly performed by selecting a transition metal element compound containing manganese, iron, cobalt, nickel, copper, zinc or yttrium instead of the zirconium compound. Oxides can be easily prepared. In addition, the addition ratio of a cerium compound and a transition metal element compound is mix | blended so that the content rate of the cerium oxide in the mixed oxide after preparation may be 30-98 mol%.
上記(1)〜(5)における焼成は、例えば、空気中で500〜1000℃、好ましくは600〜800℃にて5〜10時間程度実施することで、本発明に使用されるセリウム系均密混合酸化物を得ることができる。このようにして得られたセリウム均密混合酸化物は熱的に安定であり、単独の二酸化セリウムと比較して熱処理後において高い比表面積を維持し、高温での粒子成長が抑制されるというような優れた物性を有している。なかでも(3)の共沈法および(4)、(5)の含浸法により得られたセリウム系均密混合酸化物を用いることにより、高活性で耐久性の優れた水素製造用触媒を製造することができる。特に(5)に示す粉末状の酸化物前駆体に金属塩水溶液を含浸する固−液含浸法は簡便な製造設備で優れた特性を有した複合酸化物や固溶体を容易に調製することができ、例えば共沈法で必要となるpHの制御設備や大量に発生する洗浄排水処理設備が不要である。 The calcination in the above (1) to (5) is carried out, for example, in the air at 500 to 1000 ° C., preferably 600 to 800 ° C. for about 5 to 10 hours. Mixed oxides can be obtained. The cerium homogeneous mixed oxide thus obtained is thermally stable, maintains a high specific surface area after heat treatment compared to single cerium dioxide, and suppresses particle growth at high temperatures. It has excellent physical properties. In particular, by using the cerium-based dense mixed oxide obtained by the coprecipitation method (3) and the impregnation method (4) and (5), a highly active and durable catalyst for hydrogen production is produced. can do. In particular, the solid-liquid impregnation method in which the powdered oxide precursor shown in (5) is impregnated with an aqueous metal salt solution can easily prepare complex oxides and solid solutions having excellent characteristics with simple manufacturing equipment. For example, there is no need for a pH control facility or a large amount of cleaning wastewater treatment facility required in the coprecipitation method.
活性アルミナと上記方法で得られたセリウム系均密混合酸化物とを混合し湿式粉砕して得られたスラリーをハニカム担体に被覆する工程を有する、本発明の水素製造用触媒の代表的な製造方法について以下に説明する。 A typical production of a catalyst for hydrogen production according to the present invention, comprising a step of coating a honeycomb carrier with a slurry obtained by mixing activated alumina and a cerium-based dense mixed oxide obtained by the above method and wet-grinding the resulting mixture. The method will be described below.
<触媒製造方法1>
活性アルミナ及びセリウム系均密混合酸化物とを混合しボールミルなどの粉砕機に供給し、湿式粉砕してスラリーを調製し、このスラリーをハニカム担体に被覆する工程を有している。触媒成分を被覆した後、乾燥して固定し、焼成および/または還元処理などを必要により実施しても良い。
<Catalyst production method 1>
There is a step of mixing activated alumina and a cerium-based dense mixed oxide, supplying the mixture to a pulverizer such as a ball mill, preparing a slurry by wet pulverization, and coating the slurry on a honeycomb carrier. After coating the catalyst component, it may be dried and fixed, and calcination and / or reduction treatment may be performed as necessary.
スラリーを調製する際には、上記触媒成分以外にスラリーの粘度調節や安定性改善のため、塩酸、硫酸、硝酸、酢酸、シュウ酸などの酸性化合物、アンモニアや水酸化テトラアンモニウムなどの塩基性化合物、ポリアクリル酸やポリビニルアルコールなどの高分子化合物などを必要に応じて添加してもよい。また前記ハニカム担体がメタルハニカム担体である場合はスラリーの平均粒子径は0.5〜10μmであることが好ましい。より好ましくは平均粒子径が1〜5μmであることが好ましい。スラリーの平均粒子径が0.5μmより小さくても、10μmを超えてもメタルハニカム担体との接着性が低下し、剥がれやすくなる。 When preparing the slurry, in addition to the above catalyst components, in order to adjust the viscosity and improve the stability of the slurry, acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, basic compounds such as ammonia and tetraammonium hydroxide Further, a polymer compound such as polyacrylic acid or polyvinyl alcohol may be added as necessary. When the honeycomb carrier is a metal honeycomb carrier, the average particle size of the slurry is preferably 0.5 to 10 μm. More preferably, the average particle diameter is 1 to 5 μm. Even if the average particle diameter of the slurry is smaller than 0.5 μm or exceeds 10 μm, the adhesion to the metal honeycomb carrier is lowered and the slurry is easily peeled off.
ハニカム担体へのスラリーの被覆方法としては特に限定されず、含浸法、吸引法、湿式吸着法、スプレー法、塗布法などの方法が適用できる。またスラリー被覆時の条件も適宜変更できる。例えば含浸操作を大気圧下あるいは減圧下で行うことができ特に減圧下で実施することにより容易に均質なコート層を形成することができる。スラリー被覆時の温度も特に制限はなく、必要により加熱してもよく、好ましくは室温から90℃程度の範囲内で行えばよい。メタルハニカム担体を用いる場合は減圧下でスラリー吸引して含浸させると均一に触媒成分を担持させることができるので、この吸引含浸法が好適に用いられる。被覆後は、ハニカム担体に付着している過剰なスラリー(例えば、セル内に残存しているスラリー)をエアブロー等の方法によって除去した後、乾燥するのがよい。 The method for coating the honeycomb carrier with the slurry is not particularly limited, and methods such as an impregnation method, a suction method, a wet adsorption method, a spray method, and a coating method can be applied. Moreover, the conditions at the time of slurry coating can also be changed suitably. For example, the impregnation operation can be carried out under atmospheric pressure or reduced pressure, and a homogeneous coat layer can be easily formed by carrying out under reduced pressure. The temperature at the time of slurry coating is not particularly limited, and may be heated if necessary, and preferably within a range of room temperature to 90 ° C. In the case of using a metal honeycomb carrier, the catalyst component can be uniformly supported when the slurry is sucked and impregnated under reduced pressure. Therefore, this suction impregnation method is preferably used. After the coating, it is preferable to dry after removing excess slurry (for example, slurry remaining in the cells) adhering to the honeycomb carrier by a method such as air blowing.
乾燥方法についても特に制限はなく、スラリーの水分を除去し得る条件であればいずれも用いることができる。乾燥は常温下、あるいは50〜200℃の熱風をセル内に通風してもよい。乾燥後に焼成することで触媒組成物をハニカム担体に強固に定着させることができる。焼成条件については、例えば、空気中または還元雰囲気下に400〜800℃で焼成すればよい。一回の操作で必要量の触媒組成物を担持できないときは、上記含浸−乾燥−焼成の操作を繰り返して行えばよい。 There is no restriction | limiting in particular also about the drying method, As long as the conditions which can remove the water | moisture content of a slurry, all can be used. Drying may be performed by passing hot air at room temperature or 50 to 200 ° C. into the cell. By baking after drying, the catalyst composition can be firmly fixed to the honeycomb carrier. About baking conditions, what is necessary is just to bake at 400-800 degreeC in air or a reducing atmosphere, for example. When a required amount of the catalyst composition cannot be supported by a single operation, the above impregnation-drying-calcination operation may be repeated.
<触媒製造方法2>
白金族金属の水溶液、活性アルミナおよびセリウム系均密混合酸化物をボールミルなどの粉砕機に供給し、湿式粉砕してスラリーを調製し、このスラリーをハニカム担体に被覆する工程を有している。以下は前記触媒製造方法1と同様にして触媒組成物を被覆した後、乾燥し、焼成および/または還元処理などを必要により実施することができる。
<Catalyst production method 2>
An aqueous platinum group metal solution, activated alumina and a cerium-based dense mixed oxide are supplied to a pulverizer such as a ball mill, wet pulverized to prepare a slurry, and the slurry is coated on a honeycomb carrier. In the same manner as in the catalyst production method 1, the catalyst composition is coated and then dried, and calcining and / or reduction treatment can be performed as necessary.
本製造方法では白金族金属を水溶液にてスラリー中に添加するため製造工程が簡略化できる。また溶液中に白金族金属イオンがフリーで存在するため、セル内の通風乾燥条件を調整することによって触媒コート層の表層部に白金族金属元素を担持でき白金族金属を有効的に利用することができる。また白金族金属塩水溶液種、活性アルミナ源、セリウム系均密混合酸化物源、pH調整剤等を適宜選択することによってスラリー中で白金族金属元素を活性アルミナおよび/またはセリウム酸化物に化学的に固着させることもできる。 In this production method, the production process can be simplified because the platinum group metal is added to the slurry as an aqueous solution. In addition, since platinum group metal ions are free in the solution, the platinum group metal element can be supported on the surface of the catalyst coat layer by adjusting the ventilation drying conditions in the cell, and the platinum group metal can be used effectively. Can do. In addition, platinum group metal elements can be chemically converted into active alumina and / or cerium oxide in the slurry by appropriately selecting platinum group metal salt aqueous solution species, activated alumina source, cerium-based dense mixed oxide source, pH adjuster, etc. It can also be fixed to.
<触媒製造方法3>
予め白金族金属元素の一部または全量を活性アルミナおよび/またはセリウム系均密混合酸化物に担持固定する工程を有する水素製造用触媒の製造方法である。その他、製造方工程は前記触媒製造方法1または2に準じて製造することができる。
<Catalyst production method 3>
This is a method for producing a catalyst for producing hydrogen, comprising a step of supporting and fixing a part or all of a platinum group metal element in advance on activated alumina and / or a cerium-based dense mixed oxide. In addition, a manufacturing method process can be manufactured according to the said catalyst manufacturing method 1 or 2.
本方法で白金族元素を活性アルミナに担持固定するには、前記白金族金属源の水溶液を活性アルミナと接触させた後、乾燥、焼成すればよい。具体的には、所望の白金族金属の担持量となるように、白金族金属水溶液を調製し、活性アルミナを接触混合させ、50〜150℃で乾燥した後、空気中または還元雰囲気下に、例えば、300〜700℃の範囲の温度で2〜6時間程度焼成することにより、白金族金属元素を担持させた活性アルミナが得られる。 In order to support and fix the platinum group element on the activated alumina by this method, the platinum group metal source aqueous solution is brought into contact with the activated alumina, and then dried and fired. Specifically, a platinum group metal aqueous solution is prepared so that a desired amount of platinum group metal is supported, activated alumina is contact-mixed, dried at 50 to 150 ° C., and then in air or in a reducing atmosphere. For example, activated alumina carrying a platinum group metal element is obtained by firing at a temperature in the range of 300 to 700 ° C. for about 2 to 6 hours.
尚、本製造方法において白金族金属元素を活性アルミナの一部に3〜30質量%、より好ましくは5〜20質量%で高い担持率で担持固定することにより、耐熱性の改善効果が得られることがある。このように高い担持率で白金族金属を活性アルミナに担持した場合は白金族金属が特定の範囲の粒子径で存在し、かつ白金族金属が担持されていない無垢の活性アルミナが被覆層内の近傍に介在することにより、白金族金属の凝集が防止されて耐久性が改善されると推定される。 In this production method, the effect of improving the heat resistance can be obtained by supporting and fixing the platinum group metal element to a part of the activated alumina at a high supporting rate of 3 to 30% by mass, more preferably 5 to 20% by mass. Sometimes. When the platinum group metal is supported on the activated alumina at such a high loading rate, the platinum group metal exists in a specific range of particle diameters, and the solid activated alumina on which the platinum group metal is not supported is in the coating layer. By interposing in the vicinity, it is presumed that aggregation of platinum group metals is prevented and durability is improved.
一方、白金族金属元素をセリウム系均密混合酸化物に担持固定するには、前記白金族金属源の水溶液をセリウム系均密混合酸化物と接触させた後、乾燥、焼成すればよい。具体的には、所望の白金族金属の担持量となるように、白金族金属水溶液を調製し、セリウム系均密混合酸化物と接触混合させ、50〜150℃で乾燥した後、空気中または還元雰囲気下に、例えば、300〜700℃の範囲の温度で2〜6時間程度焼成することにより、白金族金属を担持させたセリウム系均密酸化物が得られる。白金族金属をセリウム系均密混合酸化物上に担持固定することにより、セリウム均密混合酸化物の触媒効果が促進され、熱的な触媒活性の低下抑止効果のみならず、硫黄などの触媒毒成分による被毒の低減及び炭素析出の抑止にも有効に作用し、長期間安定して優れた触媒作用を維持することができる。具体的には白金族金属はセリウム系均密混合酸化物に対して0.1〜10質量%、より好ましくは0.2〜5質量%で担持することが望ましい。 On the other hand, in order to support and fix the platinum group metal element on the cerium-based dense mixed oxide, the aqueous solution of the platinum group metal source is brought into contact with the cerium-based dense mixed oxide, and then dried and fired. Specifically, a platinum group metal aqueous solution is prepared so as to have a desired amount of platinum group metal supported, contact-mixed with a cerium-based dense mixed oxide, dried at 50 to 150 ° C., and then in the air or For example, a cerium-based dense oxide carrying a platinum group metal is obtained by firing in a reducing atmosphere at a temperature in the range of 300 to 700 ° C. for about 2 to 6 hours. By supporting and fixing the platinum group metal on the cerium-based homogeneous mixed oxide, the catalytic effect of the cerium homogeneous mixed oxide is promoted, and not only the thermal catalytic activity lowering suppression effect but also the catalyst poison such as sulfur. It effectively acts to reduce poisoning due to the components and to suppress carbon deposition, and can maintain an excellent catalytic action stably for a long period of time. Specifically, the platinum group metal is preferably supported at 0.1 to 10% by mass, more preferably 0.2 to 5% by mass with respect to the cerium-based dense mixed oxide.
<触媒製造方法4>
触媒製造方法1と同様にして活性アルミナ及びセリウム系均密混合酸化物をハニカム担体に被覆する工程と、更に前記活性アルミナとセリウム系均密混合酸化物が被覆されたハニカム担体を白金族金属水溶液に含浸して白金族金属を担持する工程を有している水素製造用触媒の製造方法である。
<Catalyst production method 4>
In the same manner as in the catalyst production method 1, the step of coating the activated alumina and the cerium-based dense mixed oxide on the honeycomb carrier, and further the honeycomb carrier coated with the activated alumina and the cerium-based dense mixed oxide is treated with a platinum group metal aqueous solution Is a method for producing a catalyst for hydrogen production, which comprises a step of impregnating a catalyst and supporting a platinum group metal.
本製造方法では最初に活性アルミナおよびセリウム酸化物をボールミルなどの粉砕機に供給し、湿式粉砕してスラリーを調製し、製造方法1と同様にしてスラリーをハニカム担体に被覆して、乾燥し、400〜800℃の空気中で焼成して活性アルミナおよびセリウム系均密混合酸化物をハニカム担体に固定する。このようにして得られた被覆ハニカム担体を白金族金属水溶液に含浸して白金族金属を担持し、乾燥してから空気中または還元雰囲気下に、例えば、300〜600℃の範囲の温度で2〜6時間程度焼成する。 In this manufacturing method, first, activated alumina and cerium oxide are supplied to a pulverizer such as a ball mill, and wet pulverized to prepare a slurry. The slurry is coated on a honeycomb carrier in the same manner as in manufacturing method 1, and dried. The activated alumina and the cerium-based dense mixed oxide are fixed to the honeycomb carrier by firing in air at 400 to 800 ° C. The coated honeycomb carrier thus obtained is impregnated with a platinum group metal aqueous solution to carry the platinum group metal, dried, and then dried in air or in a reducing atmosphere at a temperature of, for example, 300 to 600 ° C. Bake for about 6 hours.
本製造方法ではスラリー被覆と貴金属担持が別工程となっているため活性アルミナおよびセリウム系均密混合酸化物の強固な被覆層を形成するのに適している。例えば白金族金属としてルテニウムを使用する場合は、強固な被覆層を形成するために高温の酸素雰囲気で焼成するとルテニウムの一部が飛散する可能性があった。一方、本製造方法では強固な被覆層を形成してから最終工程で白金族金属を担持するため白金族金属の活性化に最適な条件で処理して製品とすることができる。また例えば白金族金属を含浸する際に化学吸着的に被覆層に担持せしめることにより、ガスと接触する被覆層の最表面に白金族金属がリッチな層を形成することができ、白金族金属担持量を低減しても高い触媒活性を得ることができる。このように代表的な触媒製造方法1〜4を示したが、適宜これら製造方法を組み合わせてもよい。 In this production method, the slurry coating and the noble metal loading are separate processes, and therefore suitable for forming a strong coating layer of activated alumina and a cerium-based dense mixed oxide. For example, when ruthenium is used as the platinum group metal, a part of ruthenium may be scattered when fired in a high-temperature oxygen atmosphere in order to form a strong coating layer. On the other hand, in this production method, since a strong coating layer is formed and the platinum group metal is supported in the final step, the product can be processed under conditions optimal for the activation of the platinum group metal. Also, for example, by impregnating a platinum group metal with a coating layer by chemisorption, a platinum group metal-rich layer can be formed on the outermost surface of the coating layer in contact with the gas. Even if the amount is reduced, high catalytic activity can be obtained. Thus, although the typical catalyst manufacturing methods 1-4 were shown, you may combine these manufacturing methods suitably.
(炭化水素系化合物の改質方法)
次に、上述した水素製造用触媒を用いて炭化水素系化合物の改質により水素を製造する方法について説明する。
(Method for reforming hydrocarbon compounds)
Next, a method for producing hydrogen by reforming a hydrocarbon compound using the above-described hydrogen production catalyst will be described.
改質反応の原料となる炭化水素系化合物としては、メタン、エタン、プロパン、ブタン、ヘプタン、ヘキサンなどの軽質炭化水素、ガソリン、軽油、ナフサなどの石油系炭化水素などが挙げられ、例えば天然ガス、LPG、都市ガス、灯油などの工業的に安定的に入手できる原料を使用することができる。ただし炭化水素系化合物は脱硫処理などの精製が実施されていても微量に硫黄化合物が残留していたり、一般家庭用LPGや都市ガスに付臭剤としてメルカプタン、チオフェン、スルフィドなどの硫黄化合物が添加されていたりする。硫黄系化合物は触媒の被毒物質となることが知られているが、本発明の水素製造用触媒はこれら硫黄化合物を含有する炭化水素系化合物も改質反応の原料に使用することができる。なお、脱硫器を設置して原料中に含まれる硫黄化合物を除去してから本発明の水素製造触媒により改質反応を実施することにより、長期に渡る触媒使用が可能となり燃料電池システムの維持管理が更に容易となることは言うまでもない。 Examples of the hydrocarbon compound used as a raw material for the reforming reaction include light hydrocarbons such as methane, ethane, propane, butane, heptane, and hexane, and petroleum hydrocarbons such as gasoline, light oil, and naphtha. , LPG, city gas, kerosene, and other industrially available raw materials can be used. However, even if hydrocarbon compounds are refined such as desulfurization treatment, sulfur compounds remain in trace amounts, or sulfur compounds such as mercaptans, thiophenes, sulfides are added as odorants to general household LPG and city gas Have been. Although sulfur compounds are known to be poisonous substances for catalysts, the hydrogen production catalyst of the present invention can also use hydrocarbon compounds containing these sulfur compounds as raw materials for the reforming reaction. By installing a desulfurizer to remove sulfur compounds contained in the raw material and then carrying out the reforming reaction using the hydrogen production catalyst of the present invention, the catalyst can be used over a long period of time, and the fuel cell system is maintained and managed. Needless to say, it becomes easier.
本発明の水素製造方法において、原料ガスとなる炭化水素系化合物は水蒸気とを混合して用いることができる。炭化水素系化合物に含まれる炭素原子モル数に対する水蒸気のモル数の比(S/C比)は1〜5、好ましくは2〜4、より好ましくは2.5〜3.5であることが望ましい。スチーム/カーボン比が1より小さい場合はコークが析出しやすくなり、5より大きくすると設備の大型化を招き好ましくない。 In the hydrogen production method of the present invention, the hydrocarbon compound used as the raw material gas can be used by mixing with water vapor. The ratio of the number of moles of water vapor to the number of moles of carbon atoms contained in the hydrocarbon compound (S / C ratio) is 1 to 5, preferably 2 to 4, more preferably 2.5 to 3.5. . When the steam / carbon ratio is smaller than 1, coke is likely to precipitate, and when it is larger than 5, the equipment becomes larger, which is not preferable.
圧力は、常圧以上であって5MPa以下、好ましくは3MPa以下とするのがよい。ガス空間速度(SV)は500〜100,000H−1、好ましくは1,000〜30,000H−1とするのがよい。反応温度は、効率的な改質反応を行うために、触媒層温度が500〜1,000℃、好ましくは600〜900℃の範囲内となるようにするのがよい。
また本発明の水素製造用触媒は、耐酸化性が優れており必要により微量酸素を添加してもよい。酸素の添加により炭化水素系化合物が部分酸化反応により発熱し、外部から加熱しなくても触媒の温度を所定の温度に高めることができる炭化水素含有ガスと酸素含有ガスとの割合については、炭素原子モル数に対する酸素分子のモル数の比(酸素/カーボン比)が0〜0.75とすることができる。
The pressure is normal pressure or more and 5 MPa or less, preferably 3 MPa or less. Gas space velocity (SV) is 500~100,000H -1, and it is preferably a 1,000~30,000H -1. In order to perform an efficient reforming reaction, the reaction temperature should be such that the catalyst layer temperature is in the range of 500 to 1,000 ° C., preferably 600 to 900 ° C.
The hydrogen production catalyst of the present invention is excellent in oxidation resistance, and a trace amount of oxygen may be added if necessary. With respect to the ratio of the hydrocarbon-containing gas to the oxygen-containing gas, the hydrocarbon compound generates heat due to the partial oxidation reaction due to the addition of oxygen, and the temperature of the catalyst can be raised to a predetermined temperature without heating from the outside. The ratio of the number of moles of oxygen molecules to the number of moles of atoms (oxygen / carbon ratio) can be 0 to 0.75.
本発明の水素製造用触媒によって得られる改質ガスは、水素と一酸化炭素を主に含有しており、燃料電池の燃料や、化学工業用原料として使用できる。たとえば高温作動型燃料電池と類別される溶融炭酸塩型燃料電池や固体酸化物型燃料電池は、一酸化炭素や炭化水素も燃料として利用できるので、前記改質ガスをそのまま燃料電池の燃料として使用できる好ましい用途である。 The reformed gas obtained by the hydrogen production catalyst of the present invention mainly contains hydrogen and carbon monoxide and can be used as a fuel for fuel cells and a raw material for the chemical industry. For example, molten carbonate fuel cells and solid oxide fuel cells, which are classified as high-temperature operation fuel cells, can use carbon monoxide and hydrocarbons as fuel, so the reformed gas can be used as fuel for fuel cells. A preferred application that can be made.
また前記改質ガスは、更にCO変性反応で一酸化炭素濃度を低減したり、深冷分離法、PAS法、水素貯蔵合金或いはパラジウム膜拡散法等により不純物を除去したりして高純度の水素ガスとすることができる。例えばCO変性反応は一酸化炭素と水を反応させて水素と二酸化炭素に転換することものであり一酸化炭素濃度を1%程度まで低減することができる。CO変性反応に用いる触媒としては、例えば銅主体、或いは鉄主体とする公知の触媒を用いて行えばよい。低温作動型固体高分子燃料電池の燃料などのように更に一酸化炭素濃度を低減する必要がある場合は、CO変性触媒の後段に設置するCO選択酸化触媒により二酸化炭素に酸化するかCO選択メタン化触媒によりメタンに転換させて、一酸化炭素濃度を10ppm以下とすることが望ましい。 In addition, the reformed gas can be reduced in carbon monoxide concentration by CO modification reaction, or impurities can be removed by cryogenic separation method, PAS method, hydrogen storage alloy or palladium membrane diffusion method, etc. It can be gas. For example, the CO modification reaction is a reaction in which carbon monoxide and water are converted into hydrogen and carbon dioxide, and the carbon monoxide concentration can be reduced to about 1%. As the catalyst used for the CO modification reaction, for example, a known catalyst mainly composed of copper or iron may be used. When it is necessary to further reduce the carbon monoxide concentration, such as the fuel of a low-temperature operation type solid polymer fuel cell, it is oxidized to carbon dioxide by a CO selective oxidation catalyst installed at the subsequent stage of the CO modification catalyst, or CO selective methane It is desirable that the carbon monoxide concentration be 10 ppm or less by converting it to methane using a catalyst.
以下に、実施例を用いて本発明を詳細に説明するが、本発明の趣旨に反しない限り実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the examples without departing from the spirit of the present invention.
(実施例1)
セリウム系均密混合酸化物:硝酸ニッケル6水和物291g硝酸セリウム6水和物434gを純水5Lに溶解した混合水溶液を攪拌しながら徐々にアンモニア水を滴下し、共沈させてpHが9となった状態で1晩放置した。次に濾過して十分に水洗してから沈殿物を150℃で12時間乾燥してから、空気雰囲気下にて700℃で5時間焼成してセリウム−ニッケル均密混合酸化物(モル比CeO2:NiO=50:50)を得た。得られたセリウム−ニッケル均密混合酸化物はX線回折にてセリウムとニッケルの固溶体の形成が確認され、BET比表面積は45m2/gであった。
Example 1
Cerium-based homogeneous mixed oxide: Nickel nitrate hexahydrate 291 g Aqueous solution of 434 g cerium nitrate hexahydrate dissolved in 5 L of pure water was gradually added dropwise with stirring and co-precipitated to a pH of 9 In that state, it was left overnight. Next, after filtration and washing with sufficient water, the precipitate is dried at 150 ° C. for 12 hours, and then calcined in an air atmosphere at 700 ° C. for 5 hours to cerium-nickel dense mixed oxide (molar ratio CeO 2 : NiO = 50: 50). In the obtained cerium-nickel homogeneous mixed oxide, formation of a solid solution of cerium and nickel was confirmed by X-ray diffraction, and the BET specific surface area was 45 m 2 / g.
メタルハニカム担体:ハニカム担体としてFe−Cr−Al系耐熱性ステンレス板の箔厚が30μmであって断面積1インチ平方当り400個のセルを有し、外径20mmで長さ66mmのメタルハニカム担体(幾何学表面積約3000m2/m3)を使用した。 Metal honeycomb carrier: Fe-Cr-Al heat-resistant stainless steel plate having a foil thickness of 30 μm as a honeycomb carrier, 400 cells per square inch of cross-sectional area, an outer diameter of 20 mm, and a length of 66 mm (Geometric surface area of about 3000 m 2 / m 3 ) was used.
スラリーの調製:比表面積が155m2/gの活性アルミナ(γ−アルミナ)が75gと前記セリウム−ニッケル均密混合酸化物150g、純水および酢酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーを粒度分布測定器(レーザー回折散乱式)で観察したところ平均粒子径は4.5μmであった。 Preparation of slurry: 75 g of activated alumina (γ-alumina) having a specific surface area of 155 m 2 / g, 150 g of the cerium-nickel intimate mixed oxide, pure water and acetic acid are supplied to a ball mill and wet-ground to obtain an aqueous slurry. Prepared. When the obtained slurry was observed with a particle size distribution measuring device (laser diffraction scattering type), the average particle size was 4.5 μm.
触媒の製造:該スラリーに上記担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した。次に150℃で乾燥した後、空気中にて600℃で2時間焼成して触媒組成物をメタルハニカム担体に付着させた。上記スラリー担持を2回繰り返して完成触媒(A)を得た。メタルハニカム担体1L当たりの触媒組成物の担持量は220g/Lであった。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が3.9μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは130μmであった。 Production of catalyst: The carrier was immersed in the slurry to adhere the slurry, and then taken out. Then, compressed air was blown onto the carrier to remove excess slurry remaining in the cell. Next, after drying at 150 ° C., the catalyst composition was adhered to the metal honeycomb carrier by firing in air at 600 ° C. for 2 hours. The slurry support was repeated twice to obtain a finished catalyst (A). The supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was 220 g / L. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 3.9 μm, the catalyst composition was coated on the metal honeycomb carrier, and the average catalyst coat layer thickness was 130 μm.
(実施例2)
セリウム均密混合酸化物:炭酸セリウム粉末にオキシ硝酸ジルコニウム水溶液を添加し、均一の混合した後、混合物を150℃で乾燥して水分を除去した後に空気雰囲気下にて700℃で5時間焼成してセリウム−ジルコニウム均密混合酸化物(モル比CeO2:ZrO2=80:20)を得た。得られたセリウム−ジルコニウム均密混合酸化物はX線回折にて蛍石型二酸化セリウムの結晶構造のみの回折ピークを有する複合酸化物を形成しており、BET比表面積は38m2/gであった。
(Example 2)
Cerium homogeneous mixed oxide: After adding an aqueous solution of zirconium oxynitrate to cerium carbonate powder and mixing uniformly, the mixture is dried at 150 ° C. to remove moisture, and then calcined at 700 ° C. for 5 hours in an air atmosphere. Thus, a cerium-zirconium homogeneous mixed oxide (molar ratio CeO 2 : ZrO 2 = 80: 20) was obtained. The obtained cerium-zirconium homogeneous mixed oxide formed a complex oxide having a diffraction peak of only the crystal structure of fluorite-type cerium dioxide by X-ray diffraction, and the BET specific surface area was 38 m 2 / g. It was.
スラリーの調製:ルテニウムを7.5g含有する硝酸ルテニウム水溶液、比表面積が155m2/gの活性アルミナ(γ−アルミナ)が150gと前記セリウム−ジルコニウム均密混合酸化物75g、純水および酢酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーを粒度分布測定器(レーザー回折散乱式)で観察したところ平均粒子径は2.7μmであった。 Preparation of slurry: A ruthenium nitrate aqueous solution containing 7.5 g of ruthenium, 150 g of activated alumina (γ-alumina) having a specific surface area of 155 m 2 / g, 75 g of the cerium-zirconium homogeneous mixed oxide, pure water and acetic acid are ball milled. And wet pulverized to prepare an aqueous slurry. When the obtained slurry was observed with a particle size distribution analyzer (laser diffraction scattering type), the average particle size was 2.7 μm.
触媒の製造:該スラリーに実施例1と同じメタルハニカム担体を浸漬してから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した。次に150℃で乾燥させて触媒成分を担体に付着させた後、水素気流中(水素5%/窒素バランス)にて600℃で2時間還元処理して完成触媒(B)を得た。完成触媒(B)はメタルハニカム担体1L当たりの触媒組成物の担持量は168g/Lであり、Ruとして5.4g/Lで担持されていた。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が2.8μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは100μmであった。 Production of catalyst: The same metal honeycomb carrier as in Example 1 was immersed in the slurry and then taken out, and then compressed air was blown onto the carrier to remove excess slurry remaining in the cells. Next, after drying at 150 ° C. to attach the catalyst component to the carrier, reduction treatment was performed at 600 ° C. for 2 hours in a hydrogen stream (5% hydrogen / nitrogen balance) to obtain a finished catalyst (B). The finished catalyst (B) had a supported amount of catalyst composition per liter of metal honeycomb carrier of 168 g / L, and was supported at 5.4 g / L as Ru. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 2.8 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 100 μm.
(実施例3)
セリウム均密混合酸化物:炭酸セリウム粉末に硝酸マンガン水溶液を添加し、均一の混合した後、混合物を150℃で乾燥して水分を除去した後に空気雰囲気下にて700℃で5時間焼成してセリウム−マンガン均密混合酸化物(モル比CeO2:MnO2=80:20)を得た。得られたセリウム−マンガン均密混合酸化物はX線回折にて蛍石型二酸化セリウムの結晶構造のみの回折ピークを有する複合酸化物を形成し、BET比表面積は42m2/gであった。
(Example 3)
Cerium dense mixed oxide: After adding manganese nitrate aqueous solution to cerium carbonate powder and mixing uniformly, the mixture is dried at 150 ° C. to remove moisture, and then calcined at 700 ° C. for 5 hours in an air atmosphere. A cerium-manganese dense mixed oxide (molar ratio CeO 2 : MnO 2 = 80: 20) was obtained. Obtained cerium - manganese intimate mixed oxide forms a complex oxide having a diffraction peak of only the crystal structure of the fluorite type cerium dioxide by X-ray diffraction, BET specific surface area was 42m 2 / g.
触媒の製造:上記セリウム系均密混合酸化物を使用した以外は実施例2と同様にして完成触媒(C)を得た。完成触媒(C)はメタルハニカム担体1L当たりの触媒組成物の担持量は158g/Lであり、Ruとして5.1g/Lで担持されていた。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が2.4μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは90μmであった。 Production of catalyst: A finished catalyst (C) was obtained in the same manner as in Example 2 except that the above cerium-based dense mixed oxide was used. In the finished catalyst (C), the supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was 158 g / L, and it was supported at 5.1 g / L as Ru. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 2.4 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 90 μm.
(実施例4)
セリウム均密混合酸化物:水酸化セリウム粉末に硝酸鉄水溶液を添加し、均一の混合した後、混合物を150℃で乾燥して水分を除去した後に空気雰囲気下にて700℃で5時間焼成してセリウム−鉄均密混合酸化物(モル比CeO2:Fe2O3=90:10)を得た。得られたセリウム−鉄均密混合酸化物はX線回折にて蛍石型二酸化セリウムと結晶構造のみ回折ピークを有しており、BET比表面積は35m2/gであった。
Example 4
Cerium homogeneous mixed oxide: After adding iron nitrate aqueous solution to cerium hydroxide powder and mixing uniformly, the mixture is dried at 150 ° C. to remove moisture, and then calcined at 700 ° C. for 5 hours in an air atmosphere. Thus, a cerium-iron dense mixed oxide (molar ratio CeO 2 : Fe 2 O 3 = 90: 10) was obtained. The obtained cerium-iron dense mixed oxide had diffraction peaks only for fluorite-type cerium dioxide and crystal structure by X-ray diffraction, and the BET specific surface area was 35 m 2 / g.
触媒の製造:上記セリウム系均密混合酸化物を使用した以外は実施例2と同様にして完成触媒(D)を得た。完成触媒(D)はメタルハニカム担体1L当たりの触媒組成物の担持量は152g/Lであり、Ruとして4.9g/Lで担持されていた。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が1.8μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは85μmであった。 Production of catalyst: A finished catalyst (D) was obtained in the same manner as in Example 2 except that the above cerium-based dense mixed oxide was used. In the finished catalyst (D), the supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was 152 g / L, and was supported at 4.9 g / L as Ru. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 1.8 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 85 μm.
(実施例5)
セリウム均密混合酸化物:実施例2と同様にしてセリウム−ジルコニウム均密混合酸化物を得た。
スラリーの調製:比表面積が155m2/gの活性アルミナ(γ−アルミナ)が150gと上記セリウム−ジルコニウム均密混合酸化物100g、シリカゾル(SiO2濃度30wt%)50g、純水および酢酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーの平均粒子径は3.3μmであった。
(Example 5)
Cerium homogeneous mixed oxide: A cerium-zirconium homogeneous mixed oxide was obtained in the same manner as in Example 2.
Preparation of slurry: 150 g of activated alumina (γ-alumina) having a specific surface area of 155 m 2 / g, 100 g of the above cerium-zirconium mixed oxide, 50 g of silica sol (SiO 2 concentration 30 wt%), pure water and acetic acid in a ball mill An aqueous slurry was prepared by supplying and wet grinding. The average particle diameter of the obtained slurry was 3.3 μm.
触媒の製造:該スラリーにメタルハニカム担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した。その後、150℃で乾燥させて触媒成分を担体に付着させた後、空気中にて700℃で2時間焼成した。 Production of catalyst: A metal honeycomb carrier was immersed in the slurry to adhere the slurry, and then taken out. Then, compressed air was blown onto the carrier to remove excess slurry remaining in the cell. Thereafter, the catalyst component was adhered to the support by drying at 150 ° C., and then calcined in air at 700 ° C. for 2 hours.
次に上記触媒成分を被覆したメタルハニカム担体を硝酸ルテニウム水溶液に浸漬した。含浸液は25℃に保持し、ハニカムを上下動して含浸液を攪拌してルテニウムが均一に担持されるようにした。1時間後に、含浸液の色が消失するのを確認して含浸液から取り出し、エアブローで水分を除去した後に120℃で乾燥した。ルテニウムが担持されたハニカムを水素気流中(水素5%/窒素バランス)にて500℃で2時間還元処理して完成触媒(E)を得た。メタルハニカム担体1L当りに触媒組成物の担持量は162g/Lであり、Ruとして3.0g/Lで担持されていた。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が3.2μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは95μmであった。また触媒コート層内のルテニウムの分布を調べたところ、触媒に担持されているルテニウムの7割以上が最表面から20μmの領域に存在しており、表層部にルテニウムのリッチ層が形成されていることが観察された。 Next, the metal honeycomb carrier coated with the catalyst component was immersed in an aqueous ruthenium nitrate solution. The impregnation liquid was maintained at 25 ° C., and the honeycomb was moved up and down to stir the impregnation liquid so that ruthenium was uniformly supported. After 1 hour, it was confirmed that the color of the impregnating liquid had disappeared, and the impregnating liquid was taken out from the impregnating liquid. After removing moisture by air blowing, it was dried at 120 ° C. The honeycomb on which ruthenium was supported was subjected to reduction treatment at 500 ° C. for 2 hours in a hydrogen stream (5% hydrogen / nitrogen balance) to obtain a finished catalyst (E). The supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was 162 g / L, and it was supported at 3.0 g / L as Ru. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 3.2 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 95 μm. Further, when the distribution of ruthenium in the catalyst coat layer was examined, 70% or more of the ruthenium supported on the catalyst was present in a region 20 μm from the outermost surface, and a rich layer of ruthenium was formed on the surface layer portion. It was observed.
(実施例6)
白金担持活性アルミナ:白金として0.4g含有するジニトロジアミン白金硝酸水溶液に比表面積が90m2/gの活性アルミナ(δ−アルミナ)10gを添加して十分に混合してから150℃で乾燥して、空気中にて600℃で2時間焼成して白金が4質量%で担持された活性アルミナを得た。
セリウム系均密混合酸化物:実施例2と同様にしてセリウム−ジルコニウム均密混合酸化物を得た。
スラリーの調製:ルテニウムとして4.0g含有する硝酸ルテニウム水溶液、比表面積が90m2/gの活性アルミナ(δ−アルミナ)90g、前記白金担持活性アルミナ10.4gとセリウム−ジルコニウム均密混合酸化物100gと純水および酢酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーの平均粒子径は2.8μmであった。
(Example 6)
Platinum-supported activated alumina: 10 g of activated alumina (δ-alumina) having a specific surface area of 90 m 2 / g was added to a dinitrodiamine platinum nitric acid aqueous solution containing 0.4 g of platinum, mixed well, and then dried at 150 ° C. Then, it was calcined in air at 600 ° C. for 2 hours to obtain activated alumina carrying platinum at 4% by mass.
Cerium-based homogeneous mixed oxide: A cerium-zirconium homogeneous mixed oxide was obtained in the same manner as in Example 2.
Preparation of slurry: ruthenium nitrate aqueous solution containing 4.0 g of ruthenium, 90 g of activated alumina (δ-alumina) having a specific surface area of 90 m 2 / g, 10.4 g of platinum-supported activated alumina and 100 g of cerium-zirconium dense mixed oxide Pure water and acetic acid were supplied to a ball mill and wet pulverized to prepare an aqueous slurry. The average particle diameter of the obtained slurry was 2.8 μm.
触媒の製造:該スラリーに上記担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した後、150℃で乾燥させて触媒成分を担体に付着させた後、水素気流中(水素5%/窒素バランス)にて600℃で2時間還元処理して完成触媒(F)を得た。メタルハニカム担体1L当たりの触媒組成物の担持量は154g/Lであり、Ruが3.0g/LおよびPtが0.3g/Lで担持されていた。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が2.8μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは85μmであった。 Production of catalyst: The carrier is immersed in the slurry to adhere the slurry, and then taken out. Then, compressed air is blown onto the carrier to remove excess slurry remaining in the cell, followed by drying at 150 ° C. After adhering the catalyst component to the carrier, the catalyst was reduced for 2 hours at 600 ° C. in a hydrogen stream (5% hydrogen / nitrogen balance) to obtain a finished catalyst (F). The supported amount of the catalyst composition per liter of the metal honeycomb carrier was 154 g / L, and Ru was supported at 3.0 g / L and Pt at 0.3 g / L. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 2.8 μm, the catalyst composition was coated on the metal honeycomb carrier, and the average catalyst coat layer thickness was 85 μm.
(実施例7)
パラジウム担持セリウム系均密混合酸化物:パラジウムとして0.4g含有する硝酸パラジウム水溶液に実施例2と同様にして得られたセリウム−ジルコニウム均密混合酸化物150gを十分に混合した後、150℃で乾燥して、空気中で600℃で2時間焼成してパラジウムが0.3質量%担持されたセリウム−ジルコニウム均密混合酸化物を調製した。
(Example 7)
Palladium-supported cerium-based dense mixed oxide: After sufficiently mixing 150 g of the cerium-zirconium dense mixed oxide obtained in the same manner as in Example 2 with an aqueous palladium nitrate solution containing 0.4 g of palladium at 150 ° C. It was dried and calcined in air at 600 ° C. for 2 hours to prepare a cerium-zirconium homogeneous mixed oxide carrying 0.3% by mass of palladium.
スラリーの調製:ルテニウムを4.0g含有する硝酸ルテニウム水溶液、比表面積が90m2/gの活性アルミナ(δ−アルミナ)75g、前記パラジウム担持セリウム−ジルコニウム均密混合酸化物150.4gと純水および酢酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーの平均粒子径は3.3μmであった。
触媒の製造:該スラリーに上記担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した後、150℃で乾燥させて触媒成分を担体に付着させた後、水素気流中(水素5%/窒素バランス)にて600℃で2時間還元処理して完成触媒(G)を得た。メタルハニカム担体1L当たりの触媒組成物の担持量は175g/Lであり、Ruが3.1g/LおよびPdが0.3g/Lで担持されていた。また完成触媒の触媒コート層をEPMAで測定した結果、平均粒子径が3.1μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは110μmであった。
Preparation of slurry: ruthenium nitrate aqueous solution containing 4.0 g of ruthenium, 75 g of activated alumina (δ-alumina) having a specific surface area of 90 m 2 / g, 150.4 g of the palladium-supported cerium-zirconium dense mixed oxide and pure water, Acetic acid was supplied to a ball mill and wet pulverized to prepare an aqueous slurry. The average particle diameter of the obtained slurry was 3.3 μm.
Production of catalyst: The carrier is immersed in the slurry to adhere the slurry, and then taken out. Then, compressed air is blown onto the carrier to remove excess slurry remaining in the cell, followed by drying at 150 ° C. After adhering the catalyst component to the carrier, reduction treatment was performed at 600 ° C. for 2 hours in a hydrogen stream (5% hydrogen / nitrogen balance) to obtain a finished catalyst (G). The supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was 175 g / L, and Ru was supported at 3.1 g / L and Pd was 0.3 g / L. As a result of measuring the catalyst coat layer of the finished catalyst with EPMA, the average particle diameter was 3.1 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 110 μm.
(比較例1)
メタルハニカム担体:実施例1と同じメタルハニカム担体を使用した。
(Comparative Example 1)
Metal honeycomb carrier: The same metal honeycomb carrier as in Example 1 was used.
セリウム酸化物:市販の炭酸セリウムを空気雰囲気下にて700℃で5時間焼成してセリウム酸化物を得た。得られたセリウム酸化物はX線回折にて蛍石型の結晶構造を有する二酸化セリウムであり、BET比表面積は13m2/gであった。
スラリーの調製:比表面積が155m2/gの活性アルミナ(γ−アルミナ)が75gと前記二酸化セリウム150g、純水および硝酸をホモミキサーにて分散させて水性スラリーを調製した。得られたスラリーを粒度分布測定器(レーザー回折散乱式)で観察したところ平均粒子径は13.8μmであった。
Cerium oxide: Commercially available cerium carbonate was calcined at 700 ° C. for 5 hours in an air atmosphere to obtain cerium oxide. The obtained cerium oxide was cerium dioxide having a fluorite-type crystal structure by X-ray diffraction, and the BET specific surface area was 13 m 2 / g.
Preparation of slurry: An aqueous slurry was prepared by dispersing 75 g of activated alumina (γ-alumina) having a specific surface area of 155 m 2 / g, 150 g of cerium dioxide, pure water and nitric acid with a homomixer. When the obtained slurry was observed with a particle size distribution analyzer (laser diffraction scattering type), the average particle size was 13.8 μm.
触媒の製造:該スラリーに上記担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した。次に150℃で乾燥させて触媒成分を担体に付着させた後、空気中で700℃にて2時間焼成して比較触媒(a)を得た。メタルハニカム担体1L当たりの触媒組成物の担持量は126g/Lで担持されていた。また比較触媒の触媒コート層をEPMAで測定した結果、平均粒子径が11.5μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは75μmであった。 Production of catalyst: The carrier was immersed in the slurry to adhere the slurry, and then taken out. Then, compressed air was blown onto the carrier to remove excess slurry remaining in the cell. Next, the catalyst component was adhered to the carrier by drying at 150 ° C., and then calcined in air at 700 ° C. for 2 hours to obtain a comparative catalyst (a). The supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was supported at 126 g / L. As a result of measuring the catalyst coat layer of the comparative catalyst by EPMA, the catalyst composition was coated on the metal honeycomb carrier with an average particle diameter of 11.5 μm, and the thickness of the average catalyst coat layer was 75 μm.
(比較例2)
スラリーの調製:比表面積が155m2/gの活性アルミナ(γ−アルミナ)が200gと純水および硝酸を高速循環式ビーズミルに供給して湿式粉砕して水性スラリーを調製した。得られたスラリーの平均粒子径は0.3μmであった。
(Comparative Example 2)
Preparation of slurry: 200 g of activated alumina (γ-alumina) having a specific surface area of 155 m 2 / g, pure water and nitric acid were supplied to a high-speed circulating bead mill and wet-pulverized to prepare an aqueous slurry. The average particle diameter of the obtained slurry was 0.3 μm.
触媒の製造:該スラリーにメタルハニカム担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した後、150℃で乾燥させて、空気中にて600℃で2時間焼成した。メタルハニカム担体1L当りに活性アルミナが70g/Lで担持されていた。次に活性アルミナが担持されたメタルハニカムを硝酸ニッケル水溶液に含浸した。150℃で乾燥後に空気中で600℃5時間焼成した。その後、水素気流中(水素5%/窒素バランス)にて500℃で2時間還元処理して比較触媒(b)を得た。比較触媒(b)はメタルハニカム担体1L当たり、Niとして20g/Lで担持されていた。また試料の触媒コート層をEPMAで測定した結果、平均粒子径が0.3μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは35μmであった。 Preparation of catalyst: A metal honeycomb carrier is immersed in the slurry and attached to the slurry, and then taken out. Then, compressed air is blown onto the carrier to remove excess slurry remaining in the cell, and then dried at 150 ° C. And baked in air at 600 ° C. for 2 hours. Activated alumina was supported at 70 g / L per 1 L of the metal honeycomb carrier. Next, a nickel honeycomb aqueous solution was impregnated with a metal honeycomb carrying activated alumina. After drying at 150 ° C., baking was performed in air at 600 ° C. for 5 hours. Thereafter, reduction treatment was performed at 500 ° C. for 2 hours in a hydrogen stream (5% hydrogen / nitrogen balance) to obtain a comparative catalyst (b). The comparative catalyst (b) was supported at 20 g / L as Ni per 1 L of the metal honeycomb carrier. As a result of measuring the catalyst coat layer of the sample with EPMA, the average particle diameter was 0.3 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 35 μm.
(比較例3)
触媒の製造:活性アルミナのスラリー担持までは比較例2と同様にしてメタルハニカム担体に活性アルミナを75g/L担持した。次に活性アルミナが被覆されたハニカムを硝酸セリウム水溶液に浸漬し、余剰液を除去して150℃で乾燥した後に、空気中で700℃にて5時間焼成し、二酸化セリウムを13g/Lでハニカムに担持した。引き続き当該ハニカムを硝酸ルテニウム水溶液に浸漬し、余剰液を除去した後に120℃で乾燥してから、水素気流中(水素5%/窒素バランス)にて600℃で2時間還元処理して比較触媒(c)を得た。メタルハニカム担体1L当たり、Ruとして5.0g/Lで担持されていた。また試料の触媒コート層をEPMAで測定した結果、平均粒子径が0.2μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは40μmであった。
(Comparative Example 3)
Production of catalyst: 75 g / L of active alumina was supported on a metal honeycomb carrier in the same manner as in Comparative Example 2 until slurry of active alumina was supported. Next, the honeycomb coated with activated alumina was immersed in an aqueous cerium nitrate solution, the excess liquid was removed and dried at 150 ° C., and then fired in air at 700 ° C. for 5 hours. Supported. Subsequently, the honeycomb was immersed in an aqueous ruthenium nitrate solution, and after removing excess liquid, the honeycomb was dried at 120 ° C. and then subjected to reduction treatment at 600 ° C. for 2 hours in a hydrogen stream (hydrogen 5% / nitrogen balance). c) was obtained. It was carried at 5.0 g / L as Ru per 1 L of the metal honeycomb carrier. As a result of measuring the catalyst coat layer of the sample with EPMA, the average particle diameter was 0.2 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 40 μm.
(比較例4)
触媒の製造:比較例1と全く同様にしてメタルハニカム担体に活性アルミナ及び酸化セリウムよりなる触媒組成物を担持した。引き続き、当該ハニカムを硝酸ルテニウム水溶液に浸漬し、余剰液を除去した後に120℃で乾燥してから、水素気流中(水素5%/窒素バランス)にて600℃で2時間還元処理して比較触媒(d)を得た。メタルハニカム担体1L当たりの触媒組成物の担持量は121g/Lであり、Ruとして3.7g/Lで担持されていた。また試料の触媒コート層をEPMAで測定した結果、平均粒子径が12.5μmで触媒組成物がメタルハニカム担体に被覆されており、平均触媒コート層の厚みは70μmであった。
(Comparative Example 4)
Production of catalyst: In the same manner as in Comparative Example 1, a catalyst composition comprising activated alumina and cerium oxide was supported on a metal honeycomb carrier. Subsequently, the honeycomb was immersed in an aqueous ruthenium nitrate solution, and after removing excess liquid, the honeycomb was dried at 120 ° C. and then reduced at 600 ° C. for 2 hours in a hydrogen stream (5% hydrogen / nitrogen balance). (D) was obtained. The supported amount of the catalyst composition per 1 L of the metal honeycomb carrier was 121 g / L, and it was supported at 3.7 g / L as Ru. Further, as a result of measuring the catalyst coat layer of the sample by EPMA, the average particle diameter was 12.5 μm, the catalyst composition was coated on the metal honeycomb carrier, and the thickness of the average catalyst coat layer was 70 μm.
(初期性能試験)
ラボ活性試験装置を用いて以下の試験条件で水素製造用触媒の初期性能を測定した。原料ガスとして都市ガス13Aを脱硫処理せずにそのまま使用し、触媒入口温度700℃、GHSV=20,000H−1でスチーム/カーボン(S/C)比=2.5の条件にて改質反応を実施した。ガスクロマトグラフィー(島津製作所:ガスクロマトグラフGC−8A)を用いて生成ガスの各濃度を測定し、反応開始3時間後の原料転化率を下記式(1)により算出した。
(Initial performance test)
The initial performance of the hydrogen production catalyst was measured under the following test conditions using a laboratory activity test apparatus. The city gas 13A is used as the raw material gas without being desulfurized, and the reforming reaction is performed under the conditions of a catalyst inlet temperature of 700 ° C., a GHSV = 20,000 H −1 and a steam / carbon (S / C) ratio = 2.5. Carried out. Each concentration of the product gas was measured using gas chromatography (Shimadzu Corporation: gas chromatograph GC-8A), and the raw material conversion after 3 hours from the start of the reaction was calculated by the following formula (1).
実施例1、実施例5及び比較例1〜2の水素製造用触媒の性能試験結果を表2に示す。
Table 2 shows the performance test results of the hydrogen production catalysts of Example 1, Example 5, and Comparative Examples 1-2.
実施例1、実施例5及び比較例1〜2の触媒について触媒成分の接着性を確認するために以下の試験を実施した。試料を1時間純水に浸漬した後に1分間40kHzの超音波洗浄を実施し、取り出して空気圧1kg/cm2のブローし150℃で1時間乾燥してから、上記の初期性能試験と同じ試験条件で性能を測定し結果を表2に示した。
In order to confirm the adhesiveness of the catalyst components for the catalysts of Example 1, Example 5 and Comparative Examples 1-2, the following tests were conducted. The sample was immersed in pure water for 1 hour and then subjected to ultrasonic cleaning at 40 kHz for 1 minute, taken out, blown at an air pressure of 1 kg / cm 2 and dried at 150 ° C. for 1 hour, and then the same test conditions as the above initial performance test The performance was measured with the results shown in Table 2.
表2の結果より実施例1の本発明の触媒は比較例の触媒と比較して同等以上の初期性能性能を有している。比較例1および比較例2の触媒は実施例と比較して接着性試験後の性能低下が大きく、触媒成分の剥がれが生じていると考えられる。一方、実施例の触媒は比較触媒と比較し高い接着性を有していることは明らかである。 From the results in Table 2, the catalyst of the present invention of Example 1 has equivalent or better initial performance than the catalyst of the comparative example. The catalyst of Comparative Example 1 and Comparative Example 2 has a large performance deterioration after the adhesion test as compared with the Examples, and it is considered that the catalyst component is peeled off. On the other hand, it is clear that the catalyst of the example has higher adhesion than the comparative catalyst.
(耐久性能試験)
実施例1〜7及び比較例2〜4の触媒について上記初期性能試験と同一の条件で測定した初期性能(3時間経過後)と反応を40時間継続後の測定値を耐久性能として表3に示した。初期性能において性能差異は小さいが、耐久性能は比較触媒と比較して本願発明の触媒が良好である。なお本耐久性能は触媒の耐熱性、耐水性、耐硫黄被毒性、耐コーキング性、触媒成分の剥離や飛散などの複合要因に対する性能試験になっている。
(Durability test)
For the catalysts of Examples 1 to 7 and Comparative Examples 2 to 4, the initial performance (after 3 hours) measured under the same conditions as the above initial performance test and the measured value after 40 hours of reaction are shown in Table 3 as the durability performance. Indicated. Although the performance difference is small in the initial performance, the durability of the catalyst of the present invention is better than that of the comparative catalyst. This durability performance is a performance test against complex factors such as heat resistance, water resistance, sulfur poisoning resistance, coking resistance, catalyst component peeling and scattering.
本発明は、炭化水素系化合物よりなる原料ガスの改質により水素を生成するに際して、長期にわたり性能劣化の少ない水素製造用触媒であり、特に硫黄化合物を含有している原料ガスにも好適に適用できる。 The present invention is a hydrogen production catalyst with little performance deterioration over a long period of time when hydrogen is generated by reforming a raw material gas comprising a hydrocarbon compound, and is particularly suitable for a raw material gas containing a sulfur compound. it can.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009136004A JP2010279911A (en) | 2009-06-05 | 2009-06-05 | Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009136004A JP2010279911A (en) | 2009-06-05 | 2009-06-05 | Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010279911A true JP2010279911A (en) | 2010-12-16 |
Family
ID=43537159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009136004A Pending JP2010279911A (en) | 2009-06-05 | 2009-06-05 | Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010279911A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139718A (en) * | 2011-12-28 | 2013-07-18 | Honda Motor Co Ltd | Exhaust purification catalyst |
JP2014507274A (en) * | 2011-02-14 | 2014-03-27 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Catalysts used in steam reforming processes |
JP2015517175A (en) * | 2012-03-08 | 2015-06-18 | ヘルビオ ソシエテ アノニム ハイドロジェン アンド エナジー プロダクション システムズ | Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell |
JP2019171287A (en) * | 2018-03-28 | 2019-10-10 | 日本製鉄株式会社 | Catalyst for modifying tar-containing gas, manufacturing method of catalyst for modifying tar-containing gas, and tar-containing gas modification method using catalyst for modifying tar-containing gas |
WO2021029410A1 (en) * | 2019-08-14 | 2021-02-18 | 地方独立行政法人東京都立産業技術研究センター | Method for manufacturing catalyst for voc treatment |
WO2022145740A1 (en) * | 2020-12-30 | 2022-07-07 | 한화솔루션 주식회사 | Hydrogenation catalyst with imiproved sulfur resistance and method for producing same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5724641A (en) * | 1980-07-17 | 1982-02-09 | Jgc Corp | Manufacture of catalyst for water vapor reforming of hydrocarbon at low temperature |
JP2003320253A (en) * | 2002-04-30 | 2003-11-11 | Nippon Shokubai Co Ltd | Hydrocarbon partial oxidation catalyst and production of hydrogen-containing gas using the same |
JP2005058972A (en) * | 2003-08-20 | 2005-03-10 | Nippon Shokubai Co Ltd | Catalyst for hydrocarbon partial oxidation and producing method therefor, and producing method for hydrogen-containing gas |
JP2005152890A (en) * | 2003-10-29 | 2005-06-16 | Nippon Shokubai Co Ltd | Reforming catalyst for partial oxidation and reforming method |
JP2005177615A (en) * | 2003-12-19 | 2005-07-07 | Nissan Motor Co Ltd | Fuel-reforming catalyst |
WO2005079978A1 (en) * | 2004-02-19 | 2005-09-01 | Idemitsu Kosan Co., Ltd. | Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system |
JP2005305373A (en) * | 2004-04-26 | 2005-11-04 | Mitsubishi Materials Corp | Honeycomb catalyst and production method therefor |
JP2006286552A (en) * | 2005-04-05 | 2006-10-19 | Idemitsu Kosan Co Ltd | Manufacturing method of fuel gas for solid oxide fuel cell operated in middle and low temperature ranges |
-
2009
- 2009-06-05 JP JP2009136004A patent/JP2010279911A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5724641A (en) * | 1980-07-17 | 1982-02-09 | Jgc Corp | Manufacture of catalyst for water vapor reforming of hydrocarbon at low temperature |
JP2003320253A (en) * | 2002-04-30 | 2003-11-11 | Nippon Shokubai Co Ltd | Hydrocarbon partial oxidation catalyst and production of hydrogen-containing gas using the same |
JP2005058972A (en) * | 2003-08-20 | 2005-03-10 | Nippon Shokubai Co Ltd | Catalyst for hydrocarbon partial oxidation and producing method therefor, and producing method for hydrogen-containing gas |
JP2005152890A (en) * | 2003-10-29 | 2005-06-16 | Nippon Shokubai Co Ltd | Reforming catalyst for partial oxidation and reforming method |
JP2005177615A (en) * | 2003-12-19 | 2005-07-07 | Nissan Motor Co Ltd | Fuel-reforming catalyst |
WO2005079978A1 (en) * | 2004-02-19 | 2005-09-01 | Idemitsu Kosan Co., Ltd. | Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system |
JP2005305373A (en) * | 2004-04-26 | 2005-11-04 | Mitsubishi Materials Corp | Honeycomb catalyst and production method therefor |
JP2006286552A (en) * | 2005-04-05 | 2006-10-19 | Idemitsu Kosan Co Ltd | Manufacturing method of fuel gas for solid oxide fuel cell operated in middle and low temperature ranges |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014507274A (en) * | 2011-02-14 | 2014-03-27 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Catalysts used in steam reforming processes |
JP2013139718A (en) * | 2011-12-28 | 2013-07-18 | Honda Motor Co Ltd | Exhaust purification catalyst |
JP2015517175A (en) * | 2012-03-08 | 2015-06-18 | ヘルビオ ソシエテ アノニム ハイドロジェン アンド エナジー プロダクション システムズ | Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell |
JP2019171287A (en) * | 2018-03-28 | 2019-10-10 | 日本製鉄株式会社 | Catalyst for modifying tar-containing gas, manufacturing method of catalyst for modifying tar-containing gas, and tar-containing gas modification method using catalyst for modifying tar-containing gas |
JP7069946B2 (en) | 2018-03-28 | 2022-05-18 | 日本製鉄株式会社 | A method for producing a tar-containing gas reforming catalyst, a tar-containing gas reforming catalyst, and a tar-containing gas reforming method using a tar-containing gas reforming catalyst. |
WO2021029410A1 (en) * | 2019-08-14 | 2021-02-18 | 地方独立行政法人東京都立産業技術研究センター | Method for manufacturing catalyst for voc treatment |
JP2021030098A (en) * | 2019-08-14 | 2021-03-01 | 地方独立行政法人東京都立産業技術研究センター | Manufacturing method of voc treatment catalyst |
JP7344505B2 (en) | 2019-08-14 | 2023-09-14 | 地方独立行政法人東京都立産業技術研究センター | Method for manufacturing catalyst for VOC treatment |
WO2022145740A1 (en) * | 2020-12-30 | 2022-07-07 | 한화솔루션 주식회사 | Hydrogenation catalyst with imiproved sulfur resistance and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006346598A (en) | Steam reforming catalyst | |
WO2003092888A1 (en) | Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst | |
JP2000302410A (en) | Apparatus for purifying hydrogen | |
JP6725994B2 (en) | Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus | |
JP2010279911A (en) | Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst | |
US7357911B2 (en) | Process conditions for Pt-Re bimetallic water gas shift catalysts | |
MX2008006912A (en) | Process conditions for pt-re bimetallic water gas shift catalysts | |
JP2012061398A (en) | Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst | |
JP4707526B2 (en) | Catalyst for partial oxidation of hydrocarbons | |
JP5126762B2 (en) | Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst | |
JP2012061399A (en) | Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst | |
JP2013017913A (en) | Steam-reforming catalyst and hydrogen production process using the same | |
WO2013132862A1 (en) | CATALYST, METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING HYDROGEN-CONTAINING GAS USING CATALYST, AND HYDROGEN GENERATING DEVICE, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CeZr-BASED OXIDE | |
JP4514419B2 (en) | Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas | |
JP2007516825A (en) | Reforming catalyst | |
JP4875295B2 (en) | Reforming catalyst for partial oxidation and reforming method | |
JP4088193B2 (en) | Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst | |
WO2015118750A1 (en) | Fuel reforming catalyst | |
JP6700637B2 (en) | Steam reforming catalyst and method for producing the same | |
JP2010184202A (en) | Catalyst for generating hydrogen and method for producing the catalyst | |
JP2020093246A (en) | Reforming catalyst, and fuel reforming method using the catalyst | |
WO2023026775A1 (en) | Catalyst structure, fuel reforming method, and fuel reforming system | |
JP2011183346A (en) | Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen | |
JP2007160255A (en) | Catalyst for selectively oxidizing carbon monoxide and its manufacturing method | |
JP2005131496A (en) | Autothermal reforming catalyst and reforming method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130528 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140107 |