JP5324205B2 - Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system - Google Patents

Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system Download PDF

Info

Publication number
JP5324205B2
JP5324205B2 JP2008321456A JP2008321456A JP5324205B2 JP 5324205 B2 JP5324205 B2 JP 5324205B2 JP 2008321456 A JP2008321456 A JP 2008321456A JP 2008321456 A JP2008321456 A JP 2008321456A JP 5324205 B2 JP5324205 B2 JP 5324205B2
Authority
JP
Japan
Prior art keywords
oxide
mass
nickel
desulfurization
kerosene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008321456A
Other languages
Japanese (ja)
Other versions
JP2010142715A (en
Inventor
圭行 永易
佳恵 福田
博文 紺野
優子 青木
貴美香 石月
隆也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008321456A priority Critical patent/JP5324205B2/en
Priority to PCT/JP2009/071039 priority patent/WO2010071172A1/en
Publication of JP2010142715A publication Critical patent/JP2010142715A/en
Application granted granted Critical
Publication of JP5324205B2 publication Critical patent/JP5324205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8873Zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

The hydrocarbon desulfurizing agent contains a porous inorganic oxide, nickel and/or a nickel oxide, zinc oxide, cobalt and/or a cobalt oxide, and molybdenum and/or a molybdenum oxide. The content of the porous inorganic oxide is 10-30 mass%, the content of the nickel and/or the nickel oxide is 45-75 mass%, and the content of the zinc oxide is 3-40 mass% in terms of oxide, based on the total mass of the desulfurizing agent. According to the invention, it is possible to provide a hydrocarbon desulfurizing agent and a manufacturing method thereof with which sufficient desulfurizing capability can be sustained over a long period of time even when a starting material fuel such as kerosene is desulfurized under low-pressure conditions or in the absence of hydrogen, as well as provide a kerosene desulfurization method which utilizes said desulfurizing agent and a fuel cell system.

Description

本発明は、炭化水素用脱硫剤及びその製造方法、灯油の脱硫方法並びに燃料電池システムに関する。   The present invention relates to a hydrocarbon desulfurization agent and a method for producing the same, a method for desulfurizing kerosene, and a fuel cell system.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術のひとつとして燃料電池が注目されている。燃料電池は、燃料の燃焼反応による自由エネルギー変化を直接電気エネルギーとして取り出すことができるため、高いエネルギー効率が得られるという特徴がある。さらに有害物質を排出しないことも相俟って、様々な用途への展開が図られている。特に固体高分子形燃料電池は出力密度が高く、コンパクトで、しかも低温で作動可能との特徴がある。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. A fuel cell has a feature that high energy efficiency can be obtained because a free energy change caused by a combustion reaction of fuel can be directly taken out as electric energy. In addition to the fact that it does not emit harmful substances, it is being developed for various uses. In particular, polymer electrolyte fuel cells are characterized by high power density, compactness, and operation at low temperatures.

一般的に燃料電池用の燃料ガスとしては水素を主成分とするガスが用いられる。水素を含む燃料ガスを得るための原燃料としては、天然ガス、LPG、ナフサ、灯油等の炭化水素、あるいはメタノール、エタノール等のアルコール、若しくはジメチルエーテル等のエーテルなどが用いられる。これらの原燃料は炭素と水素とを含むものであり、当該原料を水蒸気と共に触媒上で改質反応を行う、酸素含有気体で部分酸化反応を行う、あるいは水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うことにより、水素と一酸化炭素とを含むガスを生成せしめ、さらに一酸化炭素を低減あるいは除去する工程を経て、燃料電池用の燃料ガスが得られる。   In general, a gas mainly composed of hydrogen is used as a fuel gas for a fuel cell. As a raw fuel for obtaining a fuel gas containing hydrogen, natural gas, hydrocarbons such as LPG, naphtha and kerosene, alcohols such as methanol and ethanol, ethers such as dimethyl ether, and the like are used. These raw fuels contain carbon and hydrogen, and in a system in which the raw material undergoes a reforming reaction on a catalyst with steam, a partial oxidation reaction with an oxygen-containing gas, or a system in which steam and oxygen-containing gas coexist. By performing the reforming reaction of the self-heat recovery type, a gas containing hydrogen and carbon monoxide is generated, and further through a process of reducing or removing carbon monoxide, a fuel gas for a fuel cell can be obtained.

上記の原燃料は、石油由来である場合には不純物として、また、天然ガス等である場合には漏洩検出のための着臭剤として、硫黄化合物を含有することが多い。これらの原燃料を使用した場合には、それから製造される燃料水素中にも硫黄含有化合物が混入することが避けられない。燃料電池システムにおいては、原燃料から燃料水素を製造するための原燃料改質工程、水素を含むガス中の一酸化炭素除去の各工程において、さらに発電工程における陰極の電極触媒として、貴金属又は銅などの金属触媒を還元状態で使用することが多い。硫黄化合物はこれらの金属触媒に対して触媒毒として作用し、水素製造工程又は発電工程の触媒の活性を低下させ、燃料電池システムとしての効率を低下させてしまう。従って、原燃料中に含まれる硫黄分を十分に除去することが、水素製造工程に用いられる触媒、さらには発電工程の電極触媒を本来の性能にて長時間安定して使用可能ならしめるために必要不可欠である。   The raw fuel often contains a sulfur compound as an impurity when it is derived from petroleum, and as an odorant for detecting leakage when it is natural gas or the like. When these raw fuels are used, it is inevitable that sulfur-containing compounds are mixed in the fuel hydrogen produced therefrom. In a fuel cell system, in each step of raw fuel reforming process for producing fuel hydrogen from raw fuel, removal of carbon monoxide in a gas containing hydrogen, and as a cathode electrode catalyst in power generation process, noble metal or copper A metal catalyst such as is often used in a reduced state. The sulfur compound acts as a catalyst poison for these metal catalysts, reduces the activity of the catalyst in the hydrogen production process or power generation process, and reduces the efficiency of the fuel cell system. Therefore, it is necessary to sufficiently remove sulfur contained in raw fuel so that the catalyst used in the hydrogen production process, and further the electrode catalyst in the power generation process can be used stably for a long time with its original performance. Indispensable.

燃料電池用原燃料中の硫黄分濃度は、改質工程に用いる触媒が十分機能する程度まで低減する必要があることから、原燃料中の硫黄分を除去する脱硫工程は、基本的に水素製造工程の前に設けられる。従来は脱硫工程にて処理された原燃料中の硫黄分濃度は、硫黄原子として0.1質量ppm以下あるいは0.05質量ppm(50質量ppb)以下と言われてきたが、近年、脱硫の要求性能は厳しくなっており、0.02質量ppm(20質量ppb)以下とすることが求められるようになってきた。   Since the concentration of sulfur in the raw fuel for fuel cells needs to be reduced to the extent that the catalyst used in the reforming process functions sufficiently, the desulfurization process for removing sulfur in the raw fuel is basically a hydrogen production process. It is provided before the process. Conventionally, the sulfur concentration in the raw fuel treated in the desulfurization process has been said to be 0.1 mass ppm or less or 0.05 mass ppm (50 mass ppb) or less as a sulfur atom. The required performance has become strict, and it has been required to be 0.02 mass ppm (20 mass ppb) or less.

従来、燃料電池用原燃料の脱硫方法としては、水素化脱硫触媒を用いて難脱硫性有機硫黄化合物を水素化脱硫して、一旦吸着除去し易い硫化水素に変換し、適当な吸着剤で処理する方法が適していると考えられてきた。しかし、一般的な水素化脱硫触媒は高い水素圧力を必要とするのに対し、燃料電池システムの分野では水素圧力を大気圧又は高くても1MPa程度とする技術開発を目指しているため、従来の水素化脱硫触媒を用いた脱硫工程をそのまま適用できないのが現状である。   Conventionally, as a method for desulfurizing raw fuel for fuel cells, a hydrodesulfurization catalyst is used to hydrodesulfurize a difficult-to-desulfurize organic sulfur compound to convert it into hydrogen sulfide that can be easily adsorbed and removed, and then treated with an appropriate adsorbent. It has been considered that the method to do is suitable. However, while a general hydrodesulfurization catalyst requires high hydrogen pressure, in the field of fuel cell systems, since it aims at technical development that makes the hydrogen pressure atmospheric pressure or at most about 1 MPa, The current situation is that a desulfurization process using a hydrodesulfurization catalyst cannot be applied as it is.

燃料電池発電システムにおける脱硫方法としては、例えば、ニッケル系脱硫剤で脱硫した灯油を水蒸気改質して水素を製造する方法が提案されている(下記特許文献1、2)。また、銅−亜鉛系脱硫剤(下記特許文献3、4)、ニッケル−亜鉛系脱硫剤(下記特許文献5)、ニッケル系脱硫剤にモリブデンを添加したもの(下記特許文献6)、活性炭及びゼオライトを含まず、銅、銀、亜鉛、モリブデン、鉄、コバルト、ニッケル又はこれらの混合物を含む脱硫剤(下記特許文献7)などの使用が提案されている。
特開平1−188404号公報 特開平1−188405号公報 特開平2−302302号公報 特開平2−302303号公報 特開2001−62297号公報 特開2007−254275号公報 特表2006−511678号公報
As a desulfurization method in a fuel cell power generation system, for example, a method for producing hydrogen by steam reforming kerosene desulfurized with a nickel-based desulfurizing agent has been proposed (Patent Documents 1 and 2 below). Also, copper-zinc desulfurizing agents (Patent Documents 3 and 4 below), nickel-zinc desulfurizing agents (Patent Document 5 below), nickel-based desulfurizing agents with molybdenum added (Patent Document 6 below), activated carbon and zeolite It is proposed to use a desulfurizing agent (Patent Document 7 below) containing copper, silver, zinc, molybdenum, iron, cobalt, nickel, or a mixture thereof.
JP-A-1-188404 Japanese Patent Laid-Open No. 1-188405 JP-A-2-302302 JP-A-2-302303 JP 2001-62297 A JP 2007-254275 A JP-T-2006-511678

しかしながら、上記特許文献1〜7に記載の脱硫剤であっても、炭化水素を原燃料とする燃料電池システムにおいて、低圧条件下又は水素非共存下での原燃料の脱硫工程に供した場合には、十分な脱硫性能を発揮できない、あるいは長期使用に伴い脱硫性能が低下してしまうという問題がある。そのため、これらの脱硫剤を用いた場合には、脱硫工程の後段の燃料水素の製造工程及び発電工程を長時間安定して運転することは困難である。なお、脱硫工程における温度を高くすることによって脱硫剤の活性をある程度改善することができるが、その場合には温度上昇に伴うコーキングの発生等により脱硫剤の寿命が短くなるため、根本的な解決策とはならない。また、上記従来の脱硫剤のうちの一部は、天然ガス、LPG、ナフサ等の軽質炭化水素に対してある程度の脱硫性能を示すが、より重質の灯油に対しては必ずしも充分な脱硫性能を示さない。   However, even if it is a desulfurization agent of the above-mentioned patent documents 1-7, when it uses for a desulfurization process of raw fuel in low-pressure conditions or under non-coexistence of hydrogen in a fuel cell system which uses hydrocarbons as raw fuel However, there is a problem that sufficient desulfurization performance cannot be exhibited, or that the desulfurization performance decreases with long-term use. Therefore, when these desulfurization agents are used, it is difficult to stably operate the fuel hydrogen production process and power generation process at the latter stage of the desulfurization process for a long time. Note that the activity of the desulfurizing agent can be improved to some extent by raising the temperature in the desulfurization process, but in this case, the life of the desulfurizing agent is shortened due to the occurrence of coking due to the temperature rise, etc. It is not a solution. In addition, some of the conventional desulfurization agents show a certain degree of desulfurization performance against light hydrocarbons such as natural gas, LPG, naphtha, etc., but are not always sufficient for heavier kerosene. Not shown.

本発明は、このような実情に鑑みてなされたものであり、その目的は、低圧条件下又は水素非共存下で灯油等の原燃料を脱硫する場合であっても、十分な脱硫性能を長期間にわたって維持することが可能な脱硫剤及びその製造方法、並びに、該脱硫剤を用いた灯油の脱硫方法及び燃料電池システムを提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide sufficient desulfurization performance even when desulfurizing raw fuel such as kerosene under low pressure conditions or in the absence of hydrogen. An object of the present invention is to provide a desulfurizing agent that can be maintained over a period of time, a method for producing the same, a desulfurizing method for kerosene using the desulfurizing agent, and a fuel cell system.

上記課題を解決するために、本発明の炭化水素用脱硫剤は、多孔性無機酸化物と、ニッケル及び/又は酸化ニッケルと、酸化亜鉛と、コバルト及び/又は酸化コバルトと、モリブデン及び/又は酸化モリブデンと、を含有し、脱硫剤の全質量を基準として、酸化物換算で、多孔性無機酸化物の含有量が10〜30質量%であり、ニッケル及び/又は酸化ニッケルの含有量が45〜75質量%であり、酸化亜鉛の含有量が3〜40質量%であることを特徴とする。   In order to solve the above problems, the hydrocarbon desulfurization agent of the present invention comprises a porous inorganic oxide, nickel and / or nickel oxide, zinc oxide, cobalt and / or cobalt oxide, molybdenum and / or oxidation. Molybdenum, based on the total mass of the desulfurizing agent, in terms of oxide, the content of the porous inorganic oxide is 10 to 30% by mass, and the content of nickel and / or nickel oxide is 45 to 45%. It is 75 mass%, and the content of zinc oxide is 3 to 40 mass%.

本発明の炭化水素用脱硫剤は、上記構成を有するため、低圧条件下又は水素非共存下であっても、また、天然ガス、LPG、ナフサ等の軽質炭化水素のみならずより重質の灯油等に対しても、十分な脱硫性能を発揮し、また、その脱硫性能を長期間にわたって維持することができるという効果を有する。   Since the hydrocarbon desulfurization agent of the present invention has the above-described configuration, it can be used not only for light hydrocarbons such as natural gas, LPG, and naphtha but also for heavier kerosene even under low pressure conditions or in the absence of hydrogen. For example, it has an effect of exhibiting sufficient desulfurization performance and maintaining the desulfurization performance over a long period of time.

本発明の炭化水素用脱硫剤は、酸化リンを更に含有することが好ましい。   The hydrocarbon desulfurization agent of the present invention preferably further contains phosphorus oxide.

また、本発明の炭化水素用脱硫剤は、多孔性無機酸化物としてシリカを含有することが好ましい。   Moreover, it is preferable that the hydrocarbon desulfurization agent of the present invention contains silica as a porous inorganic oxide.

また、本発明の炭化水素用脱硫剤の製造方法は、ニッケル化合物、亜鉛化合物並びに多孔性無機酸化物及び/又はその前駆体を含有する溶液又は懸濁液から共沈物を生じさせる第1の工程と、第1の工程で得られる共沈物について洗浄、乾燥及び焼成を順次行う第2の工程と、第2の工程における焼成後の共沈物に、コバルト化合物及びモリブデン化合物を担持して担持物を得る第3の工程と、第3の工程で得られる担持物について乾燥及び焼成を順次行い、多孔性無機酸化物と、ニッケル及び/又は酸化ニッケルと、酸化亜鉛と、コバルト及び/又は酸化コバルトと、モリブデン及び/又は酸化モリブデンと、を含有し、脱硫剤の全質量を基準として、酸化物換算で、前記多孔性無機酸化物の含有量が10〜30質量%であり、前記ニッケル及び/又は酸化ニッケルの含有量が45〜75質量%であり、前記酸化亜鉛の含有量が3〜40質量%である炭化水素用脱硫剤を得る第4の工程と、を備えることを特徴とする。   The method for producing a hydrocarbon desulfurization agent according to the present invention is a first method in which a coprecipitate is produced from a solution or suspension containing a nickel compound, a zinc compound and a porous inorganic oxide and / or a precursor thereof. A cobalt compound and a molybdenum compound are supported on the coprecipitate after washing in the step, the second step of sequentially washing, drying and firing the coprecipitate obtained in the step and the first step. A third step of obtaining a support, and drying and firing are sequentially performed on the support obtained in the third step, and a porous inorganic oxide, nickel and / or nickel oxide, zinc oxide, cobalt and / or Cobalt oxide and molybdenum and / or molybdenum oxide, the content of the porous inorganic oxide is 10 to 30% by mass in terms of oxide based on the total mass of the desulfurizing agent, and the nickel And / or a fourth step of obtaining a hydrocarbon desulfurization agent having a nickel oxide content of 45 to 75 mass% and a zinc oxide content of 3 to 40 mass%. To do.

本発明の炭化水素用脱硫剤の製造方法によれば、上述のように優れた脱硫性能を有する脱硫剤を有効に得ることができる。   According to the method for producing a hydrocarbon desulfurization agent of the present invention, a desulfurization agent having excellent desulfurization performance as described above can be obtained effectively.

上記第3の工程においては、共沈物にリン化合物を更に担持させることが好ましい。   In the third step, it is preferable to further carry a phosphorus compound on the coprecipitate.

また、上記第1の工程における溶液又は懸濁液は、多孔性無機酸化物及び/又はその前駆体として、シリカ及び/又はその前駆体を含有することが好ましい。   The solution or suspension in the first step preferably contains silica and / or its precursor as the porous inorganic oxide and / or its precursor.

また、本発明は、上記本発明の炭化水素用脱硫剤と液相の灯油とを接触させることを特徴とする灯油の脱硫方法を提供する。   The present invention also provides a kerosene desulfurization method comprising contacting the hydrocarbon desulfurization agent of the present invention with a liquid phase kerosene.

本発明の灯油の脱硫方法によれば、本発明の炭化水素用脱硫剤と液相の灯油とを接触させて脱硫を行うことで、本発明の炭化水素脱硫剤の灯油に対する脱硫性能を一層向上させることができる。   According to the kerosene desulfurization method of the present invention, the desulfurization performance of the hydrocarbon desulfurization agent of the present invention with respect to kerosene is further improved by bringing the hydrocarbon desulfurization agent of the present invention into contact with the liquid phase kerosene. Can be made.

本発明の灯油の脱硫方法は、上記の通り脱硫剤と液相の灯油とを接触させるものであるが、その際の条件は、温度0〜400℃、圧力0.1〜1.1MPa、液空間速度0.01〜100hr−1の範囲内で選定することが好ましい。 The method for desulfurizing kerosene according to the present invention is to contact the desulfurizing agent and liquid kerosene as described above. The conditions in this case are as follows: temperature 0 to 400 ° C., pressure 0.1 to 1.1 MPa, liquid It is preferable to select within a range of a space velocity of 0.01 to 100 hr −1 .

また、本発明は、炭化水素を含む原燃料と上記本発明の炭化水素用脱硫剤とを接触させることによって原燃料の脱硫を行う脱硫部と、脱硫器による脱硫後の燃料を改質する改質部と、改質器による改質後の燃料中の一酸化炭素をシフト反応により低減して燃料ガスを生成させるシフト反応部と、燃料ガスを用いて発電を行う発電部と、を備えることを特徴とする燃料電池システムを提供する。   The present invention also includes a desulfurization section that desulfurizes the raw fuel by bringing the raw fuel containing hydrocarbons into contact with the hydrocarbon desulfurization agent of the present invention, and a modification that reforms the fuel desulfurized by the desulfurizer. A shift reaction unit that generates fuel gas by reducing carbon monoxide in the fuel after reforming by the reformer by a shift reaction, and a power generation unit that generates power using the fuel gas. A fuel cell system is provided.

本発明の燃料電池システムによれば、脱硫部における原燃料の脱硫が本発明の炭化水素用脱硫剤を用いて行われるため、低圧条件下又は水素非共存下で灯油等の原燃料を脱硫する場合であっても、十分な脱硫性能を長期間にわたって維持することが可能となる。その結果、改質器による改質、シフト反応部及び必要により設けられる一酸化炭素の選択的酸化反応部における一酸化炭素の低減並びに発電部における燃料ガスによる発電を長時間安定して行うことが可能となる。   According to the fuel cell system of the present invention, since desulfurization of raw fuel in the desulfurization section is performed using the hydrocarbon desulfurization agent of the present invention, raw fuel such as kerosene is desulfurized under low pressure conditions or in the absence of hydrogen. Even in this case, sufficient desulfurization performance can be maintained for a long period of time. As a result, reforming by a reformer, reduction of carbon monoxide in a shift reaction unit and a selective oxidation reaction unit of carbon monoxide provided as necessary, and stable power generation with fuel gas in a power generation unit can be performed for a long time. It becomes possible.

以上の通り、本発明によれば、低圧条件下又は水素非共存下で灯油等の原燃料を脱硫する場合であっても、十分な脱硫性能を長期間にわたって維持することが可能な脱硫剤及びその製造方法、並びに、該脱硫剤を用いた灯油の脱硫方法及び燃料電池システムが提供される。   As described above, according to the present invention, even when raw fuel such as kerosene is desulfurized under low pressure conditions or in the absence of hydrogen, a desulfurization agent capable of maintaining sufficient desulfurization performance over a long period of time and A production method thereof, a method of desulfurizing kerosene using the desulfurizing agent, and a fuel cell system are provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の炭化水素用脱硫剤(以下、「本発明の脱硫剤」ということもある。)は、多孔性無機酸化物と、ニッケル及び/又は酸化ニッケルと、酸化亜鉛と、コバルト及び/又は酸化コバルトと、モリブデン及び/又は酸化モリブデンと、を含有し、脱硫剤の全質量を基準として、酸化物換算で、多孔性無機酸化物の含有量が10〜30質量%、ニッケル及び/又は酸化ニッケルの含有量が45〜75質量%、酸化亜鉛の含有量が3〜40質量%のものである。ここで、本発明でいう脱硫剤には、炭化水素中に含まれる硫黄化合物を吸着する機能を有するもの、硫黄化合物をより吸着され易い硫黄化合物へと変換する触媒機能を有するもの、変換された硫黄化合物を吸着する機能を有するもの、さらにはこれらの機能の2以上を有するものが包含される。   The hydrocarbon desulfurization agent of the present invention (hereinafter also referred to as “the desulfurization agent of the present invention”) includes a porous inorganic oxide, nickel and / or nickel oxide, zinc oxide, cobalt and / or oxidation. Cobalt, molybdenum and / or molybdenum oxide, based on the total mass of the desulfurizing agent, the content of porous inorganic oxide is 10 to 30% by mass in terms of oxide, nickel and / or nickel oxide Is 45 to 75% by mass, and zinc oxide is 3 to 40% by mass. Here, the desulfurizing agent referred to in the present invention has a function of adsorbing a sulfur compound contained in a hydrocarbon, a function of converting a sulfur compound into a sulfur compound that is more easily adsorbed, and a converted one. Those having the function of adsorbing sulfur compounds and those having two or more of these functions are included.

本発明の脱硫剤が含有するニッケル及び/又は酸化ニッケル(以下、「ニッケル成分」と総称する。)の含有量は、酸化ニッケル(NiO)換算にて、脱硫剤の全質量を基準として、45〜75質量%であり、好ましくは50〜70質量%である。前記含有量が45質量%未満の場合には、ニッケル成分の量が不足することに起因して脱硫性能が不十分となる。一方、前記含有量が75質量%を超える場合には、相対的に多孔性無機酸化物の含有量が少なくなり、脱硫剤の比表面積が小さくなってニッケル成分等の分散が低下することに起因して、脱硫性能が不十分となる。   The content of nickel and / or nickel oxide (hereinafter collectively referred to as “nickel component”) contained in the desulfurizing agent of the present invention is 45 on the basis of the total mass of the desulfurizing agent in terms of nickel oxide (NiO). It is -75 mass%, Preferably it is 50-70 mass%. When the content is less than 45% by mass, the desulfurization performance becomes insufficient due to the insufficient amount of the nickel component. On the other hand, when the content exceeds 75% by mass, the content of the porous inorganic oxide is relatively reduced, the specific surface area of the desulfurizing agent is reduced, and the dispersion of the nickel component and the like is reduced. As a result, the desulfurization performance is insufficient.

本発明の脱硫剤が含有する酸化亜鉛の含有量は、酸化亜鉛(ZnO)として、脱硫剤の全質量を基準として、3〜40質量%であり、好ましくは5〜30質量%であることが好ましい。前記含有量が3質量%未満の場合には、灯油等の原燃料を脱硫する際に、原燃料中の二環芳香族化合物の生成を抑制して脱硫剤上での炭素状物質の生成を抑制するという亜鉛成分による効果が十分に発現されなくなり、炭素状物質の沈着による脱硫性能の経時的低下が進行し易くなる。一方、40質量%を超える場合には、相対的にニッケル成分、多孔性無機酸化物の含有量が少なくなることに起因して、脱硫性能が不十分となる。   The content of zinc oxide contained in the desulfurizing agent of the present invention is 3 to 40% by mass, preferably 5 to 30% by mass, based on the total mass of the desulfurizing agent, as zinc oxide (ZnO). preferable. When the content is less than 3% by mass, when desulfurizing raw fuel such as kerosene, the production of carbonaceous material on the desulfurizing agent is suppressed by suppressing the formation of bicyclic aromatic compounds in the raw fuel. The effect of suppressing the zinc component is not sufficiently exhibited, and the desulfurization performance due to deposition of the carbonaceous material is likely to decrease with time. On the other hand, when it exceeds 40% by mass, the desulfurization performance becomes insufficient due to the relatively small content of nickel component and porous inorganic oxide.

多孔性無機酸化物の含有量は、脱硫剤の全質量を基準として、10〜30質量%であり、好ましくは15〜30質量%である。前記含有量が10質量%未満の場合には、脱硫剤の比表面積が減少することに起因して脱硫性能が不十分となる。一方、30質量%を超える場合には、相対的にニッケル成分及び亜鉛成分等の含有量が少なくなることに起因して、脱硫性能が不十分となる。   Content of a porous inorganic oxide is 10-30 mass% on the basis of the total mass of a desulfurization agent, Preferably it is 15-30 mass%. When the content is less than 10% by mass, the desulfurization performance becomes insufficient due to a decrease in the specific surface area of the desulfurization agent. On the other hand, when it exceeds 30 mass%, desulfurization performance becomes inadequate due to relatively low contents of nickel component and zinc component.

本発明の脱硫剤が含有するモリブデン及び/又は酸化モリブデンの含有量は、酸化モリブデン(MoO)換算にて、脱硫剤の全質量を基準として、1〜30質量%であり、好ましくは2〜25質量%である。前記含有量が1質量%未満の場合は、脱硫性能が低下する。一方、30質量%を超える場合には、モリブデン成分の分散状態が低下し、やはり脱硫性能が低下する。 The content of molybdenum and / or molybdenum oxide contained in the desulfurizing agent of the present invention is 1 to 30% by mass based on the total mass of the desulfurizing agent in terms of molybdenum oxide (MoO 3 ), preferably 2 to 2. 25% by mass. When the content is less than 1% by mass, the desulfurization performance decreases. On the other hand, when it exceeds 30 mass%, the dispersion state of a molybdenum component falls and desulfurization performance also falls.

また、コバルト及び/又は酸化コバルトの含有量は、酸化コバルト(CoO)換算にて前記基準で0.1〜10質量%であり、好ましくは0.1〜5質量%である。含有量が0.1質量%未満の場合は、水素化脱硫性能が低下する。一方、10質量%を超える場合には、コバルト成分の分散状態が低下し、やはり脱硫性能が低下する。   Moreover, content of cobalt and / or cobalt oxide is 0.1-10 mass% in the said reference | standard in conversion of cobalt oxide (CoO), Preferably it is 0.1-5 mass%. When the content is less than 0.1% by mass, the hydrodesulfurization performance decreases. On the other hand, when it exceeds 10 mass%, the dispersion state of a cobalt component will fall and desulfurization performance will fall too.

本発明の脱硫剤は、上記金属及び/又は金属酸化物に加えて、酸化リンを含有することが好ましい。酸化リンを含有することにより、脱硫性能を維持可能な耐久時間が向上する。酸化リンの含有量は、五酸化ニリン(P)換算にて前記基準で0.01〜10質量%が好ましく、さらに好ましくは0.1〜5質量%である。前記含有量が0.01質量%未満の場合には、前記酸化リンの添加効果が十分に得られない傾向にあり、一方、10質量%を超えても添加効果のさらなる向上は見られない。 The desulfurizing agent of the present invention preferably contains phosphorus oxide in addition to the metal and / or metal oxide. By containing phosphorus oxide, the durability time during which desulfurization performance can be maintained is improved. The content of phosphorus oxide is preferably 0.01 to 10% by mass and more preferably 0.1 to 5% by mass in terms of niolin pentoxide (P 2 O 5 ). When the content is less than 0.01% by mass, the effect of adding phosphorus oxide tends not to be sufficiently obtained. On the other hand, when the content exceeds 10% by mass, no further improvement in the effect of addition is observed.

本発明の脱硫剤は多孔性無機酸化物を含有する。該多孔性無機酸化物としてはシリカ、アルミナ、ボリア、マグネシア、ジルコニア、チタニア及び酸化マンガンなどの少なくとも1種、あるいはこれらの混合物、これら成分からなる複合酸化物が好ましく用いられる。特に触媒上に炭素状物質が沈着することを抑制し、脱硫性能を維持可能な耐久時間が向上するとの観点から、シリカが好ましい。   The desulfurizing agent of the present invention contains a porous inorganic oxide. As the porous inorganic oxide, at least one of silica, alumina, boria, magnesia, zirconia, titania and manganese oxide, a mixture thereof, and a composite oxide composed of these components are preferably used. In particular, silica is preferable from the viewpoint of suppressing the deposition of a carbonaceous substance on the catalyst and improving the durability for maintaining the desulfurization performance.

本発明の脱硫剤の製造方法は特に限定されず、多孔性無機酸化物にその他の成分を含浸法等の方法により担持する方法により製造してもよく、また、多孔性無機酸化物あるいはその前駆体の存在下に、ニッケル成分及び亜鉛成分を含む溶液からこれら成分を共沈せしめ、得られた共沈物にコバルト成分、モリブデン成分及び必要によりリン成分を含浸法等の方法により担持する方法により製造してもよい。ニッケル成分を高い含有量にて優れた分散状態とする観点から、前記の多孔性無機酸化物あるいはその前駆体の存在下に、ニッケル成分及び亜鉛成分を共沈せしめる工程を含む方法が好ましい。以下、この方法について詳述する。   The method for producing the desulfurizing agent of the present invention is not particularly limited, and may be produced by a method in which other components are supported on the porous inorganic oxide by a method such as an impregnation method, and the porous inorganic oxide or a precursor thereof. In the presence of the body, by co-precipitation of these components from the solution containing the nickel component and zinc component, the resulting coprecipitate is loaded with a cobalt component, a molybdenum component and, if necessary, a phosphorus component by a method such as impregnation. It may be manufactured. From the viewpoint of obtaining an excellent dispersed state with a high nickel content, a method including a step of coprecipitation of the nickel component and the zinc component in the presence of the porous inorganic oxide or a precursor thereof is preferable. Hereinafter, this method will be described in detail.

多孔性無機酸化物の存在下に、ニッケル及び亜鉛成分を共沈せしめる工程は、ニッケル化合物及び亜鉛化合物の水溶液に多孔性無機酸化物あるいはその前駆体を混合し、該混合液に塩基を滴下して、あるいは塩基の水溶液に多孔性無機酸化物あるいはその前駆体を混合し、該混合液にニッケル化合物及び亜鉛化合物の水溶液を滴下して、ニッケル化合物及び亜鉛化合物からなる共沈物を多孔性無機酸化物上に形成せしめる。   The step of co-precipitation of nickel and zinc components in the presence of a porous inorganic oxide is performed by mixing a porous inorganic oxide or a precursor thereof in an aqueous solution of a nickel compound and a zinc compound, and dropping a base into the mixture. Alternatively, a porous inorganic oxide or a precursor thereof is mixed in an aqueous base solution, and an aqueous solution of a nickel compound and a zinc compound is dropped into the mixed solution to form a coprecipitate composed of the nickel compound and the zinc compound as a porous inorganic material. Form on oxide.

ニッケル化合物および亜鉛化合物としては、各々の塩化物、硝酸塩、硫酸塩、有機酸塩、水酸化物などを用いることができる。具体的には、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、水酸化ニッケル、塩化亜鉛、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、水酸化亜鉛などが好ましい。   As the nickel compound and zinc compound, respective chlorides, nitrates, sulfates, organic acid salts, hydroxides and the like can be used. Specifically, nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel hydroxide, zinc chloride, zinc nitrate, zinc sulfate, zinc acetate, zinc hydroxide and the like are preferable.

多孔性無機酸化物としてシリカを用いる場合を例にとると、シリカ粉末、シリカゾル、シリカゲルから選ばれる少なくとも1種が好ましく用いられる。これらの均粒径は、好ましくは1〜100nm、より好ましくは1〜25nmである。   Taking the case of using silica as the porous inorganic oxide as an example, at least one selected from silica powder, silica sol, and silica gel is preferably used. These average particle diameters are preferably 1 to 100 nm, more preferably 1 to 25 nm.

前記塩基としてはアンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどの水溶液が使用できる。   As the base, an aqueous solution of ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate or the like can be used.

ニッケル化合物及び亜鉛化合物からなる共沈物を多孔性無機酸化物上に形成せしめた後、生成した固形物をろ過し、イオン交換水などにて洗浄する。洗浄が不十分であると触媒上に塩素、硝酸根、硫酸根、酢酸根、ナトリウムイオン、カリウムイオンなどが残り、脱硫剤の性能に悪影響を与えるので、十分な洗浄を行う。イオン交換水では十分に洗浄できない場合、洗浄液として、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどの塩基の水溶液を使用してもよい。この場合、まず塩基の水溶液で固形物を洗浄し、続いてイオン交換水で洗浄するのが好ましい。特にナトリウムイオンは脱硫剤性能に悪影響を与えるので、残存ナトリウム量が0.1質量%以下となるまで、好ましくは0.05質量%以下となるまで洗浄を行うのが望ましい。   A coprecipitate composed of a nickel compound and a zinc compound is formed on the porous inorganic oxide, and then the generated solid is filtered and washed with ion-exchanged water or the like. Insufficient washing leaves chlorine, nitrate radical, sulfate radical, acetate radical, sodium ion, potassium ion, etc. on the catalyst, which adversely affects the performance of the desulfurization agent. When ion-exchanged water cannot be sufficiently washed, an aqueous solution of a base such as ammonia, sodium carbonate, sodium hydrogen carbonate, or potassium carbonate may be used as the washing liquid. In this case, it is preferable to first wash the solid with an aqueous base solution and then wash with ion-exchanged water. In particular, since sodium ions adversely affect the performance of the desulfurization agent, it is desirable to perform washing until the residual sodium amount is 0.1% by mass or less, preferably 0.05% by mass or less.

洗浄後の固形物を粉砕し、次いで乾燥を行う。乾燥方法としては特に限定されるものではなく、例えば、空気中での加熱乾燥、減圧下での脱気乾燥、スプレードライ法等を挙げることができる。空気雰囲気下に加熱乾燥する場合、100〜150℃で5〜15時間乾燥を行うことが好ましい。   The solid after washing is pulverized and then dried. The drying method is not particularly limited, and examples thereof include heat drying in air, degassing drying under reduced pressure, and spray drying. When drying by heating in an air atmosphere, drying is preferably performed at 100 to 150 ° C. for 5 to 15 hours.

乾燥後、焼成を行う。焼成方法としては特に限定されるものではなく、通常、空気雰囲気下、200〜600℃、好ましくは250〜450℃で、0.1〜10時間、好ましくは1〜5時間焼成するのが望ましい。焼成により、ニッケル成分の少なくとも一部は酸化ニッケルに、亜鉛成分は酸化亜鉛となる。なお、共沈操作後の固形物の洗浄が不十分であった場合、焼成後に再び洗浄を行ってもよい。この場合もイオン交換水あるいは上述の塩基の水溶液を使用することができる。以上により得られる酸化ニッケル/酸化亜鉛/多孔性無機酸化物を含む組成物を以後「共沈焼成物」という。   After drying, firing is performed. The firing method is not particularly limited, and it is usually desirable to perform firing in an air atmosphere at 200 to 600 ° C., preferably 250 to 450 ° C. for 0.1 to 10 hours, preferably 1 to 5 hours. By firing, at least a part of the nickel component becomes nickel oxide and the zinc component becomes zinc oxide. In addition, when washing | cleaning of the solid substance after coprecipitation operation is inadequate, you may wash again after baking. In this case, ion-exchanged water or an aqueous solution of the above-mentioned base can be used. The composition containing nickel oxide / zinc oxide / porous inorganic oxide obtained as described above is hereinafter referred to as “coprecipitated fired product”.

次に、上記の共沈焼成物に、モリブデン成分、コバルト成分及び必要によりリン成分を担持する。担持の方法としては、前記各成分を溶解した溶液、好ましくは水溶液を用い、定法により前記共沈焼成物に含浸する方法が好ましく採用される。それぞれの成分の溶液を個別に含浸してもよいし、また全ての成分を含む溶液により含浸を行ってもよい。   Next, a molybdenum component, a cobalt component, and, if necessary, a phosphorus component are supported on the coprecipitation fired product. As a loading method, a method of impregnating the coprecipitated fired product by a usual method using a solution in which each of the above components is dissolved, preferably an aqueous solution, is preferably employed. The solution of each component may be impregnated individually, or impregnation may be performed with a solution containing all components.

含浸溶液が含有するモリブデン成分としては、三酸化モリブデン、モリブデン酸アンモニウム等の化合物が好ましく使用される。コバルト成分としては、酸化コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、塩化コバルト等の化合物が好ましく使用される。また、リン成分としては、各種のリン酸が好ましく使用される。モリブデン成分の含浸溶液に対する溶解度が低い場合には、該溶液にリン酸を添加することが、その溶解度が向上するとの点で好ましい。あるいは、リンゴ酸などの有機酸を含浸溶液に添加してモリブデン成分の溶解度を向上させてもよい。   As the molybdenum component contained in the impregnation solution, compounds such as molybdenum trioxide and ammonium molybdate are preferably used. As the cobalt component, compounds such as cobalt oxide, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt chloride are preferably used. As the phosphorus component, various phosphoric acids are preferably used. When the solubility of the molybdenum component in the impregnating solution is low, it is preferable to add phosphoric acid to the solution in terms of improving the solubility. Alternatively, an organic acid such as malic acid may be added to the impregnation solution to improve the solubility of the molybdenum component.

前記含浸物を乾燥し、続いて焼成を行うことが好ましい。乾燥及び焼成の好ましい方法及び条件は、前記のニッケル成分、亜鉛成分および多孔性無機酸化物成分から共沈により得た固形物の乾燥及び焼成と同様である。   It is preferable that the impregnated material is dried and then calcined. Preferred methods and conditions for drying and firing are the same as those for drying and firing a solid obtained by coprecipitation from the nickel component, zinc component and porous inorganic oxide component.

上記の方法で調製された脱硫剤を使用する場合、そのまま脱硫に供することもできるが、前処理として水素等による還元処理を行うことが好ましい。還元処理は水素流通下に、150〜500℃、好ましくは250〜400℃の温度、0.1〜15時間、好ましくは2〜10時間行うことが望ましい。   When the desulfurizing agent prepared by the above method is used, it can be used for desulfurization as it is, but it is preferable to perform a reduction treatment with hydrogen or the like as a pretreatment. The reduction treatment is carried out under a hydrogen flow at a temperature of 150 to 500 ° C., preferably 250 to 400 ° C., for 0.1 to 15 hours, preferably 2 to 10 hours.

本発明の脱硫剤の形状については特に限定されるものではなく、粉体として得られた脱硫剤をそのまま用いてもよいし、あるいは打錠成形し、成形体とすることもできるし、その成形体を粉砕後適当な範囲に整粒してもよい。さらに押出成形体とすることもできる。成形に際しては、適当なバインダーを加えてもよい。バインダーとしては特に限定されるものではないが、アルミナ、シリカ、チタニア、ジルコニア、カーボンブラックもしくはそれらの混合物等が用いられる。バインダーの添加量としては、脱硫剤とバインダーの合計の質量に対して、通常30質量%以下、好ましくは10質量%以下である。添加量の下限はバインダーとしての機能を発揮できる量であれば特に限定されるものではない。添加量は、通常0.5質量%以上、好ましくは1質量%以上である。また、有機物からなる成形助剤を用いることもできる。   The shape of the desulfurizing agent of the present invention is not particularly limited, and the desulfurizing agent obtained as a powder may be used as it is, or may be formed into a molded product by tableting, or the molding thereof. The body may be sized to an appropriate range after pulverization. Furthermore, it can also be set as an extrusion molding. In molding, an appropriate binder may be added. The binder is not particularly limited, but alumina, silica, titania, zirconia, carbon black, or a mixture thereof is used. The addition amount of the binder is usually 30% by mass or less, preferably 10% by mass or less, based on the total mass of the desulfurizing agent and the binder. The lower limit of the addition amount is not particularly limited as long as it is an amount that can exhibit the function as a binder. The addition amount is usually 0.5% by mass or more, preferably 1% by mass or more. A molding aid made of an organic material can also be used.

本発明の脱硫剤を用いて脱硫を行う炭化水素としては、天然ガス、LPG、ナフサ、灯油等が挙げられる。中でも灯油が好ましい。   Examples of the hydrocarbon to be desulfurized using the desulfurizing agent of the present invention include natural gas, LPG, naphtha, and kerosene. Of these, kerosene is preferred.

本発明の灯油の脱硫方法において原料として用いられる灯油は、硫黄分を含有する灯油であり、その原料灯油に含まれる硫黄分は0.1〜30質量ppmであり、好ましくは1〜25質量ppm、より好ましくは5〜20質量ppmである。本発明でいう硫黄分とは、炭化水素中に通常含まれる各種の硫黄、無機硫黄化合物、有機硫黄化合物を総称するものであり、その濃度は灯油の質量に対する硫黄原子としての質量の比率で表す。灯油が含有する硫黄分は少ないほど好ましいが、通常の石油精製工程において硫黄分を0.1質量ppm未満まで脱硫することは、設備コスト及び運転コストが大きくなり好ましくない。一方、硫黄分が30質量ppmを超える場合には、本発明の脱硫方法に使用する本発明の脱硫剤が短時間で脱硫性能を維持することができなくなることから好ましくない。なお、原料として、燃料電池以外の一般用途に使用される灯油が使用できることが好ましい。   The kerosene used as a raw material in the method for desulfurizing kerosene of the present invention is a kerosene containing a sulfur content, and the sulfur content contained in the raw material kerosene is 0.1 to 30 ppm by mass, preferably 1 to 25 ppm by mass. More preferably, it is 5-20 mass ppm. The sulfur content in the present invention is a general term for various types of sulfur, inorganic sulfur compounds, and organic sulfur compounds that are usually contained in hydrocarbons, and the concentration is represented by the ratio of the mass of the sulfur atom to the mass of kerosene. . The lower the sulfur content contained in kerosene, the better. However, desulfurization of sulfur to less than 0.1 ppm by mass in a normal petroleum refining process is not preferable because it increases equipment costs and operating costs. On the other hand, when the sulfur content exceeds 30 mass ppm, the desulfurization agent of the present invention used in the desulfurization method of the present invention is not preferable because it cannot maintain the desulfurization performance in a short time. In addition, it is preferable that the kerosene used for general uses other than a fuel cell can be used as a raw material.

本発明の灯油の脱硫方法においては、灯油を液相にて本発明の脱硫剤に接触せしめることが好ましい。灯油を気相あるいは気液混相にて本発明の脱硫剤に接触せしめると、該脱硫剤上への炭素状物質の沈着により短時間にて脱硫性能が低下するため好ましくない。一方、灯油を液相にて本発明の脱硫剤に接触せしめると、炭素状物質の沈着が抑制され、脱硫性能が長時間維持される。   In the method for desulfurizing kerosene according to the present invention, it is preferable that kerosene is brought into contact with the desulfurizing agent according to the present invention in a liquid phase. When kerosene is brought into contact with the desulfurization agent of the present invention in a gas phase or a gas-liquid mixed phase, the desulfurization performance is lowered in a short time due to deposition of the carbonaceous material on the desulfurization agent, which is not preferable. On the other hand, when kerosene is brought into contact with the desulfurization agent of the present invention in the liquid phase, deposition of carbonaceous substances is suppressed, and desulfurization performance is maintained for a long time.

本発明の灯油の脱硫方法における運転圧力は、燃料電池システムの経済性、安全性等も考慮し、0.1MPa(常圧)〜1.1MPa(絶対圧)の範囲の低圧が好ましく、特に常圧〜0.7MPaが好ましい。反応温度としては、硫黄分濃度を低下させる温度であれば、特に限定されるものではないが、機器スタート時も考慮して、低温から有効に作用することが好ましく、また定常時も考慮して、0℃〜400℃が好ましい。より好ましくは0℃〜300℃、特に好ましくは100℃〜260℃が採用される。このような条件を選択することにより、灯油を液相状態に保つことができる。LHSVは高すぎると脱硫効率が低下し、一方低すぎると装置が大きくなるため適した範囲に設定される。LHSVとして0.01〜15h−1の範囲が好ましく、0.05〜5h−1の範囲がさらに好ましく、0.1〜3h−1の範囲が特に好ましい。本発明の脱硫方法においては水素非共存条件下でも十分に脱硫できることが特徴であるが、少量の水素を導入してもよい。そのときの水素の流量は、例えば、灯油1gあたり0.05〜1.0NLである。 The operating pressure in the desulfurization method of kerosene of the present invention is preferably a low pressure in the range of 0.1 MPa (normal pressure) to 1.1 MPa (absolute pressure) in consideration of the economy and safety of the fuel cell system. The pressure is preferably 0.7 MPa. The reaction temperature is not particularly limited as long as it lowers the concentration of sulfur, but it is preferable to work effectively from a low temperature in consideration of the start of the equipment, and also in consideration of the steady state. 0 ° C to 400 ° C is preferable. More preferably, 0 ° C to 300 ° C, particularly preferably 100 ° C to 260 ° C is employed. By selecting such conditions, kerosene can be kept in a liquid phase. If the LHSV is too high, the desulfurization efficiency is lowered. On the other hand, if the LHSV is too low, the apparatus becomes large. Preferably in the range of 0.01~15H -1 as LHSV, more preferably in the range of 0.05~5h -1, range 0.1~3H -1 it is particularly preferred. The desulfurization method of the present invention is characterized by sufficient desulfurization even in the absence of hydrogen, but a small amount of hydrogen may be introduced. The flow rate of hydrogen at that time is, for example, 0.05 to 1.0 NL per 1 g of kerosene.

本発明の脱硫方法に用いる脱硫装置の形態は特に限定されるものではないが、例えば流通式固定床方式を用いることができる。脱硫装置の形状としては、円筒状、平板状などそれぞれのプロセスの目的に応じた公知のいかなる形状を取ることができる。   Although the form of the desulfurization apparatus used for the desulfurization method of this invention is not specifically limited, For example, a flow-type fixed bed system can be used. The shape of the desulfurization device can be any known shape depending on the purpose of each process, such as a cylindrical shape or a flat plate shape.

本発明の脱硫方法においては、前記した硫黄分を含有する灯油の硫黄分濃度を水素非共存条件下で20質量ppb以下にまで低減することができる。なおここでいう硫黄分濃度は、化学発光硫黄検出器付きガスクロマトグラフィー(GC−SCD)法により定量された値を用いる。   In the desulfurization method of the present invention, the sulfur concentration of kerosene containing the above-described sulfur content can be reduced to 20 mass ppb or less under non-coexisting conditions of hydrogen. In addition, the value quantified by the gas chromatography (GC-SCD) method with a chemiluminescence sulfur detector is used for the sulfur content concentration here.

本発明の脱硫剤を用いた水素非共存下での灯油の脱硫は、以下の2種の機構で進行することが明らかになっている。すなわち、第1の機構は、灯油中の硫黄化合物がそのまま本発明の脱硫剤に吸着されるものである。一方、第2の機構は、灯油中に含まれるナフテン環構造を有する炭化水素から、本発明の脱硫剤の触媒作用による脱水素反応により反応性に富む水素が生成し、この水素及び本発明の脱硫剤の触媒作用により、灯油中の硫黄化合物が水素化脱硫反応により硫化水素に転換され、硫化水素が本発明の脱硫剤に吸着されるものである。本発明の脱硫剤を用いる場合、前記第2の機構が前記第1の機構に対して優勢であり、これが本発明の脱硫剤が高い脱硫性能を長時間維持することを可能ならしめていると考えられる。   It has been clarified that desulfurization of kerosene in the absence of hydrogen using the desulfurizing agent of the present invention proceeds by the following two mechanisms. That is, in the first mechanism, the sulfur compound in kerosene is adsorbed as it is to the desulfurizing agent of the present invention. On the other hand, in the second mechanism, hydrogen having high reactivity is generated from the hydrocarbon having a naphthene ring structure contained in kerosene by the dehydrogenation reaction by the catalytic action of the desulfurizing agent of the present invention. Due to the catalytic action of the desulfurizing agent, the sulfur compound in kerosene is converted to hydrogen sulfide by the hydrodesulfurization reaction, and the hydrogen sulfide is adsorbed by the desulfurizing agent of the present invention. When the desulfurizing agent of the present invention is used, the second mechanism is superior to the first mechanism, which is considered to enable the desulfurizing agent of the present invention to maintain high desulfurization performance for a long time. It is done.

硫黄濃度が好ましくは20質量ppb以下程度に脱硫された灯油は、次いで、改質工程、シフト反応工程、必要により一酸化炭素選択酸化工程等を経ることにより、生成した水素に富むガスを燃料電池用燃料として使用することができる。   The kerosene desulfurized to a sulfur concentration of preferably about 20 mass ppb or less is then subjected to a reforming step, a shift reaction step, and a carbon monoxide selective oxidation step, if necessary, to convert the produced hydrogen-rich gas into a fuel cell. It can be used as a fuel.

改質工程としては、特に限定されるものではないが、原料を水蒸気とともに触媒上で高温処理して改質する水蒸気改質や、酸素含有気体との部分酸化、また水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うオートサーマルリフォーミングなどを用いることができる。なお、改質工程の反応条件は限定されるものではないが、反応温度は200〜1000℃が好ましく、特に500〜850℃が好ましい。反応圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。LHSVは0.01〜40h−1が好ましく、特に0.1〜10h−1が好ましい。 The reforming process is not particularly limited, but steam reforming in which the raw material is reformed with steam at a high temperature on a catalyst, partial oxidation with an oxygen-containing gas, and steam and an oxygen-containing gas coexist. In such a system, autothermal reforming that performs a self-heat recovery type reforming reaction can be used. In addition, although the reaction conditions of a modification | reformation process are not limited, 200-1000 degreeC of reaction temperature is preferable, and 500-850 degreeC is especially preferable. The reaction pressure is preferably from normal pressure to 1 MPa, and particularly preferably from normal pressure to 0.2 MPa. LHSV is preferably 0.01 to 40 h −1 , particularly preferably 0.1 to 10 h −1 .

改質工程により得られる一酸化炭素と水素を含む混合ガスは、固体酸化物形燃料電池のような場合であればそのまま燃料電池用の燃料として用いることができる。また、リン酸形燃料電池や固体高分子形燃料電池のように一酸化炭素の除去が必要な燃料電池に対しては、前記混合ガスは該燃料電池用水素の原料として好適に用いることができる。   The mixed gas containing carbon monoxide and hydrogen obtained by the reforming step can be used as a fuel for a fuel cell as it is in the case of a solid oxide fuel cell. Also, for fuel cells that require removal of carbon monoxide, such as phosphoric acid fuel cells and polymer electrolyte fuel cells, the mixed gas can be suitably used as a raw material for hydrogen for the fuel cell. .

シフト反応工程は、一酸化炭素と水とを反応させ水素と二酸化炭素に転換する工程であり、例えば、鉄−クロムの混合酸化物、銅−亜鉛の混合酸化物、白金、ルテニウム、イリジウムなどを含有する触媒を用い、一酸化炭素含有量を2vol%以下、好ましくは1vol%以下、さらに好ましくは0.5vol%以下に低減させる。シフト反応は原料となる改質ガス組成等によって、必ずしも反応条件は限定されるものではないが、反応温度は120〜500℃が好ましく、特に150〜450℃が好ましい。圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。GHSVは100〜50000h−1が好ましく、特に300〜10000h−1が好ましい。なお、シフト反応工程においては、高温シフト反応器と、低温シフト反応器の2つの反応器を直列に設けてもよい。高温シフト反応器には鉄−クロムを活性成分とする触媒、低温シフト反応器には銅−亜鉛を活性成分とする触媒などが好ましく用いられる。通常、リン酸形燃料電池ではこの状態の混合ガスを燃料として用いることができる。 The shift reaction step is a step of reacting carbon monoxide with water to convert it into hydrogen and carbon dioxide. Using the contained catalyst, the carbon monoxide content is reduced to 2 vol% or less, preferably 1 vol% or less, more preferably 0.5 vol% or less. Although the reaction conditions for the shift reaction are not necessarily limited by the reformed gas composition or the like used as a raw material, the reaction temperature is preferably 120 to 500 ° C, particularly 150 to 450 ° C. The pressure is preferably normal pressure to 1 MPa, particularly preferably normal pressure to 0.2 MPa. GHSV is preferably 100~50000h -1, especially 300~10000H -1 are preferred. In the shift reaction step, two reactors of a high temperature shift reactor and a low temperature shift reactor may be provided in series. A catalyst having iron-chromium as an active component is preferably used for the high temperature shift reactor, and a catalyst having copper-zinc as the active component is preferably used for the low temperature shift reactor. Usually, in the phosphoric acid fuel cell, the mixed gas in this state can be used as fuel.

固体高分子形燃料電池では、一酸化炭素濃度をさらに低減させることが必要であるので、一酸化炭素を更に除去する工程を設けることが望ましい。この工程としては、特に限定されるものではなく、吸着分離法、水素分離膜法、一酸化炭素選択酸化法などの各種の方法を用いることができるが、装置の小型化、経済性の面から、一酸化炭素選択酸化法を用いるのが特に好ましい。一酸化炭素選択酸化工程では、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、亜鉛、銀、金などを含有する触媒を用い、残存する一酸化炭素に対し0.5〜10倍モル、好ましくは0.7〜5倍モル、さらに好ましくは1〜3倍モルの酸素を添加し、一酸化炭素を選択的に二酸化炭素に転換することにより一酸化炭素濃度を低減させる。この方法の反応条件は限定されるものではないが、反応温度は80〜350℃が好ましく、特に100〜300℃が好ましい。圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。GHSVは1000〜50000h−1が好ましく、特に3000〜30000h−1が好ましい。この場合、一酸化炭素の酸化と同時に共存する水素と反応させメタンを生成させることで一酸化炭素濃度の低減を図ることもできる。 In a polymer electrolyte fuel cell, since it is necessary to further reduce the carbon monoxide concentration, it is desirable to provide a step of further removing carbon monoxide. This step is not particularly limited, and various methods such as an adsorption separation method, a hydrogen separation membrane method, and a carbon monoxide selective oxidation method can be used. It is particularly preferable to use a carbon monoxide selective oxidation method. In the carbon monoxide selective oxidation step, a catalyst containing iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, zinc, silver, gold, etc. is used, and 0.5 to The carbon monoxide concentration is reduced by adding 10 moles, preferably 0.7-5 moles, more preferably 1-3 moles of oxygen and selectively converting carbon monoxide to carbon dioxide. Although the reaction conditions of this method are not limited, the reaction temperature is preferably 80 to 350 ° C, particularly preferably 100 to 300 ° C. The pressure is preferably normal pressure to 1 MPa, particularly preferably normal pressure to 0.2 MPa. GHSV is preferably 1000~50000h -1, especially 3000~30000H -1 are preferred. In this case, the carbon monoxide concentration can be reduced by reacting with the coexisting hydrogen simultaneously with the oxidation of carbon monoxide to generate methane.

以下、燃料電池システムの一例を図1にて説明する。   An example of the fuel cell system will be described below with reference to FIG.

燃料タンク3内の原燃料(灯油)は燃料ポンプ4を経て脱硫器5に流入する。この時、必要であれば一酸化炭素選択酸化反応器11または低温シフト反応器10からの水素含有ガスを添加できる。脱硫器5には、本発明の脱硫剤が充填されている。脱硫器5で脱硫された原燃料は水タンク1から水ポンプ2を経た水と混合された後、気化器6に導入され、改質器7に送り込まれる。   The raw fuel (kerosene) in the fuel tank 3 flows into the desulfurizer 5 through the fuel pump 4. At this time, if necessary, the hydrogen-containing gas from the carbon monoxide selective oxidation reactor 11 or the low temperature shift reactor 10 can be added. The desulfurizer 5 is filled with the desulfurizing agent of the present invention. The raw fuel desulfurized in the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, then introduced into the vaporizer 6 and fed into the reformer 7.

改質器7は加温用バーナー18で加温される。加温用バーナー18の燃料には主に燃料電池17のアノードオフガスを用いるが、必要に応じて原燃料ポンプ4から吐出される原燃料を補充することもできる。改質器7に充填する触媒としてはニッケル、ルテニウム、ロジウムなどの金属を含む触媒を用いることができる。   The reformer 7 is heated by a heating burner 18. Although the anode off gas of the fuel cell 17 is mainly used as the fuel for the heating burner 18, the raw fuel discharged from the raw fuel pump 4 can be supplemented as necessary. As the catalyst filled in the reformer 7, a catalyst containing a metal such as nickel, ruthenium, or rhodium can be used.

この様にして製造された水素と一酸化炭素を含有するガスは高温シフト反応器9、低温シフト反応器10、一酸化炭素選択酸化反応器11を順次通過させることで一酸化炭素濃度は燃料電池の特性に影響を及ぼさない程度まで低減される。   The gas containing hydrogen and carbon monoxide produced in this way is passed through the high temperature shift reactor 9, the low temperature shift reactor 10, and the carbon monoxide selective oxidation reactor 11 in order, so that the carbon monoxide concentration is adjusted to the fuel cell. It is reduced to the extent that it does not affect the characteristics of

固体高分子形燃料電池17はアノード12、カソード13、固体高分子電解質14からなり、アノード側には上記の方法で得られた高純度の水素を含有する燃料ガスが、カソード側には空気ブロアー8から送られる空気が、それぞれ必要であれば適当な加湿処理を行なった後(加湿装置は図示していない)導入される。この時、アノードでは水素ガスがプロトンとなり電子を放出する反応が進行し、カソードでは酸素ガスが電子とプロトンを得て水となる反応が進行する。これらの反応を促進するため、それぞれ、アノードには白金黒、活性炭担持白金触媒あるいは白金−ルテニウム合金触媒などが、カソードには白金黒、活性炭担持白金触媒などが用いられる。通常アノード、カソードの両触媒とも、必要に応じてポリテトラフロロエチレン、低分子量の高分子電解質膜素材、活性炭などと共に多孔質触媒層に複合化されて使用される。   The polymer electrolyte fuel cell 17 comprises an anode 12, a cathode 13, and a solid polymer electrolyte 14, and a fuel gas containing high-purity hydrogen obtained by the above method is provided on the anode side, and an air blower is provided on the cathode side. If necessary, air sent from 8 is introduced after appropriate humidification treatment (a humidifier is not shown). At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds at the anode, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds at the cathode. In order to promote these reactions, platinum black, activated carbon-supported platinum catalyst or platinum-ruthenium alloy catalyst or the like is used for the anode, and platinum black, activated carbon-supported platinum catalyst or the like is used for the cathode. Usually, both the anode and cathode catalysts are used in a composite with a porous catalyst layer together with polytetrafluoroethylene, a low molecular weight polymer electrolyte membrane material, activated carbon or the like as required.

次いでNafion(登録商標、デュポン社製)、Gore(登録商標、ゴア社製)、Flemion(登録商標、旭硝子社製)、Aciplex(登録商標、旭化成社製)等の商品名で知られる高分子電解質膜の両側に該多孔質触媒層を積層しMEA(Membrane Electrode Assembly)が形成される。さらにMEAを金属材料、グラファイト、カーボンコンポジットなどからなる、ガス供給機能、集電機能、特にカソードにおいては重要な排水機能等を持つセパレータで挟み込むことで燃料電池が組み立てられる。電気負荷15はアノード、カソードと電気的に連結される。アノードオフガスは加温用バーナー18において消費される。カソードオフガスは排気口16から排出される。   Next, polymer electrolytes known under trade names such as Nafion (registered trademark, manufactured by DuPont), Gore (registered trademark, manufactured by Gore), Flemion (registered trademark, manufactured by Asahi Glass), Aciplex (registered trademark, manufactured by Asahi Kasei), etc. The porous catalyst layer is laminated on both sides of the membrane to form an MEA (Membrane Electrode Assembly). Further, the fuel cell is assembled by sandwiching the MEA with a separator made of a metal material, graphite, carbon composite, etc., having a gas supply function, a current collection function, particularly an important drainage function in the cathode. The electric load 15 is electrically connected to the anode and the cathode. The anode off gas is consumed in the heating burner 18. The cathode off gas is discharged from the exhaust port 16.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
硝酸ニッケル六水和物(市販試薬特級)36.9gと硝酸亜鉛六水和物(市販試薬特級)10.6gをイオン交換水に溶解し、350mlの水溶液(以下、「A1液」という。)を得た。一方、炭酸ナトリウム(市販試薬特級)22.6gをイオン交換水に溶解し、市販のシリカゾル(粒径約7nm)23.4g(シリカ含有量16.0g)と混合し、300mlの溶液(以下、「B1液」という。)を得た。A1液とB1液を攪拌しながら80℃にて混合し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成し、焼成粉を得た。焼成粉の組成は酸化物換算で、NiO/ZnO/SiO=60.9質量%/17.4質量%/21.7質量%であり、残存Naは0.05質量%以下であった。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1
36.9 g of nickel nitrate hexahydrate (commercial reagent grade) and 10.6 g of zinc nitrate hexahydrate (commercial reagent grade) are dissolved in ion-exchanged water, and 350 ml of an aqueous solution (hereinafter referred to as “A1 solution”). Got. On the other hand, 22.6 g of sodium carbonate (commercial reagent grade) is dissolved in ion-exchanged water, mixed with 23.4 g of commercially available silica sol (particle size: about 7 nm) (silica content: 16.0 g), "B1 liquid") was obtained. The A1 liquid and B1 liquid were mixed at 80 ° C. with stirring to form a precipitate. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and then fired at 300 ° C. for 3 hours to obtain a fired powder. The composition of the calcined powder was NiO / ZnO / SiO 2 = 60.9 mass% / 17.4 mass% / 21.7 mass% in terms of oxide, and the residual Na was 0.05 mass% or less.

次に上記生成物15gにモリブデン、コバルトを以下の方法により担持した。三酸化モリブデン(市販試薬特級)2.2gおよび炭酸コバルト(市販試薬特級)0.47gをイオン交換水に溶解し、80℃の湯浴上で含浸担持を行った。得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成した。   Next, molybdenum and cobalt were supported on 15 g of the product by the following method. 2.2 g of molybdenum trioxide (special grade for commercial reagent) and 0.47 g of cobalt carbonate (special grade for commercial reagent) were dissolved in ion-exchanged water and impregnated and supported on a 80 ° C. hot water bath. The obtained cake was pulverized, dried at 120 ° C. for 10 hours, and calcined at 300 ° C. for 3 hours.

得られた焼成粉を押出成形法により成形して直径1.0mmφの円筒状の脱硫剤を得、その脱硫剤3cmを、直径1.27cmの流通式反応管に充填し、水素気流中、360℃にて5時間還元した。続いて、灯油が液相状態となる反応温度220℃、反応圧力0.25MPa(ゲージ圧)にて、LHSV=12.0h−1にて、水素非共存条件で、JIS1号灯油(硫黄分濃度:4質量ppm、芳香族量一環:19.0容量%、二環:0.4容量%、三環:0.1容量%)の脱硫試験を行った。反応管の下流で生成油を採取し、採取した生成油中の硫黄分が20質量ppbを破過する時間を20ppb破過時間とした。脱硫剤の組成及び20ppb破過時間を表1に示す。なお、生成油中の硫黄分濃度は化学発光硫黄検出器付きガスクロマトグラフィー(GC−SCD)法により定量を行った。
(実施例2)
硝酸ニッケル六水和物(市販試薬特級)43.7gと硝酸亜鉛六水和物(市販試薬特級)5.3gをイオン交換水に溶解し、350mlの水溶液(以下、「A2液」という。)を得た。一方、炭酸ナトリウム(市販試薬特級)23.5gをイオン交換水に溶解し、市販のシリカゾル(粒径約10nm)23.4g(シリカ含有量16.0g)と混合し、300mlの溶液(以下、「B2液」という。)を得た。A2液とB2液を攪拌しながら80℃にて混合し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成し、焼成粉を得た。焼成粉の組成は酸化物換算で、NiO/ZnO/SiO=70.3質量%/8.5質量%/21.2質量%であり、残存Naは0.05質量%以下であった。
The fired powder obtained was molded by an extrusion molding method to obtain a cylindrical desulfurization agent having a diameter of 1.0 mmφ, and 3 cm 3 of the desulfurization agent was filled in a flow-type reaction tube having a diameter of 1.27 cm, Reduction was performed at 360 ° C. for 5 hours. Subsequently, JIS No. 1 kerosene (sulfur content concentration) at a reaction temperature of 220 ° C. at which the kerosene is in a liquid phase, a reaction pressure of 0.25 MPa (gauge pressure), LHSV = 12.0 h −1 , and in the absence of hydrogen. : 4 mass ppm, aromatic content part: 19.0 vol%, bicyclic: 0.4 vol%, tricyclic: 0.1 vol%). The product oil was sampled downstream of the reaction tube, and the time for the sulfur content in the sampled product oil to break through 20 mass ppb was defined as 20 ppb breakthrough time. The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 1. The sulfur concentration in the product oil was quantified by gas chromatography with a chemiluminescence sulfur detector (GC-SCD) method.
(Example 2)
Nickel nitrate hexahydrate (commercial reagent special grade) 43.7 g and zinc nitrate hexahydrate (commercial reagent special grade) 5.3 g were dissolved in ion-exchanged water, and 350 ml of an aqueous solution (hereinafter referred to as “A2 liquid”). Got. On the other hand, 23.5 g of sodium carbonate (commercial reagent grade) is dissolved in ion-exchanged water, mixed with 23.4 g of commercially available silica sol (particle size: about 10 nm) (silica content: 16.0 g), "B2 liquid") was obtained. A2 liquid and B2 liquid were mixed at 80 degreeC, stirring, and precipitation was formed. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and then fired at 300 ° C. for 3 hours to obtain a fired powder. The composition of the calcined powder was NiO / ZnO / SiO 2 = 70.3% by mass / 8.5% by mass / 21.2% by mass in terms of oxide, and the residual Na was 0.05% by mass or less.

次に上記生成物15gにモリブデン、コバルト、リンを以下の方法により担持した。三酸化モリブデン(市販試薬特級)0.6g、炭酸コバルト(市販試薬特級)0.1g及びリン酸(85%濃度市販試薬特級)0.1gをイオン交換水に溶解し、80℃の湯浴上で含浸担持を行った。得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成した。   Next, molybdenum, cobalt, and phosphorus were supported on 15 g of the product by the following method. 0.6 g of molybdenum trioxide (special grade for commercial reagent), 0.1 g of cobalt carbonate (special grade for commercial reagent) and 0.1 g of phosphoric acid (special grade for 85% concentration commercial reagent) are dissolved in ion-exchanged water and placed on a water bath at 80 ° C. Was impregnated and supported. The obtained cake was pulverized, dried at 120 ° C. for 10 hours, and calcined at 300 ° C. for 3 hours.

得られた焼成粉を実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表1に示す。
(比較例1)
実施例1と同一の操作にて、実施例1と同一の組成を有する酸化物としての表示でNiO/ZnO/SiOからなる焼成粉を得た。
The obtained fired powder was shaped and reduced by the same method as in Example 1, and a desulfurization test of kerosene was performed under the same conditions as in Example 1. The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 1.
(Comparative Example 1)
By the same operation as in Example 1, a fired powder made of NiO / ZnO / SiO 2 was obtained in the form of an oxide having the same composition as in Example 1.

得られた焼成粉に対してモリブデン及びコバルト成分を担持しなかったこと以外は実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表1に示す。
(比較例2)
実施例2と同一の操作にて、実施例2と同一の組成を有する酸化物としての表示でNiO/ZnO/SiOからなる焼成粉を得た。
The calcined desulfurization test was carried out under the same conditions as in Example 1 except that molybdenum and cobalt components were not supported on the obtained calcined powder and molded and reduced by the same method as in Example 1. . The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 1.
(Comparative Example 2)
In the same operation as in Example 2, a fired powder made of NiO / ZnO / SiO 2 was obtained in the form of an oxide having the same composition as in Example 2.

得られた焼成粉に対してモリブデン及びコバルト成分を担持しなかったこと以外は実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表1に示す。
(比較例3)
実施例1と同一の操作にて、実施例1と同一の組成を有する酸化物としての表示でNiO/ZnO/SiOからなる焼成粉を得た。
The calcined desulfurization test was carried out under the same conditions as in Example 1 except that molybdenum and cobalt components were not supported on the obtained calcined powder and molded and reduced by the same method as in Example 1. . The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 1.
(Comparative Example 3)
By the same operation as in Example 1, a fired powder made of NiO / ZnO / SiO 2 was obtained in the form of an oxide having the same composition as in Example 1.

次に上記生成物15gにモリブデンを以下の方法により担持した。三酸化モリブデン(市販試薬特級)2.1gをイオン交換水に溶解し、80℃の湯浴上で含浸担持を行った。得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成した。   Next, molybdenum was supported on 15 g of the product by the following method. 2.1 g of molybdenum trioxide (commercial reagent special grade) was dissolved in ion-exchanged water and impregnated and supported on a 80 ° C. hot water bath. The obtained cake was pulverized, dried at 120 ° C. for 10 hours, and calcined at 300 ° C. for 3 hours.

得られた焼成粉を実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表2に示す。
(比較例4)
実施例2と同一の操作にて、実施例2と同一の組成を有する酸化物としての表示でNiO/ZnO/SiOからなる焼成粉を得た。
The obtained fired powder was shaped and reduced by the same method as in Example 1, and a desulfurization test of kerosene was performed under the same conditions as in Example 1. The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 2.
(Comparative Example 4)
In the same operation as in Example 2, a fired powder made of NiO / ZnO / SiO 2 was obtained in the form of an oxide having the same composition as in Example 2.

次に上記生成物15gにモリブデンを以下の方法により担持した。三酸化モリブデン(市販試薬特級)2.1gをイオン交換水に溶解し、80℃の湯浴上で含浸担持を行った。得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成した。   Next, molybdenum was supported on 15 g of the product by the following method. 2.1 g of molybdenum trioxide (commercial reagent special grade) was dissolved in ion-exchanged water and impregnated and supported on a 80 ° C. hot water bath. The obtained cake was pulverized, dried at 120 ° C. for 10 hours, and calcined at 300 ° C. for 3 hours.

得られた焼成粉を実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表2に示す。
(比較例5)
硝酸銅六水和物(市販試薬特級)38.3gと硫酸亜鉛六水和物(市販試薬特級)5.3gをイオン交換水に溶解し、350mlとした水溶液(以下、「A3液」という。)を得た。炭酸ナトリウム(市販試薬特級)20.2gをイオン交換水に溶解し、市販のシリカゾル(粒径約7nm)32.8g(シリカ含有量22.4g)と混合、300mlとした溶液(以下、「B3液」という。)を得た。A3液とB3液を攪拌しながら80℃にて混合し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成し、焼成粉を得た。焼成粉の組成は酸化物換算で、CuO/ZnO/SiO=60.4質量%/8.7質量%/30.7質量%であり、残存Naは0.05質量%以下であった。
The obtained fired powder was shaped and reduced by the same method as in Example 1, and a desulfurization test of kerosene was performed under the same conditions as in Example 1. The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 2.
(Comparative Example 5)
Copper nitrate hexahydrate (commercial reagent special grade) 38.3 g and zinc sulfate hexahydrate (commercial reagent special grade) 5.3 g were dissolved in ion-exchanged water to make 350 ml (hereinafter referred to as “A3 solution”). ) 20.2 g of sodium carbonate (commercial reagent special grade) was dissolved in ion-exchanged water and mixed with 32.8 g of commercially available silica sol (particle size: about 7 nm) (silica content 22.4 g) to make 300 ml (hereinafter referred to as “B3 Liquid ”). The A3 liquid and B3 liquid were mixed at 80 ° C. with stirring to form a precipitate. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and then fired at 300 ° C. for 3 hours to obtain a fired powder. The composition of the baked powder was CuO / ZnO / SiO 2 = 60.4% by mass / 8.7% by mass / 30.7% by mass in terms of oxide, and the residual Na was 0.05% by mass or less.

得られた焼成粉を実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表2に示す。
(比較例6)
硝酸銅六水和物(市販試薬特級)38.3gをイオン交換水に溶解し、350mlとした水溶液(以下、「A4液」という。)を得た。炭酸ナトリウム(市販試薬特級)17.9gをイオン交換水に溶解し、市販のシリカゾル(粒径約7nm)42.2g(シリカ含有量28.9g)と混合、300mlとした溶液(以下、「B4液」という。)を得た。A4液とB4液を攪拌しながら80℃にて混合し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成し、焼成粉を得た。焼成粉の組成は酸化物換算で、CuO/SiO=60.5質量%/39.5質量%、残存Naは0.05質量%以下であった。
The obtained fired powder was shaped and reduced by the same method as in Example 1, and a desulfurization test of kerosene was performed under the same conditions as in Example 1. The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 2.
(Comparative Example 6)
Copper nitrate hexahydrate (commercial reagent special grade) 38.3 g was dissolved in ion-exchanged water to obtain 350 ml of an aqueous solution (hereinafter referred to as “A4 solution”). 17.9 g of sodium carbonate (commercial reagent special grade) is dissolved in ion-exchanged water and mixed with 42.2 g (silica content: 28.9 g) of a commercially available silica sol (particle size: about 7 nm) to make 300 ml (hereinafter referred to as “B4 Liquid ”). The A4 liquid and B4 liquid were mixed at 80 ° C. with stirring to form a precipitate. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and then fired at 300 ° C. for 3 hours to obtain a fired powder. The composition of the fired powder was CuO / SiO 2 = 60.5% by mass / 39.5% by mass in terms of oxide, and the residual Na was 0.05% by mass or less.

次に上記生成物15gにモリブデンを以下の方法により担持した。三酸化モリブデン(市販試薬特級)2.1gをイオン交換水に溶解し、80℃の湯浴上で含浸担持を行った。得られたケーキを粉砕し、120℃で10時間乾燥後、300℃で3時間焼成した。   Next, molybdenum was supported on 15 g of the product by the following method. 2.1 g of molybdenum trioxide (commercial reagent special grade) was dissolved in ion-exchanged water and impregnated and supported on a 80 ° C. hot water bath. The obtained cake was pulverized, dried at 120 ° C. for 10 hours, and calcined at 300 ° C. for 3 hours.

得られた焼成粉を実施例1と同様の方法により成形、還元処理し、実施例1と同一の条件にて灯油の脱硫試験を行った。脱硫剤の組成及び20ppb破過時間を表2に示す。   The obtained fired powder was shaped and reduced by the same method as in Example 1, and a desulfurization test of kerosene was performed under the same conditions as in Example 1. The composition of the desulfurizing agent and the 20 ppb breakthrough time are shown in Table 2.

Figure 0005324205
Figure 0005324205

Figure 0005324205
Figure 0005324205

表1、2の結果から、本発明の脱硫剤は従来の脱硫剤に比較して、水素非共存下において向上した20ppb破過時間を有することが明らかである。
(参考例1〜8)
参考例1〜8においては、以下のようにして、表3に記載の酸化物換算で、NiO/ZnO/SiO組成を有する各焼成粉を得た。実施例1と同様にして、所定濃度に調製した硝酸ニッケル及び硝酸亜鉛の水溶液と、所定濃度に調製した炭酸ナトリウムの水溶液にシリカゾルを混合させた溶液とを混合することにより、沈殿を形成せしめた。得られたそれぞれの沈殿物について実施例1と同様に洗浄、粉砕、乾燥、焼成を行い、表3に記載の酸化物としての表示でNiO/ZnO/SiOからなる各組成を有する各焼成粉を得た。
From the results of Tables 1 and 2, it is clear that the desulfurizing agent of the present invention has an improved 20 ppb breakthrough time in the absence of hydrogen as compared with the conventional desulfurizing agent.
(Reference Examples 1-8)
In Reference Examples 1 to 8, each calcined powder having a NiO / ZnO / SiO 2 composition was obtained in the oxide conversion shown in Table 3 as follows. In the same manner as in Example 1, a precipitate was formed by mixing an aqueous solution of nickel nitrate and zinc nitrate adjusted to a predetermined concentration and a solution obtained by mixing silica sol with an aqueous solution of sodium carbonate adjusted to a predetermined concentration. . Each obtained precipitate was washed, pulverized, dried and fired in the same manner as in Example 1, and each fired powder having each composition consisting of NiO / ZnO / SiO 2 in terms of oxides shown in Table 3 Got.

次に、参考例1〜8の焼成粉をそれぞれ、モリブデン及びコバルト成分を担持することなく、打錠成形法によりディスク錠に成形し、これを粗く破砕し、篩分けにより粒径を1.2〜2.0mmに揃え、さらに還元時間を3時間とした以外は実施例1と同様の操作により金属管中にて水素還元処理を行った。得られたそれぞれの脱硫剤0.2gを窒素雰囲気下に内容積200mLのステンレス鋼製オートクレーブ型反応器に仕込んだ。   Next, the calcined powders of Reference Examples 1 to 8 were each formed into a disk tablet by a tableting method without supporting molybdenum and cobalt components, and this was roughly crushed, and the particle size was 1.2 by sieving. The hydrogen reduction treatment was performed in the metal tube by the same operation as in Example 1 except that the thickness was set to ˜2.0 mm and the reduction time was 3 hours. 0.2 g of each of the obtained desulfurizing agents was charged into a stainless steel autoclave reactor having an internal volume of 200 mL under a nitrogen atmosphere.

次に、ノルマルドデカン(試薬特級)に、溶液基準での硫黄原子としての含有量が200質量ppmとなるようにベンゾチオフェン(試薬特級)を溶解したモデル原料を用意した。そしてこの50mLを窒素雰囲気下に前記オートクレーブ型反応器に仕込み、内温200℃まで加熱昇温し、窒素雰囲気下、常圧にて2時間攪拌下に反応を行った。反応終了後、反応器を常温まで冷却し、反応液中の硫黄濃度をGC−SCD法にて定量し、これにより各脱硫剤中に吸着された硫黄原子の量を算出した。結果を表3に示す。   Next, a model raw material in which benzothiophene (reagent special grade) was dissolved in normal dodecane (reagent special grade) so that the content as a sulfur atom on a solution basis was 200 ppm by mass was prepared. Then, 50 mL of this was charged into the autoclave reactor under a nitrogen atmosphere, heated to an internal temperature of 200 ° C., and reacted under stirring in a nitrogen atmosphere at normal pressure for 2 hours. After completion of the reaction, the reactor was cooled to room temperature, and the sulfur concentration in the reaction solution was quantified by the GC-SCD method, thereby calculating the amount of sulfur atoms adsorbed in each desulfurization agent. The results are shown in Table 3.

Figure 0005324205
Figure 0005324205

[発電試験]
図1の燃料電池システムにおいて、脱硫器5に、実施例1で得られた脱硫剤を充填して、1号灯油(硫黄濃度:27質量ppm)をに燃料とし、発電試験を行なった。200時間の運転中、脱硫器は正常に作動し、脱硫剤の活性低下は認められなかった。脱硫条件は、温度220℃、0.25MPa(ゲージ圧)、水素流通なし、LHSV=0.5h−1であった。このとき水蒸気改質にはルテニウムを主成分とする触媒を用い、S/C(スチーム/炭素比)=3、温度700℃、LHSV=1h−1の条件で、シフト反応工程(反応器10)では銅−亜鉛混合酸化物触媒を用い、200℃、GHSV=2000h−1の条件で、一酸化炭素選択酸化工程(反応器11)ではルテニウムを主成分とする触媒を用い、O/CO=3、温度150℃、GHSV=5000h−1の条件で運転を行った。燃料電池も正常に作動し電気負荷15も順調に運転された。
[Power generation test]
In the fuel cell system of FIG. 1, the desulfurizer 5 was filled with the desulfurization agent obtained in Example 1, and No. 1 kerosene (sulfur concentration: 27 mass ppm) was used as the fuel to conduct a power generation test. During the operation for 200 hours, the desulfurizer operated normally and no decrease in the activity of the desulfurizing agent was observed. The desulfurization conditions were a temperature of 220 ° C., 0.25 MPa (gauge pressure), no hydrogen flow, and LHSV = 0.5 h −1 . At this time, a catalyst mainly composed of ruthenium is used for steam reforming, and a shift reaction step (reactor 10) is performed under the conditions of S / C (steam / carbon ratio) = 3, temperature 700 ° C., and LHSV = 1h −1. Then, using a copper-zinc mixed oxide catalyst, under the conditions of 200 ° C. and GHSV = 2000 h −1 , in the carbon monoxide selective oxidation step (reactor 11), a catalyst containing ruthenium as a main component is used, and O 2 / CO = 3. Operation was performed under conditions of a temperature of 150 ° C. and GHSV = 5000 h −1 . The fuel cell also operated normally and the electric load 15 was operated smoothly.

本発明の燃料電池システムの一例を示す概略図である。It is the schematic which shows an example of the fuel cell system of this invention.

符号の説明Explanation of symbols

1 水タンク
2 水ポンプ
3 原燃料タンク
4 原燃料ポンプ
5 脱硫器
6 気化器
7 改質器
8 空気ブロアー
9 高温シフト反応器
10 低温シフト反応器
11 一酸化炭素選択酸化反応器
12 アノード
13 カソード
14 固体高分子電解質
15 電気負荷
16 排気口
17 固体高分子形燃料電池
18 加温用バーナー


DESCRIPTION OF SYMBOLS 1 Water tank 2 Water pump 3 Raw fuel tank 4 Raw fuel pump 5 Desulfurizer 6 Vaporizer 7 Reformer 8 Air blower 9 High temperature shift reactor 10 Low temperature shift reactor 11 Carbon monoxide selective oxidation reactor 12 Anode 13 Cathode 14 Polymer electrolyte 15 Electric load 16 Exhaust port 17 Polymer electrolyte fuel cell 18 Heating burner


Claims (9)

多孔性無機酸化物と、ニッケル及び/又は酸化ニッケルと、酸化亜鉛と、コバルト及び/又は酸化コバルトと、モリブデン及び/又は酸化モリブデンと、を含有し、脱硫剤の全質量を基準として、酸化物換算で、前記多孔性無機酸化物の含有量が10〜30質量%であり、前記ニッケル及び/又は酸化ニッケルの含有量が45〜75質量%であり、前記酸化亜鉛の含有量が3〜40質量%であることを特徴とする炭化水素用脱硫剤。   A porous inorganic oxide, nickel and / or nickel oxide, zinc oxide, cobalt and / or cobalt oxide, molybdenum and / or molybdenum oxide, and oxide based on the total mass of the desulfurizing agent In terms of conversion, the content of the porous inorganic oxide is 10 to 30% by mass, the content of nickel and / or nickel oxide is 45 to 75% by mass, and the content of zinc oxide is 3 to 40%. A desulfurizing agent for hydrocarbons, characterized in that it is in mass%. 酸化リンを更に含有することを特徴とする請求項1記載の炭化水素用脱硫剤。   The hydrocarbon desulfurization agent according to claim 1, further comprising phosphorus oxide. 前記多孔性無機酸化物としてシリカを含有することを特徴とする請求項1又は2記載の炭化水素用脱硫剤。   The hydrocarbon desulfurization agent according to claim 1 or 2, wherein silica is contained as the porous inorganic oxide. ニッケル化合物、亜鉛化合物並びに多孔性無機酸化物及び/又はその前駆体を含有する溶液又は懸濁液から共沈物を生じさせる第1の工程と、
前記共沈物について洗浄、乾燥及び焼成を順次行う第2の工程と、
前記第2の工程における焼成後の前記共沈物に、コバルト化合物及びモリブデン化合物を担持して担持物を得る第3の工程と、
前記担持物について乾燥及び焼成を順次行い、多孔性無機酸化物と、ニッケル及び/又は酸化ニッケルと、酸化亜鉛と、コバルト及び/又は酸化コバルトと、モリブデン及び/又は酸化モリブデンと、を含有し、脱硫剤の全質量を基準として、酸化物換算で、前記多孔性無機酸化物の含有量が10〜30質量%であり、前記ニッケル及び/又は酸化ニッケルの含有量が45〜75質量%であり、前記酸化亜鉛の含有量が3〜40質量%である炭化水素用脱硫剤を得る第4の工程と、
を備えることを特徴とする炭化水素用脱硫剤の製造方法。
A first step of forming a coprecipitate from a solution or suspension containing a nickel compound, a zinc compound and a porous inorganic oxide and / or precursor thereof;
A second step of sequentially washing, drying and firing the coprecipitate;
A third step of obtaining a support by supporting a cobalt compound and a molybdenum compound on the coprecipitate after baking in the second step;
The support is sequentially dried and fired, and contains a porous inorganic oxide, nickel and / or nickel oxide, zinc oxide, cobalt and / or cobalt oxide, molybdenum and / or molybdenum oxide, The content of the porous inorganic oxide is 10 to 30% by mass, and the content of the nickel and / or nickel oxide is 45 to 75% by mass in terms of oxides based on the total mass of the desulfurizing agent. A fourth step of obtaining a hydrocarbon desulfurization agent having a zinc oxide content of 3 to 40% by mass;
A process for producing a hydrocarbon desulfurization agent, comprising:
前記第3の工程において、前記共沈物にリン化合物を更に担持させることを特徴とする請求項4に記載の炭化水素用脱硫剤の製造方法。   The method for producing a hydrocarbon desulfurization agent according to claim 4, wherein a phosphorus compound is further supported on the coprecipitate in the third step. 前記第1の工程における前記溶液又は懸濁液が、前記多孔性無機酸化物及び/又はその前駆体として、シリカ及び/又はその前駆体を含有することを特徴とする請求項4又は5に記載の炭化水素用脱硫剤の製造方法。   6. The solution or suspension in the first step contains silica and / or a precursor thereof as the porous inorganic oxide and / or a precursor thereof. Method for producing a hydrocarbon desulfurization agent. 請求項1〜3のいずれか1項記載の炭化水素用脱硫剤と液相の灯油とを接触させることを特徴とする灯油の脱硫方法。   A method for desulfurizing kerosene, comprising contacting the hydrocarbon desulfurization agent according to any one of claims 1 to 3 with liquid phase kerosene. 前記脱硫剤と前記灯油とを、温度0〜400℃、圧力0.1〜1.1MPa、液空間速度0.01〜100hr−1の条件にて接触させることを特徴とする請求項7記載の灯油の脱硫方法。 8. The desulfurization agent and the kerosene are brought into contact under the conditions of a temperature of 0 to 400 [deg.] C., a pressure of 0.1 to 1.1 MPa, and a liquid space velocity of 0.01 to 100 hr < -1 >. Kerosene desulfurization method. 炭化水素を含む原燃料と請求項1〜3のいずれか1項記載の炭化水素用脱硫剤とを接触させることによって前記原燃料の脱硫を行う脱硫部と、
前記脱硫器による脱硫後の燃料を改質する改質部と、
前記改質器による改質後の燃料中の一酸化炭素をシフト反応により低減して燃料ガスを生成させるシフト反応部と、
前記燃料ガスを用いて発電を行う発電部と、
を備えることを特徴とする燃料電池システム。
A desulfurization section for desulfurizing the raw fuel by bringing the raw fuel containing hydrocarbon into contact with the hydrocarbon desulfurization agent according to any one of claims 1 to 3;
A reforming section for reforming fuel after desulfurization by the desulfurizer;
A shift reaction unit for generating fuel gas by reducing carbon monoxide in the fuel after reforming by the reformer by a shift reaction;
A power generation unit that generates power using the fuel gas;
A fuel cell system comprising:
JP2008321456A 2008-12-17 2008-12-17 Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system Expired - Fee Related JP5324205B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008321456A JP5324205B2 (en) 2008-12-17 2008-12-17 Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
PCT/JP2009/071039 WO2010071172A1 (en) 2008-12-17 2009-12-17 Hydrocarbon desulfurizing agent and manufacturing method thereof, kerosene desulfurization method, and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321456A JP5324205B2 (en) 2008-12-17 2008-12-17 Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system

Publications (2)

Publication Number Publication Date
JP2010142715A JP2010142715A (en) 2010-07-01
JP5324205B2 true JP5324205B2 (en) 2013-10-23

Family

ID=42268842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321456A Expired - Fee Related JP5324205B2 (en) 2008-12-17 2008-12-17 Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system

Country Status (2)

Country Link
JP (1) JP5324205B2 (en)
WO (1) WO2010071172A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203595A (en) * 2012-03-28 2013-10-07 Jx Nippon Oil & Energy Corp Desulfurization system, hydrogen production system, fuel cell system, fuel desulfurization method and hydrogen production method
CN111054365B (en) * 2018-10-16 2023-04-18 中国石油化工股份有限公司 Fine desulfurizing agent, preparation method thereof and desulfurization process
CN115140736B (en) * 2022-05-16 2023-09-19 中南大学 Multicomponent composite ferrite modified activated carbon, preparation method thereof and application thereof in desulfurization and denitrification

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794320B2 (en) * 1990-03-27 1998-09-03 株式会社 コスモ総合研究所 Method for producing hydrotreating catalyst composition for hydrocarbon oil
US6429170B1 (en) * 2000-05-30 2002-08-06 Phillips Petroleum Company Sorbents for desulfurizing gasolines and diesel fuel
JP2006117921A (en) * 2004-09-22 2006-05-11 Idemitsu Kosan Co Ltd Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP4987485B2 (en) * 2004-12-28 2012-07-25 Jx日鉱日石エネルギー株式会社 Method for producing ultra-low sulfur gas oil base or ultra-low sulfur gas oil composition and ultra-low sulfur gas oil composition
FR2903979B1 (en) * 2006-07-24 2009-02-20 Inst Francais Du Petrole PROCESS FOR PREPARING AT LEAST ONE SALT OF COBALT AND / OR NICKEL OF AT LEAST ONE ANDERSON HETEROPOLYANION COMBINING MOLYBDENE AND COBALT OR NICKEL IN ITS STRUCTURE

Also Published As

Publication number Publication date
JP2010142715A (en) 2010-07-01
WO2010071172A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
EP1878781A1 (en) Desulfurizing agent and method of desulfurization with the same
WO2010113506A1 (en) Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP5324205B2 (en) Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
JP4227779B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4210130B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2011240273A (en) Adsorbent, its production method and fuel desulfurization method
JP5275114B2 (en) Hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP5275113B2 (en) Hydrocarbon desulfurizing agent precursor and production method thereof, hydrocarbon desulfurization agent firing precursor and production method thereof, hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP4227780B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP2011088778A (en) Hydrogen production apparatus and fuel cell system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP5421857B2 (en) Adsorbent, production method thereof, and fuel desulfurization method
JP2009057421A (en) Desulfurization agent for liquid fuel and desulfurization method for liquid fuel
WO2011049130A1 (en) Device for producing hydrogen and fuel cell system
JP2011088779A (en) Hydrogen production apparatus and fuel cell system
JP2011088780A (en) Hydrogen production apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees