JP4057314B2 - Hydrocarbon desulfurization method and fuel cell system - Google Patents

Hydrocarbon desulfurization method and fuel cell system Download PDF

Info

Publication number
JP4057314B2
JP4057314B2 JP2002058719A JP2002058719A JP4057314B2 JP 4057314 B2 JP4057314 B2 JP 4057314B2 JP 2002058719 A JP2002058719 A JP 2002058719A JP 2002058719 A JP2002058719 A JP 2002058719A JP 4057314 B2 JP4057314 B2 JP 4057314B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
fuel cell
desulfurization
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002058719A
Other languages
Japanese (ja)
Other versions
JP2003253270A (en
Inventor
倫明 足立
敦司 瀬川
忠夫 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2002058719A priority Critical patent/JP4057314B2/en
Publication of JP2003253270A publication Critical patent/JP2003253270A/en
Application granted granted Critical
Publication of JP4057314B2 publication Critical patent/JP4057314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は特定の触媒を用いて炭化水素を脱硫する方法に関する。またこの特定の触媒を充填した脱硫装置を備えた燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池は燃料の燃焼反応による自由エネルギー変化を直接電気エネルギーとして取り出せるため、高い効率が得られるという特徴がある。さらに有害物質を排出しないことも相俟って、様々な用途への展開が図られている。特に固体高分子形燃料電池は、出力密度が高く、コンパクトで、しかも低温で作動するのが特徴である。
【0003】
一般的に燃料電池用の燃料ガスとしては水素を主成分とするガスが用いられるが、その原料には天然ガス、LPG、ナフサ、灯油等の炭化水素およびメタノール、エタノール等のアルコールおよびジメチルエーテル等のエーテルなどが用いられる。これら炭素と水素を含む原料を水蒸気とともに触媒上で高温処理して改質したり、酸素含有気体と部分酸化したり、また水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うことにより得られる水素を、基本的には燃料電池用の燃料水素としている。
【0004】
しかし、これらの原料中には水素以外の元素も存在するため、燃料電池への燃料ガス中に炭素由来の不純物が混入することは避けられない。中でも一酸化炭素は燃料電池の電極触媒として使われている白金系貴金属を被毒するため、燃料ガス中に一酸化炭素が存在すると充分な発電特性が得られなくなる。特に低温作動させる燃料電池ほど一酸化炭素吸着は強く、被毒を受けやすい。このため固体高分子形燃料電池を用いたシステムでは燃料ガス中の一酸化炭素の濃度が低減されていることが必要不可欠である。
【0005】
そこで原料を改質して得られた改質ガス中の一酸化炭素を水蒸気と反応させ、水素と二酸化炭素に転化したり、さらに微量残存した一酸化炭素を選択酸化で除去する方法が採られる。
最終的に一酸化炭素が十分低い濃度になるまで除去された燃料水素は燃料電池の陰極に導入され、ここでは電極触媒上でプロトンと電子に変換される。生成したプロトンは電解質中を陽極側へ移動し、外部回路を通ってきた電子とともに酸素と反応し、水を生成する。電子が外部回路を通ることにより電気を発生する。
【0006】
これら燃料電池用燃料水素を製造するまでの原料改質、一酸化炭素除去の各工程さらに陰極の電極に用いられる触媒は貴金属または銅などが還元状態で使われることが多く、このような状態では硫黄が共存した場合、触媒毒となり、水素製造工程または電池そのものの触媒活性を低下させ、効率が低下する。
従って、原料中に含まれる硫黄分を十分に除去することが水素製造工程に用いられている触媒さらには電極触媒を本来の性能で使用するために必要不可欠であると考えられる。
基本的に硫黄を除去する、いわゆる脱硫工程は水素製造工程の一番最初に行われる。その直後の改質工程に用いる触媒が十分機能するレベルまで硫黄濃度を低減する必要があるが、それは通常0.1質量ppm以下である。
【0007】
これまでは燃料電池用原料の硫黄分を除去する方法としては、脱硫触媒によって難脱硫性有機硫黄化合物を水素化脱硫して、一度吸着除去し易い硫化水素に変換し、適当な吸着剤で処理する方法が適していると思われていた。しかし一般的な水素化脱硫触媒では水素圧力を高くして用いられるが、燃料電池システムに用いる場合は、大気圧か、高くても1MPaにとどめた技術開発が進んでいるので、通常の脱硫触媒系では対応できないのが現状である。
【0008】
そこで低圧系でも十分に脱硫機能を発現する吸着剤に関する発明が提案され、これまでも様々な触媒系が紹介されている。たとえば特開平1−188404号、特開平1−188405号にはニッケル系脱硫剤で脱硫した灯油を水蒸気改質し、水素を製造する方法が報告されている。しかし、この場合、良好な条件で脱硫の可能な温度範囲は150〜300℃であり、プロセス上の制約があった。脱硫の後段にある水蒸気改質装置の入口温度は400〜500℃であり、脱硫温度もこの温度に近い方がプロセス上好ましい。また特開平2−302302号、特開平2−302303号には銅−亜鉛系脱硫剤が開示されている。しかし、この触媒は比較的高温で用いても炭素析出は少ないが、脱硫活性がニッケルに比べて低いため、天然ガス、LPG、ナフサ等の軽質炭化水素の脱硫は行えるが、灯油の脱硫に対しては不十分である。
また特開平1−143155号に脱硫作用を行わせるために活性炭あるいは薬液を用いる方法が示されている。しかし、この触媒は起動時常温で脱硫に効果があることが示されているが、原料は常温でのガス体に限定され、ナフサ、灯油の類への効果はない。
【0009】
【発明が解決しようとする課題】
上記したように、燃料電池用燃料水素を製造するまでの原料改質、一酸化炭素除去の各工程さらに陰極の電極に用いられる触媒は貴金属または銅などが還元状態で使われることが多く、このような状態では硫黄が共存した場合、触媒毒となり、水素製造工程または電池そのものの触媒活性を低下させ、効率が低下する。従って、原料中に含まれる硫黄分を十分に除去することが水素製造工程に用いられている触媒さらには電極触媒を本来の性能で使用するために必要不可欠である。しかも低圧条件下で、難脱硫性物質を効果的に脱硫する必要がある。
本発明はこのような難しい条件をクリアする触媒およびそれを基盤技術とした燃料電池システムを提供するものである。
【0010】
【課題を解決するための手段】
本発明者は鋭意研究により、炭化水素原料中に含まれる硫黄化合物を効率的に脱硫する触媒を見出し、本発明を完成するに至ったものである。
すなわち、本発明は、硫黄を含有する炭化水素を、(1)表面積が600m2/g以上の活性炭を少なくとも50質量%以上含む担体に酸化ニッケルおよび酸化亜鉛を担持してなる触媒であって、触媒に対する酸化ニッケルおよび酸化亜鉛の担持量がそれぞれ1〜49質量%であり、かつ酸化ニッケルと酸化亜鉛の担持量の和が5〜50質量%である触媒Aと接触させ、次いで(2)ニッケル、亜鉛および銅から選ばれる元素1種以上を20質量%以上含有してなる触媒Bと接触させることにより、該炭化水素の硫黄濃度を0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法に関する。
【0011】
また、本発明は、硫黄を含有する炭化水素を常圧〜1MPaの圧力下、10〜450℃の反応温度にて前記触媒Aと接触させ、次いで触媒Bと接触させることにより、該炭化水素の硫黄濃度を0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法に関する。
さらに、本発明は、前記触媒Aを充填した第一反応部および前記触媒Bを充填した第二反応部を有する脱硫装置と、該脱硫装置により脱硫された炭化水素を水素を主成分とする燃料ガスに改質するための改質装置を備えた燃料電池システムに関する。
【0012】
【発明の実施の形態】
以下に本発明について詳述する。
本発明は、硫黄を含有する炭化水素を、(1)表面積が600m2/g以上の活性炭を少なくとも50質量%以上含む担体に酸化ニッケルおよび酸化亜鉛を担持してなる触媒であって、触媒に対する酸化ニッケルおよび酸化亜鉛の担持量がそれぞれ1〜49質量%であり、かつ酸化ニッケルと酸化亜鉛の担持量の和が5〜50質量%である触媒Aと接触させ、次いで(2)ニッケル、亜鉛および銅から選ばれる少なくとも1種類の元素を20質量%以上含有してなる触媒Bと接触させることにより、該炭化水素の硫黄濃度を0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法に関する。
【0013】
本発明において用いられる活性炭の種類は特に限定されるものではなく、例えば石炭系活性炭、ヤシ殻系活性炭、木質系活性炭などを用いることができる。活性炭の形状も特に限定されるものではなく、例えば粉末炭、破砕炭、顆粒炭、円柱状炭、球状炭などを用いることができる。活性炭の粒径も特に限定されるものではなく、例えば1μm〜10mmのものを用いることができる。活性炭のかさ密度も特に限定されるものではなく、例えば0.1〜0.8g/cm3のものを用いることができる。
【0014】
本発明における活性炭の表面積は600m2/g以上であり、800m2/g以上であることが好ましい。活性炭の表面積が600m2/g未満であると、金属の分散性が低下し、脱硫活性が低下する。上限は特に限定されないが、通常3500m2/g以下であることが好ましく、3000m2/g以下であることがより好ましい。ここで表面積とは、窒素吸着法により測定したBET表面積をいう。
【0015】
担体中の活性炭の量は、50質量%以上あり、好ましくは70質量%以上である。担体中の活性炭の量が50質量%未満であると、担体の表面積が低下し、脱硫活性が低下する。上限は100質量%である。なお、担体中には活性炭以外にバインダー等を含むことができる。
【0016】
担体の形状、大きさ、成型方法は特に限定されるものではない。また成型時には適度なバインダーを添加して成形性を高めてもよい。バインダーとしては、特に限定されるものではないが、アルミナ、シリカ、チタニア、ジルコニア、もしくはそれらの複合酸化物などを用いることができる。担体におけるバインダーの添加量は50質量%以下が好ましく、より好ましくは30質量%以下である。下限はバインダーとしての機能が発揮される限り特に限定されるものではなく、通常1質量%以上であり、好ましくは5質量%以上である。
【0017】
酸化ニッケルおよび酸化亜鉛を担体に担持する方法に関しては特に制限はなく、通常の含浸法、イオン交換法など公知の方法を用いることができる。例えば含浸法においては、ニッケルおよび亜鉛の金属塩あるいは金属錯体を、水、エタノールもしくはアセトンなどの溶媒、特に好ましくは水に溶解させ、担体に含浸させる。しかるのち、乾燥、焼成等の処理を行って酸化ニッケルおよび酸化亜鉛を形成させることにより、酸化ニッケルおよび酸化亜鉛を担持した触媒を得ることができる。
【0018】
ニッケルおよび亜鉛の金属塩あるいは金属錯体は、溶媒に溶解するものあれば、特に制限はなく、各種の塩化物、硝酸塩、硫酸塩、有機酸塩等があげられ、具体的には硝酸ニッケル、酢酸ニッケル、硝酸亜鉛、酢酸亜鉛などを用いることができる。
【0019】
乾燥方法は特に限定されるものではなく、例えば、空気中での乾燥、減圧下での脱気乾燥等を用いることができる。乾燥温度としては、通常、室温〜150℃で行うことができるが、50〜140℃が好ましく、80〜120℃が特に好ましい。
また焼成方法も特に限定されるものではなく、通常、窒素雰囲気で行うことが望ましい。焼成温度としては250〜450℃が好ましく、300〜400℃がより好ましい。また焼成時間としては0.1〜10時間が好ましく、0.5〜5時間がより好ましい。
【0020】
酸化ニッケルおよび酸化亜鉛を担持する順序については特に制限はなく、同時に担持させても良く、また酸化亜鉛を担持させたのち酸化ニッケルを担持させても良いし、酸化ニッケルを担持させたのち酸化亜鉛を担持させても良いが、酸化ニッケルおよび酸化亜鉛を同時に担持させるか、酸化亜鉛を担持させたのち酸化ニッケルを担持させるのが好ましい。
【0021】
酸化ニッケルおよび酸化亜鉛の触媒に対する担持量はそれぞれ1〜49質量%であり、5〜45質量%が好ましく、特に10〜40質量%が好ましい。それぞれの担持量が1質量%未満では、触媒性能が発揮されず、またそれぞれの担持量が49質量%を越える場合は、分散性が低下するだけでなく、経済的な面からも好ましくない。触媒に対する酸化ニッケルと酸化亜鉛の担持量の和は5〜50質量%であり、8〜47質量%が好ましく、特に10〜45質量%が好ましい。担持量の和が5質量%未満では、触媒性能が発揮されず、また担持量の和が50質量%を超える場合は、酸化ニッケルおよび酸化亜鉛の分散性が低下するだけでなく、経済的な面からも好ましくない。
【0022】
上記の方法で調製された触媒を使用する場合、そのまま反応に供することもできるが、前処理として水素等による還元処理を行ってもよい。その条件として温度は150〜500℃、好ましくは250〜400℃が望ましく、時間は0.1〜10時間、好ましくは0.5〜5時間が望ましい。
【0023】
触媒Aの形状については特に限定するものではないが、例えば、打錠成形し粉砕後適当な範囲に整粒した触媒、押し出し成形した触媒、適当なバインダーを加え押し出し成形した触媒、粉末状とした触媒などを用いることができる。もしくは、打錠成形し粉砕後適当な範囲に整粒した担体、押し出し成形した担体、粉末あるいは球形、リング状、タブレット状、円筒状、フレーク状など適当な形に成形した担体、粉末炭、破砕炭、顆粒炭、円柱状炭、球状炭などの活性炭そのものを用いた担体に酸化ニッケルおよび酸化亜鉛を担持した触媒などを用いることができる。
本発明の触媒Aは、硫黄を吸着することにより脱硫し、かつ室温から使用できることが主要な特徴である。
【0024】
硫黄を含有する原料炭化水素は、触媒Aと接触させた後、ニッケル、亜鉛および銅から選ばれる少なくとも1種類の元素を20質量%以上含有してなる触媒(触媒B)と接触させることにより、硫黄濃度0.1質量ppm以下にまで脱硫される。硫黄濃度は、紫外蛍光法により測定される。
【0025】
触媒Bの主な機能は、触媒Aと同様に、硫黄を吸着により脱硫するものであるが、100℃以下では活性が低く、室温付近で使用を開始する場合、触媒B単独で脱硫することはできない。燃料電池システムの起動時、室温付近で通油が開始され、徐々に昇温されていく場合、触媒Aと触媒Bを組み合わせることにより、幅広い温度範囲で脱硫を行うことが可能となる。
【0026】
触媒Bにおけるニッケル、亜鉛および銅の含有量の和は、20質量%以上であることが好ましく、50質量%以上であることがより好ましい。20質量%未満では、十分な吸着性能を発揮するには容積が大きくなりすぎるため好ましくない。なお上限は100質量%である。
触媒Bには、ニッケル、亜鉛、銅以外に、シリカ、アルミナ、マグネシア、シリカ−アルミナなどを含むことができる。
触媒Bの形状についても特に限定されるものではなく、例えば、打錠成形し粉砕後適当な範囲に整粒した触媒、押し出し成形した触媒、適当なバインダーを加え押し出し成形した触媒、粉末状とした触媒などを用いることができる。
【0027】
また本発明は、前記した炭化水素用脱硫触媒を用いて、硫黄を含有する炭化水素原料を常圧〜1MPaの圧力下、10〜450℃の反応温度にて脱硫する方法であって、まず該炭化水素原料を触媒Aと接触させ、次いで触媒Bと接触させることにより、該炭化水素原料の硫黄濃度を0.1質量ppm以下に脱硫する方法に関する。
【0028】
本発明で用いられる硫黄を含有する炭化水素原料としては、特に限定されるものではないが、メタン、エタン、プロパン、ブタン、天然ガス、LPG、ナフサ、ガソリン、灯油およびこれらの混合物等が挙げられる。なお、原料中には水素が含まれていてもよい。
本発明で用いられるこれらの炭化水素原料中には、通常、100質量ppm以下の硫黄が含有されている。
【0029】
脱硫反応における圧力は、燃料電池システムの経済性、安全性等も考慮し、常圧〜1MPaの範囲の低圧が好ましく、特に常圧〜0.2MPaが好ましい。反応温度としては、硫黄濃度を低下させる温度であれば、特に限定されるものではないが、機器スタート時も考慮して、室温から有効に作用することが好ましく、また定常時も考慮して、10℃〜450℃が好ましい。より好ましくは15℃〜350℃、特に好ましくは20℃〜300℃が採用される。SVは過剰に高すぎると脱硫反応が進行しにくくなり、一方低すぎると装置が大きくなるため適した範囲に設定する。液体原料を用いる場合は、0.01〜15h-1の範囲が好ましく、0.05〜5h-1の範囲がさらに好ましく、0.1〜3h-1の範囲が特に好ましい。ガス燃料を用いる場合は、100〜10000h-1の範囲が好ましく、200〜5000h-1の範囲がさらに好ましく、300〜2000h-1の範囲が特に好ましい。本発明の脱硫方法においては水素なしで脱硫できることが特徴であるが、水素を導入してもよい。そのときの水素の流量は、例えば、炭化水素原料1gあたり0.05〜1.0NLである。
【0030】
本発明の脱硫方法を用いる脱硫装置の形態は特に限定されるものではないが、例えば流通式固定床方式を用いることができる。脱硫装置の形状としては、円筒状、平板状などそれぞれのプロセスの目的に応じた公知のいかなる形状を取ることができる。
【0031】
本発明の脱硫触媒を用いることにより、硫黄を含有する炭化水素原料から硫黄濃度0.1質量ppm以下とすることができる。
硫黄濃度0.1質量ppm以下に脱硫された炭化水素原料は、次いで、改質工程、シフト工程、一酸化炭素選択酸化工程等を経ることにより、生成した水素リッチガスを燃料電池用燃料として使うことができる。
改質工程としては、特に限定されるものではないが、原料を水蒸気とともに触媒上で高温処理して改質する水蒸気改質や、酸素含有気体との部分酸化、また水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うオートサーマルリフォーミングなどを用いることができる。
【0032】
なお改質の反応条件は限定されるものではないが、反応温度は200〜1000℃が好ましく、特に500〜850℃が好ましい。反応圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。LHSVは0.01〜40h-1が好ましく、特に0.1〜10h-1が好ましい。
このとき得られる一酸化炭素と水素を含む混合ガスは、固体酸化物形燃料電池のような場合であればそのまま燃料電池用の燃料として用いることができる。また、リン酸形燃料電池や固体高分子形燃料電池のように一酸化炭素の除去が必要な燃料電池に対しては、該燃料電池用水素の原料として好適に用いることができる。
【0033】
燃料電池用水素の製造は、公知の方法を採用することができ、例えばシフト工程と一酸化炭素選択酸化工程で処理することにより実施できる。
シフト工程とは一酸化炭素と水とを反応させ水素と二酸化炭素に転換する工程であり、例えば、Fe−Crの混合酸化物、Zn−Cuの混合酸化物、白金、ルテニウム、イリジウムなどを含有する触媒を用い、一酸化炭素含有量を2vol%以下、好ましくは1vol%以下、さらに好ましくは0.5vol%以下に低減させる。
シフト反応は原料となる改質ガス組成等によって、必ずしも反応条件は限定されるものではないが、反応温度は120〜500℃が好ましく、特に150〜450℃が好ましい。圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。GHSVは100〜50000h-1が好ましく、特に300〜10000h-1が好ましい。通常、リン酸形燃料電池ではこの状態の混合ガスを燃料として用いることができる。
【0034】
一方、固体高分子形燃料電池では、一酸化炭素濃度をさらに低減させることが必要であるので一酸化炭素を除去する工程を設けることが望ましい。この工程としては、特に限定するものではなく、吸着分離法、水素分離膜法、一酸化炭素選択酸化工程などの各種の方法を用いることができるが、装置のコンパクト化、経済性の面から、一酸化炭素選択酸化工程を用いるのが特に好ましい。この工程では、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、銀、金などを含有する触媒を用い、残存する一酸化炭素モル数に対し0.5〜10倍モル、好ましくは0.7〜5倍モル、さらに好ましくは1〜3倍モルの酸素を添加し一酸化炭素を選択的に二酸化炭素に転換することにより一酸化炭素濃度を低減させる。この方法の反応条件は限定されるものではないが、反応温度は80〜350℃が好ましく、特に100〜300℃が好ましい。圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。GHSVは1000〜50000h-1が好ましく、特に3000〜30000h-1が好ましい。この場合、一酸化炭素の酸化と同時に共存する水素と反応させメタンを生成させることで一酸化炭素濃度の低減を図ることもできる。
【0035】
また本発明は、前記触媒Aを充填した第一反応部および前記触媒Bを充填した第二反応部を有する脱硫装置と、該脱硫装置により脱硫された炭化水素原料を、水素を主成分とする燃料ガスに改質する改質装置を少なくとも有する燃料電池システムに関する。
【0036】
以下、この燃料電池システムの一例を図1をもって説明する。
燃料タンク3内の原燃料は燃料ポンプ4を経て脱硫器5に流入する。この時、必要であれば選択酸化反応器11からの水素含有ガスを添加できる。脱硫器5には、本発明の炭化水素用脱硫触媒である触媒Aが前段に、触媒Bが後段に充填されている。脱硫器5で脱硫された燃料は水タンク1から水ポンプ2を経た水と混合した後、気化器6に導入され、改質器7に送り込まれる。
【0037】
改質器7は加温用バーナー18で加温される。加温用バーナー18の燃料には主に燃料電池17のアノードオフガスを用いるが必要に応じて燃料ポンプ4から吐出される燃料を補充することもできる。改質器7に充填する触媒としてはニッケル系、ルテニウム系、ロジウム系などの触媒を用いることができる。
この様にして製造された水素と一酸化炭素を含有するガスは高温シフト反応器9、低温シフト反応器10、選択酸化反応器11を順次通過させることで一酸化炭素濃度は燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては高温シフト反応器9には鉄−クロム系触媒、低温シフト反応器10には銅−亜鉛系触媒、選択酸化反応器11にはルテニウム系触媒等をあげることができる。
【0038】
固体高分子形燃料電池17はアノード12、カソード13、固体高分子電解質14からなり、アノード側には上記の方法で得られた高純度の水素を含有する燃料ガスが、カソード側には空気ブロアー8から送られる空気が、それぞれ必要であれば適当な加湿処理を行なったあと(加湿装置は図示していない)導入される。この時、アノードでは水素ガスがプロトンとなり電子を放出する反応が進行し、カソードでは酸素ガスが電子とプロトンを得て水となる反応が進行する。これらの反応を促進するため、それぞれ、アノードには白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、カソードには白金黒、活性炭担持のPt触媒などが用いられる。通常アノード、カソードの両触媒とも、必要に応じてポリテトラフロロエチレン、低分子の高分子電解質膜素材、活性炭などと共に多孔質触媒層に成形される。
【0039】
次いでNafion(デュポン社製)、Gore(ゴア社製)、Flemion(旭硝子社製)、Aciplex(旭化成社製)等の商品名で知られる高分子電解質膜の両側に該多孔質触媒層を積層しMEA(Membrane Electrode Assembly)が形成される。さらにMEAを金属材料、グラファイト、カーボンコンポジットなどからなるガス供給機能、集電機能、特にカソードにおいては重要な排水機能等を持つセパレータで挟み込むことで燃料電池が組み立てられる。電気負荷15はアノード、カソードと電気的に連結される。アノードオフガスは加温用バーナー18において消費される。カソードオフガスは排気口16から排出される。
【0040】
【発明の効果】
本発明の脱硫方法により硫黄を含有する炭化水素原料を脱硫して、硫黄濃度を0.1質量ppm以下に低減することができ、得られる燃料ガスは、特に固体高分子形燃料電池を用いた燃料電池システムに好適に採用できる。
【0041】
【実施例】
以下、本発明について実施例をあげて説明するが、本発明はこれらに限定されるものではない。
【0042】
(実施例1)
武田薬品(株)社製活性炭(炭素含有量95質量%、表面積1200m2/g)20gに対し、18.3gの硝酸亜鉛を20gの水に溶解し、含浸担持した。この硝酸亜鉛を担持した活性炭を120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し酸化亜鉛を担持した活性炭とした。次いで8.7gの硝酸ニッケルを20gの水に溶解し、前記で得た酸化亜鉛を担持した活性炭に含浸担持し、120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し、酸化亜鉛と酸化ニッケルを担持した触媒A(触媒A1)を得た。担持された酸化亜鉛量および酸化ニッケル量は触媒に対してそれぞれ18質量%および10質量%であった。
また触媒BとしてEngelhard社製Ni5256E(Ni含有量57質量%)を使用した。
【0043】
触媒Aと触媒Bをそれぞれ10cm3ずつ合計20cm3を反応管に前段に触媒A、後段に触媒Bとなるように充填し、水素気流中、300℃にて2時間還元した後、1号灯油(硫黄濃度15質量ppm)の脱硫反応評価を行った。水素非共存下、常圧、LHSV0.5h-1の条件で燃料電池システムの起動時を想定し、室温から通油を開始し、180℃まで2時間で昇温し、180℃にて10時間保持後、室温まで降温するのを1サイクルとし、これを5サイクル行うことで反応を評価した。室温(約15℃)、室温〜180℃、180℃で10時間保持後の3種類の生成油を採取し、硫黄濃度を測定した結果(5サイクル目)を表1に示した。
【0044】
(実施例2)
武田薬品(株)社製活性炭(炭素含有量98質量%、表面積900m2/g)20gに対し、4.9gの硝酸亜鉛と20.8gの硝酸ニッケルを20gの水に溶解し、含浸担持した。担持後の活性炭を120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し、酸化亜鉛と酸化ニッケルを担持した触媒A(触媒A2)を得た。担持された酸化亜鉛量および酸化ニッケル量は触媒に対してそれぞれ5質量%および20質量%であった。
触媒Aとして前記触媒A2を用いた以外は実施例1と同様に脱硫反応評価を行った。その結果を表1に併記した。
【0045】
(実施例3)
武田薬品(株)社製活性炭(炭素含有量98質量%、表面積1600m2/g)18gに対し、2gのアルミナゾルを添加し、混練し、押出し成型した。この成型体を120℃で一晩乾燥後、窒素雰囲気、400℃にて焼成を行った。得られたアルミナ含有活性炭に対し、4.9gの硝酸亜鉛と20.8gの硝酸ニッケルを20gの水に溶解し、含浸担持した。担持後の活性炭を120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し、酸化亜鉛と酸化ニッケルを担持した触媒A(触媒A3)を得た。担持された酸化亜鉛量および酸化ニッケル量は触媒に対してそれぞれ5質量%および20質量%であった。
触媒Aとして前記触媒A3を用いた以外は実施例1と同様に脱硫反応評価を行った。その結果を表1に併記した。
【0046】
(比較例1)
武田薬品(株)社製活性炭(炭素含有量90質量%、表面積500m2/g)20gに対し、18.3gの硝酸亜鉛を20gの水に溶解し、含浸担持した。この硝酸亜鉛を担持した活性炭を120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し酸化亜鉛を担持した活性炭とした。次いで8.7gの硝酸ニッケルを20gの水に溶解し、酸化亜鉛を担持した活性炭に含浸担持し、120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し、酸化亜鉛と酸化ニッケルを担持した触媒A(触媒A4)を得た。担持された酸化亜鉛量および酸化ニッケル量は触媒に対してそれぞれ18質量%および10質量%であった。
触媒Aとして前記触媒A4を用いた以外は実施例1と同様に脱硫反応評価を行った。その結果を表1に併記した。
【0047】
(比較例2)
武田薬品(株)社製活性炭(炭素含有量98質量%、表面積900m2/g)20gに対し、31.3gの硝酸亜鉛を20gの水に溶解し、含浸担持した。この硝酸亜鉛を担持した活性炭を120℃にて一晩乾燥後、窒素雰囲気、350℃の条件下で3時間焼成し、酸化亜鉛を担持した触媒A(触媒A5)を得た。担持された酸化亜鉛量は触媒に対して30質量%であった。
触媒Aとして前記触媒A5を用いた以外は実施例1と同様に脱硫反応評価を行った。その結果を表1に併記した。
【0048】
(比較例3)
実施例1において、触媒Aを使用せず、触媒Bのみを20cm3充填し、実施例1と同様に脱硫反応評価を行った。その結果を表1に併記した。
【0049】
【表1】

Figure 0004057314
【0050】
(実施例4)
図1の燃料電池システムにおいて、脱硫器5に、実施例1で得られた触媒Aを下部(前段)に、触媒Bを上部(後段)に充填して、1号灯油(硫黄濃度15質量ppm)を燃料とし、発電試験を行なった。200時間の運転中、脱硫器は正常に作動し、触媒の活性低下は認められなかった。脱硫条件は、温度180℃、常圧、水素流通なし、LHSV=0.5h-1であった。
このとき水蒸気改質にはRu系触媒を用い、S/C=3、温度700℃、LHSV=5h-1の条件で、シフト工程(反応器10)ではCu−Zn系触媒を用い、200℃、GHSV=2000h-1の条件で、一酸化炭素選択酸化工程(反応器11)ではRu系触媒を用い、O2/CO=3、温度150℃、GHSV=5000h-1の条件で運転を行った。燃料電池も正常に作動し電気負荷15も順調に運転された。
【図面の簡単な説明】
【図1】本発明の燃料電池システムの一例を示す概略図である。
【符号の説明】
1 水タンク
2 水ポンプ
3 燃料タンク
4 燃料ポンプ
5 脱硫器
6 気化器
7 改質器
8 空気ブロアー
9 高温シフト反応器
10 低温シフト反応器
11 選択酸化反応器
12 アノード
13 カソード
14 固体高分子電解質
15 電気負荷
16 排気口
17 固体高分子形燃料電池
18 加温用バーナー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for desulfurizing hydrocarbons using a specific catalyst. The present invention also relates to a fuel cell system provided with a desulfurization apparatus filled with this specific catalyst.
[0002]
[Prior art]
A fuel cell has a feature that high efficiency can be obtained because a free energy change caused by a combustion reaction of fuel can be directly taken out as electric energy. In addition to the fact that it does not emit harmful substances, it is being developed for various uses. In particular, solid polymer fuel cells are characterized by high power density, compactness, and operation at low temperatures.
[0003]
As a fuel gas for a fuel cell, a gas containing hydrogen as a main component is generally used, and the raw materials thereof include natural gas, hydrocarbons such as LPG, naphtha and kerosene, alcohol such as methanol, ethanol, and dimethyl ether. Ether or the like is used. These carbon and hydrogen raw materials are reformed by treating them with steam at a high temperature on a catalyst, or they are partially oxidized with an oxygen-containing gas, or a self-heat recovery type reforming reaction in a system in which steam and an oxygen-containing gas coexist. The hydrogen obtained by performing is basically used as fuel hydrogen for fuel cells.
[0004]
However, since elements other than hydrogen exist in these raw materials, it is inevitable that impurities derived from carbon are mixed in the fuel gas to the fuel cell. Among these, carbon monoxide poisons platinum-based noble metals used as electrode catalysts for fuel cells. Therefore, if carbon monoxide is present in the fuel gas, sufficient power generation characteristics cannot be obtained. In particular, a fuel cell operated at a low temperature has a stronger carbon monoxide adsorption and is more susceptible to poisoning. Therefore, in a system using a polymer electrolyte fuel cell, it is indispensable that the concentration of carbon monoxide in the fuel gas is reduced.
[0005]
Therefore, a method is adopted in which carbon monoxide in the reformed gas obtained by reforming the raw material is reacted with water vapor to convert it into hydrogen and carbon dioxide, or a small amount of remaining carbon monoxide is removed by selective oxidation. .
Finally, the fuel hydrogen removed until the carbon monoxide concentration is sufficiently low is introduced into the cathode of the fuel cell where it is converted into protons and electrons on the electrocatalyst. The produced protons move to the anode side in the electrolyte, react with oxygen together with the electrons that have passed through the external circuit, and produce water. Electrons generate electricity by passing through an external circuit.
[0006]
The catalyst used for the reforming of raw materials until the production of fuel hydrogen for fuel cells, the removal of carbon monoxide, and the cathode electrode is often used in a reduced state such as noble metal or copper. When sulfur coexists, it becomes a catalyst poison, which reduces the catalytic activity of the hydrogen production process or the battery itself, and reduces the efficiency.
Therefore, it is considered that it is indispensable to sufficiently remove the sulfur content contained in the raw material in order to use the catalyst used in the hydrogen production process and further the electrode catalyst in its original performance.
The so-called desulfurization process, which basically removes sulfur, takes place at the very beginning of the hydrogen production process. Although it is necessary to reduce the sulfur concentration to a level at which the catalyst used in the reforming process immediately after that functions sufficiently, it is usually 0.1 ppm by mass or less.
[0007]
Until now, the sulfur content of fuel cell raw materials has been removed by hydrodesulfurizing difficult-to-desulfurize organic sulfur compounds with a desulfurization catalyst, once converted to hydrogen sulfide that can be easily adsorbed and removed, and treated with an appropriate adsorbent. It seemed that the method to do was suitable. However, a general hydrodesulfurization catalyst is used at a high hydrogen pressure. However, when it is used in a fuel cell system, since the technological development is limited to atmospheric pressure or at most 1 MPa, an ordinary desulfurization catalyst is used. The current situation is that the system cannot handle it.
[0008]
Therefore, an invention related to an adsorbent that sufficiently exhibits a desulfurization function even in a low-pressure system has been proposed, and various catalyst systems have been introduced so far. For example, JP-A-1-188404 and JP-A-1-188405 report a method for producing hydrogen by steam reforming kerosene desulfurized with a nickel-based desulfurizing agent. However, in this case, the temperature range in which desulfurization is possible under good conditions is 150 to 300 ° C., and there is a restriction on the process. The inlet temperature of the steam reformer in the subsequent stage of desulfurization is 400 to 500 ° C., and the desulfurization temperature is preferably close to this temperature in terms of the process. JP-A-2-302302 and JP-A-2-302303 disclose copper-zinc-based desulfurization agents. However, even if this catalyst is used at a relatively high temperature, carbon deposition is small. However, since the desulfurization activity is lower than that of nickel, light hydrocarbons such as natural gas, LPG and naphtha can be desulfurized. Is insufficient.
Japanese Patent Application Laid-Open No. 1-143155 discloses a method using activated carbon or a chemical solution for desulfurization. However, this catalyst has been shown to be effective for desulfurization at room temperature at start-up, but the raw material is limited to a gas body at room temperature and has no effect on naphtha and kerosene.
[0009]
[Problems to be solved by the invention]
As described above, noble metal or copper is often used in a reduced state as the catalyst used for the reforming of raw materials until the production of fuel hydrogen for fuel cells, the removal of carbon monoxide, and the cathode electrode. In such a state, when sulfur coexists, it becomes a catalyst poison, which reduces the catalytic activity of the hydrogen production process or the battery itself, and reduces the efficiency. Therefore, it is indispensable to sufficiently remove the sulfur contained in the raw material in order to use the catalyst used in the hydrogen production process and further the electrode catalyst with its original performance. In addition, it is necessary to effectively desulfurize hardly desulfurization substances under low pressure conditions.
The present invention provides a catalyst that satisfies such difficult conditions and a fuel cell system based on the catalyst.
[0010]
[Means for Solving the Problems]
The present inventor has found a catalyst for efficiently desulfurizing a sulfur compound contained in a hydrocarbon raw material through intensive research, and has completed the present invention.
That is, the present invention is a catalyst comprising a hydrocarbon containing sulfur, (1) nickel oxide and zinc oxide supported on a support containing at least 50% by mass of activated carbon having a surface area of 600 m 2 / g or more, The amount of nickel oxide and zinc oxide supported on the catalyst is 1 to 49% by mass, respectively, and the catalyst A having a sum of the amount of nickel oxide and zinc oxide supported of 5 to 50% by mass is contacted, and then (2) nickel Carbonization characterized by desulfurizing the hydrocarbon to a sulfur concentration of 0.1 mass ppm or less by contacting with catalyst B containing 20 mass% or more of one or more elements selected from zinc and copper The present invention relates to a hydrogen desulfurization method.
[0011]
In addition, the present invention provides a hydrocarbon containing sulfur by bringing the hydrocarbon containing sulfur into contact with the catalyst A at a reaction temperature of 10 to 450 ° C. under a pressure of normal pressure to 1 MPa, and then contacting with the catalyst B. The present invention relates to a hydrocarbon desulfurization method characterized by desulfurizing a sulfur concentration to 0.1 mass ppm or less.
Furthermore, the present invention provides a desulfurization apparatus having a first reaction part filled with the catalyst A and a second reaction part filled with the catalyst B, and a fuel mainly composed of hydrocarbon desulfurized by the desulfurization apparatus. The present invention relates to a fuel cell system including a reforming device for reforming into gas.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The present invention relates to a catalyst comprising a hydrocarbon containing sulfur and (1) a nickel oxide and zinc oxide supported on a support containing at least 50% by mass of activated carbon having a surface area of 600 m 2 / g or more, The catalyst A having a supported amount of nickel oxide and zinc oxide of 1 to 49% by mass and a sum of supported amounts of nickel oxide and zinc oxide of 5 to 50% by mass, respectively, and then (2) nickel and zinc And hydrocarbon desulfurized to a sulfur concentration of 0.1 mass ppm or less by contacting with catalyst B containing 20 mass% or more of at least one element selected from copper The present invention relates to a desulfurization method.
[0013]
The kind of activated carbon used in the present invention is not particularly limited, and for example, coal-based activated carbon, coconut shell-based activated carbon, wood-based activated carbon, and the like can be used. The shape of the activated carbon is not particularly limited, and for example, powdered coal, crushed coal, granulated coal, columnar coal, spherical coal, and the like can be used. The particle size of the activated carbon is not particularly limited, and for example, 1 μm to 10 mm can be used. The bulk density of the activated carbon is not particularly limited, and for example, a bulk density of 0.1 to 0.8 g / cm 3 can be used.
[0014]
The surface area of the activated carbon in the present invention is 600 m 2 / g or more, preferably 800 m 2 / g or more. When the surface area of the activated carbon is less than 600 m 2 / g, the dispersibility of the metal decreases and the desulfurization activity decreases. The upper limit is not particularly limited, it is preferably usually 3500 m 2 / g or less, and more preferably less 3000 m 2 / g. Here, the surface area refers to the BET surface area measured by the nitrogen adsorption method.
[0015]
The amount of activated carbon in the carrier is 50% by mass or more, preferably 70% by mass or more. When the amount of the activated carbon in the support is less than 50% by mass, the surface area of the support decreases and the desulfurization activity decreases. The upper limit is 100% by mass. The carrier can contain a binder and the like in addition to the activated carbon.
[0016]
The shape, size, and molding method of the carrier are not particularly limited. Further, at the time of molding, an appropriate binder may be added to improve moldability. The binder is not particularly limited, and alumina, silica, titania, zirconia, or a composite oxide thereof can be used. The amount of binder added to the carrier is preferably 50% by mass or less, and more preferably 30% by mass or less. The lower limit is not particularly limited as long as the function as a binder is exhibited, and is usually 1% by mass or more, preferably 5% by mass or more.
[0017]
The method for supporting nickel oxide and zinc oxide on a carrier is not particularly limited, and a known method such as a normal impregnation method or an ion exchange method can be used. For example, in the impregnation method, a metal salt or metal complex of nickel and zinc is dissolved in water, a solvent such as ethanol or acetone, particularly preferably water, and impregnated on a support. Thereafter, a catalyst carrying nickel oxide and zinc oxide can be obtained by forming nickel oxide and zinc oxide by performing treatments such as drying and firing.
[0018]
The metal salt or metal complex of nickel and zinc is not particularly limited as long as it is soluble in a solvent, and examples thereof include various chlorides, nitrates, sulfates, and organic acid salts. Nickel, zinc nitrate, zinc acetate and the like can be used.
[0019]
The drying method is not particularly limited, and for example, drying in air, deaeration drying under reduced pressure, or the like can be used. The drying temperature is usually from room temperature to 150 ° C, preferably from 50 to 140 ° C, particularly preferably from 80 to 120 ° C.
Also, the firing method is not particularly limited, and it is usually desirable to perform in a nitrogen atmosphere. As a calcination temperature, 250-450 degreeC is preferable and 300-400 degreeC is more preferable. The firing time is preferably 0.1 to 10 hours, and more preferably 0.5 to 5 hours.
[0020]
The order of supporting nickel oxide and zinc oxide is not particularly limited, and may be supported simultaneously, or after supporting zinc oxide, nickel oxide may be supported, or after supporting nickel oxide, zinc oxide. However, it is preferable to support nickel oxide and zinc oxide simultaneously, or to support nickel oxide after supporting zinc oxide.
[0021]
The supported amounts of nickel oxide and zinc oxide with respect to the catalyst are each 1 to 49% by mass, preferably 5 to 45% by mass, and particularly preferably 10 to 40% by mass. When each supported amount is less than 1% by mass, the catalyst performance is not exhibited, and when each supported amount exceeds 49% by mass, not only the dispersibility is lowered, but also from the economical viewpoint. The sum of the amount of nickel oxide and zinc oxide supported on the catalyst is 5 to 50% by mass, preferably 8 to 47% by mass, and particularly preferably 10 to 45% by mass. When the sum of the supported amounts is less than 5% by mass, the catalyst performance is not exhibited, and when the sum of the supported amounts exceeds 50% by mass, not only the dispersibility of nickel oxide and zinc oxide is lowered but also economical. It is not preferable also from a surface.
[0022]
When the catalyst prepared by the above method is used, it can be subjected to the reaction as it is, but a reduction treatment with hydrogen or the like may be performed as a pretreatment. As the conditions, the temperature is 150 to 500 ° C., preferably 250 to 400 ° C., and the time is 0.1 to 10 hours, preferably 0.5 to 5 hours.
[0023]
The shape of the catalyst A is not particularly limited. For example, a catalyst that has been tableted and pulverized to a suitable size after extrusion, a catalyst that has been extruded, a catalyst that has been extruded by adding an appropriate binder, and powdered A catalyst or the like can be used. Or, a carrier formed by tableting and pulverized to an appropriate range, an extruded carrier, a powder or a carrier formed into an appropriate shape such as a sphere, ring, tablet, cylinder, flake, powdered charcoal, crushed A catalyst in which nickel oxide and zinc oxide are supported on a carrier using activated carbon itself such as charcoal, granular charcoal, columnar charcoal, and spherical charcoal can be used.
The main feature of the catalyst A of the present invention is that it can be desulfurized by adsorbing sulfur and used from room temperature.
[0024]
The raw material hydrocarbon containing sulfur is brought into contact with the catalyst A, and then brought into contact with a catalyst (catalyst B) containing at least one element selected from nickel, zinc and copper in an amount of 20% by mass or more. Desulfurized to a sulfur concentration of 0.1 mass ppm or less. The sulfur concentration is measured by an ultraviolet fluorescence method.
[0025]
The main function of the catalyst B is to desulfurize sulfur by adsorption as in the case of the catalyst A. However, the activity is low at 100 ° C. or lower, and when starting use near room temperature, desulfurization with the catalyst B alone is not possible. Can not. When the fuel cell system is started, when oil passage is started near room temperature and the temperature is gradually raised, by combining the catalyst A and the catalyst B, desulfurization can be performed in a wide temperature range.
[0026]
The sum of the contents of nickel, zinc and copper in the catalyst B is preferably 20% by mass or more, and more preferably 50% by mass or more. If it is less than 20% by mass, the volume becomes too large to exhibit sufficient adsorption performance, which is not preferable. The upper limit is 100% by mass.
The catalyst B can contain silica, alumina, magnesia, silica-alumina and the like in addition to nickel, zinc and copper.
The shape of the catalyst B is not particularly limited. For example, a catalyst formed by tableting and pulverized to an appropriate range after being pulverized, a catalyst formed by extrusion, a catalyst formed by adding an appropriate binder and formed into a powder, A catalyst or the like can be used.
[0027]
Further, the present invention is a method for desulfurizing a hydrocarbon raw material containing sulfur at a reaction temperature of 10 to 450 ° C. under a pressure of normal pressure to 1 MPa using the above-mentioned hydrocarbon desulfurization catalyst, The present invention relates to a method for desulfurizing a hydrocarbon raw material to 0.1 mass ppm or less by contacting a hydrocarbon raw material with catalyst A and then with catalyst B.
[0028]
The hydrocarbon raw material containing sulfur used in the present invention is not particularly limited, and examples thereof include methane, ethane, propane, butane, natural gas, LPG, naphtha, gasoline, kerosene, and mixtures thereof. . In addition, hydrogen may be contained in the raw material.
These hydrocarbon raw materials used in the present invention usually contain 100 ppm by mass or less of sulfur.
[0029]
The pressure in the desulfurization reaction is preferably a low pressure in the range of normal pressure to 1 MPa, and more preferably normal pressure to 0.2 MPa in consideration of the economics and safety of the fuel cell system. The reaction temperature is not particularly limited as long as it is a temperature that lowers the sulfur concentration, but it is preferable to work effectively from room temperature in consideration of the start of the equipment, and in consideration of the steady state, 10 ° C. to 450 ° C. is preferable. More preferably, 15 to 350 ° C, particularly preferably 20 to 300 ° C is employed. If the SV is too high, the desulfurization reaction does not proceed easily. On the other hand, if the SV is too low, the apparatus becomes large. When using a liquid material is preferably in the range of 0.01~15H -1, more preferably in the range of 0.05~5H -1, range 0.1~3H -1 it is particularly preferred. In the case of using a gas fuel, preferably in the range of 100~10000H -1, more preferably in the range of 200~5000H -1, range 300~2000H -1 it is particularly preferred. The desulfurization method of the present invention is characterized by desulfurization without hydrogen, but hydrogen may be introduced. The flow rate of hydrogen at that time is, for example, 0.05 to 1.0 NL per 1 g of hydrocarbon raw material.
[0030]
Although the form of the desulfurization apparatus using the desulfurization method of this invention is not specifically limited, For example, a flow-type fixed bed system can be used. The shape of the desulfurization device can be any known shape depending on the purpose of each process, such as a cylindrical shape or a flat plate shape.
[0031]
By using the desulfurization catalyst of the present invention, the sulfur concentration can be reduced to 0.1 mass ppm or less from the hydrocarbon raw material containing sulfur.
The hydrocarbon raw material desulfurized to a sulfur concentration of 0.1 mass ppm or less is then used as a fuel for fuel cells through the reforming step, shift step, carbon monoxide selective oxidation step, etc. Can do.
The reforming process is not particularly limited, but steam reforming in which the raw material is reformed with steam at a high temperature on a catalyst, partial oxidation with an oxygen-containing gas, and steam and an oxygen-containing gas coexist. In such a system, autothermal reforming that performs a self-heat recovery type reforming reaction can be used.
[0032]
The reaction conditions for the reforming are not limited, but the reaction temperature is preferably 200 to 1000 ° C, particularly preferably 500 to 850 ° C. The reaction pressure is preferably from normal pressure to 1 MPa, and particularly preferably from normal pressure to 0.2 MPa. LHSV is preferably 0.01 to 40 h −1 , particularly preferably 0.1 to 10 h −1 .
The mixed gas containing carbon monoxide and hydrogen obtained at this time can be used as a fuel for a fuel cell as it is in the case of a solid oxide fuel cell. In addition, it can be suitably used as a raw material for hydrogen for a fuel cell, such as a phosphoric acid fuel cell or a polymer electrolyte fuel cell, in which carbon monoxide needs to be removed.
[0033]
The production of hydrogen for a fuel cell can employ a known method, and can be carried out, for example, by treating in a shift step and a carbon monoxide selective oxidation step.
The shift process is a process in which carbon monoxide and water are reacted to convert them into hydrogen and carbon dioxide. For example, a mixed oxide of Fe—Cr, a mixed oxide of Zn—Cu, platinum, ruthenium, iridium and the like are contained. The carbon monoxide content is reduced to 2 vol% or less, preferably 1 vol% or less, and more preferably 0.5 vol% or less.
Although the reaction conditions for the shift reaction are not necessarily limited by the reformed gas composition or the like as a raw material, the reaction temperature is preferably 120 to 500 ° C, and particularly preferably 150 to 450 ° C. The pressure is preferably normal pressure to 1 MPa, particularly preferably normal pressure to 0.2 MPa. GHSV is preferably 100~50000h -1, especially 300~10000H -1 are preferred. Usually, in the phosphoric acid fuel cell, the mixed gas in this state can be used as fuel.
[0034]
On the other hand, in the polymer electrolyte fuel cell, since it is necessary to further reduce the carbon monoxide concentration, it is desirable to provide a step of removing carbon monoxide. This step is not particularly limited, and various methods such as an adsorption separation method, a hydrogen separation membrane method, and a carbon monoxide selective oxidation step can be used. It is particularly preferred to use a carbon monoxide selective oxidation step. In this step, using a catalyst containing iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold, etc., 0.5 to 10 times the remaining number of moles of carbon monoxide Mole, preferably 0.7 to 5 times mole, more preferably 1 to 3 times mole oxygen is added to selectively convert carbon monoxide to carbon dioxide, thereby reducing the carbon monoxide concentration. Although the reaction conditions of this method are not limited, the reaction temperature is preferably 80 to 350 ° C, particularly preferably 100 to 300 ° C. The pressure is preferably normal pressure to 1 MPa, particularly preferably normal pressure to 0.2 MPa. GHSV is preferably 1000~50000h -1, especially 3000~30000H -1 are preferred. In this case, the carbon monoxide concentration can be reduced by reacting with the coexisting hydrogen simultaneously with the oxidation of carbon monoxide to generate methane.
[0035]
The present invention also includes a desulfurization apparatus having a first reaction section filled with the catalyst A and a second reaction section filled with the catalyst B, and a hydrocarbon raw material desulfurized by the desulfurization apparatus, the main component of which is hydrogen. The present invention relates to a fuel cell system having at least a reformer for reforming into fuel gas.
[0036]
An example of this fuel cell system will be described below with reference to FIG.
The raw fuel in the fuel tank 3 flows into the desulfurizer 5 through the fuel pump 4. At this time, if necessary, the hydrogen-containing gas from the selective oxidation reactor 11 can be added. The desulfurizer 5 is filled with the catalyst A, which is the hydrocarbon desulfurization catalyst of the present invention, at the front stage and the catalyst B at the rear stage. The fuel desulfurized in the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, introduced into the vaporizer 6, and sent into the reformer 7.
[0037]
The reformer 7 is heated by a heating burner 18. As the fuel for the heating burner 18, the anode off gas of the fuel cell 17 is mainly used, but the fuel discharged from the fuel pump 4 can be supplemented as necessary. As the catalyst filled in the reformer 7, a nickel-based, ruthenium-based, or rhodium-based catalyst can be used.
The gas containing hydrogen and carbon monoxide produced in this way is passed through the high temperature shift reactor 9, the low temperature shift reactor 10, and the selective oxidation reactor 11 in order, so that the carbon monoxide concentration becomes a characteristic of the fuel cell. It is reduced to the extent that it has no effect. Examples of catalysts used in these reactors include an iron-chromium catalyst for the high temperature shift reactor 9, a copper-zinc catalyst for the low temperature shift reactor 10, a ruthenium catalyst for the selective oxidation reactor 11, and the like. be able to.
[0038]
The polymer electrolyte fuel cell 17 comprises an anode 12, a cathode 13, and a solid polymer electrolyte 14, and a fuel gas containing high-purity hydrogen obtained by the above method is provided on the anode side, and an air blower is provided on the cathode side. If necessary, air sent from 8 is introduced after appropriate humidification processing (a humidifier is not shown). At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds at the anode, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds at the cathode. In order to promote these reactions, platinum black and Pt catalyst or Pt-Ru alloy catalyst supported on activated carbon are used for the anode, and platinum black and Pt catalyst supported on activated carbon are used for the cathode. Usually, both the anode and cathode catalysts are formed into a porous catalyst layer together with polytetrafluoroethylene, a low molecular weight polymer electrolyte membrane material, activated carbon, and the like as necessary.
[0039]
Next, the porous catalyst layer is laminated on both sides of a polymer electrolyte membrane known by a trade name such as Nafion (manufactured by DuPont), Gore (manufactured by Gore), Flemion (manufactured by Asahi Glass), Aciplex (manufactured by Asahi Kasei). An MEA (Membrane Electrode Assembly) is formed. Further, the fuel cell is assembled by sandwiching the MEA with a separator having a gas supply function, a current collecting function, particularly an important drainage function in the cathode, and the like made of a metal material, graphite, carbon composite and the like. The electric load 15 is electrically connected to the anode and the cathode. The anode off gas is consumed in the heating burner 18. The cathode off gas is discharged from the exhaust port 16.
[0040]
【The invention's effect】
The hydrocarbon raw material containing sulfur can be desulfurized by the desulfurization method of the present invention, and the sulfur concentration can be reduced to 0.1 mass ppm or less, and the obtained fuel gas is a solid polymer fuel cell in particular. It can be suitably used for a fuel cell system.
[0041]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these.
[0042]
Example 1
18.3 g of zinc nitrate was dissolved in 20 g of water against 20 g of activated carbon (carbon content 95 mass%, surface area 1200 m 2 / g) manufactured by Takeda Pharmaceutical Co., Ltd., and impregnated. The activated carbon carrying zinc nitrate was dried at 120 ° C. overnight and then calcined for 3 hours in a nitrogen atmosphere at 350 ° C. to obtain activated carbon carrying zinc oxide. Next, 8.7 g of nickel nitrate was dissolved in 20 g of water, impregnated and supported on the activated carbon loaded with zinc oxide obtained above, dried at 120 ° C. overnight, and then for 3 hours under conditions of nitrogen atmosphere and 350 ° C. Firing was performed to obtain catalyst A (catalyst A1) carrying zinc oxide and nickel oxide. The amounts of zinc oxide and nickel oxide supported were 18% by mass and 10% by mass, respectively, with respect to the catalyst.
As catalyst B, Ni5256E (Ni content: 57% by mass) manufactured by Engelhard was used.
[0043]
After the catalyst A and the catalyst B was packed so that the catalyst B Catalyst A, in a subsequent stage in front of the total 20 cm 3 by 10 cm 3, respectively in the reaction tube, in a hydrogen stream was reduced for 2 hours at 300 ° C., 1 No. kerosene The desulfurization reaction was evaluated at a sulfur concentration of 15 mass ppm. Assuming the start of the fuel cell system under the conditions of normal pressure and LHSV 0.5h -1 in the absence of hydrogen, oiling is started from room temperature, the temperature is increased to 180 ° C in 2 hours, and then at 180 ° C for 10 hours. After the holding, the temperature was lowered to room temperature as one cycle, and the reaction was evaluated by performing this for 5 cycles. Table 1 shows the results (fifth cycle) of collecting three types of product oil after being kept at room temperature (about 15 ° C), room temperature to 180 ° C, and 180 ° C for 10 hours, and measuring the sulfur concentration.
[0044]
(Example 2)
4.9 g of zinc nitrate and 20.8 g of nickel nitrate were dissolved in 20 g of water and impregnated on 20 g of activated carbon (carbon content 98 mass%, surface area 900 m 2 / g) manufactured by Takeda Pharmaceutical Co., Ltd. . The supported activated carbon was dried at 120 ° C. overnight and then calcined under a nitrogen atmosphere and at 350 ° C. for 3 hours to obtain catalyst A (catalyst A2) supporting zinc oxide and nickel oxide. The amounts of zinc oxide and nickel oxide supported were 5% by mass and 20% by mass, respectively, with respect to the catalyst.
A desulfurization reaction was evaluated in the same manner as in Example 1 except that the catalyst A2 was used as the catalyst A. The results are also shown in Table 1.
[0045]
(Example 3)
2 g of alumina sol was added to 18 g of activated carbon (carbon content 98 mass%, surface area 1600 m 2 / g) manufactured by Takeda Pharmaceutical Co., Ltd., kneaded, and extruded. The molded body was dried at 120 ° C. overnight and then fired at 400 ° C. in a nitrogen atmosphere. To the obtained activated carbon containing alumina, 4.9 g of zinc nitrate and 20.8 g of nickel nitrate were dissolved in 20 g of water and impregnated. The supported activated carbon was dried at 120 ° C. overnight and then calcined under a nitrogen atmosphere and at 350 ° C. for 3 hours to obtain catalyst A (catalyst A3) supporting zinc oxide and nickel oxide. The amounts of zinc oxide and nickel oxide supported were 5% by mass and 20% by mass, respectively, with respect to the catalyst.
A desulfurization reaction was evaluated in the same manner as in Example 1 except that the catalyst A3 was used as the catalyst A. The results are also shown in Table 1.
[0046]
(Comparative Example 1)
18.3 g of zinc nitrate was dissolved in 20 g of water against 20 g of activated carbon (carbon content 90 mass%, surface area 500 m 2 / g) manufactured by Takeda Pharmaceutical Co., Ltd., and impregnated and supported. The activated carbon carrying zinc nitrate was dried at 120 ° C. overnight and then calcined for 3 hours in a nitrogen atmosphere at 350 ° C. to obtain activated carbon carrying zinc oxide. Next, 8.7 g of nickel nitrate is dissolved in 20 g of water, impregnated and supported on activated carbon supporting zinc oxide, dried at 120 ° C. overnight, and then calcined for 3 hours under conditions of 350 ° C. in a nitrogen atmosphere. Catalyst A (catalyst A4) carrying zinc and nickel oxide was obtained. The amounts of zinc oxide and nickel oxide supported were 18% by mass and 10% by mass, respectively, with respect to the catalyst.
A desulfurization reaction was evaluated in the same manner as in Example 1 except that the catalyst A4 was used as the catalyst A. The results are also shown in Table 1.
[0047]
(Comparative Example 2)
31.3 g of zinc nitrate was dissolved in 20 g of water and impregnated on 20 g of activated carbon (carbon content 98 mass%, surface area 900 m 2 / g) manufactured by Takeda Pharmaceutical Co., Ltd. The activated carbon carrying zinc nitrate was dried at 120 ° C. overnight and then calcined for 3 hours under a nitrogen atmosphere at 350 ° C. to obtain catalyst A (catalyst A5) carrying zinc oxide. The amount of zinc oxide supported was 30% by mass with respect to the catalyst.
A desulfurization reaction was evaluated in the same manner as in Example 1 except that the catalyst A5 was used as the catalyst A. The results are also shown in Table 1.
[0048]
(Comparative Example 3)
In Example 1, the catalyst A was not used, and only the catalyst B was filled with 20 cm 3 , and the desulfurization reaction was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[0049]
[Table 1]
Figure 0004057314
[0050]
Example 4
In the fuel cell system of FIG. 1, the desulfurizer 5 is filled with the catalyst A obtained in Example 1 in the lower part (front stage) and the catalyst B in the upper part (rear stage), and No. 1 kerosene (sulfur concentration 15 mass ppm). ) As a fuel, and a power generation test was conducted. During the operation for 200 hours, the desulfurizer operated normally and no decrease in the activity of the catalyst was observed. The desulfurization conditions were a temperature of 180 ° C., normal pressure, no hydrogen flow, and LHSV = 0.5 h −1 .
At this time, a Ru-based catalyst is used for steam reforming, and a Cu-Zn-based catalyst is used in the shift step (reactor 10) at 200 ° C. under the conditions of S / C = 3, temperature 700 ° C., LHSV = 5h −1. The carbon monoxide selective oxidation step (reactor 11) uses a Ru-based catalyst under the conditions of GHSV = 2000h −1 , and is operated under the conditions of O 2 / CO = 3, temperature 150 ° C., and GHSV = 5000h −1. It was. The fuel cell also operated normally and the electric load 15 was operated smoothly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a fuel cell system of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water tank 2 Water pump 3 Fuel tank 4 Fuel pump 5 Desulfurizer 6 Vaporizer 7 Reformer 8 Air blower 9 High temperature shift reactor 10 Low temperature shift reactor 11 Selective oxidation reactor 12 Anode 13 Cathode 14 Solid polymer electrolyte 15 Electric load 16 Exhaust port 17 Polymer electrolyte fuel cell 18 Heating burner

Claims (2)

硫黄を100質量ppm以下含有する炭化水素を、常圧〜1MPaの圧力下、10〜450℃の反応温度にて、(1)表面積が600m/g以上の活性炭を少なくとも50質量%以上含む担体に酸化ニッケルおよび酸化亜鉛を担持してなる触媒であって、触媒に対する酸化ニッケルおよび酸化亜鉛の担持量がそれぞれ1〜49質量%であり、かつ酸化ニッケルと酸化亜鉛の担持量の和が5〜50質量%である触媒Aと接触させ、次いで(2)ニッケルを20質量%以上含有してなる触媒Bと接触させることにより、該炭化水素の硫黄濃度を0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法。(1) A carrier containing at least 50% by mass of activated carbon having a surface area of 600 m 2 / g or more at a reaction temperature of 10 to 450 ° C. under a pressure of normal pressure to 1 MPa and a hydrocarbon containing 100 ppm by mass or less of sulfur. The catalyst comprises nickel oxide and zinc oxide supported on the catalyst, the supported amounts of nickel oxide and zinc oxide are 1 to 49% by mass, respectively, and the sum of the supported amounts of nickel oxide and zinc oxide is 5 to 5%. is contacted with the catalyst a is 50 wt%, by then (2) the nickel be contacted with the catalyst B, which comprises more than 20 wt%, to desulfurize sulfur concentration of hydrocarbon below 0.1 mass ppm The hydrocarbon desulfurization method characterized by the above-mentioned. 硫黄を100質量ppm以下含有する炭化水素が、メタン、エタン、プロパン、ブタン、天然ガス、LPG、ナフサ、ガソリン、灯油およびこれらの混合物から選択される炭化水素であることを特徴とする請求項1に記載の脱硫方法。The hydrocarbon containing 100 ppm by mass or less of sulfur is a hydrocarbon selected from methane, ethane, propane, butane, natural gas, LPG, naphtha, gasoline, kerosene and mixtures thereof. The desulfurization method described in 1.
JP2002058719A 2002-03-05 2002-03-05 Hydrocarbon desulfurization method and fuel cell system Expired - Fee Related JP4057314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058719A JP4057314B2 (en) 2002-03-05 2002-03-05 Hydrocarbon desulfurization method and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058719A JP4057314B2 (en) 2002-03-05 2002-03-05 Hydrocarbon desulfurization method and fuel cell system

Publications (2)

Publication Number Publication Date
JP2003253270A JP2003253270A (en) 2003-09-10
JP4057314B2 true JP4057314B2 (en) 2008-03-05

Family

ID=28668611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058719A Expired - Fee Related JP4057314B2 (en) 2002-03-05 2002-03-05 Hydrocarbon desulfurization method and fuel cell system

Country Status (1)

Country Link
JP (1) JP4057314B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106427A1 (en) * 2003-11-17 2005-05-19 Ford Motor Company Direct operation of low temperature solid oxide fuel cells using oxygenated fuel
FR2995601B1 (en) * 2012-09-20 2016-05-27 Ifp Energies Now PROCESS FOR THE PRODUCTION OF PURE HYDROGEN FROM A DENATURED HYDROCARBONATE LOAD INCLUDING A DESULFURIZATION STEP WITH IMPROVED TEMPERATURE CONTROL BEYOND PSA

Also Published As

Publication number Publication date
JP2003253270A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
WO2010113506A1 (en) Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
WO2008075761A1 (en) Catalyst for reducing carbon monoxide concentration
JP4227779B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP4210130B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP5324205B2 (en) Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4227780B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
JP2003265956A (en) Catalyst for selectively oxidizing carbon monoxide, method of reducing concentration of carbon monoxide, and fuel cell system
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP5275114B2 (en) Hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP5275113B2 (en) Hydrocarbon desulfurizing agent precursor and production method thereof, hydrocarbon desulfurization agent firing precursor and production method thereof, hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP4037122B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4011886B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2007167828A (en) Catalyst for selectively oxidizing carbon monoxide, method for decreasing concentration of carbon monoxide and fuel cell system
JP4567930B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2003147372A (en) Method for desulfurizing hydrocarbon and fuel battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees