JP4267483B2 - Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells - Google Patents

Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells Download PDF

Info

Publication number
JP4267483B2
JP4267483B2 JP2004051756A JP2004051756A JP4267483B2 JP 4267483 B2 JP4267483 B2 JP 4267483B2 JP 2004051756 A JP2004051756 A JP 2004051756A JP 2004051756 A JP2004051756 A JP 2004051756A JP 4267483 B2 JP4267483 B2 JP 4267483B2
Authority
JP
Japan
Prior art keywords
adsorbent
sulfur compound
compound according
sulfur
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004051756A
Other languages
Japanese (ja)
Other versions
JP2005007383A (en
Inventor
幸三 高津
岳二 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004051756A priority Critical patent/JP4267483B2/en
Publication of JP2005007383A publication Critical patent/JP2005007383A/en
Application granted granted Critical
Publication of JP4267483B2 publication Critical patent/JP4267483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、硫黄化合物除去用吸着剤、燃料電池用水素の製造方法及び燃料電池システムに関する。さらに詳しくは、本発明は、炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤、上記吸着剤を用いて脱硫処理した炭化水素燃料又は含酸素炭化水素燃料から燃料電池用水素を効果的に製造する方法、及び該方法で得られた水素を用いる燃料電池システムに関する。   The present invention relates to an adsorbent for removing sulfur compounds, a method for producing hydrogen for fuel cells, and a fuel cell system. More specifically, in the present invention, the sulfur compound in the hydrocarbon fuel or the oxygen-containing hydrocarbon fuel is desulfurized by using the above-mentioned adsorbent, an adsorbent for removing sulfur compounds that can efficiently remove even a low concentration even at room temperature. The present invention relates to a method for effectively producing hydrogen for a fuel cell from a hydrocarbon fuel or an oxygen-containing hydrocarbon fuel, and a fuel cell system using hydrogen obtained by the method.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらにはLPG、ナフサ、灯油などの石油系炭化水素の使用が研究されている。
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel using natural gas as a raw material, and petroleum-based systems such as LPG, naphtha and kerosene The use of hydrocarbons has been studied.

これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に部分酸化改質、オートサーマル改質又は水蒸気改質などで処理する方法が用いられている。
LPG、都市ガス、灯油などの炭化水素燃料を改質して燃料用水素を製造する場合、改質触媒の被毒を抑制するためには、燃料中の硫黄分を0.1ppm以下に低減させることが要求される。また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を0.1ppm以下に低減させることが要求される。
前記LPG中には、硫黄化合物として、一般にメチルメルカプタンや硫化カルボニル(COS)などに加えて、着臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイドなどが含まれている。また、最近ジメチルエーテルなどの酸素含有炭化水素化合物を燃料として利用する計画が進められている。この酸素含有炭化水素自体は、硫黄化合物を含有していないが、漏洩対策から意図的に上記着臭剤の添加が検討されている。
When producing hydrogen using these gaseous or liquid hydrocarbons, generally, there is a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst. It is used.
When reforming hydrocarbon fuels such as LPG, city gas, and kerosene to produce hydrogen for fuel, the sulfur content in the fuel is reduced to 0.1 ppm or less in order to suppress poisoning of the reforming catalyst. Is required. Further, when propylene, butene, etc. are used as a raw material for petrochemical products, the sulfur content is required to be reduced to 0.1 ppm or less in order to prevent poisoning of the catalyst.
In the LPG, as a sulfur compound, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), methyl ethyl sulfide, etc. added as an odorant in addition to methyl mercaptan and carbonyl sulfide (COS) are generally included. include. Recently, a plan to use an oxygen-containing hydrocarbon compound such as dimethyl ether as a fuel has been advanced. Although this oxygen-containing hydrocarbon itself does not contain a sulfur compound, the addition of the above odorant has been studied intentionally in order to prevent leakage.

LPGや都市ガスなどの炭化水素燃料中の硫黄化合物を吸着除去する各種吸着剤が知られている。しかしながら、これらの吸着剤は、150〜300℃程度では高い脱硫性能を示すものがあるが、常温での脱硫性能については、必ずしも十分に満足し得るものではないのが実状であった。
例えば、疎水性ゼオライトにAg、Cu、Zn、Fe、Co、Niなどをイオン交換により担持させた脱硫剤(例えば特許文献1参照)や、Y型ゼオライト、β型ゼオライト又はX型ゼオライトにAg又はCuを担持した脱硫剤(例えば、特許文献2参照)が開示されている。しかしながら、これらの脱硫剤は、メルカプタン類やサルファイド類を室温において効率的に吸着除去し得るものの、硫化カルボニルをほとんど吸着しない。
また、銅−亜鉛系脱硫剤が開示されている(例えば、特許文献3参照)が、この脱硫剤においては、150℃以上の温度では各種硫黄化合物を吸着除去できるが、100℃以下の低い温度では、硫黄化合物に対する吸着性能が低い。さらに、アルミナなどの多孔質担体に銅を担持した脱硫剤が開示されている(例えば、特許文献4参照)。この脱硫剤は100℃以下の温度でも使用できるとしているが、その吸着性能については十分に満足し得るものではない。
Various adsorbents that adsorb and remove sulfur compounds in hydrocarbon fuels such as LPG and city gas are known. However, some of these adsorbents exhibit high desulfurization performance at about 150 to 300 ° C., but the actual condition is that the desulfurization performance at room temperature is not always satisfactory.
For example, a desulfurization agent (for example, refer to Patent Document 1) in which Ag, Cu, Zn, Fe, Co, Ni, etc. are supported on a hydrophobic zeolite by ion exchange, or Ag or Cu is added to Y-type zeolite, β-type zeolite, or X-type zeolite. A desulfurization agent supporting Cu (for example, see Patent Document 2) is disclosed. However, although these desulfurization agents can efficiently adsorb and remove mercaptans and sulfides at room temperature, they hardly adsorb carbonyl sulfide.
Further, a copper-zinc desulfurization agent is disclosed (for example, see Patent Document 3). In this desulfurization agent, various sulfur compounds can be adsorbed and removed at a temperature of 150 ° C. or higher, but a low temperature of 100 ° C. or lower. Then, the adsorption | suction performance with respect to a sulfur compound is low. Furthermore, a desulfurization agent in which copper is supported on a porous carrier such as alumina is disclosed (for example, see Patent Document 4). Although this desulfurizing agent can be used even at a temperature of 100 ° C. or lower, its adsorption performance is not fully satisfactory.

特開2001−286753公報JP 2001-286753 A 特開2001−305123公報JP 2001-305123 A 特開平2−302496号公報(第2頁)Japanese Patent Laid-Open No. 2-302496 (page 2) 特開2001−123188公報(第3頁)JP 2001-123188 A (page 3)

本発明は、このような状況下で、炭化水素燃料又は酸素含有炭化水素燃料中の各種の硫黄化合物を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤、上記吸着剤を用いて脱硫処理した炭化水素燃料又は酸素含有炭化水素燃料から燃料電池用水素を効果的に製造する方法、及び該方法で得られた水素を用いる燃料電池システムを提供することを目的とするものである。   Under such circumstances, the present invention provides an adsorbent for removing sulfur compounds, which can efficiently remove various sulfur compounds in hydrocarbon fuels or oxygen-containing hydrocarbon fuels to a low concentration even at room temperature. It is an object of the present invention to provide a method for effectively producing hydrogen for a fuel cell from a hydrocarbon fuel or an oxygen-containing hydrocarbon fuel that has been desulfurized using the same, and a fuel cell system using hydrogen obtained by the method. is there.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、酸化セリウム、特に平均結晶子径が10nm以下のものは常温においても各種の硫黄化合物を吸着する能力に優れていること、そしてこの吸着剤を用いて脱硫処理した炭化水素燃料又は酸素含有炭化水素燃料を改質処理することにより、燃料電池用水素が効果的に得られることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、下記の(1)〜(18)である。
(1)昇温還元試験における600℃以下の温度での水素消費量が200μモル/g以上である酸化セリウムを吸着剤全量に基づき50質量%以上含み、銀及びその酸化物を含まない吸着剤を用いて、−50〜150℃の温度で、炭化水素燃料又は酸素含有炭化水素燃料中の硫化カルボニル、ジメチルジサルファイド、ジメチルサルファイド及びt−ブチルメルカプタンから選ばれる少なくとも一種の硫黄化合物を除去する、硫黄化合物の除去方法。
(2)比表面積が20m2/g以上である吸着剤を用いた上記(1)記載の硫黄化合物の除去方法。
(3)酸化セリウムの平均結晶子径が10nm以下である上記(1)又は(2)記載の硫黄化合物の除去方法。
(4)Ce−Si系複合酸化物、Ce−Zr系複合酸化物、Ce−Si−Zr系複合酸化物、Ce−Nb系複合酸化物、Ce−Bi系複合酸化物、Ce−Sb系複合酸化物、及びCe−Sn系複合酸化物から選ばれる一種の複合酸化物を含む吸着剤を用いた上記(1)〜(3)のいずれかに記載の硫黄化合物の除去方法。
(5)酸化セリウムに、Cu、Mn、Fe、Co、Ni、Au、Pb及びSbの中から選ばれる少なくとも一種の活性金属種が担持されてなる吸着剤を用いた上記(1)〜(3)のいずれかに記載の硫黄化合物の除去方法。
(6)複合酸化物に、Cu、Mn、Fe、Co、Ni、Au、Pb及びSbの中から選ばれる少なくとも一種の活性金属種が担持されてなる吸着剤を用いた上記(4)記載の硫黄化合物の除去方法。
(7)400℃以下の温度で焼成処理してなる吸着剤を用いた上記(5)又は(6)記載の硫黄化合物の除去方法。
(8)活性金属種の担持量が、元素として吸着剤全量に基づき1〜50質量%である上記(5)又は(6)記載の硫黄化合物の除去方法。
(9)活性金属種の担持量が、元素として吸着剤全量に基づき1〜5質量%である上記(5)又は(6)記載の硫黄化合物の除去方法。
As a result of intensive research to achieve the above object, the present inventors have found that cerium oxide, particularly those having an average crystallite size of 10 nm or less, have an excellent ability to adsorb various sulfur compounds even at room temperature. And, it has been found that hydrogen for fuel cells can be obtained effectively by reforming hydrocarbon fuel or oxygen-containing hydrocarbon fuel desulfurized using this adsorbent. The present invention has been completed based on such findings.
That is, this invention is following (1)-(18).
(1) An adsorbent containing 50% by mass or more of cerium oxide having a hydrogen consumption of 200 μmol / g or more at a temperature of 600 ° C. or less in a temperature reduction test, based on the total amount of the adsorbent, and not containing silver and its oxide Removing at least one sulfur compound selected from carbonyl sulfide, dimethyl disulfide, dimethyl sulfide and t-butyl mercaptan in a hydrocarbon fuel or an oxygen-containing hydrocarbon fuel at a temperature of -50 to 150 ° C. A method for removing sulfur compounds.
(2) The method for removing a sulfur compound according to the above (1) , using an adsorbent having a specific surface area of 20 m 2 / g or more .
(3) The method for removing a sulfur compound according to the above (1) or (2), wherein the average crystallite diameter of cerium oxide is 10 nm or less .
(4) Ce-Si complex oxide, Ce-Zr complex oxide, Ce-Si-Zr complex oxide, Ce-Nb complex oxide, Ce-Bi complex oxide, Ce-Sb complex The removal method of the sulfur compound in any one of said (1)-(3) using the adsorption agent containing 1 type of complex oxide chosen from an oxide and Ce-Sn type complex oxide.
(5) The above (1) to (3) using an adsorbent in which at least one active metal species selected from Cu, Mn, Fe, Co, Ni, Au, Pb and Sb is supported on cerium oxide. ). The method for removing a sulfur compound according to any one of the above.
(6) The description of (4) above, wherein the composite oxide uses an adsorbent in which at least one active metal species selected from Cu, Mn, Fe, Co, Ni, Au, Pb and Sb is supported. A method for removing sulfur compounds.
(7) The method for removing a sulfur compound according to (5) or (6) above, using an adsorbent obtained by baking at a temperature of 400 ° C. or lower.
(8) The method for removing a sulfur compound according to the above (5) or (6), wherein the supported amount of the active metal species is 1 to 50% by mass based on the total amount of the adsorbent as an element.
(9) The method for removing a sulfur compound according to the above (5) or (6), wherein the supported amount of the active metal species is 1 to 5% by mass based on the total amount of the adsorbent as an element.

(10)炭化水素燃料が、LPG、都市ガス、天然ガス、ナフサ、灯油、軽油又はエタン、エチレン、プロパン、プロピレン、ブタン、ブテン、メタノールおよびジメチルエーテルの中から選ばれる少なくとも一種の炭化水素化合物もしくは酸素含有炭化水素化合物である上記(1)〜(9)のいずれかに記載の硫黄化合物の除去方法。
(11)硫黄化合物が硫化カルボニルである上記(1)〜(10)のいずれかに記載の硫黄化合物の除去方法。
(12)比表面積が100m 2 /g以上である吸着剤を用いた上記(11)記載の硫黄化合物の除去方法。
(13)300〜600℃の温度で焼成した酸化セリウムを含む吸着剤を用いた上記(11)又は(12)記載の硫黄化合物の除去方法。
(10) The hydrocarbon fuel is at least one hydrocarbon compound or oxygen selected from LPG, city gas, natural gas, naphtha, kerosene, light oil or ethane, ethylene, propane, propylene, butane, butene, methanol, and dimethyl ether The removal method of the sulfur compound in any one of said (1)-(9) which is a containing hydrocarbon compound.
(11) The method for removing a sulfur compound according to any one of the above (1) to (10), wherein the sulfur compound is carbonyl sulfide.
(12) The method for removing a sulfur compound according to the above (11), using an adsorbent having a specific surface area of 100 m 2 / g or more.
(13) The method for removing a sulfur compound according to the above (11) or (12), using an adsorbent containing cerium oxide calcined at a temperature of 300 to 600 ° C.

(14)吸着剤を水素又は酸素を添加しない条件で使用する、上記(1)〜(13)のいずれかに記載の硫黄化合物の除去方法。
(15)脱硫手段の上流側もしくは下流側に、上記(1)〜(13)のいずれかで用いる吸着剤と硫黄吸着能の異なる硫黄化合物除去用吸着剤を用いた脱硫手段を設けることを特徴とする、上記(1)〜(14)のいずれかに記載の硫黄化合物の除去方法。
(16)上記(1)〜(15)のいずれかに記載の硫黄化合物の除去方法で、炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物を脱硫処理したのち、得られた脱硫処理燃料を部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。
(17)部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒がルテニウム系又はニッケル系触媒である上記(16)記載の燃料電池用水素の製造方法。
(18)上記(16)又は(17)記載の製造方法を実施するための水素製造システムを備えた燃料電池システム。
(14) The method for removing a sulfur compound according to any one of (1) to (13), wherein the adsorbent is used under a condition in which hydrogen or oxygen is not added.
(15) A desulfurization means using an adsorbent for removing sulfur compounds having a sulfur adsorption capacity different from the adsorbent used in any one of the above (1) to (13) is provided upstream or downstream of the desulfurization means. The method for removing a sulfur compound according to any one of (1) to (14) above.
(16) After the sulfur compound in the hydrocarbon fuel or the oxygen-containing hydrocarbon fuel is desulfurized by the sulfur compound removal method according to any one of (1) to (15) above, the obtained desulfurized fuel is used. A method for producing hydrogen for a fuel cell, comprising contacting with a partial oxidation reforming catalyst, an autothermal reforming catalyst or a steam reforming catalyst.
(17) The method for producing hydrogen for a fuel cell according to the above (16), wherein the partial oxidation reforming catalyst, autothermal reforming catalyst or steam reforming catalyst is a ruthenium-based or nickel-based catalyst.
(18) A fuel cell system including a hydrogen production system for carrying out the production method according to (16) or (17).

本発明によれば、炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物、特に他の吸着剤では常温において除去困難な硫化カルボニルを、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤、上記吸着剤を用いて脱硫処理した炭化水素燃料又は酸素含有炭化水素燃料から、燃料電池用水素を効果的に製造する方法、及びこの方法で得られた水素を用いる燃料電池システムを提供することができる。   According to the present invention, sulfur compounds in hydrocarbon fuels or oxygen-containing hydrocarbon fuels, particularly sulfur compounds that can be efficiently removed to a low concentration even at room temperature can be efficiently removed at room temperature with other adsorbents. Provided are an adsorbent, a method for effectively producing hydrogen for a fuel cell from a hydrocarbon fuel or an oxygen-containing hydrocarbon fuel desulfurized using the adsorbent, and a fuel cell system using hydrogen obtained by this method can do.

本発明の硫黄化合物除去用吸着剤は酸化セリウムを含むものであって、炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物の除去用として用いられる。
本発明の吸着剤は、それに含まれる酸化セリウムの形態については特に制限はなく、例えば下記の形態の吸着剤を挙げることができる。
(イ)酸化セリウムとセリウム以外の元素を含む複合酸化物(以下、Ce−M複合酸化物と記す。)を単独で含む吸着剤。
)酸化セリウム又はCe−M複合酸化物からなる担体に活性金属種を担持したものを含む吸着剤。
)酸化セリウム又はCe−M複合酸化物及び他の金属酸化物からなる担体に活性金属種を担持したものを含む吸着剤。
)耐火性多孔質担体に酸化セリウム又はCe−M複合酸化物を担持したものを含む吸着剤。
)耐火性多孔質担体に酸化セリウム又はCe−M複合酸化物を担持し、さらに活性金属種を担持したものを含む吸着剤。
The adsorbent for removing sulfur compounds of the present invention contains cerium oxide and is used for removing sulfur compounds in hydrocarbon fuels or oxygen-containing hydrocarbon fuels.
There is no restriction | limiting in particular about the form of the cerium oxide contained in the adsorbent of this invention, For example, the adsorbent of the following form can be mentioned.
(B) An adsorbent containing a composite oxide containing cerium oxide and an element other than cerium (hereinafter referred to as Ce-M composite oxide) alone.
( B ) An adsorbent comprising a carrier made of cerium oxide or a Ce-M composite oxide and carrying an active metal species.
( C ) An adsorbent containing an active metal species supported on a carrier made of cerium oxide or Ce-M composite oxide and another metal oxide.
( D ) An adsorbent containing a refractory porous carrier carrying cerium oxide or Ce-M composite oxide.
( E ) An adsorbent containing a refractory porous carrier supporting cerium oxide or Ce-M composite oxide and further supporting an active metal species.

前記Ce−M複合酸化物を構成するセリウム以外の元素としては、周期表第2〜16族に属する元素の中から選ばれる少なくとも一種の金属元素を挙げることができる。このようなCe−M複合酸化物の中では、Ce−Si系複合酸化物、Ce−Zr系複合酸化物、Ce−Si−Zr系複合酸化物、Ce−Ti系複合酸化物、Ce−Nb系複合酸化物、Ce−Bi系複合酸化物、Ce−Sb系複合酸化物などがとくに好ましい。
前記(ロ)、(ニ)において、酸化セリウム又はCe−M複合酸化物と併用される他の金属酸化物としては、例えばLa、Sc、Y、Nd、Pr、Sm、Gd及びYbの中から選ばれる金属の酸化物を好ましく挙げることができる。これらの金属の酸化物は、一種を用いてもよく、二種以上を組み合わせて用いてもよい。
Examples of elements other than cerium constituting the Ce-M composite oxide include at least one metal element selected from elements belonging to Groups 2 to 16 of the periodic table. Among such Ce-M complex oxides, Ce-Si complex oxides, Ce-Zr complex oxides, Ce-Si-Zr complex oxides, Ce-Ti complex oxides, Ce-Nb Of these, a complex oxide, a Ce—Bi complex oxide, a Ce—Sb complex oxide, and the like are particularly preferable.
In (b) and (d), examples of other metal oxides used in combination with cerium oxide or Ce-M composite oxide include, for example, La, Sc, Y, Nd, Pr, Sm, Gd, and Yb. Preferred examples include oxides of selected metals. One kind of these metal oxides may be used, or two or more kinds may be used in combination.

前記(ハ)、(ニ)において、担体に担持される活性金属種としては、周期表第1〜15族に属する元素の中から選ばれる元素、例えばCs、Ba、Yb、Ti、Zr、Hf、Nb、Mo、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Ga、In、Sn、Biなどを用いることができる。これらは一種を単独で担持させてもよく、二種以上を組み合わせて担持してもよい。これらの元素を添加すると酸化セリウムの脱硫性能が向上する。
このような活性金属種を、酸化セリウム又はCe−M複合酸化物、あるいは酸化セリウム又はCe−M複合酸化物及び他の金属酸化物からなる担体に担持させることにより、得られる吸着剤の脱硫性能の向上を図ることができる。
前記活性金属種の担持量としては特に制限はないが、元素として担体との合計量に基づき、通常1〜50質量%、好ましくは3〜30質量%の範囲で選定される。
特に、硫化カルボニルの除去においては1〜10質量%、とりわけ、5質量%以下が好ましい。
In the above (c) and (d), the active metal species supported on the carrier is an element selected from elements belonging to Groups 1 to 15 of the periodic table, such as Cs, Ba, Yb, Ti, Zr, and Hf. Nb, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Ga, In, Sn, Bi, or the like can be used. These may be supported alone or in combination of two or more. When these elements are added, the desulfurization performance of cerium oxide is improved.
Desulfurization performance of the adsorbent obtained by supporting such an active metal species on a carrier made of cerium oxide or Ce-M composite oxide, or cerium oxide or Ce-M composite oxide and other metal oxides Can be improved.
The amount of the active metal species supported is not particularly limited, but is usually selected in the range of 1 to 50% by mass, preferably 3 to 30% by mass, based on the total amount of the active metal species with the carrier.
In particular, in the removal of carbonyl sulfide, 1 to 10% by mass, particularly 5% by mass or less is preferable.

前記(ホ)、(ヘ)において、耐火性多孔質担体としては、例えばシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、ゼオライト、マグネシア、珪藻土、白土及び粘土などの中から選ばれる少なくとも一種を用いることができる。
これらの耐火性多孔質担体に、酸化セリウム又はCe−M複合酸化物を担持してなる吸着剤も好ましく用いることができる。
本発明の吸着剤においては、酸化セリウムの含有量は、脱硫性能の点から10質量%以上が好ましく、50質量%以上がより好ましい。最も好ましくは80質量%以上である。
また、吸着剤中の酸化セリウムは、平均結晶子径が10nm以下、好ましくは1〜10nmであることが、脱硫性能の点から好ましい。この酸化セリウムの平均結晶子径は吸着剤の調製時に制御することができる。
In the above (e) and (f), as the refractory porous carrier, for example, at least one selected from silica, alumina, silica-alumina, titania, zirconia, zeolite, magnesia, diatomaceous earth, clay, clay and the like is used. be able to.
Adsorbents obtained by supporting cerium oxide or Ce-M composite oxide on these refractory porous carriers can also be preferably used.
In the adsorbent of the present invention, the content of cerium oxide is preferably 10% by mass or more, and more preferably 50% by mass or more from the viewpoint of desulfurization performance. Most preferably, it is 80 mass% or more.
Further, the cerium oxide in the adsorbent preferably has an average crystallite diameter of 10 nm or less, preferably 1 to 10 nm, from the viewpoint of desulfurization performance. The average crystallite size of the cerium oxide can be controlled when preparing the adsorbent.

なお、ここでいう吸着剤中の酸化セリウムの平均結晶子径は、透過型電子顕微鏡により測定した粒子径である。粒子は必ずしも結晶である必要はなく、結晶、非晶にかかわらず一次粒子の粒子径をいう。ここでいう一次粒子とは、凝集していない粒子又は凝集前の粒子をいう。粒子が凝集し二次粒子、三次粒子等を形成している場合でも、酸化セリウムの平均結晶子径とは一次粒子の粒子径を指すものとする。観察される粒子の大きさが不揃いの場合は10個以上の一次粒子を任意に選択しその粒子径の平均値を求め、これを平均結晶子径とし、また、粒子形状が棒状あるいは針状である場合は、粒子の長さではなくその幅を粒子径とする。ただし、酸化セリウムが、アルミナなどの担体に担持されている場合はCeO2の平均結晶子径は担持されている酸化セリウムの一次粒子径を指し、また他の酸化物と固溶体を形成している場合は、セリウムを含有する固溶体粒子の一次粒子径を指すものとする。前記のような透過型電子顕微鏡による測定において、粒子の境界が明確に観察される時は自動カウンターなどを用いて測定することもできる。 The average crystallite diameter of cerium oxide in the adsorbent here is a particle diameter measured with a transmission electron microscope. The particles do not necessarily need to be crystals, and refer to the particle diameter of primary particles regardless of crystal or amorphous. As used herein, primary particles refer to particles that have not been aggregated or particles that have not been aggregated. Even when the particles are aggregated to form secondary particles, tertiary particles, or the like, the average crystallite size of cerium oxide refers to the particle size of the primary particles. If the observed particle size is uneven, 10 or more primary particles are arbitrarily selected, the average value of the particle diameters is obtained, this is the average crystallite diameter, and the particle shape is rod-shaped or needle-shaped. In some cases, the particle size is not the particle length but the width. However, when cerium oxide is supported on a carrier such as alumina, the average crystallite diameter of CeO 2 indicates the primary particle diameter of the supported cerium oxide and forms a solid solution with other oxides. In this case, the primary particle diameter of the solid solution particles containing cerium shall be indicated. In the measurement using the transmission electron microscope as described above, when the boundary of the particles is clearly observed, it can be measured using an automatic counter or the like.

さらに、上記酸化セリウムは、脱硫性能の点から、昇温還元(TPR)試験における600℃以下の温度での水素消費量が200μモル/g以上であるものが好ましく、300μモル/g以上であるものがより好ましい。なお、この酸化セリウムの昇温還元試験においては、試料100mgを用い、水素10容量%を含むアルゴンガスを20ミリリットル/minで導入し、10℃/minの速度で827℃まで昇温して、600℃以下の温度での水素消費量を求める。
酸化セリウムのTPR測定では、還元(H2消費)によるピークが300〜550℃程度の低温側と、827℃以上の高温側に観察される。酸化セリウムが水素で還元されると、次式のようにCeO2がCe23に変化する。
2CeO2 + H2 → Ce23 + H2
TPR試験による2つのピークについては、低温側のピークは粒子表面のCeO2面の還元、高温側のピークはバルクCeO2の還元によると考えられている。本発明者らの研究では、低温側のピーク(水素消費量)が大きい酸化セリウムほど、常温での脱硫性能に優れることが分かった。その理由については、必ずしも明確ではないが、300〜550℃程度の温度でH2と反応(還元)する酸化セリウムの酸素が、硫黄化合物に対しては常温で反応して、硫黄化合物を化学吸着することによるものと推測される。
Further, the cerium oxide preferably has a hydrogen consumption of 200 μmol / g or more at a temperature of 600 ° C. or less in a temperature-programmed reduction (TPR) test from the viewpoint of desulfurization performance, and is 300 μmol / g or more. Those are more preferred. In this temperature reduction test of cerium oxide, 100 mg of a sample was used, argon gas containing 10% by volume of hydrogen was introduced at 20 ml / min, and the temperature was raised to 827 ° C. at a rate of 10 ° C./min. The hydrogen consumption at a temperature of 600 ° C. or lower is obtained.
In the TPR measurement of cerium oxide, peaks due to reduction (H 2 consumption) are observed on the low temperature side of about 300 to 550 ° C. and on the high temperature side of 827 ° C. or higher. When cerium oxide is reduced with hydrogen, CeO 2 changes to Ce 2 O 3 as shown in the following formula.
2CeO 2 + H 2 → Ce 2 O 3 + H 2 O
Regarding the two peaks obtained by the TPR test, it is considered that the low-temperature side peak is due to reduction of the CeO 2 surface on the particle surface, and the high-temperature side peak is due to reduction of bulk CeO 2 . In the study by the present inventors, it has been found that cerium oxide having a large peak (hydrogen consumption) on the low temperature side is superior in desulfurization performance at room temperature. The reason for this is not necessarily clear, but oxygen of cerium oxide that reacts (reduces) with H 2 at a temperature of about 300 to 550 ° C. reacts with sulfur compounds at room temperature to chemisorb sulfur compounds. It is estimated that

本発明の吸着剤は、脱硫性能の点から、比表面積が20m2/g以上が好ましく、50m2/g以上がより好ましい。なお、吸着剤の比表面積は、例えばユアサアイオニクス社製比表面積測定装置を用いて次のようにして行うことができる。
すなわち、試料約100mgを試料管に充填し、前処理として200℃で20分間窒素気流中で加熱脱水した。次に液体窒素温度で窒素(30%)/ヘリウム(70%)混合ガスを流通させ窒素を吸着させた後、脱離させTCD検出器で測定した窒素の吸着量から比表面積を求めた。
また、酸化セリウムを含有する、硫化カルボニルを吸着する硫黄化合物除去用吸着剤としては、比表面積が100m2/g以上のものが好ましく、特に150m2/g以上のものが好ましい。
The adsorbent of the present invention has a specific surface area of preferably 20 m 2 / g or more, more preferably 50 m 2 / g or more, from the viewpoint of desulfurization performance. In addition, the specific surface area of an adsorbent can be performed as follows, for example using the Yuasa Ionics company specific surface area measuring apparatus.
That is, about 100 mg of a sample was filled in a sample tube, and heat-dehydrated in a nitrogen stream at 200 ° C. for 20 minutes as a pretreatment. Next, nitrogen (30%) / helium (70%) mixed gas was circulated at the liquid nitrogen temperature to adsorb nitrogen, and then desorbed and the specific surface area was determined from the amount of nitrogen adsorbed measured by a TCD detector.
The sulfur compound-removing adsorbent containing cerium oxide and adsorbing carbonyl sulfide preferably has a specific surface area of 100 m 2 / g or more, particularly preferably 150 m 2 / g or more.

本発明の吸着剤の製造において、例えば酸化セリウム単独からなるものを製造する場合には、セリウム源、具体的にはセリウムの硝酸塩などを含む水溶液とアルカリ水溶液とを接触させて沈殿を生成させ、次いで該沈殿をろ取、水洗し、50〜200℃程度の温度で乾燥したのち、300〜600℃程度の温度で焼成処理した後、打錠成形などにより成形し、さらに所望粒径になるように粉砕すればよい。
また、耐火性多孔質担体に、酸化セリウムを担持させるには、従来公知の方法、例えばポアフィリング法、浸漬法、蒸発乾固法などを用いることができる。この際、乾燥温度は、通常50〜200℃程度であり、焼成温度は、通常250〜500℃程度である。
上記調製された触媒は還元を行わずに使用することもできるが、触媒活性の面では還元処理を行う方が好ましい。この還元処理には、水素もしくはCOなどを含む気流中で処理する還元法が用いられる。通常、水素を含む気流下、300〜600℃の温度で、1〜24時間、好ましくは3〜12時間行うことが好ましい。
In the production of the adsorbent of the present invention, for example, when producing cerium oxide alone, an aqueous solution containing a cerium source, specifically a cerium nitrate, and the like are brought into contact with an alkaline aqueous solution to form a precipitate, Next, the precipitate is collected by filtration, washed with water, dried at a temperature of about 50 to 200 ° C., fired at a temperature of about 300 to 600 ° C., and then molded by tableting or the like to further obtain a desired particle size. It can be crushed.
Moreover, in order to carry | support cerium oxide on a refractory porous support | carrier, a conventionally well-known method, for example, a pore filling method, a dipping method, an evaporation to dryness method etc., can be used. Under the present circumstances, drying temperature is about 50-200 degreeC normally, and a calcination temperature is about 250-500 degreeC normally.
Although the prepared catalyst can be used without reduction, it is preferable to perform a reduction treatment in terms of catalytic activity. For this reduction treatment, a reduction method in which treatment is performed in an air stream containing hydrogen or CO is used. Usually, it is preferable to carry out at a temperature of 300 to 600 ° C. for 1 to 24 hours, preferably 3 to 12 hours under an air stream containing hydrogen.

さらに、酸化セリウムなどからなる担体に、前述の活性金属種を担持させるには、上記と同様に従来公知の方法、例えばポアフィリング法、浸漬法、蒸発乾固法などを採用することができる。この際、乾燥温度は、通常50〜200℃程度であり、また焼成温度は、400℃以下が好ましく、100〜400℃の範囲がより好ましい。
このようにして得られた本発明の硫黄化合物除去用吸着剤は、炭化水素燃料又は酸素含有炭化水素燃料に適用される。ここで、炭化水素燃料としては、例えばLPG、都市ガス、天然ガス、ナフサ、灯油、軽油あるいはエタン、エチレン、プロパン、プロピレン、ブタン及びブテンの中から選ばれる少なくとも一種の炭化水素化合物などを挙げることができる。また、酸素含有炭化水素燃料としては、メタノール、エタノール、イソプロパノールなどのアルコール類、ジメチルエーテル、メチルエチルエーテルなどのエーテル類の中から選ばれる少なくとも一種を挙げることができ、この中で特にジメチルエーテルが好ましい。
本発明の吸着剤が適用される炭化水素あるいは酸素含有炭化水素含有ガス中の硫黄化合物の濃度としては、0.001〜10,000容量ppmが好ましく、特に0.1〜100容量ppmが好ましい。また、脱硫条件としては、通常温度は−50〜150℃の範囲で選ばれ、GHSV(ガス時空間速度)は100〜1,000,000h-1の範囲で選ばれる。
Furthermore, in order to support the above-mentioned active metal species on a carrier made of cerium oxide or the like, a conventionally known method such as a pore filling method, a dipping method, an evaporation to dryness method or the like can be employed as described above. At this time, the drying temperature is usually about 50 to 200 ° C., and the firing temperature is preferably 400 ° C. or less, and more preferably in the range of 100 to 400 ° C.
The adsorbent for removing sulfur compounds of the present invention thus obtained is applied to hydrocarbon fuel or oxygen-containing hydrocarbon fuel. Here, examples of the hydrocarbon fuel include LPG, city gas, natural gas, naphtha, kerosene, light oil, or at least one hydrocarbon compound selected from ethane, ethylene, propane, propylene, butane, and butene. Can do. Examples of the oxygen-containing hydrocarbon fuel include at least one selected from alcohols such as methanol, ethanol and isopropanol, and ethers such as dimethyl ether and methyl ethyl ether. Among these, dimethyl ether is particularly preferable.
The concentration of the sulfur compound in the hydrocarbon or oxygen-containing hydrocarbon-containing gas to which the adsorbent of the present invention is applied is preferably 0.001 to 10,000 ppm by volume, particularly preferably 0.1 to 100 ppm by volume. As desulfurization conditions, the normal temperature is selected in the range of −50 to 150 ° C., and the GHSV (gas hourly space velocity) is selected in the range of 100 to 1,000,000 h −1 .

脱硫温度が150℃を超えると硫黄化合物の吸着が起こりにくくなる。好ましい温度は−50〜120℃、より好ましくは−20〜100℃の範囲である。また、好ましいGHSVは100〜100,000h-1、より好ましくは100〜50,000h-1の範囲である。
次に、本発明の燃料電池用水素の製造方法においては、前述の本発明の吸着剤を用いて、炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物を脱硫処理したのち、この脱硫処理燃料を改質することにより水素を製造する。
本発明にあっては、本発明の吸着剤を用いて炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物を脱硫処理する際に、本発明の硫黄化合物除去用吸着剤を用いた脱硫手段の上流側もしくは下流側に該吸着剤と硫黄吸着能の異なる硫黄化合物除去用吸着剤を用いた脱硫手段を別途設けてもよい。該脱硫剤としては、ゼオライトに、銀成分、銅成分、亜鉛成分、鉄成分、ニッケル成分などを担持させたものを挙げることができる。このように、硫黄吸着能の異なる脱硫剤を用いて、メルカプタン、サルファイド等を除去し、本発明の硫黄化合物除去用吸着剤を用いて硫化カルボニルを除去すれば効率的に硫黄化合物を除去することができる。
改質方法としては、部分酸化改質、オートサーマル改質、水蒸気改質などの方法を用いることができる。この改質方法においては、脱硫処理炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.1容量ppm以下が好ましく、特に0.05容量ppm以下が好ましい。
When the desulfurization temperature exceeds 150 ° C., the adsorption of sulfur compounds is difficult to occur. A preferred temperature is in the range of −50 to 120 ° C., more preferably −20 to 100 ° C. Also preferred GHSV is 100~100,000H -1, more preferably from 100~50,000h -1.
Next, in the method for producing hydrogen for a fuel cell according to the present invention, after the sulfur compound in the hydrocarbon fuel or the oxygen-containing hydrocarbon fuel is desulfurized using the adsorbent according to the present invention, the desulfurized fuel is obtained. To produce hydrogen.
In the present invention, when the sulfur compound in the hydrocarbon fuel or the oxygen-containing hydrocarbon fuel is desulfurized using the adsorbent of the present invention, the desulfurization means using the adsorbent for removing sulfur compounds of the present invention is used. A desulfurization means using a sulfur compound removing adsorbent having a different sulfur adsorbing ability from that of the adsorbent may be separately provided on the upstream side or the downstream side. Examples of the desulfurizing agent include those in which a silver component, a copper component, a zinc component, an iron component, a nickel component and the like are supported on zeolite. In this way, by removing mercaptans, sulfides, etc. using desulfurizing agents having different sulfur adsorption capacities, and removing carbonyl sulfide using the sulfur compound removing adsorbent of the present invention, sulfur compounds can be efficiently removed. Can do.
As the reforming method, methods such as partial oxidation reforming, autothermal reforming, and steam reforming can be used. In this reforming method, the sulfur compound concentration in the desulfurized hydrocarbon fuel or oxygen-containing hydrocarbon fuel is preferably 0.1 ppm by volume or less, particularly 0.05 volume, from the viewpoint of the life of each reforming catalyst. ppm or less is preferable.

前記部分酸化改質は、炭化水素の部分酸化反応により、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、GHSV1,000〜100,000h-1、酸素(O2)/炭素比0.2〜0.8の条件で改質反応が行われる。
また、オートサーマル改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって、オートサーマル改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、酸素(O2)/炭素比0.1〜1、スチーム/炭素比0.1〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
さらに、水蒸気改質は、炭化水素に水蒸気を接触させて、水素を製造する方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜3MPa、反応温度200〜900℃、スチーム/炭素比1.5〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
The partial oxidation reforming is a method for producing hydrogen by a partial oxidation reaction of hydrocarbons, and in the presence of a partial oxidation reforming catalyst, usually a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1,100 ° C. The reforming reaction is carried out under the conditions of GHSV 1,000 to 100,000 h −1 and oxygen (O 2 ) / carbon ratio 0.2 to 0.8.
Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined. In the presence of an autothermal reforming catalyst, the reaction pressure is usually from normal pressure to 5 MPa, and the reaction temperature is from 400 to 1,100. The reforming reaction is carried out under the conditions of ° C., oxygen (O 2 ) / carbon ratio of 0.1 to 1, steam / carbon ratio of 0.1 to 10, and GHSV of 1,000 to 100,000 h −1 .
Furthermore, steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon, usually in the presence of a steam reforming catalyst, at a reaction pressure of normal pressure to 3 MPa, a reaction temperature of 200 to 900 ° C., steam. The reforming reaction is performed under the conditions of / carbon ratio of 1.5 to 10 and GHSV of 1,000 to 100,000 h −1 .

本発明においては、前記の部分酸化改質触媒、オートサーマル改質触媒、水蒸気改質触媒としては、従来公知の各触媒の中から適宜選択して用いることができるが、特にルテニウム系及びニッケル系触媒が好適である。また、これらの触媒の担体としては、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含む担体を好ましく挙げることができる。該担体は、これらの金属酸化物のみからなる担体であってもよく、アルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸化物を含有させてなる担体であってもよい。
本発明はまた、前記製造方法で得られた水素を用いる燃料電池システムを提供する。以下に本発明の燃料電池システムについて添付の図1に従い説明する。
図1は本発明の燃料電池システムの一例を示す概略フロー図である。図1によれば、燃料タンク21内の燃料は、必要に応じて、レギュレーター22で減圧され、脱硫器23に流入する。脱硫器内には本発明の吸着剤を充填することができる。脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合されて、水を気化させ改質器31に送り込まれる。
改質器31の内部には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(水蒸気、酸素及び炭化水素燃料もしくは酸素含有炭化水素燃料を含む混合気体)から、前述した改質反応のいずれかによって水素又は合成ガスが製造される。
In the present invention, the partial oxidation reforming catalyst, autothermal reforming catalyst, and steam reforming catalyst can be appropriately selected from conventionally known catalysts, but are particularly ruthenium-based and nickel-based. A catalyst is preferred. Moreover, as a support | carrier of these catalysts, the support | carrier containing at least 1 type chosen from manganese oxide, a cerium oxide, and a zirconia can be mentioned preferably. The carrier may be a carrier composed of only these metal oxides, or may be a carrier obtained by adding the above metal oxide to another refractory porous inorganic oxide such as alumina.
The present invention also provides a fuel cell system using hydrogen obtained by the production method. The fuel cell system of the present invention will be described below with reference to FIG.
FIG. 1 is a schematic flowchart showing an example of the fuel cell system of the present invention. According to FIG. 1, the fuel in the fuel tank 21 is decompressed by the regulator 22 as necessary and flows into the desulfurizer 23. The desulfurizer can be filled with the adsorbent of the present invention. The fuel desulfurized by the desulfurizer 23 is mixed with water from the water tank via the water pump 24 to vaporize the water and sent to the reformer 31.
The reformer 31 is filled with the above-described reforming catalyst, and from the fuel mixture (mixed gas containing water vapor, oxygen and hydrocarbon fuel or oxygen-containing hydrocarbon fuel) fed into the reformer 31, Hydrogen or synthesis gas is produced by any of the reforming reactions described above.

このようにして製造された水素又は合成ガスはCO変成器32、CO選択酸化器33を通じてそのCO濃度が燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては、CO変成器32では、鉄―クロム系触媒、銅―亜鉛系触媒あるいは貴金属系触媒が、CO選択酸化炉33では、ルテニウム系触媒、白金系触媒あるいはそれらの混合物等を挙げることができる。
燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子型燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロワー35から送られる空気が、それぞれ必要に応じて適当な加湿処理を行った後(加湿装置は図示せず)導入される。
このとき負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。負極には、白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、正極には白金黒、活性炭担持のPt触媒などが用いられる。
The hydrogen or synthesis gas thus produced is reduced through the CO converter 32 and the CO selective oxidizer 33 to such an extent that the CO concentration does not affect the characteristics of the fuel cell. Examples of the catalyst used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, a platinum catalyst or a noble metal catalyst in the CO selective oxidation furnace 33. The mixture etc. can be mentioned.
The fuel cell 34 is a solid polymer fuel cell having a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B. The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 35 is introduced into the positive electrode side after performing appropriate humidification treatment as necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. . Platinum black, activated carbon-supported Pt catalyst or Pt-Ru alloy catalyst is used for the negative electrode, and platinum black, Pt catalyst supported on activated carbon is used for the positive electrode.

負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。また、正極34B側に接続された気水分離器36において、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水は水蒸気の生成に利用することができる。
なお、燃料電池34では、発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。排熱回収装置37は、反応時に生じた熱を奪う熱交換器37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られた温水は、他の設備などで有効利用することができる。
The surplus hydrogen can be used as fuel by connecting the burner 31A of the reformer 31 to the negative electrode 34A side. Further, in the steam separator 36 connected to the positive electrode 34B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side are separated, and the water is used to generate water vapor. Can be used.
In the fuel cell 34, since heat is generated with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use. The exhaust heat recovery device 37 includes a heat exchanger 37A that takes away heat generated during the reaction, a heat exchanger 37B for exchanging heat taken by the heat exchanger 37A with water, a cooler 37C, A pump 37D that circulates the refrigerant to the exchangers 37A and 37B and the cooler 37C is provided, and the hot water obtained in the heat exchanger 37B can be effectively used in other facilities.

次に、本発明を実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、得られた脱硫剤における酸化セリウムの平均結晶子径、TPR試験によるH2消費量(600℃以下)及び脱硫剤の比表面積は、明細書本文記載の方法に従って測定した。
実施例1
硝酸セリウム・6水和物[試薬特級、和光純薬(株)製]470gを50℃に加温したイオン交換水1Lに溶解してなる溶液と、3モル/L濃度のNaOH水溶液を、混合液のpHが13を維持するように滴下混合し、この混合液を50℃に保持しながら1時間攪拌した。
次いで、生成した固形物をろ取したのち、イオン交換水20Lを用いて洗浄後、110℃送風乾燥機にて生成物を12時間乾燥し、さらに350℃にて3時間焼成処理した。その後、打錠成形し、粉砕することにより、平均粒径0.8mmのCeO2(A)からなる硫黄化合物除去用吸着剤(以下、脱硫剤と称す)を得た。この脱硫剤の性状を第1表に示す。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In addition, the average crystallite diameter of cerium oxide in the obtained desulfurizing agent, H 2 consumption (600 ° C. or less) by the TPR test, and the specific surface area of the desulfurizing agent were measured according to the method described in the specification.
Example 1
Mixing a solution prepared by dissolving 470 g of cerium nitrate hexahydrate (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) in 1 L of ion-exchanged water heated to 50 ° C. and a 3 mol / L NaOH aqueous solution The mixture was added dropwise so that the pH of the solution was maintained at 13, and the mixture was stirred for 1 hour while maintaining the temperature at 50 ° C.
Next, the produced solid matter was collected by filtration, washed with 20 L of ion-exchanged water, dried in a 110 ° C. blower dryer for 12 hours, and further calcined at 350 ° C. for 3 hours. Thereafter, tableting molding and pulverization were performed to obtain a sulfur compound removing adsorbent (hereinafter referred to as a desulfurization agent) made of CeO 2 (A) having an average particle diameter of 0.8 mm. Table 1 shows the properties of this desulfurizing agent.

実施例2
硝酸セリウム・6水和物[試薬特級、和光純薬(株)製]470gを50℃に加温したイオン交換水1Lに溶解してなる溶液と、30質量%濃度のアンモニア水を、混合液のpHが12を維持するように滴下混合し、この混合液を50℃に保持しながら1時間攪拌した。
次いで、生成した固形物をろ取したのち、イオン交換水20Lを用いて洗浄後、110℃送風乾燥機にて生成物を12時間乾燥し、さらに350℃にて3時間焼成処理した。その後、打錠成形し、粉砕することにより、平均粒径0.8mmのCeO2(B)からなる脱硫剤を得た。この脱硫剤の性状を第1表に示す。
Example 2
A mixed solution of cerium nitrate hexahydrate (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 470 g dissolved in 1 liter of ion-exchanged water heated to 50 ° C. and 30% by mass ammonia water The mixture was added dropwise so as to maintain a pH of 12, and the mixture was stirred for 1 hour while maintaining at 50 ° C.
Next, the produced solid matter was collected by filtration, washed with 20 L of ion-exchanged water, dried in a 110 ° C. blower dryer for 12 hours, and further calcined at 350 ° C. for 3 hours. Thereafter, tableting molding, by grinding, to obtain a desulfurizing agent comprising an average particle size 0.8mm of CeO 2 (B). Table 1 shows the properties of this desulfurizing agent.

実施例3
硝酸セリウム・6水和物[試薬特級、和光純薬(株)製]605g及び硝酸ジルコニル2水和物[試薬特級、和光純薬(株)製]52.0gを50℃に加温したイオン交換水1Lに溶解して調製液Aを得た。別に3規定NaOH溶液を調製し調製液Bとした。調製液Aと調製液Bを混合液のpHを13.9に維持しながら滴下混合した後、この混合液を50℃に保持しながら1時間攪拌した。
次いで、イオン交換水で生成した固形物を洗浄、ろ過した後、送風乾燥機にて110℃で12時間乾燥し、さらに400℃で3時間焼成処理した。その後、生成物を打錠成形し粉砕することにより、平均粒径0.8mmのCeO2とZrO2との質量比50:50の複合酸化物[CeO2(50)−ZrO2(50)]からなる脱硫剤を得た。この脱硫剤の性状を第1表に示す。
Example 3
Cerium nitrate hexahydrate [reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.] 605 g and zirconyl nitrate dihydrate [reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.] 52.0 g heated to 50 ° C. Preparation liquid A was obtained by dissolving in 1 L of exchange water. Separately, a 3N NaOH solution was prepared as Preparation Solution B. Preparation liquid A and preparation liquid B were dropped and mixed while maintaining the pH of the mixed liquid at 13.9, and then stirred for 1 hour while maintaining the mixed liquid at 50 ° C.
Next, the solid produced with ion-exchanged water was washed and filtered, then dried with an air dryer at 110 ° C. for 12 hours, and further fired at 400 ° C. for 3 hours. Thereafter, the product is tableted and pulverized to obtain a composite oxide [CeO 2 (50) -ZrO 2 (50)] of CeO 2 and ZrO 2 having an average particle diameter of 0.8 mm and a mass ratio of 50:50. A desulfurizing agent consisting of Table 1 shows the properties of this desulfurizing agent.

実施例4
硝酸セリウム・6水和物[試薬特級、和光純薬(株)製]310gを50℃に加温したイオン交換水60mLに溶解した。この溶液をアルミナ(KHD−24)400gに含浸した後、送風乾燥機にて110℃で12時間乾燥し、さらに400℃で3時間焼成処理した。その後、生成物を打錠成形し粉砕することにより、平均粒径0.8mmのAl23担体80質量部にCeO220質量部が担持されたCeO2(20)/Al23(80)からなる脱硫剤を得た。この脱硫剤の性状を第1表に示す。
Example 4
Cerium nitrate hexahydrate [reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.] 310 g was dissolved in 60 mL of ion-exchanged water heated to 50 ° C. The solution was impregnated with 400 g of alumina (KHD-24), dried at 110 ° C. for 12 hours in a blow dryer, and further calcined at 400 ° C. for 3 hours. Thereafter, the product is tableted and pulverized to obtain CeO 2 (20) / Al 2 O 3 (20 parts by weight of CeO 2 supported on 80 parts by weight of an Al 2 O 3 carrier having an average particle diameter of 0.8 mm. 80) was obtained. Table 1 shows the properties of this desulfurizing agent.

比較例1
実施例2で得たCeO2(B)をマッフル炉に入れ、800℃にて6時間焼成処理することにより、CeO2(C)からなる脱硫剤を得た。この脱硫剤の性状を第1表に示す。
Comparative Example 1
CeO 2 (B) obtained in Example 2 was placed in a muffle furnace and baked at 800 ° C. for 6 hours to obtain a desulfurization agent made of CeO 2 (C). Table 1 shows the properties of this desulfurizing agent.

比較例2〜6
市販のMnO2、ZnO、アルミナ、β型ゼオライト及び活性炭をそれぞれ比較例2〜比較例6の脱硫剤とした。これらの脱硫剤の比表面積を第1表に示す。
Comparative Examples 2-6
Commercially available MnO 2 , ZnO, alumina, β-type zeolite and activated carbon were used as the desulfurization agents of Comparative Examples 2 to 6, respectively. The specific surface areas of these desulfurizing agents are shown in Table 1.

試験例1
実施例1〜4及び比較例1〜6で得られた各脱硫剤を各々0.5〜1mmに成型し、脱硫剤1cm3を内径9mmの脱硫管に充填した。常圧で脱硫剤温度を20℃とし、COS、ジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)及びジメチルジサルファイド(DMDS)を各10volppm(合計40volppm)含むプロパンガスを、常圧、GHSV(ガス時空間速度)30,000h-1の条件で流通させた。
脱硫管出口ガスの各硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィーにより、1時間毎に測定した。第2表に、硫黄化合物濃度が0.1volppmを超える時間及び全硫黄吸着量を示した。
Test example 1
Each desulfurization agent obtained in Examples 1 to 4 and Comparative Examples 1 to 6 was molded to 0.5 to 1 mm, and 1 cm 3 of the desulfurization agent was filled in a desulfurization tube having an inner diameter of 9 mm. The desulfurizing agent temperature was 20 ° C. at normal pressure, and propane gas containing 10 volppm (total 40 volppm) of COS, dimethyl sulfide (DMS), t-butyl mercaptan (TBM) and dimethyl disulfide (DMDS) was used at normal pressure, GHSV ( Gas hourly space velocity) was 30,000 h −1 .
Each sulfur compound concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography. Table 2 shows the time when the sulfur compound concentration exceeds 0.1 volppm and the total sulfur adsorption amount.

Figure 0004267483
Figure 0004267483

Figure 0004267483
第1表、第2表から分かるように、比較例の多孔質体からなる脱硫剤は、脱硫性能がほとんど発揮されないが、酸化セリウムを含む実施例の脱硫剤は、顕著な脱硫性能を示した。
Figure 0004267483
As can be seen from Tables 1 and 2, the desulfurization agent composed of the porous body of the comparative example shows almost no desulfurization performance, but the desulfurization agent of the example containing cerium oxide showed remarkable desulfurization performance. .

実施例5〜9、参考例1
酸化セリウム(A)に、第3表に示す金属の塩を含浸させ、120℃で乾燥したのち、400℃で焼成処理を行い第3表に示す金属種を、全量に基づき10質量%担持してなる脱硫剤を得た。
Examples 5 to 9, Reference Example 1
After impregnating the cerium oxide (A) with a metal salt shown in Table 3, drying at 120 ° C., firing is performed at 400 ° C., and 10% by mass of the metal species shown in Table 3 is supported based on the total amount. To obtain a desulfurizing agent.

比較例7
β型ゼオライトに、全量に基づきAgを10質量%担持してなる脱硫剤を得た。
試験例2
実施例5〜9、比較例7及び参考例1の各脱硫剤を0.5〜1mmに成型し、脱硫剤1cm3を内径9mmの脱硫管に充填した。常圧で脱硫剤温度を20℃とし、COS40volppmを含むプロパンガスを、常圧、GHSV30,000h-1の条件で流通させた。
脱硫管出口ガスのCOS濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィーにより、1時間毎に測定した。第3表に、COS濃度が0.1volppmを超える時間を示した。
Comparative Example 7
A desulfurization agent obtained by supporting 10% by mass of Ag on the total amount of β-type zeolite was obtained.
Test example 2
Each desulfurization agent of Examples 5 to 9, Comparative Example 7 and Reference Example 1 was molded to 0.5 to 1 mm, and 1 cm 3 of the desulfurization agent was filled in a desulfurization tube having an inner diameter of 9 mm. Propane gas containing COS 40 volppm was circulated under conditions of normal pressure and GHSV 30,000 h −1 at a normal pressure and a desulfurizing agent temperature of 20 ° C.
The COS concentration of the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography. Table 3 shows the time when the COS concentration exceeded 0.1 vol ppm.

Figure 0004267483
第3表から分かるように、硫化カルボニルの除去には、Ni/CeO2及びMn/CeO2が特に優れている。
参考例2〜6
酸化セリウム(A)に硝酸銀溶液を用いて全量に基づきAgを10質量%含浸担持させ、120℃で乾燥(焼成)したのち、さらに第4表に示す温度で焼成処理して、脱硫剤を得た。
Figure 0004267483
As can be seen from Table 3, Ni / CeO 2 and Mn / CeO 2 are particularly excellent for removing carbonyl sulfide.
Reference Examples 2-6
A silver nitrate solution is used to impregnate and support 10% by mass of Ag in cerium oxide (A), dried (fired) at 120 ° C., and then fired at the temperature shown in Table 4 to obtain a desulfurizing agent. It was.

試験例3
参考例2〜6の脱硫剤を0.5〜1mmに成型し、脱硫剤1cm3を内径9mmの脱硫管に充填した。常圧で脱硫剤温度を20℃とし、ジメチルサルファイド(DMS)40volppmを含むプロパンガスを、常圧、GHSV30,000h-1の条件で流通させた。
脱硫管出口ガスのジメチルサルファイド濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィーにより、1時間毎に測定した。第4表に、ジメチルサルファイド濃度が0.1volppmを超える時間を示した。
Test example 3
The desulfurization agents of Reference Examples 2 to 6 were molded to 0.5 to 1 mm, and 1 cm 3 of the desulfurization agent was filled in a desulfurization pipe having an inner diameter of 9 mm. Propane gas containing dimethyl sulfide (DMS) 40 volppm was circulated under normal pressure and GHSV 30,000 h -1 conditions at a normal pressure and a desulfurizing agent temperature of 20 ° C.
The dimethyl sulfide concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography. Table 4 shows the time when the dimethyl sulfide concentration exceeds 0.1 volppm.

Figure 0004267483
第4表から、120〜500℃の焼成温度範囲では、焼成温度が低いほど、ジメチルサルファイドが0.1volppmを超える時間が長くなり、吸着量が増大していることが分かる。
Figure 0004267483
From Table 4, it can be seen that in the firing temperature range of 120 to 500 ° C., the lower the firing temperature, the longer the time for which dimethyl sulfide exceeds 0.1 volppm, and the amount of adsorption increases.

参考例7〜10
実施例1と同様に硝酸セリウムとともにセリウム以外の元素の化合物を添加してCeO2と他の元素との複合酸化物を調製した。硫化カルボニル,ジメチルサルファイド、t−ブチルメルカプタン、ジメチルジサルファイドを各10volppm(合計40volppm)含むプロパンガスを常圧、GHSV=30000h-1で流通させた。脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィー法により1時間毎に測定した。結果を第5表に示す。
なお、脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィー法により1時間毎に測定し、第5表に硫黄化合物濃度が0.1ppmを超える時間を破過時間として示した。
Reference Examples 7-10
Similar to Example 1, a compound oxide of CeO 2 and other elements was prepared by adding a compound of an element other than cerium together with cerium nitrate. Propane gas containing 10 volppm (total 40 volppm) of carbonyl sulfide, dimethyl sulfide, t-butyl mercaptan, and dimethyl disulfide was circulated at normal pressure and GHSV = 30000 h −1 . The sulfur compound concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography method. The results are shown in Table 5.
The sulfur compound concentration in the desulfurization pipe outlet gas is measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography method, and the time when the sulfur compound concentration exceeds 0.1 ppm is shown in Table 5 as the breakthrough time. Indicated.

Figure 0004267483
Figure 0004267483

実施例10〜13
酸化セリウム(A)に各種金属塩を含浸し120℃で乾燥した後、400℃で焼成を行い、下記の第6表に記載の脱硫剤を得た。これらの脱硫剤に硫化カルボニル(COS)40volppm 含むプロパンガスを常圧、GHSV=30000h-1で流通させた。脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィー法により1時間毎に測定し、第6表に、硫化カルボニル濃度が0.1ppmを超える時間を破過時間として示した。
Examples 10-13
Cerium oxide (A) was impregnated with various metal salts, dried at 120 ° C., and then fired at 400 ° C. to obtain a desulfurization agent described in Table 6 below. Propane gas containing 40 volppm of carbonyl sulfide (COS) was passed through these desulfurizing agents at normal pressure and GHSV = 30000 h −1 . The sulfur compound concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography method, and Table 6 shows the breakthrough time when the carbonyl sulfide concentration exceeds 0.1 ppm. It was.

Figure 0004267483
Figure 0004267483

実施例14〜15、比較例
実施例1の酸化セリウムおよび高表面積を有する第一稀元素工業製の酸化セリウムCeO2(HS)およびCeO2(HS2)について以下のように性能テストを行った。
脱硫剤を0.5〜1mmに成型し、脱硫剤1ccを内径9mmの脱硫管に充填した。常圧で脱硫剤温度を20℃とし、硫化カルボニル(COS)を40volppm含むプロパンガスをGHSV=30000h-1で流通させた。脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィー法により1時間毎に測定した。第7表にCOS濃度が0.1ppmを超える時間を破過時間として示した。
Examples 14 to 15 and Comparative Example 8
The performance test was performed as follows for the cerium oxide of Example 1 and the cerium oxide CeO 2 (HS) and CeO 2 (HS2) manufactured by Daiichi Rare Element Industries having a high surface area.
A desulfurizing agent was molded to 0.5 to 1 mm, and 1 cc of the desulfurizing agent was filled in a desulfurizing tube having an inner diameter of 9 mm. Propane gas containing 40 volppm of carbonyl sulfide (COS) was circulated at GHSV = 30000 h −1 at normal pressure and a desulfurizing agent temperature of 20 ° C. The sulfur compound concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography method. Table 7 shows the breakthrough time when the COS concentration exceeded 0.1 ppm.

Figure 0004267483
Figure 0004267483

実施例16
実施例1の酸化セリウムCeO2(A)について150℃で乾燥した後、焼成温度を変えて焼成を行った。これらの脱硫剤を実施例24と同様に評価を行った。第8表に示すように300℃から600℃で焼成を行ったものは乾燥品よりもCOS破過時間が向上した。
Example 16
The cerium oxide CeO 2 (A) of Example 1 was dried at 150 ° C. and then calcinated at different calcination temperatures. These desulfurizing agents were evaluated in the same manner as in Example 24. As shown in Table 8, the COS breakthrough time was improved for those fired at 300 ° C. to 600 ° C. as compared with the dried product.

Figure 0004267483
Figure 0004267483

実施例17〜20、参考例11〜12
実施例の酸化セリウムについて、第9表に示すように金属種および担持量の異なるものを調製した。硫化カルボニル(COS)を40volppm 含むプロパンガスを常圧、GHSV=60000h-1で流通させた。脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィー法により1時間毎に測定した。第9表にCOS濃度が0.1ppmを超える時間を破過時間として示した。
Examples 17-20, Reference Examples 11-12
About the cerium oxide of Example 1 , as shown in Table 9, the thing with different metal seed | species and a load was prepared. Propane gas containing 40 volppm of carbonyl sulfide (COS) was circulated at normal pressure and GHSV = 60000 h −1 . The sulfur compound concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography method. Table 9 shows the breakthrough time when the COS concentration exceeded 0.1 ppm.

Figure 0004267483
Figure 0004267483

実施例21〜26
実施例1と同様に硝酸セリウムとともにセリウム以外の元素の化合物を添加してCeO2と他の元素の複合酸化物を調製した。これらの脱硫剤に硫化カルボニル(COS)40volppm 含むプロパンガスを常圧、GHSV=30000h-1で流通させた。脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィー法により1時間毎に測定し、第10表にCOS濃度が0.1ppmを超える時間を破過時間として示した。
その結果を第10表に示す。
Examples 21-26
As in Example 1, a compound oxide of CeO 2 and other elements was prepared by adding a compound of an element other than cerium together with cerium nitrate. Propane gas containing 40 volppm of carbonyl sulfide (COS) was passed through these desulfurizing agents at normal pressure and GHSV = 30000 h −1 . The sulfur compound concentration in the desulfurization pipe outlet gas was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography method, and Table 10 shows the breakthrough time when the COS concentration exceeded 0.1 ppm.
The results are shown in Table 10.

Figure 0004267483
Figure 0004267483

本発明の燃料電池システムの一例を示す概略フロー図Schematic flowchart showing an example of the fuel cell system of the present invention

符号の説明Explanation of symbols

1: 燃料電池システム
11: 水供給管
12: 燃料導入管
20: 水素製造システム
21: 燃料タンク
22: レギュレーター
23: 脱硫器
31: 改質器
31A:ボイラー
32: CO変成器
33: CO選択酸化器
34: 燃料電池
34A:負極
34B:正極
34C:高分子電解質
36: 気水分離器
37: 排熱回収装置
37A:熱交換器
37B:熱交換器
37C:冷却器

1: Fuel cell system 11: Water supply pipe 12: Fuel introduction pipe 20: Hydrogen production system 21: Fuel tank 22: Regulator 23: Desulfurizer 31: Reformer 31A: Boiler 32: CO converter 33: CO selective oxidizer 34: Fuel cell 34A: Negative electrode 34B: Positive electrode 34C: Polymer electrolyte 36: Steam separator 37: Waste heat recovery device 37A: Heat exchanger 37B: Heat exchanger 37C: Cooler

Claims (18)

昇温還元試験における600℃以下の温度での水素消費量が200μモル/g以上である酸化セリウムを吸着剤全量に基づき50質量%以上含み、銀及びその酸化物を含まない吸着剤を用いて、−50〜150℃の温度で、炭化水素燃料又は酸素含有炭化水素燃料中の硫化カルボニル、ジメチルジサルファイド、ジメチルサルファイド及びt−ブチルメルカプタンから選ばれる少なくとも一種の硫黄化合物を除去する、硫黄化合物の除去方法。Using an adsorbent containing 50% by mass or more of cerium oxide having a hydrogen consumption of 200 μmol / g or more at a temperature of 600 ° C. or less in a temperature reduction test, based on the total amount of the adsorbent, and not containing silver and oxides thereof. Removing at least one sulfur compound selected from carbonyl sulfide, dimethyl disulfide, dimethyl sulfide and t-butyl mercaptan in a hydrocarbon fuel or an oxygen-containing hydrocarbon fuel at a temperature of -50 to 150 ° C. Removal method. 比表面積が20m2/g以上である吸着剤を用いた請求項1記載の硫黄化合物の除去方法。 The method for removing a sulfur compound according to claim 1, wherein an adsorbent having a specific surface area of 20 m 2 / g or more is used . 酸化セリウムの平均結晶子径が10nm以下である請求項1又は2記載の硫黄化合物の除去方法。 The method for removing a sulfur compound according to claim 1 or 2, wherein the average crystallite diameter of cerium oxide is 10 nm or less . Ce−Si系複合酸化物、Ce−Zr系複合酸化物、Ce−Si−Zr系複合酸化物、Ce−Nb系複合酸化物、Ce−Bi系複合酸化物、Ce−Sb系複合酸化物、及びCe−Sn系複合酸化物から選ばれる一種の複合酸化物を含む吸着剤を用いた請求項1〜3のいずれか1項記載の硫黄化合物の除去方法。Ce-Si complex oxide, Ce-Zr complex oxide, Ce-Si-Zr complex oxide, Ce-Nb complex oxide, Ce-Bi complex oxide, Ce-Sb complex oxide, The removal method of the sulfur compound of any one of Claims 1-3 using the adsorption agent containing 1 type of complex oxide chosen from Ce-Sn type complex oxide. 酸化セリウムに、Cu、Mn、Fe、Co、Ni、Au、Pb及びSbの中から選ばれる少なくとも一種の活性金属種が担持されてなる吸着剤を用いた請求項1〜3のいずれか1項記載の硫黄化合物の除去方法。The cerium oxide uses an adsorbent in which at least one active metal species selected from Cu, Mn, Fe, Co, Ni, Au, Pb and Sb is supported. The sulfur compound removal method as described. 複合酸化物に、Cu、Mn、Fe、Co、Ni、Au、Pb及びSbの中から選ばれる少なくとも一種の活性金属種が担持されてなる吸着剤を用いた請求項4記載の硫黄化合物の除去方法。The removal of the sulfur compound according to claim 4, wherein the composite oxide is an adsorbent in which at least one active metal species selected from Cu, Mn, Fe, Co, Ni, Au, Pb and Sb is supported. Method. 400℃以下の温度で焼成処理してなる吸着剤を用いた請求項5又は6項記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to claim 5 or 6, wherein an adsorbent obtained by baking at a temperature of 400 ° C or lower is used. 活性金属種の担持量が、元素として吸着剤全量に基づき1〜50質量%である請求項5又は6記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to claim 5 or 6, wherein the supported amount of the active metal species is 1 to 50% by mass based on the total amount of the adsorbent as an element. 活性金属種の担持量が、元素として吸着剤全量に基づき1〜5質量%である請求項5又は6記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to claim 5 or 6, wherein the supported amount of the active metal species is 1 to 5% by mass based on the total amount of the adsorbent as an element. 炭化水素燃料が、LPG、都市ガス、天然ガス、ナフサ、灯油、軽油又はエタン、エチレン、プロパン、プロピレン、ブタン、ブテン、メタノールおよびジメチルエーテルの中から選ばれる少なくとも一種の炭化水素化合物もしくは酸素含有炭化水素化合物である請求項1〜9のいずれか1項記載の硫黄化合物の除去方法。The hydrocarbon fuel is at least one hydrocarbon compound or oxygen-containing hydrocarbon selected from LPG, city gas, natural gas, naphtha, kerosene, light oil or ethane, ethylene, propane, propylene, butane, butene, methanol and dimethyl ether It is a compound, The removal method of the sulfur compound of any one of Claims 1-9. 硫黄化合物が硫化カルボニルである請求項1〜10のいずれか1項記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to any one of claims 1 to 10, wherein the sulfur compound is carbonyl sulfide. 比表面積が100mSpecific surface area is 100m 22 /g以上である吸着剤を用いた請求項11記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to claim 11, wherein the adsorbent is at least 10 g / g. 300〜600℃の温度で焼成した酸化セリウムを含む吸着剤を用いた請求項11又は12記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to claim 11 or 12, wherein an adsorbent containing cerium oxide calcined at a temperature of 300 to 600 ° C is used. 吸着剤を水素又は酸素を添加しない条件で使用する、請求項1〜13のいずれか1項記載の硫黄化合物の除去方法。The method for removing a sulfur compound according to any one of claims 1 to 13, wherein the adsorbent is used under conditions where hydrogen or oxygen is not added. 脱硫手段の上流側もしくは下流側に、請求項1〜13のいずれか1項で用いる吸着剤と硫黄吸着能の異なる硫黄化合物除去用吸着剤を用いた脱硫手段を設けることを特徴とする、請求項1〜14のいずれか1項記載の硫黄化合物の除去方法。A desulfurization means using an adsorbent for removing sulfur compounds having a sulfur adsorption capacity different from the adsorbent used in any one of claims 1 to 13 is provided on the upstream side or the downstream side of the desulfurization means. Item 15. The method for removing a sulfur compound according to any one of Items 1 to 14. 請求項1〜15のいずれか1項記載の硫黄化合物の除去方法で、炭化水素燃料又は酸素含有炭化水素燃料中の硫黄化合物を脱硫処理したのち、得られた脱硫処理燃料を部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。The sulfur compound removal method according to any one of claims 1 to 15, wherein the sulfur compound in the hydrocarbon fuel or the oxygen-containing hydrocarbon fuel is desulfurized, and the resulting desulfurized fuel is used as a partial oxidation reforming catalyst. A method for producing hydrogen for a fuel cell, comprising contacting an autothermal reforming catalyst or a steam reforming catalyst. 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒がルテニウム系又はニッケル系触媒である請求項16記載の燃料電池用水素の製造方法。The method for producing hydrogen for fuel cells according to claim 16, wherein the partial oxidation reforming catalyst, autothermal reforming catalyst or steam reforming catalyst is a ruthenium-based or nickel-based catalyst. 請求項16又は17記載の製造方法を実施するための水素製造システムを備えた燃料電池システム。 A fuel cell system comprising a hydrogen production system for carrying out the production method according to claim 16 or 17.
JP2004051756A 2003-05-28 2004-02-26 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells Expired - Fee Related JP4267483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051756A JP4267483B2 (en) 2003-05-28 2004-02-26 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003150293 2003-05-28
JP2004051756A JP4267483B2 (en) 2003-05-28 2004-02-26 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells

Publications (2)

Publication Number Publication Date
JP2005007383A JP2005007383A (en) 2005-01-13
JP4267483B2 true JP4267483B2 (en) 2009-05-27

Family

ID=34106707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051756A Expired - Fee Related JP4267483B2 (en) 2003-05-28 2004-02-26 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells

Country Status (1)

Country Link
JP (1) JP4267483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080382A1 (en) * 2018-02-26 2022-03-17 Chevron U.S.A. Inc. Metal nanoparticle-deposited, nitrogen-doped carbon adsorbents for removal of sulfur impurities in fuels

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286552A (en) * 2005-04-05 2006-10-19 Idemitsu Kosan Co Ltd Manufacturing method of fuel gas for solid oxide fuel cell operated in middle and low temperature ranges
JP4776984B2 (en) * 2005-06-01 2011-09-21 石油コンビナート高度統合運営技術研究組合 Method for producing low sulfur light hydrocarbon oil
JP4776985B2 (en) * 2005-06-01 2011-09-21 石油コンビナート高度統合運営技術研究組合 Method for producing low sulfur light hydrocarbon oil
JP5117014B2 (en) * 2006-08-14 2013-01-09 Jx日鉱日石エネルギー株式会社 Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
US7700005B2 (en) * 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
JP5170591B2 (en) * 2008-03-10 2013-03-27 独立行政法人産業技術総合研究所 Adsorption desulfurization agent for liquid phase
CN103506071B (en) * 2012-06-19 2015-09-16 中国石油化工股份有限公司 For the purificant and preparation method thereof of hydrogen sulfide and cos in absorbed natural gas tail gas
CN114505046A (en) * 2022-02-28 2022-05-17 武汉工程大学 Cerium dioxide nanocrystalline composite material and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080382A1 (en) * 2018-02-26 2022-03-17 Chevron U.S.A. Inc. Metal nanoparticle-deposited, nitrogen-doped carbon adsorbents for removal of sulfur impurities in fuels
US11826721B2 (en) * 2018-02-26 2023-11-28 Chevron U.S.A. Inc. Metal nanoparticle-deposited, nitrogen-doped carbon adsorbents for removal of sulfur impurities in fuels

Also Published As

Publication number Publication date
JP2005007383A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP5220265B2 (en) Method for removing sulfur compounds from hydrocarbon-containing gas
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
JP2006318721A (en) Liquefied petroleum gas for lp-gas fuel cell, its desulfurizing method, and fuel cell system
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP2013199534A (en) Method for producing desulfurized gaseous fuel
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP4745557B2 (en) Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP2006277980A (en) Desulfurization method of fuel for fuel cell
JP4339134B2 (en) Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method
JP2006316154A (en) Liquefied petroleum gas for lp gas fuel cell, its desulfurization method and fuel cell system
WO2013146198A1 (en) Desulfurization system, hydrogen production system, fuel cell system, method for desulfurizing fuel, and method for producing hydrogen
JP4953584B2 (en) Fuel cell system
JP4822692B2 (en) Desulfurization method, and operation method of fuel cell system and hydrogen production system
JP2006274206A (en) Liquefied petroleum gas for lp gas fuel cell
JP2006290941A (en) Liquefied petroleum gas for lp gas fuel cell
JP2013199533A (en) Method for producing desulfurized gaseous fuel
JP2006339119A (en) Method for supplying fuel for liquefied petroleum gas type fuel cell
JP2006294578A (en) Liquefied petroleum gas for lp gas fuel cell
JP2006290987A (en) Liquefied petroleum gas for lp gas fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees