JP4088193B2 - Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst - Google Patents
Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst Download PDFInfo
- Publication number
- JP4088193B2 JP4088193B2 JP2003122693A JP2003122693A JP4088193B2 JP 4088193 B2 JP4088193 B2 JP 4088193B2 JP 2003122693 A JP2003122693 A JP 2003122693A JP 2003122693 A JP2003122693 A JP 2003122693A JP 4088193 B2 JP4088193 B2 JP 4088193B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- oxide
- heat
- platinum group
- resistant inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は炭化水素から水素含有ガスを製造する際に用いる触媒、及び該触媒を用いた水素含有ガスの製造方法に関連する技術である。詳細には、炭化水素含有ガスと酸素ガス(または酸素含有ガス)を含む混合ガスから水素含有ガスを製造するための炭化水素の部分酸化用触媒、及びその製造方法、並びに該触媒を用いて炭化水素から水素含有ガスを製造する方法に関する技術である。
【0002】
【従来の技術】
主に水素と一酸化炭素からなる水素含有ガス(以下、原料ガスということがある)は、水素ガス製造用の他に還元用ガス、更には各種化学製品の原料等として広く活用されている。最近では、燃料電池用燃料等としても実用化研究が進められている。そして、炭化水素の改質による水素含有ガスの製造方法としては、炭化水素の部分酸化法や、水蒸気改質法、あるいは部分酸化と水蒸気改質を組合せた自熱式接触蒸気改質法(オートサーマルリフォーミング法)などが知られている。
【0003】
炭化水素を部分的に酸化して水素含有ガスを製造する部分酸化方法(例えばメタンの部分酸化はCH4+1/2O2→CO+2H2で表される。)では、例えば以下のような触媒が用いられている。例えば特許文献1には、部分酸化用触媒として、モノリス担体上に、ランタンやセリウム等の酸化物を安定化剤として含む活性アルミナで被覆層を形成すると共に、触媒成分として白金とパラジウム等を含有させた部分酸化用触媒が提案されている。また特許文献2には、触媒成分として貴金属やNi,Cr,Co,CeあるいはLaを、ハニカム状担体に担持させた部分酸化用触媒が提案されている。特許文献3には、セリアとジルコニアからなる複合酸化物にロジウムを担持させた部分酸化用触媒が提案されている。しかしながら該特表公報技術はペレット触媒を用いる技術であり、また反応ガスに水蒸気を添加する条件で使用することを前提とした触媒であるため、水蒸気を添加しない条件、例えばメタンと空気との部分酸化反応ではメタンの転化率が45%程度の低レベルに留まっている。特許文献4には、酸素(あるいは空気)、必要に応じて水蒸気を原料ガスに添加した混合ガスを部分酸化反応させる低級炭化水素燃料の改質方法が提案されている。該公報には触媒として、ハニカム支持体に100μ程度のアルミナをコートし、その上に白金族元素を担持させた触媒が開示されているが、ハニカム支持体1L当り、白金族元素を5〜20g担持量を必要としている。特許文献5には、炭化水素、酸素及び水又は水蒸気からなる混合ガスの自己熱式接触蒸気改質法が提案されている。該公報には触媒として、酸化アルミニウム、二酸化ケイ素、二酸化チタン又はこれらの混合酸化物、及びゼオライトよりなる群から選ばれる酸化物担体物質に、少なくとも一種の白金族元素を含有させた触媒成分を、セラミックハニカムなどの支持体に被覆した触媒が開示されている。
【0004】
【特許文献1】
特開昭59−97501号
【特許文献2】
特開平01−145301号
【特許文献3】
特表2002−507535号
【特許文献4】
特開平7−187605号
【特許文献5】
特開2002−12408号
【0005】
【発明が解決しようとする課題】
本発明者らが炭化水素ガスを部分酸化して水素含有ガスを製造するための触媒について鋭意研究を重ねた結果、従来技術には以下のような問題点があることがわかった。
【0006】
例えば、炭化水素ガスとして汎用されているメタンや天然ガスを使用する場合、高いメタン転化率を得るには800℃以上の高温で部分酸化反応を行うことが望ましいとされている。しかしながら、部分酸化時の反応熱により触媒層が著しく熱的負荷を受けるため、経時的に触媒活性が低下するという問題が生じる。しかも部分酸化反応に伴って炭素生成反応(副反応)が生じ、該反応によって生成した析出炭素が触媒活性を劣化させる原因となる。この様な炭素の析出を防止するためには、原料ガス中に水蒸気を添加しなければならないが、製造コスト上昇に伴うメリットが見出せない。
【0007】
また天然ガス中に不可避的に含まれている硫黄分等の触媒毒によって、触媒が被毒されて経時的に触媒活性が低下するという問題が生じる。天然ガスを脱硫装置などで予め処理し、触媒毒成分を除去してから部分酸化反応に使用している。しかしながら脱硫装置などの触媒毒除去装置を設けると、部分酸化反応システム全体の構成が複雑化し、またメンテナンスコストも生じるなどの問題が生じる。
【0008】
本発明は上記事情に鑑みてなされたものであって、その目的は、高温下でも触媒活性の劣化を抑止し、且つ炭素の析出を抑制しつつ、耐被毒性にも優れ、高活性で、しかも長期耐久性を有する部分酸化用触媒、およびその製造方法を提供することである。また本発明の他の目的は、該部分酸化用触媒を用いた水素含有ガス(または水素ガス)の製造方法、及び該ガスの使用方法を提供することである。
【0009】
【課題を解決するための手段】
本発明の炭化水素の部分酸化用触媒は、該触媒は触媒成分を担持させたモノリス担体からなり、該触媒成分は白金族元素を担持させた耐熱性無機酸化物(a)と、耐熱性無機酸化物(b)を含み、前記触媒中の触媒成分がモノリス担体1L当り35〜400g、該触媒成分には前記白金族元素を担持させた耐熱性無機酸化物(a)が1〜30g含まれていることに要旨を有する。
【0010】
上記触媒において耐熱性無機酸化物(a)に担持されている白金族元素量が0.4〜40質量%であることが望ましい。
【0011】
また上記白金族元素を担持させた耐熱性無機酸化物(a)の平均粒子径(Electron Probe Micro Analyzerで測定)が、0.5〜20μmであることが好ましい。
【0012】
本発明においては、白金族元素のうち、50質量%以上が白金であることが推奨される。
【0013】
また上記白金族元素を担持させる耐熱性無機酸化物(a)が、活性アルミナ、酸化セリウム、及び酸化ジルコニウムよりなる群から選ばれる少なくとも1種であることが望ましい。
【0014】
本発明の実施態様として、白金族元素を担持させた耐熱性無機酸化物(a)が、活性アルミナを含み、且つ前記耐熱性無機化合物(b)が酸化セリウム,酸化ジルコニウム,セリウム−ジルコニウム複合酸化物よりなる群から選ばれる少なくとも2種以上を含むものであることも好ましい。
【0015】
更に本発明では、前記触媒成分に含まれる活性アルミナと酸化セリウムの質量比が100:15〜100:60であり、酸化セリウムと酸化ジルコニウムの質量比が100:2〜100:60であることが好ましい。
【0016】
また本発明の上記部分酸化用触媒を製造する方法は、白金族元素を担持させた耐熱性無機酸化物(a)、及び耐熱性無機酸化物(b)を含む触媒成分のスラリーに、モノリス担体を接触させた後、焼成することに要旨を有する。
【0017】
また本発明は、炭化水素含有ガスと、酸素含有ガスを含む混合ガスを、上記炭化水素の部分酸化用触媒に接触させ、前記炭化水素を部分酸化して水素含有ガスを製造することに要旨を有する水素含有ガスの製造方法を提供する。
【0019】
【発明の実施の形態】
炭化水素の部分酸化用触媒に担持させる触媒主活性成分としては、ニッケル、鉄あるいはコバルトなどの卑金属系組成物よりも、白金、パラジウム、ロジウム、イリジウムなどの白金族系組成物の方が耐熱性や耐被毒性に優れた特性を有することが知られている。
【0020】
しかしながら、白金族元素は高価であるため、費用と効果の兼合いから、実用的な触媒を提供するには、白金族元素の使用量を制限(触媒中5質量%以下)しなければならない。そこで白金族元素を最大限活用すべく、活性アルミナなどの高表面積を有する耐熱性無機酸化物上に、白金族元素を出来るだけ高分散に担持させた部分酸化用触媒を製造して性能を調べた。その結果、高温下で使用し続けると、白金族元素の粒子成長や担体物質との反応のため、あるいは白金族元素が化学変化を起こして不活性状態となったり、原料ガス中のS分等の被毒物質に対して反応するなど、該触媒は、時間の経過に伴って触媒活性などの触媒性能が劣化するという問題が生じることがわかった。
【0021】
そこで本発明者らが上記問題を解決すべく更に研究を進めた結果、白金族元素を予め担持させた耐熱性無機酸化物(a)と、耐熱性無機酸化物(b)を触媒成分としてモノリス担体に担持させれば、炭化水素の部分酸化用触媒として要求される上記各種性能を高レベルに達成できることを見出し、本発明に至った。
【0022】
本発明では、担体としてモノリス担体を使用する。モノリス担体は、ペレット、球状担体、粉末状担体、粒状担体など他の形状の担体よりも低圧損性、耐粉化性に優れ、取り扱いが容易であることから推奨される。また、部分酸化反応時の高温下において担体の形状を維持するには、担体の材料として、耐熱強度、耐粉化性などに優れた材料を用いることが望ましく、例えばコージェライト、ムライト、α−アルミナ、ジルコニア、チタニア、アルミナ・シリケート、珪酸マグネシウム等の酸化物や珪酸塩、ステンレス鋼、Fe−Cr−Al合金等の耐熱合金などが好ましいものとして挙げられる。これらを1種、或いは数種組合せてモノリス担体とすることができる。これらの中でも、高い耐熱強度を有し、且つ耐熱衝撃性にも優れているコージェライトを主体(50質量%以上)とする担体が最も好ましい。モノリス担体には平行方向に貫通した孔(セル)が多数形成されているが、孔の形状は円形、或いは3角、4角、6角などの多角形など任意の形状でよく、また孔の大きさも特に限定されない。
【0023】
担体のセル密度は特に限定されないが、反応ガスとの接触効率を高めるためには、好ましくは150〜600セル/平方インチ、より好ましくは250〜600セル/平方インチであることが推奨される。セル密度(セル数/平方インチ)が大き過ぎると個々のセルが小さくなり、目詰まりを生じることがある。またセル密度が小さすぎると、接触面積が減少し、十分な触媒効率が得られないことがある。
【0024】
本発明では、上記モノリス担体に触媒成分を担持させている。触媒成分は白金族元素を担持させた耐熱性無機酸化物(a)、及び耐熱性無機酸化物(b)を含む組成物である。本発明の上記目的を達成するには、実質的には白金族元素を担持させた耐熱性無機酸化物(a)、耐熱性無機酸化物(b)を含む触媒成分を用いればよい。耐熱性無機酸化物(a)、耐熱性無機酸化物(b)を含む触媒成分とは、例えば該耐熱性無機酸化物(a)、耐熱性無機酸化物(b)と不可避不純物からなる触媒であってもよい。或いは該耐熱性無機酸化物(a)、耐熱性無機酸化物(b)に加えて任意の耐熱性無機酸化物[例えば白金族元素を担持させていない耐熱性無機酸化物(a)]を含む触媒成分を用いればよく、目的に応じて助触媒等を本発明の効果を阻害しない範囲で含ませてもよい。
【0025】
本発明において、白金族元素を担持させる耐熱性無機酸化物(a)、及び耐熱性無機酸化物(b)に使用する耐熱性無機酸化物は、高温下(例えば300〜1000℃)において形状安定性や性能が劣化しない性質を有する無機酸化物であればいずれも用いることができる。特にアルミナ(特に活性アルミナ)、酸化ジルコニウム、酸化セリウムよりなる群から選ばれる少なくとも1種が好ましい。勿論、これら好ましい耐熱性無機酸化物と共に、任意の耐熱性無機酸化物(混合物や複合酸化物を含む)を用いてもよい。例えば酸化ランタン、酸化チタン、シリカ、酸化マグネシウム、及びこれらの混合物や複合酸化物などが例示される。複合酸化物としては、アルミナ−セリア、アルミナ−酸化ランタン、アルミナ−マグネシア、アルミナ−シリカ、アルミナ−ジルコニア、安定化ジルコニア、ジルコニア−セリア、ジルコニア−酸化ランタン等が例示される。
【0026】
耐熱性無機酸化物(a)として好ましくは、活性アルミナ、酸化セリウム、及び酸化ジルコニウムよりなる群から選ばれる少なくとも1種が推奨される。これら耐熱性無機酸化物は、高温耐熱性に優れており、しかも白金族元素の担持性に優れているので望ましい。また上記耐熱性無機酸化物の中で、活性アルミナを用いることが特に好ましい。活性アルミナは比表面積が大きく、反応ガスとの接触面積が大きくなるため、部分酸化効率を向上でき、また高温耐熱性にも優れているので望ましい。また活性アルミナに後述する様に白金族元素を担持させると[耐熱性無機酸化物(a)に相当する]、長期間に渡って白金族元素の特性を保持できるので望ましい。
【0027】
活性アルミナとしては例えばα―アルミナ、γ−アルミナ、δ−アルミナ、θ−アルミナ、η−アルミナ等が例示される。活性アルミナの性状等は特に限定されないが、比表面積が25〜250m2/gの活性アルミナが好ましい。
【0028】
本発明の耐熱性無機酸化物(a)に担持されている白金族元素の担持量が、0.4〜40質量%(耐熱性無機酸化物(a)と白金族元素の合計量に対する割合)であることが好ましく、より好ましくは1〜30質量%、更に好ましくは5〜25質量%である。白金族元素の担持量は0.4質量%以上とすると、耐熱性が向上して触媒活性劣化を抑制できる。一方、40質量%を超えると、反応に寄与する白金族元素の有効活性点が減少するため、部分酸化反応時の反応効率が低下することがある。
【0029】
白金族元素としては、白金、ロジウム、パラジウム、ルテニウムおよびイリジウムが例示される。この中で特に白金、ロジウムおよびイリジウムよりなる群から選ばれる少なくとも1種を用いることがより優れた上記効果を得る上で好ましい。勿論、これらの白金族元素は任意の組合せで複数併用してもよい。この場合、白金を必須成分として耐熱性無機酸化物(a)に担持させると、炭化水素に対する部分酸化活性が更に向上するので好ましい。より優れた部分酸化活性効果を得るには白金が50質量%以上(白金族元素に対する割合)含まれていることが好ましく、より好ましくは60質量%以上、更に好ましくは70質量%以上である(残部は任意の白金族元素)。白金族元素を複数併用した場合の好ましい組合せとしては、白金−ロジウム、白金−イリジウム、白金−ロジウム−イリジウムの組合せが好ましく、中でも白金−ロジウムの組合せが最も好ましい。
【0030】
また上記白金族元素を担持させた耐熱性無機酸化物(a)の平均粒子径(完成触媒に担持させた後の粒子径)は、0.5〜20μmであることが好ましく、より好ましくは1〜15μmであることが望ましい。この様な平均粒子径を有する該耐熱性無機酸化物(a)を担体に担持させると、部分酸化触媒としての活性等の触媒能を維持しながら高温下でも優れた耐久性を示し、長寿命の部分酸化用触媒を得ることができる。完成触媒中の耐熱性無機酸化物(a)の粒子径の測定は例えば、触媒のコーティング層(表層)をElectron Probe Micro Analyser(EPMA)を用いて白金族元素の分布写真を撮影し、分析すればよい。
【0031】
部分酸化反応時における白金族元素の上記効果をより高めるには、完成触媒中の白金族元素の担持量が、完成触媒1L当り、0.1〜5gであることが好ましく、より好ましくは0.3〜3gである。完成触媒1L当り5gを超えて白金族元素が含まれていても、白金族元素使用によるコスト上昇に対する効果が十分に得られない。一方、0.1g未満では十分な触媒活性が得られないことがある。
【0032】
また上記白金族元素を担持させた耐熱性無機化合物(a)の触媒性能向上効果を更に高めるためには、完成触媒中の触媒成分が、モノリス担体1L当り、好ましくは35〜400g担持されていると共に、該触媒成分には白金族元素を担持させた耐熱性無機酸化物(a)が、好ましくは1〜30g、より好ましくは1〜20gの範囲で含まれていることが望ましい。触媒成分の担持量がモノリス担体1L当り、35g以上とすると、触媒活性の効果がより高まる。一方、400gを超えて担持させると、目詰まりや圧損増加の原因となることがある。
【0033】
本発明の耐熱性無機酸化物(b)は、上記した耐熱性無機酸化物をいずれも使用することができるが、白金族元素は担持していない。
【0034】
本発明者らが、部分酸化触媒における白金族元素の効果を最大限引き出すべく、検討した結果、上記白金族元素を担持させた耐熱性無機酸化物(a)と共に、白金族元素を担持させていない耐熱性無機酸化物(b)を含有させることによって、白金族元素を担持させた耐熱性無機酸化物(a)のみを担体に担持させた触媒において生じる上記問題を解決できる。即ち、上記白金族元素を担持させた耐熱性無機酸化物(a)と共に、白金族元素を担持させていない耐熱性無機酸化物(b)を含有させることによって、部分酸化反応において、触媒活性劣化を抑止し、また耐熱性が良好となり、硫黄分が原料ガスに同伴されていても経時的に長時間安定した触媒活性を維持することを見出した。
【0035】
この様な効果を更に高めるには、耐熱性無機酸化物(b)として、好ましくは酸化セリウムを用いることが望ましく、より好ましくは酸化セリウムと酸化ジルコニウムを用いることが望ましい。特に好ましくは、酸化セリウムと酸化ジルコニウムの少なくとも一部が、セリウム−ジルコニウム複合酸化物として含まれていることが推奨される。勿論、これら耐熱性無機酸化物(b)は複数種組み合せて用いることが可能であり、例えば酸化セリウム、酸化ジルコニウム、セリウム−ジルコニウム複合酸化物よりなる群から選ばれる少なくとも2種以上を用いることが好ましく、更に活性アルミナなどの他の耐熱性無機酸化物との組合せも好ましい。またより優れた効果を発揮するには、耐熱性無機酸化物(a)が活性アルミナを必須的に含むとき、耐熱性無機酸化物(b)として、酸化セリウム、酸化ジルコニウム、セリウム−ジルコニウム複合酸化物よりなる群から選ばれる少なくとも2種以上の組み合せることが最も好ましい。
【0036】
本発明の触媒の耐久性(即ち、高温下での触媒活性劣化が抑止され、耐熱性に優れ、且つ経時的に長時間安定した触媒活性を維持する特徴)をさらに向上させるには、完成触媒の触媒成分中に含まれる活性アルミナに対して酸化セリウムを比較的高濃度に添加し、且つ酸化セリウムに対する酸化ジルコニウムの量を特定することが望ましい。具体的には触媒成分中の活性アルミナ:酸化セリウムの質量比が好ましくは100:15〜100:60、より好ましくは100:20〜100:40であって、酸化セリウム:酸化ジルコニウムの質量比が好ましくは100:2〜100:60、より好ましくは100:4〜100:40であることが望ましい。
【0037】
活性アルミナ:酸化セリウムの質量比が100:15未満であると酸化セリウムの添加効果が不十分となることがある。一方、100:60を超えて過剰に添加しても上記効果が飽和し不経済となる。
【0038】
本発明では、助触媒として1種以上の卑金属を使用することも望ましい。卑金属としては、周期表I、II、IIIB、IV、V、VIB、VIIB、VIII属に属するNa,K,Cs,Ni,Co,Fe,Cr,Cu,V,Pr,Mg,Mo,W,Mn,Zn,Ga,Y,Ti,Ba,Re,Bi,Nb,Ta,La,Ag,Au等の金属が例示される。特にこれらの卑金属を、金属、金属酸化物、あるいは白金族元素との固溶体等として触媒成分中に存在させると、白金族元素の触媒作用を促進、安定化等に寄与したり、水素選択率を高める効果等を発揮するので望ましい。これらの卑金属元素は触媒成分に担持させればよい。
【0039】
上記した様な本発明の触媒は、例えば以下に示す様な方法によって製造できるが、材料,組成などに応じて適宜変更することも可能である。したがって、特に限定する旨の記載がない限り、下記製造方法に適宜変更を加えることができる。
【0040】
本発明で用いるモノリス担体は、上記した如き材料を用いて鋳込み成型、プレス成型、押出し成型、シート加工など公知の方法によって製造することができる。また担体の製造方法は構成する材料、孔径、孔形状等応じて適宜変更すればよく、特に限定されない。
【0041】
本発明の耐熱性無機酸化物(a)に担持させる白金族元素としては、種々の化合物(白金元素源)を用いることができる。白金化合物としては、PtCl4、H2PtCl6、Pt(NH3)4Cl2、(NH4)2PtCl2、H2PtBr6、NH4[Pt(C2H4)Cl3]、Pt(NH3)4(OH)2、Pt(NH3)2(NO2)2などが例示される。またロジウム化合物としては、(NH4)2RhCl6、Rh(NH)5Cl3、RhCl3、Rh(NO3)3などが例示される。またパラジウム化合物としては、(NH4)2PdCl4、Pd(NH3)4Cl2、PdCl2、Pd(NO3)2などが例示される。ルテニウム化合物としては、RuCl3、Ru(NO3)3、Ru2(OH)2Cl4・7NH3などが例示される。イリジウム化合物としては、(NH4)2IrCl6、IrCl3、H2IrCl6などが例示される。
【0042】
また上記白金族元素を担持させる耐熱性無機酸化物(a)としては、公知の耐熱性無機酸化物を用いればよい。例えば活性アルミナ粉末は汎用品を用いてもよい。活性アルミナ粉末は前述の如く比表面積が25〜250m2/gであることが望ましく、担持後の焼成によって活性アルミナとなるベーマイトや擬ベーマイト状態のアルミナ水和物、水酸化アルミニウムなどを原料として用いてもよい。また例えば硝酸アルミニウム等のアルミニウム塩水溶液にアルカリを加えて水酸化物の沈殿を生成させ、これを乾燥焼成して得られる活性アルミナでもよい。或いはアルミニウムイソプロポキシド等アルコキシドを加水分解しアルミナゲルを調製し、これを乾燥焼成するゾル・ゲル法によって得られた活性アルミナでもよく、製法についても特に限定されないが、上記特性を有する耐熱性無機酸化物を用いることが望ましい。
【0043】
白金族元素を耐熱性無機酸化物(a)に担持させるには、好ましくは以下の製法によって調製できるが、基本的には白金族元素源を含む溶液に、耐熱性無機酸化物を接触させた後、任意の方法で乾燥させてから焼成すればよい。
【0044】
例えば白金族元素を活性アルミナに固定化するには、所望の白金族元素の担持量となるように白金族元素源を適量添加した溶液に、活性アルミナを接触させ、該活性アルミナの表層に白金族元素源を直接担持させた後、任意の方法で乾燥させて水分を除去してから、焼成すればよい。また溶解性向上やpH調整など目的に応じて溶液に塩酸、硫酸、硝酸などの無機酸;酢酸、蓚酸などの有機酸を添加してもよい。この際の担持方法としては特に限定されず、含浸法、浸漬法、湿式吸着法、スプレー法、塗布法などの方法が採用できるが、含浸法が好ましい。また接触時の条件も適宜変更できる。例えば接触操作を大気圧下或いは減圧下で行なうことができる。接触時の温度も特に制限はなく、必要により加熱してもよく、好ましくは室温から90℃程度の範囲内で行えばよい。本発明では2種類以上の白金族元素を耐熱性無機酸化物に担持させることも好ましい。この様な場合、例えば所望の2種以上の白金族元素源を含む溶液を調製し、該溶液に耐熱性無機酸化物を接触させて各白金族元素を同時に担持させてもよい。或いは白金族元素源を含む溶液を個別に調製し、該溶液に耐熱性無機酸化物を順次接触させてもよい。焼成条件も特に限定されず、例えば焼成を空気中または還元雰囲気下のいずれで行なってもよく、例えば300〜600℃の範囲内で2〜6時間程度焼成することにより、本発明の白金族元素を担持させた耐熱性無機酸化物(a)が得られる。
【0045】
尚、白金族元素を担持させた耐熱性性無機酸化物(a)は、製造条件によっては凝集して粒子径が大きくなることもあるが、例えばスラリー調製時の湿式粉砕工程で粉砕時間などを調整することによって、平均粒子径を0.5〜20μmとすることができる。
【0046】
耐熱性無機酸化物(b)としては、上記耐熱性無機酸化物(a)と同様、公知のものを使用できる。例えば酸化セリウム、酸化ジルコニウム、ジルコニウム−セリウム複合酸化物は、汎用品を用いてもよい。また例えばセリウム−ジルコニウム複合酸化物は以下の調製方法によって得られたものでもよい。
(1)セリウム塩水溶液とジルコニウム塩水溶液を混合後、乾燥焼成する方法
(2)セリウム塩水溶液とジルコニウム塩水溶液を混合し、アンモニウム化合物等を用いて、共沈後、ろ過洗浄し、乾燥焼成する方法
(3)セリウム酸化物とジルコニウム酸化物を混合後固相反応させる方法
(4)セリウム酸化物にジルコニウム塩水溶液を浸し乾燥焼成する方法、又はジルコニウム酸化物にセリウム塩水溶液を浸し乾燥焼成する方法
(5)活性アルミナなどの耐熱性無機酸化物上にセリウム塩水溶液とジルコニウム塩水溶液を含浸後、乾燥焼成する方法
尚、セリウム−ジルコニウム複合酸化物の調製においては、セリウム、ジルコニウムそれぞれの出発原料は特に限定されない。例えばセリウム化合物としては、市販の酸化セリウムや酸化セリウムゾル、あるいは硝酸セリウム、塩化セリウム、炭酸セリウム、酢酸第一セリウム等のセリウム塩化合物、或いはこれらから調製した酸化セリウムや水酸化セリウムを用いることができる。またジルコニウム化合物として、市販の酸化ジルコニウムや酸化ジルコニウムゾルを用いてもよいし、四塩化ジルコニウム等の各種のハロゲン化物若しくはこれらの部分加水分解生成物、塩化ジルコニル(オキシ塩化ジルコニウム)等の各種オキシハロゲン化物、硫酸ジルコニル、硝酸ジルコニウム、硝酸ジルコニル等の各種酸素酸塩、炭酸ジルコニウム、炭酸ジルコニル等の炭酸塩、酢酸ジルコニウム、酢酸ジルコニル、蓚酸ジルコニル等の各種有機酸塩、更にはジルコニウムのアルコキシド、各種の錯塩などを使用できる。勿論、これら原料はそのままで、あるいは必要により酸化ジルコニウムや水酸化ジルコニウム等に調製したものを使用してもよい。これら原料を用いて公知の方法、例えば空気中300〜800℃、好ましくは400〜800℃で0.5〜3時間程度焼成することにより複合酸化物(b)を得ることができる。
【0047】
耐熱性無機酸化物(a)と耐熱性無機酸化物(b)の含有量は、それぞれの添加量を適宜調節することによって調整できる。
【0048】
モノリス担体に上記触媒成分を担持させる方法としては、例えば白金族元素を担持させた耐熱性無機酸化物(a)と耐熱性無機酸化物(b)をボールミルなどの粉砕機に供給して湿式粉砕によってスラリーを調製し、該スラリーに担体を接触させればよい。尚、該方法によれば、耐熱性無機酸化物(a)と耐熱性無機酸化物(b)をほぼ均一に担体に担持できるため、上記すぐれた効果を得る上で好ましい。
【0049】
スラリーを調製する際、スラリーの粘度調節やスラリーの安定性改善のために、塩酸、硫酸、硝酸、酢酸、シュウ酸などの酸類;アンモニアや水酸化テトラアンモニウムなどの塩基性物質;ポリアクリル酸やポリビニルアルコールなどの高分子化合物;などを必要に応じて添加してもよい。接触方法としては、担体をスラリーに浸漬させると、均一に活性成分を担持させることができるので好適である。浸漬後、担体に付着している過剰なスラリー(例えばセル内に残存するスラリー)をエアブロー等の方法によって除去し、次いで乾燥工程に付すことが推奨される。乾燥方法も格別の限定はなく、任意の方法で担持させたスラリーの水分を除去すればよい。乾燥時の条件も常温下、或いは高温下いずれであってもよい。また乾燥後に、焼成すると、触媒活性成分を担体に強固に定着させることができるので望ましい。焼成方法も特に限定されないが、例えば400〜800℃で乾燥させることが望ましく、空気中または還元雰囲気下のいずれであってもよい。尚、上記担持方法で必要な担持量が得られない場合には、例えば焼成後に上記浸漬操作を繰り返すことによって担持量を調整できる。
【0050】
また助触媒を使用する場合、任意の金属塩化合物や酸化物などの助触媒を上記スラリー混合したり、あるいは耐熱性無機酸化物(a)や耐熱性無機酸化物(b)中にこれら金属を予め固定化して使用してもよい。固定化する方法としては上記耐熱性無機酸化物(a)に白金族元素を担持させる場合と同様の方法を採用すればよい。勿論、他の公知の方法によって焼成後の触媒に更に所望の卑金属を担持させてもよい。これらの卑金属元素は触媒成分中に分散・担持していればよい。
【0051】
尚、白金族元素を担持させた耐熱性無機酸化物(a)を、完成触媒中で例えば0.5〜20μmの比較的大きな平均粒子径をもつ凝集粒子に調整するには、上記耐熱性無機酸化物粉体や、ペレット状の耐熱性無機酸化物に白金族元素の化合物を含浸担持せしめ、これをミルなどで粉砕して目的とする粒子径に調整すればよい。この様に粒度を調整した白金族元素担持耐熱性無機酸化物(a)を、白金族元素を含有しない耐熱性無機酸化物(b)と共にモノリス担体に上記の方法で担持させればよい。該方法によって、触媒成分[耐熱性無機酸化物(a),(b)] をほぼ均一に担体表面に被覆(担持)させることができる(耐熱性無機酸化物被覆層をコーティング層ということがある)。
【0052】
以下、本発明の触媒を用いて炭化水素を部分酸化し、水素含有ガスを製造する方法について説明するが、本発明の触媒を用いた水素含有ガスの製造方法は下記例示に限定される訳ではなく、適宜変更できる。
【0053】
本発明では、炭化水素含有ガスと、酸素含有ガス(または酸素ガス)との混合ガス(尚、必要により水蒸気を添加してもよい)を、上記本発明の触媒に接触させることによって、炭化水素を部分酸化して水素及び一酸化炭素を主とする水素含有ガスを製造する。
【0054】
炭化水素含有ガス(原料ガス)としては、メタン、プロパン、ブタン、ペンタン、ヘキサン等の軽炭化水素類;ガソリン、灯油、ナフサ等の石油系炭化水素などを用いることができ、特に限定されない。例えばメタンを主成分とする天然ガスあるいは液化天然ガス、およびこの液化天然ガスを主成分とする都市ガス、ならびにプロパン、ブタンが主成分であるLPG(液化石油ガス)などは資源的にも豊富であり、入手が容易であるため好ましい。また天然ガスを出発原料とするメタノール、あるいはジメチルエーテルなどの各種合成液体燃料や、メタンを主成分とするバイオガスなども資源の有効利用の面から好ましい。
【0055】
尚、本発明の触媒を用いる場合、原料(炭化水素)ガス中に硫黄分が含まれていても該硫黄分を除去しなくてもよい。例えば天然ガスには、メタン、エタン、プロパン等の炭化水素以外にも不純物として硫黄(例えば全硫黄として5〜30mg/Nm3程度)が含まれている。この様な硫黄を含んでいる炭化水素ガスを使用する場合、従来は炭化水素ガスを脱硫処理して硫黄等の触媒毒成分を除去してから触媒と接触させなければならなかった。しかしながら本発明の触媒は、硫黄等の触媒毒成分に対して優れた耐久性を有するため、長期間使用しても、触媒の性能が触媒毒成分によって劣化することを抑制できる。即ち、本発明の触媒を用いると、脱硫装置等の触媒毒成分除去装置を設ける必要がなく、コスト、メンテナンスの観点から望ましい。しかも安価な天然ガスをそのまま炭素含有ガスとして用いることができるので製造コストも低減できる。
【0056】
本発明で用いる酸素含有ガスにも格別の制限はなく、公知の酸素含有ガスであればいずれも用いることができる。経済的な観点からは空気を用いることが好ましい。
【0057】
本発明では、反応方式として連続流通式(原料ガスを連続的に触媒に接触させる方式)が好ましい。本発明においては実質的に断熱条件下(外部加熱しない意味)で、炭化水素含有ガスと酸素含有ガス(または酸素ガス)との混合ガスを触媒に接触させるが、この際の混合ガスの混合比率(酸素分子/炭素原子比)は0.45〜0.65の範囲内となる様に調整することが効率的な部分酸化反応を行うためには好ましい。より好ましくは0.48〜0.6となる様に調整することである。
【0058】
部分酸化反応時の圧力は、好ましくは常圧以上であって、5MPa・G以下であることが好ましく、より好ましくは3MPa・G以下である。また、反応中のSV(ガス空間速度)も任意に選択できるが、好ましくは5,000〜500,000H-1、より好ましくは10,000〜300,000H-1である。また触媒の熱劣化を防ぎつつ、効率的な部分酸化反応を促進するには触媒層温度が600℃〜1000℃の範囲内となる様に混合ガスの供給量を調節するなど適宜反応条件を変更することが望ましい。
【0059】
尚、従来の部分酸化反応では、炭素の析出を防止するために水蒸気を添加する必要があるが、本発明の触媒を用いる場合、水蒸気を添加しなくても炭素の析出が実質的に生じない(ゼロ或いは触媒に影響のない極微量)。したがって本発明では水蒸気を添加しなくてもよい。尚、本発明の触媒の場合、水蒸気を添加すると部分酸化反応時の水素生成比率が上昇する効果が得られる。水蒸気を添加するとコストが上昇するが、本発明の場合、水蒸気の添加によって水素生成比率が向上するため、水蒸気添加によるコスト上昇に見合った効果が得られる。水蒸気を添加した場合、発熱反応(炭化水素の酸化反応)と吸熱反応(炭化水素と水蒸気の反応)が起こるため、水蒸気を添加しない場合と比べて発熱量を抑えることができる。
【0060】
また酸素含有ガス(または酸素ガス)や水蒸気は、炭化水素含有ガスに添加してから触媒層に導入してもよく、或いは炭化水素含有ガスとは個別に触媒層に導入してもよい。
【0061】
本発明において、炭化水素の部分酸化を効率的に開始させる一例として、原料ガスを予熱してから触媒層に導入することが望ましい。予熱温度は炭化水素の種類や原料ガスの組成、反応条件等によって異なるが、好ましくは200〜700℃、より好ましくは300〜600℃に予備加熱することが望ましい。尚、触媒層での反応が開始した後は、反応熱によって触媒温度が上昇し、反応が自立するため、原料ガスを予熱しなくてもよい。勿論、反応システム全体の熱バランス等を考慮して、必要により原料ガスを予熱してもよい。また原料ガスを予熱する方法以外にも、例えば原料ガスの導入に先立って、触媒を好ましくは200〜700℃、より好ましくは300〜600℃に加熱しておき、反応開始後に該加熱を停止してもよい。触媒の加熱方法としては特に限定されず、例えば、▲1▼加熱した空気や窒素を触媒層に導入する方法や、▲2▼触媒層を外部から加熱器で加熱する方法、或いは▲3▼メタノール、水素およびジメチルエーテルなど本発明の原料炭化水素よりも容易に酸化し得る物質を含有するガスを触媒層に導入し、その反応熱で触媒を加熱する方法などが例示される。
【0062】
本発明で得られる主に水素及び一酸化炭素からなる水素含有ガスは、このままでも燃料電池の燃料や、化学工業用原料として使用できる。特に燃料電池の中でも、高温作動型と類別される溶融炭酸塩型燃料電池や固体酸化物型燃料電池は、水素以外にも一酸化炭素や炭化水素も燃料として利用できるので、これらの燃料電池に本発明の触媒や該触媒反応によって得られた水素含有ガスを用いることも望ましい。
【0063】
尚、高温作動型燃料電池は原理的には電極の触媒作用により炭化水素の部分酸化反応を電池の中で行うこと(内部改質)ができるとされている。しかしながら実際は、炭化水素の種類や炭化水素に含まれている不純物によって炭素析出などの問題が生じるため、炭化水素全量を内部改質できないことがある。したがって炭化水素を燃料電池に導入する前に、炭化水素を予備処理する必要があるが、本発明の触媒を使用して該予備改質も好適に行うことができる。
【0064】
また本発明の触媒を用いた部分酸化反応で得られる水素含有ガスを、更にCO変性反応で一酸化炭素濃度を低減したり、深冷分離法、PAS法、水素貯蔵合金或いはパラジウム膜拡散法などにより不純物を除去し、高純度の水素ガスを得ることができる。例えば、水素含有ガス中に含まれている一酸化炭素を低減させるには、部分酸化反応によって得られた水素含有ガスに水蒸気を添加し(或いは添加せずに)、一酸化炭素変性器でCO変性反応を行い、一酸化炭素を炭酸ガスに酸化すればよい。CO変性反応に用いる触媒としては、例えば銅主体、或いは鉄主体とする公知の触媒を用いて行えばよい。また、該CO変性反応によって一酸化炭素濃度を1%程度まで低減できるが、一酸化炭素は低温作動型固体高分子燃料電池に使用する電極の触媒作用を被毒する。したがってこの様な触媒の被毒を避けるためには、一酸化炭素濃度を100ppm以下にすることが望ましい。尚、一酸化炭素濃度を100ppm以下にするには、例えば上記CO変性反応後のガスに微量の酸素を添加し、一酸化炭素を選択的に酸化除去すればよい。
【0065】
【実施例】
触媒調製例1
担体:断面積1インチ平方当り400個のセルを有するコージェライト製ハニカム担体(日本碍子製)を外径25.4mmφ×長さ77mm(担体容積39.0ml)に切り出し本実施例の担体とした。
【0066】
白金族元素担持活性アルミナ:白金を1.075g含有するジニトロジアミン白金の硝酸水溶液およびロジウムを0.538g含有する硝酸ロジウム水溶液と混合した溶液に、比表面積が155m2/gの活性アルミナ(200g)を含浸させ混合した後、150℃で15時間乾燥させて水分を除去した。乾燥後、該粉体を空気中400℃で2時間焼成することにより、白金族元素合計0.80質量%(白金が0.53質量%およびロジウムが0.27質量%)を担持した活性アルミナを調製した。
【0067】
セリウム・ジルコニウム複合酸化物:炭酸セリウム粉体を400℃で2時間焼成し、次いで粉砕することにより酸化セリウム粉末を得た。この酸化セリウム粉末に酸化セリウム:酸化ジルコニウムの質量比が100:30となるようにオキシ硝酸ジルコニル水溶液を添加し均一に混合した。得られた混合スラリーを120℃で乾燥させて水分を除去した後、空気中500℃で1時間焼成することによりセリウム・ジルコニウム複合酸化物を調製した。
【0068】
スラリーの調製:上記白金族元素担持活性アルミナ111.3g、および上記セリウム・ジルコニウム複合酸化物36.0gと、純水および酢酸をボールミルに供給して湿式粉砕して水性スラリーを調製した。
【0069】
触媒の製造:該スラリーに上記担体を浸漬させてスラリーを付着させてから取出し、次いで該担体に圧縮空気を吹付けてセル内に残存する余分なスラリーを除去した後、150℃で乾燥させて触媒成分を担体に付着させた後、空気中で1時間焼成(500℃)して触媒成分を担体に強固に担持させた。この触媒成分が担持された担体を更に上記スラリーに浸漬し、同し操作を繰り返して担体に触媒成分を9.8g担持させて触媒を得た(完成触媒)。該完成触媒の担体1L当り、触媒成分が252g担持されており、また完成触媒1L当り、白金族元素合計担持量は1.52g(白金:1.01g、ロジウム:0.51g)であった。また、完成触媒中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:25:7.5であった。完成触媒のコーティング層をElectron Probe Micro Analyzer(EPMA)によって3000倍の倍率でPt−Rh担持活性アルミナの分布写真を無作為に30ケ所撮影し分析したところ、Pt−Rh含有活性アルミナ粒子は平均粒子径0.7μmで均一に分散していた。
【0070】
触媒調製例2
触媒調製例1と同様にして白金族元素12質量%(白金:10質量%、ロジウム:2質量%)を担持した活性アルミナを調製した。また触媒調製例1と同様に酸化セリウム:酸化ジルコニウムの質量比が100:20のセリウム・ジルコニウム複合酸化物を調製した。上記白金族元素担持活性アルミナ8.78g、上記セリウム・ジルコニウム複合酸化物33.8g、及び比表面積106m2/gの活性アルミナ104.8gをボールミルに入れ、触媒調製例1と同様にしてスラリーを調製し、次いで触媒を製造した。得られた完成触媒の担体には、触媒成分が約9.8g担持されていた(完成触媒の担体1L当りの触媒成分が252gに相当)。また完成触媒1L当り、白金族元素合計担持量は1.80g(白金:1.50g、ロジウム:0.30g)であった。また触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:25:5であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAによって3000倍の倍率でPt−Rh担持活性アルミナの分布写真を無作為に30ケ所撮影し分析したところ、Pt−Rh含有活性アルミナ(平均粒子径4μm)が均一に分散していた。
【0071】
触媒調製例3
触媒調製例1と同様にして、白金族元素20質量%(白金:15質量%、ロジウム:5質量%)を担持した活性アルミナを調製した。比表面積106m2/gの活性アルミナ(200g)を硝酸セリウム及びオキシ硝酸ジルコニウムを混合した水溶液に含浸し、120℃で乾燥後、空気中で1時間焼成(500℃)し、セリウム・ジルコニウム複合酸化物を担持した活性アルミナを調製した。この複合酸化物は活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比が100:30:6であった。上記白金族担持活性アルミナ8.78g、上記セリウム・ジルコニウム複合酸化物127.5g、及び比表面積106m2/gの活性アルミナ11.7gをボールミルに入れ、触媒調製例1と同様にしてスラリーを調製し、次いで触媒を製造した。得られた完成触媒の担体には、触媒成分が9.9g担持されていた(担体1L当り触媒成分253gに相当)。また完成触媒1L当り、白金族元素合計担持量は3.0g(白金:2.25g、ロジウム:0.75g)であり、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:25:5であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAで分析したところPt−Rh含有活性アルミナ(平均粒子径7μm)が均一に分散していた。
【0072】
触媒調製例4
触媒調製例2で調製した白金族元素12質量%(白金:10質量%、ロジウム2質量%)を担持させた活性アルミナ8.78gを秤量し、純水と酢酸と共にボールミルに入れ、12時間湿式粉砕した。この水性スラリーに、触媒調製例2で調製したセリウム・ジルコニウム複合酸化物33.8g、比表面積106m2/gの活性アルミナ104.8g、及び純水を追加し、さらに湿式粉砕を20時間継続した。得られた水性スラリーを使用し触媒調製例1と同様にして触媒を製造した。得られた完成触媒は担体に触媒成分が9.7g担持されていた(担体1L当り触媒成分248gに相当)。また完成触媒1L当り、白金族元素合計担持量は1.77g(白金:1.47g、ロジウム:0.30g)であり、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの重量比は100:25:5であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAによって分析したところ、0.5μm以上のPt−Rh含有活性アルミナは検出されなかった。
【0073】
触媒調製例5
触媒調製例1と同様にして白金族元素合計10.5質量%(白金:9.0質量%、ロジウム:1.5質量%)を担持した活性アルミナを調製した。また、触媒調製例3と同様にして活性アルミナ:酸化セリウム:酸化ジルコニウムの重量比が100:50:10の活性アルミナに担持したセリウム・ジルコニウム複合酸化物を調製した。
【0074】
上記白金族元素担持活性アルミナ8.43g、上記セリウム・ジルコニウム複合酸化物126.4g、及び比表面積106m2/gの活性アルミナ12.3gを秤量し、触媒調製例1と同様にして触媒を調製した。得られた完成触媒は担体に触媒成分が10.0g担持されていた(担体1L当り、触媒成分256gに相当)。この完成触媒は1L当り、白金族元素合計1.54g(白金:1.32g、ロジウム:0.22g)担持されており、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:40:8であった。この完成触媒のコーティング層を触媒調製例1と同様にEPMAで分析したところPt−Rh担持アルミナ(平均粒子径3μm)が均一に分散していた。
【0075】
触媒調製例6
触媒調製例2において、セリウム・ジルコニウム複合酸化物の酸化セリウム:酸化ジルコニウムの質量比を100:40とした以外は触媒調製例2と同様にして触媒を調製した。得られた完成触媒は担体に触媒成分が9.7g担持されていた(担体1L当り、触媒成分249gに相当)。この完成触媒は1L当り、白金族元素合計1.78g(白金:1.48g、ロジウム:0.30g)担持されており、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:22:9であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAで分析したところPt−Rh担持アルミナ(平均粒子径4μm)が均一に分散していた。
【0076】
触媒調製例7
触媒調製例1と同様にして白金族元素としてロジウムのみを12質量%担持させた活性アルミナを調製した。また触媒調製例2と同様にして酸化セリウム:酸化ジルコニウムの質量比が100:20のセリウム・ジルコニウム複合酸化物を調製した。上記白金族元素担持活性アルミナ5.85g、上記セリウム・ジルコニウム複合酸化物33.8g、及び比表面積106m2/gの活性アルミナ107.5gをボールミルに入れ、触媒調製例1と同様にしてスラリーを調製し、該スラリーを使って触媒を製造した。得られた完成触媒の担体には、触媒成分が9.6g担持されていた(担体1L当り、触媒成分247gに相当)。また完成触媒1L当りロジウム担持量は1.18gであり、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:25:5であった。完成触媒のコーティング層を触媒調製例1と同様にしてEPMAで分析したところ、Rh担持アルミナ粒子(平均粒子径4μm)が均一に分散していた。
【0077】
触媒調製例8
触媒調製例2において、塩化イリジウム酸(H2IrCl6)水溶液を用い、白金族元素としてイリジウムのみを12質量%担持した活性アルミナを調製した以外は触媒調製例2と同様にして触媒を調製した。得られた完成触媒は担体に触媒成分が9.9g担持されていた(担体1L当り、触媒成分254gに相当)。この完成触媒1L当り、イリジウムは1.82g担持されており、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:25:5であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAで分析したところ、Ir担持アルミナ粒子(平均粒子径4μm)が均一に分散していた。
【0078】
触媒調製例9
触媒調製例2において、白金族元素を活性アルミナの代わりに酸化セリウム(比表面積80m2/g)に担持させて調製した以外は、触媒調製例2と同様にして触媒を調製した。得られた完成触媒は担体に触媒成分が9.8g担持されていた(担体1L当り、触媒成分251gに相当)。この完成触媒1L当り、白金族元素合計1.79g(白金:1.49g、ロジウム:0.30g)担持されており、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:34:5であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAで分析したところPt−Rh担持酸化セリウム粒子(平均粒子径7μm)が均一に分散していた。
【0079】
触媒調製例10
触媒調製例2において、白金族元素として活性アルミナに代えて酸化ジルコニウム(比表面積60m2/g)に担持させて調製した以外は、触媒調製例2と同様にして触媒を調製した。得られた完成触媒は担体に触媒成分が9.6g担持されていた(担体1L当り、触媒成分246gに相当)。この完成触媒1L当り白金族元素合計1.76g(白金:1.47g、ロジウム:0.29g)担持されており、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:27:13であった。完成触媒のコーティング層を触媒調製例1と同様にEPMAで分析したところPt−Rh担持酸化ジルコニウム粒子(平均粒子径7μm)が均一に分散していた。
【0080】
触媒調製例11
触媒調製例2において調製したセリウム・ジルコニウム複合酸化物を12.2g、及び比表面積106m2/gの活性アルミナを126.4gとした以外は触媒調製例2と同様にして触媒を製造した。得られた完成触媒は担体に触媒成分が10.0g担持されていた(担体1L当り、触媒成分255gに相当)。また完成触媒1L当り、白金族元素合計1.82g(白金:1.52g、ロジウム:0.30g)担持されており、触媒成分中の酸化アルミニウム:酸化セリウム:酸化ジルコニウムの質量比は100:7.6:1.5であった。完成触媒のコーティング層を触媒調製例1と同様に分析したところPt−Rh担持アルミナ粒子(平均粒子径4μm)が均一に分散していた。
【0081】
触媒調製例12
触媒調製例2において、酸化セリウム:酸化ジルコニウムの質量比を100:1とした以外は触媒調製例2と同様にして触媒を調製した。得られた完成触媒は担体に触媒成分が9.8g担持されていた(担体1L当り、触媒成分250gに相当)。また完成触媒1L当り、白金族元素合計1.79g(白金:1.49g、ロジウム:0.30g)担持されており、触媒成分中の酸化アルミニウム:酸化セリウム:酸化ジルコニウムの質量比は100:30:0.3であった。完成触媒のコーティング層を触媒調製例1と同様に分析したところPt−Rh担持アルミナ粒子(平均粒子径4μm)が均一に分散していた。
【0082】
触媒調製例13
触媒調製例1と同様にして白金族元素0.3質量%(白金:0.2質量%、ロジウム:0.1質量%)を担持した活性アルミナを調製した。上記白金族元素担持活性アルミナを122.7g、及び触媒調製例1で調製したセリウム・ジルコニウム複合酸化物24.6gをボールミルに入れ、触媒調製例1と同様にしてスラリーを調製し、次いで触媒を製造した。得られた完成触媒の担体には、触媒成分が9.8g担持されていた(完成触媒の担体1L当り、触媒成分252gに相当)。また完成触媒1L当り、白金族元素合計担持量は0.63g(白金:0.42g、ロジウム:0.21g)であった。また触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:15:5であった。完成触媒のコーティング層を触媒調製例1と同様にして分析したところ、Pt−Rh含有活性アルミナ(平均粒子径0.5μm)が均一に分散していた。
【0083】
触媒調製例14(比較例)
比表面積106m2/gの活性アルミナを134.1g、及び触媒調製例2で調製したセリウム・ジルコニウム複合酸化物12.2gをボールミルに入れた。更に該ボールミルに白金0.878gを含有するジニトロジアミン白金の硝酸水溶液、ロジウム0.176gを含有する硝酸ロジウム水溶液、純水、及び酢酸を加えて20時間湿式粉砕を行なって水性スラリーを調製し、該スラリーを用いて触媒調製例1と同様にして触媒を製造した。得られた完成触媒は担体に触媒成分が9.8g担持されていた(担体1L当り、触媒成分252gに相当)。また完成触媒1L当り、白金族元素合計1.80g(白金:1.50g、ロジウム:0.30g)担持されており、触媒成分中の活性アルミナ:酸化セリウム:酸化ジルコニウムの質量比は100:7.6:1.5であった。
【0084】
実施例1
材質がインコネルの反応管に保温用耐火物を施した反応器に、触媒調製例1の触媒を充填し、部分酸化反応評価試験を行った。原料炭化水素として都市ガス13A(メタン87.3%、硫黄含有量5ppm)を用いると共に、酸素含有ガスとして空気を用いて酸素/炭素比が0.54となる様に調製した混合ガスを反応ガスとして用いた。
【0085】
反応開始に当って反応ガスを反応器に供給し、反応ガスの温度が350℃に到達した時、触媒層での反応開始が確認できたので反応ガスの加熱を止め、以後反応ガスを常温で、SV30,000H-1で供給しながら反応を断熱的に継続した。反応中の触媒層温度は800℃を超えていた。得られた生成ガスの成分をガスクロマトグラフィー(島津製作所:ガスクロマトグラフGC−8A)を用いて分析した。その結果都市ガス13Aの転化率は79%で、水素選択率が89%、一酸化炭素選択率が81%であった。
【0086】
上記反応条件で2,000時間反応試験を継続した結果、試験期間中の天然ガスの転化率は78〜80%で安定しており、この間の水素選択率および一酸化炭素選択率も安定であった。反応後の抜き出し触媒を蛍光X線により元素分析を行ったところ、反応による触媒成分の含有量に変化がなく、また炭素の析出は認められなかった。
【0087】
実施例2
実施例1と同一の反応器に、触媒調製例2の触媒を充填し部分酸化反応評価試験を行った。原料炭化水素として天然ガス(メタン93.5%、全硫黄分19.3mg/Nm3を含有)を用いると共に、酸素含有ガスとして空気を用いて酸素/炭素比が0.54となる様に調製した混合ガスを反応ガスとして用いた。
【0088】
反応開始に当って反応ガスを反応器に供給し、反応ガスの温度が370℃に到達した時、触媒層での反応開始が確認できたので反応ガスの加熱を止め、以後反応ガスを常温で、SV20,000H-1で供給しながら反応を断熱的に継続した。反応中の触媒層温度は800℃を超えていた。実施例1と同様に生成ガスを分析したところ、天然ガス転化率が75%、水素選択率87%及び一酸化炭素選択率が77%であった。上記反応条件で反応を継続し、経過時間5000時間での天然ガス転化率は74〜76%で安定に維持されており、この間の水素選択率および一酸化炭素選択率も安定であった。また、この間の触媒層での圧損上昇は認められなかった。
加速耐久評価
実施例3
上記触媒調製例2〜14で作成した各触媒を7×7×10mmのサイズに切出し加速耐久評価を行った。反応装置は実施例1と同様であり、原料ガスとして工業用メタン(メタン含有率99.5%以上、硫黄分含有量0.7ppm)を、酸素含有ガスとして空気を使用した。触媒の初期評価としては酸素/炭素比が0.54とし、SVが40,000H-1、反応ガス入口温度を40℃の反応条件で反応を行った。耐久評価としては、初期評価後、反応条件を酸素/炭素比0.54、SV400,000H-1、反応ガス入口温度を250℃として反応を150時間継続し、その後初期評価条件で反応を行い耐久後の触媒評価を行った。結果を表1に示す。
【0089】
【表1】
【0090】
触媒調製例3及び触媒調製例5〜8の加速耐久試験前後におけるメタン転化率の低下は、触媒調製例2の場合のそれと比較して同程度であり、耐久性が良好であると判断できた。触媒調製例14の触媒においては初期評価におけるメタン転化率は上記触媒調製例の場合とはあまり遜色はないが、加速耐久試験後のメタン転化率の低下が大きく実用触媒としては耐久性に乏しいと判断できた。また触媒調製例4および触媒調製例9〜13の触媒については触媒調製例2と比較すると若干耐久性に劣るが、触媒調製例14の触媒と比較すると耐久性は大幅に改善されていた。
【0091】
本発明の部分酸化用触媒は、従来の部分酸化用触媒と比べて炭化水素原料の高負荷条件下においても長期間に亘って高レベルの水素選択率と、触媒活性を持続した。
【0092】
【発明の効果】
以上の様に、本発明の部分酸化用触媒は、高温下でも触媒活性の劣化を抑止し、且つ炭素の析出を抑制しつつ、耐被毒性にも優れ、高活性で、しかも長期耐久性を有する。本発明の部分酸化用触媒は、燃料電池、例えば固体酸化物型燃料電池あるいは固体高分子型燃料電池に組み込まれて好適に使用される。本発明の部分酸化用触媒を用いた燃料電池は、自家用あるいは業務用コージェネレーションタイプの自家発電装置、火力発電所代替あるいは分散型発電所、電気自動車等に適用され、これらは高いエネルギー効率を発揮する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst used when producing a hydrogen-containing gas from a hydrocarbon, and a technique related to a method for producing a hydrogen-containing gas using the catalyst. Specifically, a catalyst for partial oxidation of hydrocarbons for producing a hydrogen-containing gas from a mixed gas containing a hydrocarbon-containing gas and oxygen gas (or oxygen-containing gas), a method for producing the same, and carbonization using the catalyst This is a technique related to a method for producing a hydrogen-containing gas from hydrogen.
[0002]
[Prior art]
A hydrogen-containing gas mainly composed of hydrogen and carbon monoxide (hereinafter sometimes referred to as a source gas) is widely used as a reducing gas in addition to hydrogen gas production, and further as a raw material for various chemical products. Recently, research on practical application as fuel for fuel cells and the like has been advanced. As a method for producing a hydrogen-containing gas by reforming hydrocarbons, a hydrocarbon partial oxidation method, a steam reforming method, or an autothermal catalytic steam reforming method that combines partial oxidation and steam reforming (automatic) Thermal reforming method) is known.
[0003]
Partial oxidation methods that partially oxidize hydrocarbons to produce hydrogen-containing gases (eg, partial oxidation of methane is CH Four + 1 / 2O 2 → CO + 2H 2 It is represented by ), For example, the following catalysts are used. For example, in Patent Document 1, as a partial oxidation catalyst, a coating layer is formed on an active alumina containing an oxide such as lanthanum or cerium as a stabilizer on a monolith support, and platinum and palladium are contained as catalyst components. Proposed partial oxidation catalysts have been proposed. Patent Document 2 proposes a partial oxidation catalyst in which a noble metal, Ni, Cr, Co, Ce, or La is supported as a catalyst component on a honeycomb carrier. Patent Document 3 proposes a partial oxidation catalyst in which rhodium is supported on a composite oxide composed of ceria and zirconia. However, since the technique disclosed in the Japanese Patent Publication is a technique using a pellet catalyst, and is a catalyst premised on use under conditions where water vapor is added to the reaction gas, a condition where no water vapor is added, for example, a portion of methane and air. In the oxidation reaction, the conversion rate of methane remains at a low level of about 45%. Patent Document 4 proposes a reforming method of a lower hydrocarbon fuel in which a mixed gas obtained by adding oxygen (or air) and, if necessary, water vapor to a raw material gas is partially oxidized. This publication discloses a catalyst in which about 100 μ of alumina is coated on a honeycomb support and a platinum group element is supported thereon as a catalyst, but 5 to 20 g of platinum group element per 1 L of honeycomb support. A loading amount is required. Patent Document 5 proposes a self-thermal catalytic steam reforming method of a mixed gas composed of hydrocarbon, oxygen and water or steam. In this publication, as a catalyst, a catalyst component containing at least one platinum group element in an oxide carrier material selected from the group consisting of aluminum oxide, silicon dioxide, titanium dioxide or a mixed oxide thereof, and zeolite, A catalyst coated on a support such as a ceramic honeycomb is disclosed.
[0004]
[Patent Document 1]
JP 59-97501
[Patent Document 2]
Japanese Patent Laid-Open No. 01-145301
[Patent Document 3]
Special table 2002-507535
[Patent Document 4]
JP-A-7-187605
[Patent Document 5]
JP 2002-12408
[0005]
[Problems to be solved by the invention]
As a result of intensive studies on catalysts for producing a hydrogen-containing gas by partially oxidizing a hydrocarbon gas, the present inventors have found that the prior art has the following problems.
[0006]
For example, when methane or natural gas, which is widely used as a hydrocarbon gas, is used, it is desirable to perform a partial oxidation reaction at a high temperature of 800 ° C. or higher in order to obtain a high methane conversion rate. However, since the catalyst layer is subjected to a significant thermal load due to the reaction heat during partial oxidation, there arises a problem that the catalyst activity decreases with time. In addition, a carbon generation reaction (side reaction) occurs with the partial oxidation reaction, and the precipitated carbon generated by the reaction causes the catalyst activity to deteriorate. In order to prevent such carbon deposition, it is necessary to add water vapor to the raw material gas, but no merit associated with an increase in production cost can be found.
[0007]
In addition, a catalyst poison such as a sulfur content inevitably contained in natural gas causes a problem that the catalyst is poisoned and the catalyst activity decreases with time. Natural gas is treated in advance with a desulfurizer, etc. to remove catalyst poison components and then used for partial oxidation reaction. However, if a catalyst poison removal device such as a desulfurization device is provided, there are problems such as a complicated configuration of the entire partial oxidation reaction system and a maintenance cost.
[0008]
The present invention has been made in view of the above circumstances, and its purpose is to suppress deterioration of catalytic activity even at high temperatures and to suppress carbon deposition, while being excellent in poisoning resistance and high activity, And it is providing the catalyst for partial oxidation which has long-term durability, and its manufacturing method. Another object of the present invention is to provide a method for producing a hydrogen-containing gas (or hydrogen gas) using the partial oxidation catalyst, and a method for using the gas.
[0009]
[Means for Solving the Problems]
The hydrocarbon partial oxidation catalyst of the present invention comprises a monolith support on which a catalyst component is supported. The catalyst component includes a heat-resistant inorganic oxide (a) on which a platinum group element is supported and a heat-resistant inorganic oxide. Including oxide (b) The catalyst component in the catalyst is 35 to 400 g per liter of monolith support, and the catalyst component contains 1 to 30 g of the heat-resistant inorganic oxide (a) supporting the platinum group element. In particular.
[0010]
In the catalyst, the amount of platinum group element supported on the heat-resistant inorganic oxide (a) is preferably 0.4 to 40% by mass.
[0011]
Moreover, it is preferable that the average particle diameter (measured with Electron Probe Micro Analyzer) of the heat-resistant inorganic oxide (a) carrying the platinum group element is 0.5 to 20 μm.
[0012]
In the present invention, it is recommended that 50% by mass or more of the platinum group element is platinum.
[0013]
The heat-resistant inorganic oxide (a) supporting the platinum group element is preferably at least one selected from the group consisting of activated alumina, cerium oxide, and zirconium oxide.
[0014]
As an embodiment of the present invention, the heat-resistant inorganic oxide (a) supporting a platinum group element contains activated alumina, and the heat-resistant inorganic compound (b) is cerium oxide, zirconium oxide, cerium-zirconium composite oxidation. It is also preferable that it contains at least two selected from the group consisting of products.
[0015]
Further, in the present invention, the mass ratio of activated alumina and cerium oxide contained in the catalyst component is 100: 15 to 100: 60, and the mass ratio of cerium oxide and zirconium oxide is 100: 2 to 100: 60. preferable.
[0016]
The method for producing the partial oxidation catalyst of the present invention comprises a monolith support in a slurry of a heat-resistant inorganic oxide (a) supporting a platinum group element and a catalyst component containing the heat-resistant inorganic oxide (b). It has a gist in firing after contacting.
[0017]
The gist of the present invention is that a mixed gas containing a hydrocarbon-containing gas and an oxygen-containing gas is brought into contact with the hydrocarbon partial oxidation catalyst, and the hydrocarbon is partially oxidized to produce a hydrogen-containing gas. A method for producing a hydrogen-containing gas is provided.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As a catalyst main active component supported on a catalyst for partial oxidation of hydrocarbons, platinum group compositions such as platinum, palladium, rhodium and iridium are more heat resistant than base metal compositions such as nickel, iron or cobalt. It is known that it has excellent characteristics of resistance to poisoning.
[0020]
However, since platinum group elements are expensive, the amount of platinum group elements used must be limited (5% by mass or less in the catalyst) in order to provide a practical catalyst because of cost and effect. Therefore, in order to make the best use of platinum group elements, we manufactured a partial oxidation catalyst with platinum group elements supported in as high a dispersion as possible on heat-resistant inorganic oxides with a high surface area such as activated alumina, and investigated their performance. It was. As a result, if it continues to be used at a high temperature, platinum group element particles grow or react with the support material, or the platinum group element undergoes a chemical change and becomes inactive, or the S content in the source gas, etc. It has been found that the catalyst has a problem that its catalytic performance such as catalytic activity deteriorates with the passage of time.
[0021]
Therefore, as a result of further studies by the present inventors to solve the above problems, a monolith using a heat-resistant inorganic oxide (a) on which a platinum group element is previously supported and a heat-resistant inorganic oxide (b) as catalyst components. The present inventors have found that the above-described various performances required as a catalyst for partial oxidation of hydrocarbons can be achieved at a high level if supported on a carrier, and have led to the present invention.
[0022]
In the present invention, a monolithic carrier is used as the carrier. Monolithic carriers are recommended because they are superior in low-pressure loss resistance and dust resistance and easier to handle than other shaped carriers such as pellets, spherical carriers, powdery carriers, and granular carriers. Further, in order to maintain the shape of the carrier at a high temperature during the partial oxidation reaction, it is desirable to use a material excellent in heat resistance strength, dust resistance, etc. as the material of the carrier, for example, cordierite, mullite, α- Preferable examples include oxides such as alumina, zirconia, titania, alumina silicate, magnesium silicate, heat-resistant alloys such as silicate, stainless steel, and Fe—Cr—Al alloy. These can be used alone or in combination to form a monolithic carrier. Among these, a carrier mainly composed of cordierite (50% by mass or more) which has high heat resistance and excellent thermal shock resistance is most preferable. The monolithic carrier has many holes (cells) penetrating in the parallel direction, but the shape of the holes may be circular or any shape such as a polygon such as a triangle, quadrilateral, hexagon, etc. The size is not particularly limited.
[0023]
The cell density of the support is not particularly limited, but in order to increase the contact efficiency with the reaction gas, it is preferably 150 to 600 cells / in 2, more preferably 250 to 600 cells / in 2. If the cell density (number of cells / square inch) is too large, individual cells may become small and clogging may occur. On the other hand, if the cell density is too small, the contact area decreases, and sufficient catalyst efficiency may not be obtained.
[0024]
In the present invention, a catalyst component is supported on the monolith support. The catalyst component is a composition containing a heat-resistant inorganic oxide (a) carrying a platinum group element and a heat-resistant inorganic oxide (b). In order to achieve the above object of the present invention, a catalyst component containing a heat-resistant inorganic oxide (a) and a heat-resistant inorganic oxide (b) substantially carrying a platinum group element may be used. The catalyst component containing the heat-resistant inorganic oxide (a) and the heat-resistant inorganic oxide (b) is, for example, a catalyst comprising the heat-resistant inorganic oxide (a), the heat-resistant inorganic oxide (b) and inevitable impurities. There may be. Alternatively, in addition to the heat-resistant inorganic oxide (a) and the heat-resistant inorganic oxide (b), any heat-resistant inorganic oxide [for example, a heat-resistant inorganic oxide (a) not carrying a platinum group element] is included. What is necessary is just to use a catalyst component, and according to the objective, you may contain a promoter etc. in the range which does not inhibit the effect of this invention.
[0025]
In the present invention, the heat-resistant inorganic oxide (a) for supporting the platinum group element and the heat-resistant inorganic oxide used for the heat-resistant inorganic oxide (b) are stable in shape at high temperatures (for example, 300 to 1000 ° C.). Any inorganic oxide can be used as long as it does not deteriorate its properties and performance. In particular, at least one selected from the group consisting of alumina (particularly activated alumina), zirconium oxide, and cerium oxide is preferable. Of course, arbitrary heat-resistant inorganic oxides (including mixtures and composite oxides) may be used together with these preferable heat-resistant inorganic oxides. Examples thereof include lanthanum oxide, titanium oxide, silica, magnesium oxide, and mixtures and composite oxides thereof. Examples of the composite oxide include alumina-ceria, alumina-lanthanum oxide, alumina-magnesia, alumina-silica, alumina-zirconia, stabilized zirconia, zirconia-ceria, zirconia-lanthanum oxide, and the like.
[0026]
As the heat-resistant inorganic oxide (a), at least one selected from the group consisting of activated alumina, cerium oxide, and zirconium oxide is recommended. These heat-resistant inorganic oxides are desirable because they are excellent in high-temperature heat resistance and excellent in carrying ability of platinum group elements. Of the above heat-resistant inorganic oxides, it is particularly preferable to use activated alumina. Activated alumina is desirable because it has a large specific surface area and a large contact area with the reaction gas, so that partial oxidation efficiency can be improved and high temperature heat resistance is also excellent. In addition, it is desirable to support a platinum group element on the activated alumina [corresponding to the heat-resistant inorganic oxide (a)] as described later, because the characteristics of the platinum group element can be maintained for a long period of time.
[0027]
Examples of the activated alumina include α-alumina, γ-alumina, δ-alumina, θ-alumina, and η-alumina. The properties of the activated alumina are not particularly limited, but the specific surface area is 25 to 250 m. 2 / G activated alumina is preferred.
[0028]
The supported amount of the platinum group element supported on the heat resistant inorganic oxide (a) of the present invention is 0.4 to 40% by mass (ratio to the total amount of the heat resistant inorganic oxide (a) and the platinum group element). It is preferable that it is, More preferably, it is 1-30 mass%, More preferably, it is 5-25 mass%. When the supported amount of the platinum group element is 0.4% by mass or more, the heat resistance is improved and deterioration of the catalyst activity can be suppressed. On the other hand, if it exceeds 40% by mass, the effective active sites of platinum group elements contributing to the reaction are decreased, and the reaction efficiency during the partial oxidation reaction may be decreased.
[0029]
Examples of platinum group elements include platinum, rhodium, palladium, ruthenium and iridium. Among these, it is particularly preferable to use at least one selected from the group consisting of platinum, rhodium, and iridium in order to obtain a more excellent effect. Of course, these platinum group elements may be used in combination in any combination. In this case, it is preferable to support platinum on the heat-resistant inorganic oxide (a) as an essential component because the partial oxidation activity to hydrocarbons is further improved. In order to obtain a more excellent partial oxidation activity effect, platinum is preferably contained in an amount of 50% by mass or more (ratio to the platinum group element), more preferably 60% by mass or more, and further preferably 70% by mass or more ( The balance is any platinum group element). As a preferable combination when a plurality of platinum group elements are used in combination, a combination of platinum-rhodium, platinum-iridium and platinum-rhodium-iridium is preferable, and a combination of platinum-rhodium is most preferable.
[0030]
The average particle diameter of the heat-resistant inorganic oxide (a) supporting the platinum group element (particle diameter after being supported on the finished catalyst) is preferably 0.5 to 20 μm, more preferably 1 It is desirable that it is ˜15 μm. When the heat-resistant inorganic oxide (a) having such an average particle size is supported on a carrier, it exhibits excellent durability even at high temperatures while maintaining catalytic activity such as activity as a partial oxidation catalyst, and has a long service life. The partial oxidation catalyst can be obtained. The particle size of the heat-resistant inorganic oxide (a) in the finished catalyst can be measured, for example, by taking a photo of the distribution of platinum group elements using Electron Probe Micro Analyzer (EPMA) on the catalyst coating layer (surface layer). That's fine.
[0031]
In order to further enhance the above-described effect of the platinum group element during the partial oxidation reaction, the supported amount of the platinum group element in the finished catalyst is preferably 0.1 to 5 g per liter of the finished catalyst, more preferably 0.8. 3 to 3 g. Even if the platinum group element is contained in excess of 5 g per liter of the finished catalyst, the effect on the cost increase due to the use of the platinum group element cannot be sufficiently obtained. On the other hand, if it is less than 0.1 g, sufficient catalytic activity may not be obtained.
[0032]
In order to further enhance the catalytic performance improvement effect of the heat-resistant inorganic compound (a) carrying the platinum group element, the catalyst component in the finished catalyst is preferably carried by 35 to 400 g per liter of monolith support. At the same time, the catalyst component preferably contains 1 to 30 g, more preferably 1 to 20 g of the heat-resistant inorganic oxide (a) supporting a platinum group element. When the supported amount of the catalyst component is 35 g or more per liter of the monolith support, the effect of the catalyst activity is further increased. On the other hand, if it is carried over 400 g, it may cause clogging or increased pressure loss.
[0033]
As the heat-resistant inorganic oxide (b) of the present invention, any of the heat-resistant inorganic oxides described above can be used, but no platinum group element is supported.
[0034]
As a result of studies conducted by the present inventors to maximize the effect of the platinum group element in the partial oxidation catalyst, the platinum group element is supported together with the heat-resistant inorganic oxide (a) supporting the platinum group element. By adding the non-heat-resistant inorganic oxide (b), the above-mentioned problem occurring in the catalyst in which only the heat-resistant inorganic oxide (a) carrying the platinum group element is carried on the carrier can be solved. That is, by including the heat-resistant inorganic oxide (a) supporting the platinum group element and the heat-resistant inorganic oxide (b) not supporting the platinum group element, the catalytic activity is deteriorated in the partial oxidation reaction. It has been found that the heat resistance is improved, and the catalyst activity is maintained stably over time for a long time even if the sulfur component is accompanied by the raw material gas.
[0035]
In order to further enhance such effects, cerium oxide is preferably used as the heat-resistant inorganic oxide (b), and cerium oxide and zirconium oxide are more preferably used. Particularly preferably, it is recommended that at least a part of cerium oxide and zirconium oxide is contained as a cerium-zirconium composite oxide. Of course, these heat-resistant inorganic oxides (b) can be used in combination of a plurality of types. For example, at least two types selected from the group consisting of cerium oxide, zirconium oxide, and cerium-zirconium composite oxide can be used. Further, combinations with other heat-resistant inorganic oxides such as activated alumina are also preferred. Further, in order to exert a more excellent effect, when the heat-resistant inorganic oxide (a) essentially contains activated alumina, the heat-resistant inorganic oxide (b) includes cerium oxide, zirconium oxide, cerium-zirconium composite oxidation. It is most preferable to combine at least two selected from the group consisting of products.
[0036]
In order to further improve the durability of the catalyst of the present invention (that is, the feature that the catalyst activity deterioration under high temperature is suppressed, the heat resistance is excellent, and the catalyst activity that is stable over time is maintained), the finished catalyst It is desirable to add a relatively high concentration of cerium oxide to the activated alumina contained in the catalyst component and to determine the amount of zirconium oxide relative to cerium oxide. Specifically, the mass ratio of activated alumina: cerium oxide in the catalyst component is preferably 100: 15-100: 60, more preferably 100: 20-100: 40, and the mass ratio of cerium oxide: zirconium oxide is Preferably it is 100: 2 to 100: 60, more preferably 100: 4 to 100: 40.
[0037]
When the mass ratio of activated alumina: cerium oxide is less than 100: 15, the effect of adding cerium oxide may be insufficient. On the other hand, even if it adds excessively exceeding 100: 60, the said effect will be saturated and it will become uneconomical.
[0038]
In the present invention, it is also desirable to use one or more base metals as promoters. Base metals include Na, K, Cs, Ni, Co, Fe, Cr, Cu, V, Pr, Mg, Mo, W, belonging to the periodic table I, II, IIIB, IV, V, VIB, VIIB, VIII. Examples include metals such as Mn, Zn, Ga, Y, Ti, Ba, Re, Bi, Nb, Ta, La, Ag, and Au. In particular, when these base metals are present in the catalyst component as solid solutions with metals, metal oxides, or platinum group elements, the catalytic action of the platinum group elements is promoted, contributes to stabilization, etc., or the hydrogen selectivity is increased. This is desirable because it can enhance the effect. These base metal elements may be supported on the catalyst component.
[0039]
The catalyst of the present invention as described above can be produced by the following method, for example, but can be appropriately changed depending on the material, composition and the like. Therefore, unless otherwise specified, the following production method can be modified as appropriate.
[0040]
The monolithic carrier used in the present invention can be produced by known methods such as casting, press molding, extrusion molding, and sheet processing using the materials as described above. Moreover, the manufacturing method of a support | carrier should just be suitably changed according to the material which comprises, a hole diameter, a hole shape, etc., and is not specifically limited.
[0041]
Various compounds (platinum element source) can be used as the platinum group element supported on the heat-resistant inorganic oxide (a) of the present invention. Platinum compounds include PtCl Four , H 2 PtCl 6 , Pt (NH Three ) Four Cl 2 , (NH Four ) 2 PtCl 2 , H 2 PtBr 6 , NH Four [Pt (C 2 H Four ) Cl Three ], Pt (NH Three ) Four (OH) 2 , Pt (NH Three ) 2 (NO 2 ) 2 Etc. are exemplified. As the rhodium compound, (NH Four ) 2 RhCl 6 , Rh (NH) Five Cl Three , RhCl Three , Rh (NO Three ) Three Etc. are exemplified. As the palladium compound, (NH Four ) 2 PdCl Four , Pd (NH Three ) Four Cl 2 , PdCl 2 , Pd (NO Three ) 2 Etc. are exemplified. Ruthenium compounds include RuCl Three , Ru (NO Three ) Three , Ru 2 (OH) 2 Cl Four ・ 7NH Three Etc. are exemplified. Examples of iridium compounds include (NH Four ) 2 IrCl 6 , IrCl Three , H 2 IrCl 6 Etc. are exemplified.
[0042]
Moreover, what is necessary is just to use a well-known heat resistant inorganic oxide as a heat resistant inorganic oxide (a) which carry | supports the said platinum group element. For example, a general-purpose product may be used as the activated alumina powder. The activated alumina powder has a specific surface area of 25 to 250 m as described above. 2 / G, and boehmite that becomes active alumina by firing after loading, alumina hydrate in a pseudo boehmite state, aluminum hydroxide, or the like may be used as a raw material. Further, for example, activated alumina obtained by adding an alkali to an aqueous solution of an aluminum salt such as aluminum nitrate to form a precipitate of hydroxide and then drying and firing the precipitate may be used. Alternatively, it may be activated alumina obtained by sol-gel method in which alkoxide such as aluminum isopropoxide is hydrolyzed to prepare alumina gel and dried and calcined, and the production method is not particularly limited, but the heat resistant inorganic having the above characteristics It is desirable to use an oxide.
[0043]
In order to support the platinum group element on the heat-resistant inorganic oxide (a), it can be preferably prepared by the following production method, but basically, the solution containing the platinum group element source was brought into contact with the heat-resistant inorganic oxide. Thereafter, it may be fired after drying by an arbitrary method.
[0044]
For example, in order to immobilize a platinum group element on activated alumina, activated alumina is brought into contact with a solution to which an appropriate amount of a platinum group element source has been added so that the desired amount of platinum group element is supported. After directly supporting the group element source, drying may be performed by any method to remove moisture, and then firing may be performed. In addition, an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid; an organic acid such as acetic acid or oxalic acid may be added to the solution according to the purpose such as improvement of solubility or pH adjustment. The supporting method in this case is not particularly limited, and methods such as an impregnation method, an immersion method, a wet adsorption method, a spray method, and a coating method can be adopted, but an impregnation method is preferable. Moreover, the conditions at the time of contact can also be changed suitably. For example, the contact operation can be performed under atmospheric pressure or reduced pressure. There is no restriction | limiting in particular also in the temperature at the time of contact, You may heat as needed, Preferably what is necessary is just to carry out in the range of about 90 degreeC from room temperature. In the present invention, it is also preferable to support two or more kinds of platinum group elements on a heat-resistant inorganic oxide. In such a case, for example, a solution containing two or more desired platinum group element sources may be prepared, and the platinum group elements may be simultaneously supported by contacting the solution with a heat-resistant inorganic oxide. Alternatively, a solution containing a platinum group element source may be prepared individually, and the solution may be sequentially contacted with a heat-resistant inorganic oxide. The firing conditions are not particularly limited, and for example, the firing may be performed in air or in a reducing atmosphere. For example, the platinum group element of the present invention is obtained by firing within a range of 300 to 600 ° C. for about 2 to 6 hours. As a result, a heat-resistant inorganic oxide (a) on which is supported is obtained.
[0045]
Incidentally, the heat-resistant inorganic oxide (a) supporting the platinum group element may be aggregated depending on the production conditions to increase the particle size. For example, the pulverization time may be reduced in the wet pulverization step during slurry preparation. By adjusting, an average particle diameter can be 0.5-20 micrometers.
[0046]
As the heat resistant inorganic oxide (b), a known one can be used as in the case of the heat resistant inorganic oxide (a). For example, general-purpose products may be used for cerium oxide, zirconium oxide, and zirconium-cerium composite oxide. For example, the cerium-zirconium composite oxide may be obtained by the following preparation method.
(1) A method of drying and firing after mixing a cerium salt aqueous solution and a zirconium salt aqueous solution
(2) A method in which an aqueous solution of cerium salt and an aqueous solution of zirconium salt are mixed, co-precipitated with an ammonium compound, etc., filtered, washed and dried and fired.
(3) Method of solid-phase reaction after mixing cerium oxide and zirconium oxide
(4) A method of immersing a zirconium salt aqueous solution in cerium oxide and drying and baking, or a method of immersing a cerium salt aqueous solution in zirconium oxide and drying and baking
(5) A method of impregnating a heat-resistant inorganic oxide such as activated alumina with a cerium salt aqueous solution and a zirconium salt aqueous solution, followed by drying and firing.
In the preparation of the cerium-zirconium composite oxide, the starting materials for cerium and zirconium are not particularly limited. For example, as the cerium compound, a commercially available cerium oxide or cerium oxide sol, or a cerium salt compound such as cerium nitrate, cerium chloride, cerium carbonate, or cerous acetate, or cerium oxide or cerium hydroxide prepared from these compounds can be used. . Further, as the zirconium compound, commercially available zirconium oxide or zirconium oxide sol may be used, various halides such as zirconium tetrachloride or partial hydrolysis products thereof, various oxyhalogens such as zirconyl chloride (zirconium oxychloride). , Various oxygenates such as zirconyl sulfate, zirconium nitrate and zirconyl nitrate, carbonates such as zirconium carbonate and zirconyl carbonate, various organic acid salts such as zirconium acetate, zirconyl acetate and zirconyl oxalate, and further alkoxides of zirconium, various Complex salts can be used. Of course, these raw materials may be used as they are or, if necessary, those prepared in zirconium oxide, zirconium hydroxide, or the like. The composite oxide (b) can be obtained by firing these materials using a known method, for example, baking in air at 300 to 800 ° C., preferably 400 to 800 ° C. for about 0.5 to 3 hours.
[0047]
Content of a heat resistant inorganic oxide (a) and a heat resistant inorganic oxide (b) can be adjusted by adjusting each addition amount suitably.
[0048]
As a method for supporting the above catalyst component on the monolith support, for example, a heat-resistant inorganic oxide (a) supporting a platinum group element and a heat-resistant inorganic oxide (b) are supplied to a pulverizer such as a ball mill and wet pulverized. The slurry may be prepared by the above, and the support may be brought into contact with the slurry. In addition, according to this method, since the heat-resistant inorganic oxide (a) and the heat-resistant inorganic oxide (b) can be supported on the carrier almost uniformly, it is preferable for obtaining the above excellent effect.
[0049]
When preparing the slurry, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and oxalic acid; basic substances such as ammonia and tetraammonium hydroxide; polyacrylic acid and the like are used to adjust the viscosity of the slurry and improve the stability of the slurry. Polymer compounds such as polyvinyl alcohol; etc. may be added as necessary. As a contact method, it is preferable to immerse the carrier in the slurry because the active ingredient can be uniformly supported. After immersion, it is recommended that excess slurry (for example, slurry remaining in the cell) adhering to the carrier is removed by a method such as air blowing and then subjected to a drying step. There is no particular limitation on the drying method, and the water content of the slurry supported by any method may be removed. The drying conditions may be either room temperature or high temperature. Further, firing after drying is desirable because the catalytically active component can be firmly fixed on the carrier. The firing method is not particularly limited, but it is desirable to dry at 400 to 800 ° C., for example, in air or in a reducing atmosphere. In addition, when a necessary carrying amount cannot be obtained by the above carrying method, the carrying amount can be adjusted by repeating the dipping operation after firing, for example.
[0050]
When using a cocatalyst, a cocatalyst such as any metal salt compound or oxide is mixed with the above slurry, or these metals are added to the heat resistant inorganic oxide (a) or the heat resistant inorganic oxide (b). You may fix and use beforehand. As a method for immobilization, the same method as in the case of supporting a platinum group element on the heat-resistant inorganic oxide (a) may be employed. Of course, a desired base metal may be further supported on the calcined catalyst by other known methods. These base metal elements may be dispersed and supported in the catalyst component.
[0051]
In order to adjust the heat-resistant inorganic oxide (a) carrying a platinum group element to aggregated particles having a relatively large average particle diameter of, for example, 0.5 to 20 μm in the finished catalyst, the above heat-resistant inorganic oxide is used. A platinum group element compound is impregnated and supported on oxide powder or pellet-like heat-resistant inorganic oxide, and this is pulverized with a mill or the like to adjust the particle size to the target. The platinum group element-supported heat-resistant inorganic oxide (a) having the particle size adjusted in this way may be supported on the monolith support by the above method together with the heat-resistant inorganic oxide (b) not containing the platinum group element. By this method, the catalyst component [heat-resistant inorganic oxide (a), (b)] can be coated (supported) almost uniformly on the support surface (the heat-resistant inorganic oxide coating layer is sometimes referred to as a coating layer). ).
[0052]
Hereinafter, a method for producing a hydrogen-containing gas by partially oxidizing hydrocarbons using the catalyst of the present invention will be described. However, the method for producing a hydrogen-containing gas using the catalyst of the present invention is not limited to the following examples. And can be changed as appropriate.
[0053]
In the present invention, a hydrocarbon-containing gas and an oxygen-containing gas (or oxygen gas) mixed gas (which may be added with water vapor if necessary) is brought into contact with the catalyst of the present invention, thereby producing a hydrocarbon. Is partially oxidized to produce a hydrogen-containing gas mainly composed of hydrogen and carbon monoxide.
[0054]
As the hydrocarbon-containing gas (raw material gas), light hydrocarbons such as methane, propane, butane, pentane, and hexane; petroleum hydrocarbons such as gasoline, kerosene, and naphtha can be used, and there is no particular limitation. For example, natural gas or liquefied natural gas mainly composed of methane, city gas mainly composed of liquefied natural gas, and LPG (liquefied petroleum gas) mainly composed of propane and butane are also abundant in resources. It is preferable because it is readily available. In addition, various synthetic liquid fuels such as methanol or dimethyl ether starting from natural gas, and biogas mainly containing methane are also preferable from the viewpoint of effective use of resources.
[0055]
In addition, when using the catalyst of this invention, even if sulfur content is contained in raw material (hydrocarbon) gas, it is not necessary to remove this sulfur content. For example, natural gas contains sulfur as an impurity in addition to hydrocarbons such as methane, ethane, and propane (for example, 5 to 30 mg / Nm as total sulfur). Three Degree). In the case of using such hydrocarbon gas containing sulfur, conventionally, the hydrocarbon gas must be desulfurized to remove catalyst poison components such as sulfur and then contacted with the catalyst. However, since the catalyst of the present invention has excellent durability against a catalyst poison component such as sulfur, it is possible to prevent the catalyst performance from being deteriorated by the catalyst poison component even when used for a long time. That is, when the catalyst of the present invention is used, it is not necessary to provide a catalyst poison component removing device such as a desulfurization device, which is desirable from the viewpoint of cost and maintenance. Moreover, since inexpensive natural gas can be used as it is as a carbon-containing gas, the production cost can be reduced.
[0056]
The oxygen-containing gas used in the present invention is not particularly limited, and any known oxygen-containing gas can be used. From an economic viewpoint, it is preferable to use air.
[0057]
In the present invention, the continuous flow method (a method in which the raw material gas is continuously brought into contact with the catalyst) is preferable as the reaction method. In the present invention, a mixed gas of a hydrocarbon-containing gas and an oxygen-containing gas (or oxygen gas) is brought into contact with the catalyst under substantially adiabatic conditions (meaning that external heating is not performed). The mixing ratio of the mixed gas at this time In order to perform an efficient partial oxidation reaction, it is preferable to adjust (oxygen molecule / carbon atom ratio) to be in the range of 0.45 to 0.65. More preferably, it is adjusted to be 0.48 to 0.6.
[0058]
The pressure during the partial oxidation reaction is preferably normal pressure or higher, preferably 5 MPa · G or lower, more preferably 3 MPa · G or lower. Further, SV (gas space velocity) during the reaction can be arbitrarily selected, but preferably 5,000 to 500,000H. -1 , More preferably 10,000-300,000H -1 It is. In addition, in order to promote efficient partial oxidation reaction while preventing thermal deterioration of the catalyst, the reaction conditions are changed as appropriate, such as adjusting the amount of gas mixture so that the catalyst layer temperature is in the range of 600 ° C to 1000 ° C. It is desirable to do.
[0059]
In addition, in the conventional partial oxidation reaction, it is necessary to add water vapor in order to prevent carbon deposition. However, when using the catalyst of the present invention, carbon deposition does not substantially occur even if water vapor is not added. (Zero or trace amount that does not affect the catalyst). Therefore, it is not necessary to add water vapor in the present invention. In the case of the catalyst of the present invention, the effect of increasing the hydrogen generation ratio during the partial oxidation reaction can be obtained by adding steam. The cost increases when steam is added, but in the case of the present invention, the hydrogen production ratio is improved by the addition of steam, so that an effect commensurate with the cost increase due to the addition of steam is obtained. When steam is added, an exothermic reaction (hydrocarbon oxidation reaction) and an endothermic reaction (hydrocarbon-steam reaction) occur, so that the amount of heat generated can be suppressed as compared with the case where steam is not added.
[0060]
The oxygen-containing gas (or oxygen gas) or water vapor may be introduced into the catalyst layer after being added to the hydrocarbon-containing gas, or may be introduced into the catalyst layer separately from the hydrocarbon-containing gas.
[0061]
In the present invention, as an example of efficiently starting the partial oxidation of hydrocarbon, it is desirable to preheat the raw material gas and then introduce it into the catalyst layer. The preheating temperature varies depending on the type of hydrocarbon, the composition of the raw material gas, the reaction conditions, and the like, but it is preferably preheated to 200 to 700 ° C, more preferably 300 to 600 ° C. In addition, after the reaction in the catalyst layer is started, the catalyst temperature rises due to the reaction heat, and the reaction becomes self-supporting. Therefore, it is not necessary to preheat the raw material gas. Of course, the raw material gas may be preheated if necessary in consideration of the heat balance of the entire reaction system. Besides the method of preheating the raw material gas, for example, prior to the introduction of the raw material gas, the catalyst is preferably heated to 200 to 700 ° C., more preferably 300 to 600 ° C., and the heating is stopped after the reaction starts. May be. The method for heating the catalyst is not particularly limited. For example, (1) a method of introducing heated air or nitrogen into the catalyst layer, (2) a method of heating the catalyst layer from the outside with a heater, or (3) methanol. Examples thereof include a method of introducing a gas containing a substance that can be oxidized more easily than the raw material hydrocarbon of the present invention, such as hydrogen and dimethyl ether, into the catalyst layer and heating the catalyst with the reaction heat.
[0062]
The hydrogen-containing gas mainly composed of hydrogen and carbon monoxide obtained in the present invention can be used as a fuel for fuel cells and a raw material for the chemical industry as it is. In particular, among fuel cells, molten carbonate fuel cells and solid oxide fuel cells, which are classified as high-temperature operation types, can use carbon monoxide and hydrocarbons as fuels in addition to hydrogen. It is also desirable to use the catalyst of the present invention or a hydrogen-containing gas obtained by the catalytic reaction.
[0063]
In principle, a high-temperature-operated fuel cell is capable of performing a partial oxidation reaction of hydrocarbons in the cell (internal reforming) by the catalytic action of an electrode. However, in reality, problems such as carbon precipitation occur depending on the type of hydrocarbon and impurities contained in the hydrocarbon, and therefore the total amount of hydrocarbon may not be internally reformed. Therefore, it is necessary to pre-treat the hydrocarbon before introducing the hydrocarbon into the fuel cell. However, the pre-reforming can be suitably performed using the catalyst of the present invention.
[0064]
In addition, the hydrogen-containing gas obtained by the partial oxidation reaction using the catalyst of the present invention can be further reduced in carbon monoxide concentration by CO modification reaction, cryogenic separation method, PAS method, hydrogen storage alloy or palladium membrane diffusion method, etc. Thus, impurities can be removed and high-purity hydrogen gas can be obtained. For example, in order to reduce the carbon monoxide contained in the hydrogen-containing gas, water vapor is added (or not added) to the hydrogen-containing gas obtained by the partial oxidation reaction, and the carbon monoxide modifier is used to reduce CO. A modification reaction may be performed to oxidize carbon monoxide to carbon dioxide. As the catalyst used for the CO modification reaction, for example, a known catalyst mainly composed of copper or iron may be used. Moreover, although the carbon monoxide concentration can be reduced to about 1% by the CO modification reaction, the carbon monoxide poisons the catalytic action of the electrode used in the low temperature operation type solid polymer fuel cell. Therefore, in order to avoid such poisoning of the catalyst, it is desirable that the carbon monoxide concentration be 100 ppm or less. In order to reduce the carbon monoxide concentration to 100 ppm or less, for example, a small amount of oxygen may be added to the gas after the CO modification reaction to selectively oxidize and remove carbon monoxide.
[0065]
【Example】
Catalyst preparation example 1
Carrier: A cordierite honeycomb carrier (manufactured by Nippon Choshi Co., Ltd.) having 400 cells per square inch of cross-sectional area was cut into an outer diameter of 25.4 mmφ and a length of 77 mm (carrier volume of 39.0 ml) to obtain a carrier of this example. .
[0066]
Platinum group element-supported activated alumina: a specific surface area of 155 m in a mixed solution of an aqueous solution of nitric acid of dinitrodiamine platinum containing 1.075 g of platinum and an aqueous solution of rhodium nitrate containing 0.538 g of rhodium 2 / G of activated alumina (200 g) was impregnated and mixed, and then dried at 150 ° C. for 15 hours to remove moisture. After drying, the powder is calcined in air at 400 ° C. for 2 hours, whereby activated alumina carrying 0.80% by mass of platinum group elements (0.53% by mass of platinum and 0.27% by mass of rhodium) is supported. Was prepared.
[0067]
Cerium-zirconium composite oxide: Cerium carbonate powder was fired at 400 ° C. for 2 hours and then pulverized to obtain cerium oxide powder. An aqueous solution of zirconyl oxynitrate was added to the cerium oxide powder so that the mass ratio of cerium oxide: zirconium oxide was 100: 30 and mixed uniformly. The obtained mixed slurry was dried at 120 ° C. to remove moisture, and then fired in air at 500 ° C. for 1 hour to prepare a cerium-zirconium composite oxide.
[0068]
Preparation of slurry: 111.3 g of the platinum group element-supporting activated alumina, 36.0 g of the cerium-zirconium composite oxide, pure water and acetic acid were supplied to a ball mill and wet pulverized to prepare an aqueous slurry.
[0069]
Production of catalyst: The carrier is immersed in the slurry to adhere the slurry, and then taken out. Then, compressed air is blown onto the carrier to remove excess slurry remaining in the cell, followed by drying at 150 ° C. After the catalyst component was attached to the carrier, the catalyst component was firmly supported on the carrier by firing in air (500 ° C.) for 1 hour. The carrier carrying the catalyst component was further immersed in the slurry, and the same operation was repeated to carry 9.8 g of the catalyst component on the carrier to obtain a catalyst (completed catalyst). The catalyst component was supported by 252 g per liter of the carrier of the finished catalyst, and the total supported amount of platinum group elements per liter of the finished catalyst was 1.52 g (platinum: 1.01 g, rhodium: 0.51 g). The mass ratio of activated alumina: cerium oxide: zirconium oxide in the finished catalyst was 100: 25: 7.5. When the distribution layer of the Pt-Rh-supported activated alumina was randomly sampled at 3000 magnifications and analyzed with an Electron Probe Micro Analyzer (EPMA) on the coating layer of the finished catalyst, the Pt-Rh-containing activated alumina particles were average particles. It was uniformly dispersed with a diameter of 0.7 μm.
[0070]
Catalyst preparation example 2
In the same manner as in Catalyst Preparation Example 1, activated alumina carrying 12% by mass of a platinum group element (platinum: 10% by mass, rhodium: 2% by mass) was prepared. Similarly to Catalyst Preparation Example 1, a cerium / zirconium composite oxide having a mass ratio of cerium oxide: zirconium oxide of 100: 20 was prepared. 8.78 g of the platinum group element-supported activated alumina, 33.8 g of the cerium-zirconium composite oxide, and a specific surface area of 106 m 2 104.8 g / g activated alumina was placed in a ball mill, and a slurry was prepared in the same manner as in Catalyst Preparation Example 1, and then a catalyst was produced. About 9.8 g of the catalyst component was supported on the obtained catalyst support (corresponding to 252 g of the catalyst component per liter of the catalyst support). The total supported amount of platinum group elements per liter of the finished catalyst was 1.80 g (platinum: 1.50 g, rhodium: 0.30 g). The mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component was 100: 25: 5. As in the catalyst preparation example 1, the coating layer of the finished catalyst was analyzed by taking 30 photographs of the distribution of Pt-Rh-supported activated alumina randomly at a magnification of 3000 times with EPMA. 4 μm in diameter) was uniformly dispersed.
[0071]
Catalyst preparation example 3
In the same manner as in Catalyst Preparation Example 1, activated alumina carrying 20% by mass of a platinum group element (platinum: 15% by mass, rhodium: 5% by mass) was prepared. Specific surface area 106m 2 / G of activated alumina (200 g) was impregnated in an aqueous solution in which cerium nitrate and zirconium oxynitrate were mixed, dried at 120 ° C., and then fired in air (500 ° C.) for 1 hour to carry a cerium-zirconium composite oxide Activated alumina was prepared. This composite oxide had an active alumina: cerium oxide: zirconium oxide mass ratio of 100: 30: 6. 8.78 g of the platinum group-supported activated alumina, 127.5 g of the cerium-zirconium composite oxide, and a specific surface area of 106 m 2 11.7 g of activated alumina / g was put into a ball mill, and a slurry was prepared in the same manner as in Catalyst Preparation Example 1, and then a catalyst was produced. The resulting catalyst carrier was supported with 9.9 g of catalyst component (corresponding to 253 g of catalyst component per liter of carrier). The total supported amount of platinum group elements per liter of the finished catalyst is 3.0 g (platinum: 2.25 g, rhodium: 0.75 g), and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 25: 5. When the coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1, activated alumina containing Pt—Rh (average particle size: 7 μm) was uniformly dispersed.
[0072]
Catalyst preparation example 4
Weighed 8.78 g of activated alumina carrying 12% by mass of the platinum group element prepared in Catalyst Preparation Example 2 (platinum: 10% by mass, rhodium 2% by mass), placed in a ball mill with pure water and acetic acid, and wetted for 12 hours. Crushed. To this aqueous slurry, 33.8 g of the cerium-zirconium composite oxide prepared in Catalyst Preparation Example 2 and a specific surface area of 106 m 2 104.8 g / g activated alumina and pure water were added, and wet grinding was further continued for 20 hours. A catalyst was produced in the same manner as in Catalyst Preparation Example 1 using the obtained aqueous slurry. The obtained finished catalyst had 9.7 g of catalyst component supported on the carrier (corresponding to 248 g of catalyst component per liter of carrier). The total supported amount of platinum group elements per liter of the finished catalyst is 1.77 g (platinum: 1.47 g, rhodium: 0.30 g), and the weight ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 25: 5. When the coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1, activated alumina containing Pt—Rh of 0.5 μm or more was not detected.
[0073]
Catalyst preparation example 5
In the same manner as in Catalyst Preparation Example 1, an activated alumina carrying 10.5% by mass of platinum group elements (platinum: 9.0% by mass, rhodium: 1.5% by mass) was prepared. In the same manner as in Catalyst Preparation Example 3, a cerium-zirconium composite oxide supported on activated alumina having a weight ratio of activated alumina: cerium oxide: zirconium oxide of 100: 50: 10 was prepared.
[0074]
8.43 g of the platinum group element-supported activated alumina, 126.4 g of the cerium-zirconium composite oxide, and a specific surface area of 106 m 2 A catalyst was prepared in the same manner as in Catalyst Preparation Example 1. The obtained finished catalyst had 10.0 g of catalyst component supported on the carrier (corresponding to 256 g of catalyst component per liter of carrier). This finished catalyst carries 1.54 g of platinum group elements per liter (platinum: 1.32 g, rhodium: 0.22 g), and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 40: 8. The coating layer of this finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1. As a result, Pt—Rh-supported alumina (average particle size 3 μm) was uniformly dispersed.
[0075]
Catalyst preparation example 6
A catalyst was prepared in the same manner as in Catalyst Preparation Example 2, except that the mass ratio of cerium oxide: zirconium oxide in the cerium-zirconium composite oxide was 100: 40. The obtained finished catalyst had 9.7 g of catalyst component supported on the carrier (corresponding to 249 g of catalyst component per liter of carrier). This finished catalyst carries 1.78 g of platinum group elements (platinum: 1.48 g, rhodium: 0.30 g) per liter, and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 22: 9. The coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1. As a result, Pt—Rh-supported alumina (average particle size of 4 μm) was uniformly dispersed.
[0076]
Catalyst preparation example 7
In the same manner as in Catalyst Preparation Example 1, an activated alumina carrying 12% by mass of rhodium alone as a platinum group element was prepared. Further, a cerium-zirconium composite oxide having a mass ratio of cerium oxide: zirconium oxide of 100: 20 was prepared in the same manner as in Catalyst Preparation Example 2. 5.85 g of the platinum group element-supported activated alumina, 33.8 g of the cerium-zirconium composite oxide, and a specific surface area of 106 m 2 107.5 g / g activated alumina was put in a ball mill, and a slurry was prepared in the same manner as in Catalyst Preparation Example 1, and a catalyst was produced using the slurry. The obtained catalyst carrier was loaded with 9.6 g of catalyst component (corresponding to 247 g of catalyst component per liter of carrier). The amount of rhodium supported per liter of the finished catalyst was 1.18 g, and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component was 100: 25: 5. When the coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1, Rh-supported alumina particles (average particle size of 4 μm) were uniformly dispersed.
[0077]
Catalyst preparation example 8
In Catalyst Preparation Example 2, chloroiridic acid (H 2 IrCl 6 ) A catalyst was prepared in the same manner as in Catalyst Preparation Example 2, except that an aqueous solution was used and activated alumina carrying only 12% by mass of iridium as a platinum group element was prepared. The resulting finished catalyst had 9.9 g of catalyst component supported on the carrier (corresponding to 254 g of catalyst component per liter of carrier). 1.82 g of iridium was supported per liter of the finished catalyst, and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component was 100: 25: 5. When the coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1, Ir-supported alumina particles (average particle diameter of 4 μm) were uniformly dispersed.
[0078]
Catalyst preparation example 9
In Catalyst Preparation Example 2, the platinum group element was replaced with cerium oxide (specific surface area 80 m 2 / G), a catalyst was prepared in the same manner as in Catalyst Preparation Example 2, except that the catalyst was prepared. The obtained finished catalyst had 9.8 g of catalyst component supported on the carrier (corresponding to 251 g of catalyst component per liter of carrier). A total of 1.79 g of platinum group elements (platinum: 1.49 g, rhodium: 0.30 g) is supported per liter of the finished catalyst, and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 34. : 5. When the coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1, Pt—Rh-supported cerium oxide particles (average particle size: 7 μm) were uniformly dispersed.
[0079]
Catalyst preparation example 10
In catalyst preparation example 2, instead of activated alumina as a platinum group element, zirconium oxide (specific surface area of 60 m 2 / G), a catalyst was prepared in the same manner as in Catalyst Preparation Example 2, except that the catalyst was prepared. The obtained finished catalyst had 9.6 g of catalyst component supported on the carrier (corresponding to 246 g of catalyst component per liter of carrier). A total of 1.76 g of platinum group elements (platinum: 1.47 g, rhodium: 0.29 g) is carried per liter of the finished catalyst, and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 27: 13. When the coating layer of the finished catalyst was analyzed by EPMA in the same manner as in Catalyst Preparation Example 1, the Pt—Rh-supported zirconium oxide particles (average particle size 7 μm) were uniformly dispersed.
[0080]
Catalyst preparation example 11
12.2 g of the cerium-zirconium composite oxide prepared in Catalyst Preparation Example 2 and a specific surface area of 106 m 2 A catalyst was produced in the same manner as in Catalyst Preparation Example 2, except that 126.4 g of activated alumina / g was used. The obtained finished catalyst had 10.0 g of catalyst component supported on the carrier (corresponding to 255 g of catalyst component per liter of carrier). Further, a total of 1.82 g of platinum group elements (platinum: 1.52 g, rhodium: 0.30 g) is supported per liter of the finished catalyst, and the mass ratio of aluminum oxide: cerium oxide: zirconium oxide in the catalyst component is 100: 7. .6: 1.5. When the coating layer of the finished catalyst was analyzed in the same manner as in Catalyst Preparation Example 1, Pt—Rh-carrying alumina particles (average particle size of 4 μm) were uniformly dispersed.
[0081]
Catalyst preparation example 12
A catalyst was prepared in the same manner as in Catalyst Preparation Example 2 except that the mass ratio of cerium oxide: zirconium oxide was set to 100: 1 in Catalyst Preparation Example 2. The obtained finished catalyst had 9.8 g of catalyst component supported on the carrier (corresponding to 250 g of catalyst component per liter of carrier). Further, a total of 1.79 g of platinum group elements (platinum: 1.49 g, rhodium: 0.30 g) is supported per liter of the finished catalyst, and the mass ratio of aluminum oxide: cerium oxide: zirconium oxide in the catalyst component is 100: 30. : 0.3. When the coating layer of the finished catalyst was analyzed in the same manner as in Catalyst Preparation Example 1, Pt—Rh-carrying alumina particles (average particle size of 4 μm) were uniformly dispersed.
[0082]
Catalyst preparation example 13
In the same manner as in Catalyst Preparation Example 1, an activated alumina carrying 0.3% by mass of a platinum group element (platinum: 0.2% by mass, rhodium: 0.1% by mass) was prepared. 122.7 g of the platinum group element-supported activated alumina and 24.6 g of the cerium-zirconium composite oxide prepared in Catalyst Preparation Example 1 were placed in a ball mill, and a slurry was prepared in the same manner as in Catalyst Preparation Example 1, and then the catalyst was prepared. Manufactured. The resulting catalyst support was loaded with 9.8 g of catalyst component (corresponding to 252 g of catalyst component per liter of the catalyst support). The total supported amount of platinum group elements per liter of the finished catalyst was 0.63 g (platinum: 0.42 g, rhodium: 0.21 g). The mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component was 100: 15: 5. When the coating layer of the finished catalyst was analyzed in the same manner as in Catalyst Preparation Example 1, Pt—Rh-containing activated alumina (average particle size: 0.5 μm) was uniformly dispersed.
[0083]
Catalyst Preparation Example 14 (Comparative Example)
Specific surface area 106m 2 134.1 g / g activated alumina and 12.2 g cerium-zirconium composite oxide prepared in Catalyst Preparation Example 2 were placed in a ball mill. Furthermore, a nitric acid aqueous solution of dinitrodiamine platinum containing 0.878 g of platinum, a rhodium nitrate aqueous solution containing 0.176 g of rhodium, pure water and acetic acid were added to the ball mill to prepare an aqueous slurry by performing wet grinding for 20 hours, Using this slurry, a catalyst was produced in the same manner as in Catalyst Preparation Example 1. The obtained finished catalyst had 9.8 g of catalyst component supported on the carrier (corresponding to 252 g of catalyst component per liter of carrier). Further, a total of 1.80 g of platinum group elements (platinum: 1.50 g, rhodium: 0.30 g) is supported per liter of the finished catalyst, and the mass ratio of active alumina: cerium oxide: zirconium oxide in the catalyst component is 100: 7. .6: 1.5.
[0084]
Example 1
A catalyst in which a refractory for heat insulation was applied to a reaction tube made of Inconel was filled with the catalyst of Catalyst Preparation Example 1, and a partial oxidation reaction evaluation test was performed. As a raw material hydrocarbon, city gas 13A (methane 87.3%, sulfur content 5 ppm) is used, and a mixed gas prepared using oxygen as the oxygen-containing gas so that the oxygen / carbon ratio is 0.54 is a reaction gas. Used as.
[0085]
At the start of the reaction, the reaction gas was supplied to the reactor, and when the reaction gas temperature reached 350 ° C., the reaction start in the catalyst layer was confirmed, so the heating of the reaction gas was stopped. , SV30,000H -1 The reaction was continued adiabatically while feeding. The catalyst layer temperature during the reaction exceeded 800 ° C. The components of the resulting product gas were analyzed using gas chromatography (Shimadzu Corporation: gas chromatograph GC-8A). As a result, the conversion of city gas 13A was 79%, the hydrogen selectivity was 89%, and the carbon monoxide selectivity was 81%.
[0086]
As a result of continuing the reaction test for 2,000 hours under the above reaction conditions, the conversion rate of natural gas during the test period was stable at 78 to 80%, and the hydrogen selectivity and carbon monoxide selectivity during this period were also stable. It was. Elemental analysis of the extracted catalyst after the reaction by fluorescent X-ray revealed no change in the content of the catalyst component due to the reaction, and no carbon deposition was observed.
[0087]
Example 2
The same reactor as in Example 1 was filled with the catalyst of Catalyst Preparation Example 2, and a partial oxidation reaction evaluation test was performed. Natural gas as raw material hydrocarbon (methane 93.5%, total sulfur content 19.3mg / Nm Three And a mixed gas prepared so that the oxygen / carbon ratio is 0.54 using air as the oxygen-containing gas.
[0088]
At the start of the reaction, the reaction gas was supplied to the reactor, and when the reaction gas temperature reached 370 ° C., the reaction start at the catalyst layer was confirmed, so the heating of the reaction gas was stopped. , SV20,000H -1 The reaction was continued adiabatically while feeding. The catalyst layer temperature during the reaction exceeded 800 ° C. When the product gas was analyzed in the same manner as in Example 1, the natural gas conversion was 75%, the hydrogen selectivity was 87%, and the carbon monoxide selectivity was 77%. The reaction was continued under the above reaction conditions, and the natural gas conversion rate at an elapsed time of 5000 hours was stably maintained at 74 to 76%, and the hydrogen selectivity and carbon monoxide selectivity during this period were also stable. Further, no increase in pressure loss was observed in the catalyst layer during this period.
Accelerated durability evaluation
Example 3
Each catalyst prepared in the above Catalyst Preparation Examples 2 to 14 was cut into a size of 7 × 7 × 10 mm and subjected to accelerated durability evaluation. The reaction apparatus was the same as in Example 1, and industrial methane (methane content 99.5% or more, sulfur content 0.7 ppm) was used as the raw material gas, and air was used as the oxygen-containing gas. As an initial evaluation of the catalyst, the oxygen / carbon ratio is 0.54 and the SV is 40,000H. -1 The reaction was performed under the reaction gas inlet temperature of 40 ° C. For durability evaluation, after the initial evaluation, the reaction conditions were oxygen / carbon ratio 0.54, SV 400,000H. -1 The reaction gas inlet temperature was 250 ° C. and the reaction was continued for 150 hours. Thereafter, the reaction was performed under initial evaluation conditions, and the catalyst was evaluated after durability. The results are shown in Table 1.
[0089]
[Table 1]
[0090]
The decrease in the methane conversion rate before and after the accelerated endurance test in Catalyst Preparation Example 3 and Catalyst Preparation Examples 5 to 8 was comparable to that in the case of Catalyst Preparation Example 2, and it was determined that the durability was good. . In the catalyst of Catalyst Preparation Example 14, the methane conversion rate in the initial evaluation is not much inferior to that in the above catalyst preparation example, but the decrease in the methane conversion rate after the accelerated durability test is large and the durability as a practical catalyst is poor. I was able to judge. Further, the catalysts of Catalyst Preparation Example 4 and Catalyst Preparation Examples 9 to 13 were slightly inferior in durability as compared with Catalyst Preparation Example 2, but the durability was greatly improved as compared with the catalyst of Catalyst Preparation Example 14.
[0091]
The partial oxidation catalyst of the present invention maintained a high level of hydrogen selectivity and catalytic activity over a long period of time even under high load conditions of the hydrocarbon raw material, compared to conventional partial oxidation catalysts.
[0092]
【The invention's effect】
As described above, the catalyst for partial oxidation of the present invention suppresses deterioration of catalytic activity even at high temperatures and suppresses carbon deposition, has excellent poisoning resistance, high activity, and long-term durability. Have. The catalyst for partial oxidation of the present invention is suitably used by being incorporated in a fuel cell, for example, a solid oxide fuel cell or a solid polymer fuel cell. The fuel cell using the partial oxidation catalyst of the present invention is applied to a private or commercial cogeneration type private power generator, a thermal power plant alternative or distributed power plant, an electric vehicle, etc., and these exhibit high energy efficiency. To do.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003122693A JP4088193B2 (en) | 2003-04-25 | 2003-04-25 | Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003122693A JP4088193B2 (en) | 2003-04-25 | 2003-04-25 | Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004322001A JP2004322001A (en) | 2004-11-18 |
JP4088193B2 true JP4088193B2 (en) | 2008-05-21 |
Family
ID=33500839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003122693A Expired - Fee Related JP4088193B2 (en) | 2003-04-25 | 2003-04-25 | Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4088193B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4707526B2 (en) * | 2005-10-12 | 2011-06-22 | 株式会社日本触媒 | Catalyst for partial oxidation of hydrocarbons |
CN101314128B (en) * | 2007-05-31 | 2013-02-13 | 中国科学院大连化学物理研究所 | Self-heating reforming hydrogen production catalyst and preparation method thereof |
US20100068130A1 (en) * | 2008-09-17 | 2010-03-18 | Frederick Carl Wilhelm | Process for the Production of Hydrogen Gas Employing a Thermally Stable Catalyst |
US10328416B2 (en) | 2014-02-05 | 2019-06-25 | Mitsui Mining & Smelting Co., Ltd. | Fuel reforming catalyst |
-
2003
- 2003-04-25 JP JP2003122693A patent/JP4088193B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004322001A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100692411B1 (en) | Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst | |
US6409939B1 (en) | Method for producing a hydrogen-rich fuel stream | |
US7265076B2 (en) | CO removal catalyst, method of producing CO removal catalyst, hydrogen purifying device and fuel cell system | |
US20020147103A1 (en) | Enhanced stability water-gas shift reaction catalysts | |
JP5094028B2 (en) | Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst | |
JP5096712B2 (en) | Carbon monoxide methanation method | |
JP2005529824A (en) | Suppression of methanation activity of platinum group metal catalysts for water-gas conversion | |
JP2007252989A (en) | Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst | |
AU2004224919B2 (en) | Modifying catalyst for partial oxidation and method for modification | |
JP4707526B2 (en) | Catalyst for partial oxidation of hydrocarbons | |
JP2010279911A (en) | Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst | |
JP2012061398A (en) | Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst | |
JP4088193B2 (en) | Hydrocarbon partial oxidation catalyst, method for producing the catalyst, and method for producing hydrogen-containing gas using the catalyst | |
JP4514419B2 (en) | Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas | |
JP2012061399A (en) | Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst | |
JP2013017913A (en) | Steam-reforming catalyst and hydrogen production process using the same | |
JP2007516825A (en) | Reforming catalyst | |
JP4875295B2 (en) | Reforming catalyst for partial oxidation and reforming method | |
JP2005044651A (en) | Method of manufacturing hydrogen rich gas | |
JP2005067917A (en) | Co removal catalyst system and method for selective removal of co | |
JP2005131496A (en) | Autothermal reforming catalyst and reforming method using the same | |
WO2023026775A1 (en) | Catalyst structure, fuel reforming method, and fuel reforming system | |
WO2003101613A1 (en) | Process for preparing a catalyst for the catalytic production of hydrogen | |
JP2006043608A (en) | Shift catalyst and method for producing it | |
JP2003275589A (en) | Carbon monoxide shifting catalyst and hydrogen purification apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071009 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20071102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |