JP4210130B2 - Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system - Google Patents

Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system Download PDF

Info

Publication number
JP4210130B2
JP4210130B2 JP2003023545A JP2003023545A JP4210130B2 JP 4210130 B2 JP4210130 B2 JP 4210130B2 JP 2003023545 A JP2003023545 A JP 2003023545A JP 2003023545 A JP2003023545 A JP 2003023545A JP 4210130 B2 JP4210130 B2 JP 4210130B2
Authority
JP
Japan
Prior art keywords
catalyst
desulfurization
mass
hydrogen
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003023545A
Other languages
Japanese (ja)
Other versions
JP2004230317A (en
Inventor
敦司 瀬川
康司 佐藤
忠夫 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2003023545A priority Critical patent/JP4210130B2/en
Publication of JP2004230317A publication Critical patent/JP2004230317A/en
Application granted granted Critical
Publication of JP4210130B2 publication Critical patent/JP4210130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化水素の脱硫触媒に関する。また本発明は該触媒を用いて硫黄分を含有する炭化水素を脱硫する方法に関する。さらに本発明は該触媒を充填した脱硫装置を備えた燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池は燃料の燃焼反応による自由エネルギー変化を直接電気エネルギーとして取り出せるため、高い効率が得られるという特徴がある。さらに有害物質を排出しないことも相俟って、様々な用途への展開が図られている。特に固体高分子形燃料電池は、出力密度が高く、コンパクトで、しかも低温で作動するのが特徴である。
【0003】
一般的に燃料電池用の燃料ガスとしては水素を主成分とするガスが用いられるが、その原料には天然ガス、LPG、ナフサ、灯油等の炭化水素、あるいはメタノール、エタノール等のアルコール、若しくはジメチルエーテル等のエーテルなどが用いられる。これら炭素と水素を含む原料を水蒸気とともに触媒上で高温処理して改質したり、酸素含有気体で部分酸化したり、また水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うことにより得られる水素を、基本的には燃料電池用の燃料水素としている。
【0004】
しかし、これらの原料中には水素以外の元素も存在するため、燃料電池への燃料ガス中に炭素由来の不純物が混入することは避けられない。例えば、一酸化炭素は燃料電池の電極触媒として使われている白金系貴金属を被毒するため、燃料ガス中に一酸化炭素が存在すると充分な発電特性が得られなくなる。特に低温作動させる燃料電池ほど一酸化炭素吸着は強く、被毒を受けやすい。このため固体高分子形燃料電池を用いたシステムでは燃料ガス中の一酸化炭素の濃度が低減されていることが必要不可欠である。
【0005】
このため原料を改質して得られた改質ガス中の一酸化炭素を水蒸気と反応させ、水素と二酸化炭素に転化し、さらに微量残存した一酸化炭素を選択酸化で除去する方法が採られる。
最終的に一酸化炭素が十分低い濃度になるまで除去された燃料水素は燃料電池の陰極に導入され、ここでは電極触媒上でプロトンと電子に変換される。生成したプロトンは電解質中を陽極側へ移動し、外部回路を通ってきた電子とともに酸素と反応し、水を生成する。電子が外部回路を通ることにより電気を発生する。
【0006】
これら燃料電池用燃料水素を製造するまでの原料改質、一酸化炭素除去の各工程、さらに陰極の電極に用いられる触媒は貴金属または銅などが還元状態で使われることが多く、このような状態では硫黄は触媒毒として作用し、水素製造工程または電池そのものの触媒活性を低下させ、効率が低下してしまうという問題がある。
従って、原料中に含まれる硫黄分を十分に除去することが水素製造工程に用いられている触媒さらには電極触媒を本来の性能で使用するために必要不可欠であると考えられる。
基本的に硫黄を除去する、いわゆる脱硫工程は水素製造工程の一番最初に行われる。その直後の改質工程に用いる触媒が十分機能するレベルまで硫黄濃度を低減する必要があるが、それは通常0.1質量ppm以下である。
【0007】
これまでは燃料電池用原料の硫黄分を除去する方法としては、脱硫触媒によって難脱硫性有機硫黄化合物を水素化脱硫して、一度吸着除去し易い硫化水素に変換し、適当な吸着剤で処理する方法が適していると思われていた。しかし一般的な水素化脱硫触媒では水素圧力を高くして用いられるが、燃料電池システムに用いる場合は、大気圧か、高くても1MPaにとどめた技術開発が進んでいるので、通常の脱硫触媒系では対応できないのが現状である。
【0008】
このため低圧系でも十分に脱硫機能を発現することができる触媒系について検討が行われている。例えば、ニッケル系脱硫剤で脱硫した灯油を水蒸気改質して水素を製造する方法が提案されている(例えば、特許文献1および特許文献2参照。)。しかし、この方法では脱硫可能な温度範囲が150〜300℃であるというプロセス上の制約がある。また銅−亜鉛系の脱硫触媒についての提案がなされている(例えば、特許文献3および特許文献4参照。)。しかし、この触媒は比較的高温で用いても炭素析出は少ないものの、脱硫活性がニッケルに比べて低いため、天然ガス、LPG、ナフサ等の軽質炭化水素の脱硫は行えるが、灯油の脱硫に対しては不十分であるという問題がある。また脱硫作用を行わせるために活性炭あるいは薬液を用いる方法が提案されている(特許文献5参照)。しかし、この触媒は起動時常温で脱硫効果があることが示されているが、原料は常温でのガス体に限定されている。ニッケル−亜鉛系触媒も提案されているが(特許文献6参照)、水素共存、加圧下での使用が前提となっており、水素非共存条件では、ニッケル含有量が少ないため触媒性能が低下する。
【0009】
【特許文献1】
特開平1−188404号公報
【特許文献2】
特開平1−188405号公報
【特許文献3】
特開平2−302302号公報
【特許文献4】
特開平2−302303号公報
【特許文献5】
特開平1−143155号公報
【特許文献6】
特開2001−62297号公報
【0010】
【発明が解決しようとする課題】
上記したように、燃料電池用燃料水素を製造するまでの原料改質、一酸化炭素除去の各工程、さらに陰極の電極に用いられる触媒は貴金属または銅などが還元状態で使われることが多く、このような状態では硫黄は触媒毒として作用し、水素製造工程または電池そのものの触媒活性を低下させ、効率を低下させる。従って、原料中に含まれる硫黄分を十分に除去することが水素製造工程に用いられている触媒さらには電極触媒を本来の性能で使用するために必要不可欠である。しかも低圧条件下で、難脱硫性物質を効果的に脱硫する必要がある。
【0011】
【課題を解決するための手段】
本発明者はかかる課題について鋭意研究した結果、炭化水素中に含まれる硫黄分を効率的に脱硫する触媒を見出し、本発明を完成するに至ったものである。また本発明は、この特定の触媒を用いた脱硫方法、およびこの触媒を用いた脱硫装置を有する燃料電池システムをも提供するものである。
【0012】
すなわち、本発明の第1は、γ−アルミナ、β−アルミナおよび擬ベーマイトから選ばれる少なくとも一種のアルミナを核としてニッケルおよび亜鉛を含む成分を共沈法により形成した触媒前駆体を焼成して得られる30〜80質量%の酸化ニッケル、10〜70質量%の酸化亜鉛および0.1〜40質量%のアルミナを含む炭化水素の脱硫触媒に関する。
【0013】
また、本発明の第2は、前記触媒を用いて、硫黄分を含有する炭化水素を硫黄濃度0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法に関する。
【0014】
さらに、本発明の第3は、前記触媒が充填された反応部を有し、硫黄分を含有する炭化水素を脱硫する脱硫装置と、該脱硫装置により脱硫された炭化水素を、水素を主成分とする燃料ガスに改質する改質装置を少なくとも有する燃料電池システムに関する。
【0015】
【発明の実施の形態】
以下に本発明について詳述する。
本発明の脱硫触媒は、アルミナを核としてニッケルおよび亜鉛を含む成分を共沈法により形成した触媒前駆体を焼成することにより得られる。
アルミナとしては、γ−アルミナ、β−アルミナおよび擬ベーマイトから選ばれる少なくとも一種が用いられる。
使用するアルミナの粒径は、1000ミクロン以下、好ましくは500ミクロン以下、さらに好ましくは200ミクロン以下の粒子からなる粉体状のものが好ましく、必要があれば粉砕して使用する。アルミナの粒径が1000ミクロンより大きいとアルミナ自体が系内で均一に存在することが難しくなり、アルミナ上への均一な沈殿形成が阻害される。粒径の下限については特に制限はないが、通常1nm以上であり、好ましくは10nm以上の粒子からなる粉体状のものが好ましい。
【0016】
アルミナを核としてニッケルおよび亜鉛を含む成分を形成する共沈法は、具体的には、ニッケル化合物および亜鉛化合物の水溶液にアルミナを懸濁させ、該懸濁液に塩基を混合して、あるいは塩基の水溶液にアルミナを懸濁させ、該懸濁液にニッケル化合物および亜鉛化合物の水溶液を混合して、アルミナ上にニッケル化合物および亜鉛化合物の沈殿を生じさせることにより触媒先駆体を形成する。
ニッケル化合物および亜鉛化合物としては、各々の塩化物、硝酸塩、硫酸塩、有機酸塩、水酸化物などを用いることができる。具体的には、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、水酸化ニッケル、塩化亜鉛、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、水酸化亜鉛などが好ましい。
塩基としてはアンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどの水溶液が使用できる。
【0017】
アルミナを核として、アルミナ上にニッケル化合物および亜鉛化合物の沈殿を生じさせた後、生成した沈殿生成物(触媒先駆体)をろ過し、イオン交換水などにて洗浄する。洗浄が不十分であると触媒上に塩素、硝酸痕、硫酸痕、酢酸痕、ナトリウム、カリウムなどが残り、触媒性能に悪影響を与えるので、十分な洗浄を行う。イオン交換水では十分に洗浄できない場合、洗浄液として、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどの塩基の水溶液を使用してもよい。この場合、まず塩基の水溶液で沈殿生成物を洗浄し、続いてイオン交換水で洗浄するのが好ましい。
沈殿生成物を洗浄した後、沈殿生成物を粉砕し、次いで乾燥を行う。乾燥後、続いて焼成を行う。沈殿生成後の洗浄が不十分であった場合、焼成後に再び洗浄を行ってもよい。この場合もイオン交換水あるいは既述の塩基の水溶液を使用することができる。
【0018】
前記乾燥方法としては特に限定されるものではなく、例えば、空気中での自然乾燥、減圧下での脱気乾燥等を挙げることができる。通常、空気雰囲気下、100〜150℃で5〜15時間、乾燥を行う。また前記焼成方法としては特に限定されるものではなく、通常、空気雰囲気下、200〜600℃、好ましくは250〜450℃で、0.1〜10時間、好ましくは1〜5時間焼成するのが望ましい。
【0019】
前記した触媒先駆体を焼成して得られる本発明の触媒は、酸化ニッケル、酸化亜鉛およびアルミナを構成成分として含有する。
触媒中の酸化ニッケルの含有量は、30〜80質量%であり、好ましくは40〜80質量%、より好ましくは45〜80質量%である。触媒中の酸化ニッケルの含有量が30質量%未満の場合には触媒性能が不十分となる。一方、触媒中の酸化ニッケルの含有量が80質量%を超えるとニッケルの分散性が低下し、触媒性能が低下するだけでなく、経済的にも好ましくない。
触媒中の酸化亜鉛の含有量は10〜70質量%であり、好ましくは10〜60質量%、より好ましくは15〜50質量%である。触媒中の酸化亜鉛の含有量が10質量%未満の場合には触媒性能が不十分となり、70質量%以上を超えると相対的にニッケル含有量が減少することとなり、触媒性能が低下する。
触媒中のアルミナの含有量は0.1〜40質量%であり、好ましくは0.5〜35質量%、より好ましくは1〜30質量%である。触媒中のアルミナの含有量が0.1質量%未満の場合には触媒性能が不十分となり、40質量%以上を超えると相対的にニッケル含有量が減少することとなり、触媒性能が低下する。
【0020】
上記の方法で調製された触媒を使用する場合、そのまま反応に供することもできるが、前処理として水素等による還元処理を行ってもよい。その条件として温度は150〜500℃、好ましくは250〜400℃が望ましく、時間は0.1〜15時間、好ましくは2〜10時間が望ましい。
【0021】
本発明の触媒の形状については特に限定されるものではなく、粉体として得られた触媒をそのまま用いてもよいし、あるいは打錠成形し、成型品とすることもできるし、その成型品を粉砕後適当な範囲に整粒した触媒としてもよい。さらに押し出し成形した触媒とすることもできる。成型にあたり、適当なバインダーを加えてもよい。バインダーとしては特に限定されるものではなく、カーボンブラック、アルミナ、シリカ、チタニア、ジルコニア、もしくはそれらの複合酸化物などを用いることができる。バインダーの添加量としては、上限は通常50質量%以下、好ましくは30質量%以下である。下限はバインダーとしての機能を発揮できるものであれば特に限定されるものではなく、通常1質量%以上、好ましく5質量%以上である。
【0022】
本発明の第2は、本発明の第1の触媒を用いて、硫黄分を含有する炭化水素を硫黄濃度0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法である。特に本発明の脱硫方法においては水素非共存の条件下で硫黄濃度を0.1質量ppm以下にまで脱硫できることが特徴である。
本発明で用いられる硫黄分を含有する炭化水素としては、特に限定されるものではなく、メタン、エタン、プロパン、ブタン、天然ガス、LPG、ナフサ、ガソリン、灯油およびこれらの混合物等が挙げられる。なお、原料炭化水素中には水素が含まれていてもよく、また、各種のアルコール、エーテルなどが含まれていても良い。また、これらの原料炭化水素は液体でも気体でもよい。
本発明で用いられるこれらの炭化水素中には、微量の硫黄分が含まれており、その量は製法により異なるが、通常0.1質量ppmより多く100質量ppm以下の硫黄分が含有されている。なお、本発明の硫黄分とは、これらの炭化水素中に通常含まれる各種の硫黄、無機硫黄化合物、有機硫黄化合物を総称するものとする。
【0023】
脱硫反応における圧力は、燃料電池システムの経済性、安全性等も考慮し、常圧〜1MPaの範囲の低圧が好ましく、特に常圧〜0.2MPaが好ましい。反応温度としては、硫黄濃度を低下させる温度であれば、特に限定されるものではないが、機器スタート時も考慮して、室温から有効に作用することが好ましく、また定常時も考慮して、10℃〜450℃が好ましい。より好ましくは15℃〜350℃、特に好ましくは20℃〜300℃が採用される。SVは過剰に高すぎると脱硫反応が進行しにくくなり、一方低すぎると装置が大きくなるため適した範囲に設定する。液体原料を用いる場合は、0.01〜15h-1の範囲が好ましく、0.05〜5h-1の範囲がさらに好ましく、0.1〜3h-1の範囲が特に好ましい。ガス燃料を用いる場合は、100〜10000h-1の範囲が好ましく、200〜5000h-1の範囲がさらに好ましく、300〜2000h-1の範囲が特に好ましい。本発明の脱硫方法においては水素非共存条件下で脱硫できることが特徴であるが、少量の水素を導入してもよい。そのときの水素の流量は、例えば、炭化水素原料1gあたり0.05〜1.0NLである。
【0024】
本発明の脱硫方法を用いる脱硫装置の形態は特に限定されるものではないが、例えば流通式固定床方式を用いることができる。脱硫装置の形状としては、円筒状、平板状などそれぞれのプロセスの目的に応じた公知のいかなる形状を取ることができる。
【0025】
本発明の脱硫触媒を用いることにより、前記した硫黄分を含有する炭化水素の硫黄濃度を水素非共存条件下で0.1質量ppm以下にまで低減することができる。なお硫黄濃度は、紫外蛍光法により測定される。
硫黄濃度が0.1質量ppm以下に脱硫された炭化水素は、次いで、改質工程、シフト工程、一酸化炭素選択酸化工程等を経ることにより、生成した水素リッチガスを燃料電池用燃料として使うことができる。
【0026】
改質工程としては、特に限定されるものではないが、原料を水蒸気とともに触媒上で高温処理して改質する水蒸気改質や、酸素含有気体との部分酸化、また水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うオートサーマルリフォーミングなどを用いることができる。
なお改質の反応条件は限定されるものではないが、反応温度は200〜1000℃が好ましく、特に500〜850℃が好ましい。反応圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。LHSVは0.01〜40h-1が好ましく、特に0.1〜10h-1が好ましい。
【0027】
このとき得られる一酸化炭素と水素を含む混合ガスは、固体酸化物形燃料電池のような場合であればそのまま燃料電池用の燃料として用いることができる。また、リン酸形燃料電池や固体高分子形燃料電池のように一酸化炭素の除去が必要な燃料電池に対しては、該燃料電池用水素の原料として好適に用いることができる。
【0028】
燃料電池用水素の製造は、公知の方法を採用することができ、例えばシフト工程と一酸化炭素選択酸化工程で処理することにより実施できる。
シフト工程とは一酸化炭素と水とを反応させ水素と二酸化炭素に転換する工程であり、例えば、鉄−クロムの混合酸化物、銅−亜鉛の混合酸化物、白金、ルテニウム、イリジウムなどを含有する触媒を用い、一酸化炭素含有量を2vol%以下、好ましくは1vol%以下、さらに好ましくは0.5vol%以下に低減させる。
シフト反応は原料となる改質ガス組成等によって、必ずしも反応条件は限定されるものではないが、反応温度は120〜500℃が好ましく、特に150〜450℃が好ましい。圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。GHSVは100〜50000h-1が好ましく、特に300〜10000h-1が好ましい。通常、リン酸形燃料電池ではこの状態の混合ガスを燃料として用いることができる。
【0029】
一方、固体高分子形燃料電池では、一酸化炭素濃度をさらに低減させることが必要であるので一酸化炭素を除去する工程を設けることが望ましい。この工程としては、特に限定されるものではなく、吸着分離法、水素分離膜法、一酸化炭素選択酸化工程などの各種の方法を用いることができるが、装置のコンパクト化、経済性の面から、一酸化炭素選択酸化工程を用いるのが特に好ましい。この工程では、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、銀、金などを含有する触媒を用い、残存する一酸化炭素モル数に対し0.5〜10倍モル、好ましくは0.7〜5倍モル、さらに好ましくは1〜3倍モルの酸素を添加し一酸化炭素を選択的に二酸化炭素に転換することにより一酸化炭素濃度を低減させる。この方法の反応条件は限定されるものではないが、反応温度は80〜350℃が好ましく、特に100〜300℃が好ましい。圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。GHSVは1000〜50000h-1が好ましく、特に3000〜30000h-1が好ましい。この場合、一酸化炭素の酸化と同時に共存する水素と反応させメタンを生成させることで一酸化炭素濃度の低減を図ることもできる。
【0030】
また本発明の第3は、本発明の第1の脱硫触媒が充填された反応部を有し、硫黄分を含有する炭化水素を脱硫する脱硫装置と、該脱硫装置により脱硫された炭化水素を、水素を主成分とする燃料ガスに改質する改質装置を少なくとも有する燃料電池システムである。
【0031】
以下、この燃料電池システムの一例を図1にて説明する。
燃料タンク3内の原燃料は燃料ポンプ4を経て脱硫器5に流入する。この時、必要であれば一酸化炭素選択酸化反応器11からの水素含有ガスを添加できる。脱硫器5には、本発明の脱硫触媒が充填されている。脱硫器5で脱硫された燃料は水タンク1から水ポンプ2を経た水と混合した後、気化器6に導入され、改質器7に送り込まれる。
【0032】
改質器7は加温用バーナー18で加温される。加温用バーナー18の燃料には主に燃料電池17のアノードオフガスを用いるが必要に応じて燃料ポンプ4から吐出される燃料を補充することもできる。改質器7に充填する触媒としてはニッケル系、ルテニウム系、ロジウム系などの触媒を用いることができる。
この様にして製造された水素と一酸化炭素を含有するガスは高温シフト反応器9、低温シフト反応器10、一酸化炭素選択酸化反応器11を順次通過させることで一酸化炭素濃度は燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては高温シフト反応器9には鉄−クロム系触媒、低温シフト反応器10には銅−亜鉛系触媒、一酸化炭素選択酸化反応器11にはルテニウム系触媒等をあげることができる。
【0033】
固体高分子形燃料電池17はアノード12、カソード13、固体高分子電解質14からなり、アノード側には上記の方法で得られた高純度の水素を含有する燃料ガスが、カソード側には空気ブロアー8から送られる空気が、それぞれ必要であれば適当な加湿処理を行なったあと(加湿装置は図示していない)導入される。この時、アノードでは水素ガスがプロトンとなり電子を放出する反応が進行し、カソードでは酸素ガスが電子とプロトンを得て水となる反応が進行する。これらの反応を促進するため、それぞれ、アノードには白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、カソードには白金黒、活性炭担持のPt触媒などが用いられる。通常アノード、カソードの両触媒とも、必要に応じてポリテトラフロロエチレン、低分子の高分子電解質膜素材、活性炭などと共に多孔質触媒層に成形される。
【0034】
次いでNafion(デュポン社製)、Gore(ゴア社製)、Flemion(旭硝子社製)、Aciplex(旭化成社製)等の商品名で知られる高分子電解質膜の両側に該多孔質触媒層を積層しMEA(Membrane Electrode Assembly)が形成される。さらにMEAを金属材料、グラファイト、カーボンコンポジットなどからなるガス供給機能、集電機能、特にカソードにおいては重要な排水機能等を持つセパレータで挟み込むことで燃料電池が組み立てられる。電気負荷15はアノード、カソードと電気的に連結される。
アノードオフガスは加温用バーナー18において消費される。カソードオフガスは排気口16から排出される。
【0035】
【発明の効果】
本発明の脱硫触媒を用いることにより、硫黄を含有する炭化水素を水素非共存条件で脱硫して、硫黄濃度を0.1質量ppm以下に低減することができ、得られる燃料ガスは、特に固体高分子形燃料電池を用いた燃料電池システムに好適に採用できる。
【0036】
【実施例】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0037】
(実施例1)
酢酸ニッケル四水和物(市販試薬特級)62.7gと酢酸亜鉛二水和物(市販試薬特級)14.5gをイオン交換水に溶解し、1200mlとした水溶液A1に市販のγ―アルミナ(粒径約80μm)6.7gを懸濁させ、30分攪拌後、炭酸ナトリウム(市販試薬特級)37.1gをイオン交換水に溶解し、450mlとした水溶液B1を攪拌しながら室温にて滴下し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、360℃で4時間焼成し、焼成粉27gを得た。焼成粉の組成はNiO/ZnO/Al23=61質量%/17質量%/22質量%であった。
得られた焼成粉を打錠成型し、粒径1.0〜1.4mmに整粒した触媒(1)6cm3を直径1.27cmの流通式反応管に充填し、水素気流中、350℃にて3時間還元した後、反応温度180℃、LHSV=0.5h-1にて、水素非共存条件で、JIS1号灯油(硫黄濃度:49質量ppm)の脱硫試験を行い、200時間後の生成灯油の硫黄濃度を表1に示した。
【0038】
(実施例2)
硝酸ニッケル六水和物(市販試薬特級)98.5gと硝酸亜鉛六水和物(市販試薬特級)26.5gをイオン交換水に溶解し、150mlとした水溶液A2を、炭酸ナトリウム(市販試薬特級)47.7gをイオン交換水に溶解し、400mlとし、市販の擬ベーマイト(粒径約50μm)1.6gを懸濁させた水溶液B2に攪拌しながら40℃にて滴下し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、360℃で4時間焼成し、焼成粉31gを得た。焼成粉の組成はNiO/ZnO/Al23=75質量%/22質量%/3質量%であった。
得られた焼成粉を打錠成型し、粒径1.0〜1.4mmに整粒した触媒(2)6cm3を直径1.27cmの流通式反応管に充填し、水素気流中、350℃にて3時間還元した後、反応温度180℃、LHSV=0.5h-1にて、水素非共存条件で、JIS1号灯油(硫黄濃度:49質量ppm)の脱硫試験を行い、200時間後の生成灯油の硫黄濃度を表1に示した。
【0039】
(比較例1)
酢酸ニッケル四水和物(市販試薬特級)90.7gと酢酸亜鉛二水和物(市販試薬特級)14.8gをイオン交換水に溶解し、1200mlとした水溶液A3に市販のγ―アルミナ(粒径約80μm)0.9gを懸濁させ、30min攪拌後、炭酸ナトリウム(市販試薬特級)33.6gをイオン交換水に溶解し、450mlとした水溶液B3を攪拌しながら室温にて滴下し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、360℃で4時間焼成し、焼成粉30gを得た。焼成粉の組成はNiO/ZnO/Al23=81質量%/16質量%/3質量%であった。
得られた焼成粉を打錠成型し、粒径1.0〜1.4mmに整粒した触媒6cm3を直径1.27cmの流通式反応管に充填し、水素気流中、350℃にて3時間還元した後、反応温度180℃、LHSV=0.5h-1にて、水素非共存条件で、JIS1号灯油(硫黄濃度:49質量ppm)の脱硫試験を行い、200時間後の生成灯油の硫黄濃度を表1に示した。
【0040】
(比較例2)
酢酸ニッケル四水和物(市販試薬特級)25.3gと酢酸亜鉛二水和物(市販試薬特級)44.3gをイオン交換水に溶解し、1200mlとした水溶液A4に市販のγ―アルミナ(粒径約80μm)7.5gを懸濁させ、30分攪拌後、炭酸ナトリウム(市販試薬特級)23.6gをイオン交換水に溶解し、450mlとした水溶液B4を攪拌しながら室温にて滴下し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、360℃で4時間焼成し、焼成粉28gを得た。焼成粉の組成はNiO/ZnO/Al23=24質量%/52質量%/24質量%であった。
得られた焼成粉を打錠成型し、粒径1.0〜1.4mmに整粒した触媒(4)6cm3を直径1.27cmの流通式反応管に充填し、水素気流中、350℃にて3時間還元した後、反応温度180℃、LHSV=0.5h-1にて、水素非共存条件で、JIS1号灯油(硫黄濃度:49質量ppm)の脱硫試験を行い、200時間後の生成灯油の硫黄濃度を表1に示した。
【0041】
(比較例3)
硝酸ニッケル六水和物(市販試薬特級)103.4gと硝酸亜鉛六水和物(市販試薬特級)27.8gをイオン交換水に溶解し、150mlとした水溶液A5を、炭酸ナトリウム(市販試薬特級)50.1gをイオン交換水に溶解し、400mlとした水溶液B5に攪拌しながら40℃にて滴下し、沈殿を形成した。沈殿をイオン交換水で洗浄後、得られたケーキを粉砕し、120℃で10時間乾燥後、360℃で4時間焼成し、焼成粉31gを得た。焼成粉の組成はNiO/ZnO/Al23=78質量%/22質量%/0質量%であった。
得られた焼成粉を打錠成型し、粒径1.0〜1.4mmに整粒した触媒(5)6cm3を直径1.27cmの流通式反応管に充填し、水素気流中、350℃にて3時間還元した後、反応温度180℃、LHSV=0.5h-1にて、水素非共存条件で、JIS1号灯油(硫黄濃度:49質量ppm)の脱硫試験を行い、200時間後の生成灯油の硫黄濃度を表1に示した。
【0042】
【表1】

Figure 0004210130
【0043】
(実施例3)
図1の燃料電池システムにおいて、脱硫器5に、実施例1で得られた触媒(1)を充填して、1号灯油(硫黄濃度:23質量ppm)を燃料とし、発電試験を行なった。150時間の運転中、脱硫器は正常に作動し、触媒の活性低下は認められなかった。脱硫条件は、温度180℃、常圧、水素流通なし、LHSV=0.5h-1であった。
このとき水蒸気改質にはRu系触媒を用い、S/C=3、温度700℃、LHSV=5h-1の条件で、シフト工程(反応器10)では銅−亜鉛系触媒を用い、200℃、GHSV=2000h-1の条件で、一酸化炭素選択酸化工程(反応器11)ではRu系触媒を用い、O2/CO=3、温度150℃、GHSV=5000h-1の条件で運転を行った。燃料電池も正常に作動し電気負荷15も順調に運転された。
【図面の簡単な説明】
【図1】本発明の燃料電池システムの一例を示す概略図である。
【符号の説明】
1 水タンク
2 水ポンプ
3 燃料タンク
4 燃料ポンプ
5 脱硫器
6 気化器
7 改質器
8 空気ブロアー
9 高温シフト反応器
10 低温シフト反応器
11 一酸化炭素選択酸化反応器
12 アノード
13 カソード
14 固体高分子電解質
15 電気負荷
16 排気口
17 固体高分子形燃料電池
18 加温用バーナー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrocarbon desulfurization catalyst. The present invention also relates to a method for desulfurizing hydrocarbons containing sulfur using the catalyst. Furthermore, the present invention relates to a fuel cell system provided with a desulfurization device filled with the catalyst.
[0002]
[Prior art]
A fuel cell has a feature that high efficiency can be obtained because a free energy change caused by a combustion reaction of fuel can be directly taken out as electric energy. In addition to the fact that it does not emit harmful substances, it is being developed for various uses. In particular, solid polymer fuel cells are characterized by high power density, compactness, and operation at low temperatures.
[0003]
As a fuel gas for a fuel cell, a gas containing hydrogen as a main component is generally used. The raw material is a hydrocarbon such as natural gas, LPG, naphtha or kerosene, alcohol such as methanol or ethanol, or dimethyl ether. Etc. are used. These raw materials containing carbon and hydrogen are reformed by treating them with steam at a high temperature on a catalyst, partially oxidized with an oxygen-containing gas, or a self-heat recovery type reforming reaction in a system in which steam and an oxygen-containing gas coexist. The hydrogen obtained by performing is basically used as fuel hydrogen for fuel cells.
[0004]
However, since elements other than hydrogen exist in these raw materials, it is inevitable that impurities derived from carbon are mixed in the fuel gas to the fuel cell. For example, carbon monoxide poisons platinum-based noble metals used as electrode catalysts for fuel cells. Therefore, if carbon monoxide is present in the fuel gas, sufficient power generation characteristics cannot be obtained. In particular, a fuel cell operated at a low temperature has a stronger carbon monoxide adsorption and is more susceptible to poisoning. Therefore, in a system using a polymer electrolyte fuel cell, it is indispensable that the concentration of carbon monoxide in the fuel gas is reduced.
[0005]
For this reason, a method is adopted in which carbon monoxide in the reformed gas obtained by reforming the raw material is reacted with water vapor, converted into hydrogen and carbon dioxide, and a small amount of remaining carbon monoxide is removed by selective oxidation. .
Finally, the fuel hydrogen removed until the carbon monoxide concentration is sufficiently low is introduced into the cathode of the fuel cell where it is converted into protons and electrons on the electrocatalyst. The produced protons move to the anode side in the electrolyte, react with oxygen together with the electrons that have passed through the external circuit, and produce water. Electrons generate electricity by passing through an external circuit.
[0006]
The catalyst used for the raw material reforming and carbon monoxide removal steps for producing fuel hydrogen for fuel cells and the cathode electrode is often used in a reduced state such as noble metal or copper. Then, sulfur acts as a catalyst poison, and there is a problem that the catalytic activity of the hydrogen production process or the battery itself is lowered and the efficiency is lowered.
Therefore, it is considered that it is indispensable to sufficiently remove the sulfur content contained in the raw material in order to use the catalyst used in the hydrogen production process and further the electrode catalyst in its original performance.
The so-called desulfurization process, which basically removes sulfur, takes place at the very beginning of the hydrogen production process. Although it is necessary to reduce the sulfur concentration to a level at which the catalyst used in the reforming process immediately after that functions sufficiently, it is usually 0.1 ppm by mass or less.
[0007]
Until now, the sulfur content of fuel cell raw materials has been removed by hydrodesulfurizing difficult-to-desulfurize organic sulfur compounds with a desulfurization catalyst, once converted to hydrogen sulfide that can be easily adsorbed and removed, and treated with an appropriate adsorbent. It seemed that the method to do was suitable. However, a general hydrodesulfurization catalyst is used at a high hydrogen pressure. However, when it is used in a fuel cell system, since the technological development is limited to atmospheric pressure or at most 1 MPa, an ordinary desulfurization catalyst is used. The current situation is that the system cannot handle it.
[0008]
For this reason, studies have been made on catalyst systems that can sufficiently exhibit a desulfurization function even in a low-pressure system. For example, a method for producing hydrogen by steam reforming kerosene desulfurized with a nickel-based desulfurizing agent has been proposed (see, for example, Patent Document 1 and Patent Document 2). However, this method has a process limitation that the temperature range in which desulfurization is possible is 150 to 300 ° C. Further, proposals have been made for copper-zinc-based desulfurization catalysts (see, for example, Patent Document 3 and Patent Document 4). However, although this catalyst has little carbon deposition even when used at relatively high temperatures, desulfurization activity is lower than that of nickel, so light hydrocarbons such as natural gas, LPG and naphtha can be desulfurized. There is a problem that it is insufficient. In addition, a method using activated carbon or a chemical solution for desulfurization is proposed (see Patent Document 5). However, this catalyst has been shown to have a desulfurization effect at normal temperature at start-up, but the raw material is limited to a gas body at normal temperature. A nickel-zinc catalyst has also been proposed (see Patent Document 6), but is premised on coexistence with hydrogen and use under pressure. Under non-coexistence conditions, the nickel content is low and the catalyst performance decreases. .
[0009]
[Patent Document 1]
JP-A-1-188404
[Patent Document 2]
Japanese Patent Laid-Open No. 1-188405
[Patent Document 3]
JP-A-2-302302
[Patent Document 4]
JP-A-2-302303
[Patent Document 5]
Japanese Patent Laid-Open No. 1-143155
[Patent Document 6]
JP 2001-62297 A
[0010]
[Problems to be solved by the invention]
As described above, the reforming of raw materials until the production of fuel hydrogen for fuel cells, the removal of carbon monoxide, and the catalyst used for the cathode electrode are often used in the reduced state of noble metals or copper, In such a state, sulfur acts as a catalyst poison, reducing the catalytic activity of the hydrogen production process or the battery itself, and reducing the efficiency. Therefore, it is indispensable to sufficiently remove the sulfur contained in the raw material in order to use the catalyst used in the hydrogen production process and further the electrode catalyst with its original performance. In addition, it is necessary to effectively desulfurize hardly desulfurization substances under low pressure conditions.
[0011]
[Means for Solving the Problems]
As a result of diligent research on this problem, the present inventors have found a catalyst that efficiently desulfurizes sulfur contained in hydrocarbons, and have completed the present invention. The present invention also provides a desulfurization method using this specific catalyst and a fuel cell system having a desulfurization apparatus using this catalyst.
[0012]
That is, the first of the present invention is obtained by calcining a catalyst precursor in which a component containing nickel and zinc is formed by coprecipitation using at least one alumina selected from γ-alumina, β-alumina and pseudoboehmite as a core. The present invention relates to a hydrocarbon desulfurization catalyst containing 30 to 80% by mass of nickel oxide, 10 to 70% by mass of zinc oxide and 0.1 to 40% by mass of alumina.
[0013]
In addition, a second aspect of the present invention relates to a hydrocarbon desulfurization method characterized by desulfurizing a hydrocarbon containing sulfur to a sulfur concentration of 0.1 mass ppm or less using the catalyst.
[0014]
Furthermore, a third aspect of the present invention is a desulfurization apparatus that desulfurizes hydrocarbons containing sulfur, and a hydrocarbon desulfurized by the desulfurization apparatus. The present invention relates to a fuel cell system having at least a reformer for reforming the fuel gas.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The desulfurization catalyst of the present invention can be obtained by calcining a catalyst precursor formed by coprecipitation with a component containing nickel and zinc with alumina as a nucleus.
As the alumina, at least one selected from γ-alumina, β-alumina and pseudoboehmite is used.
The particle size of the alumina used is preferably 1000 μm or less, preferably 500 μm or less, more preferably 200 μm or less in powder form, and if necessary, it is used after pulverization. If the particle size of the alumina is larger than 1000 microns, it becomes difficult for the alumina itself to exist uniformly in the system, and uniform precipitation on the alumina is hindered. Although there is no restriction | limiting in particular about the minimum of a particle size, Usually, it is 1 nm or more, Preferably the powdery thing which consists of particle | grains of 10 nm or more is preferable.
[0016]
Specifically, a coprecipitation method in which a component containing nickel and zinc is formed using alumina as a core is specifically prepared by suspending alumina in an aqueous solution of a nickel compound and a zinc compound and mixing the base with the suspension, or A catalyst precursor is formed by suspending alumina in an aqueous solution and mixing an aqueous solution of nickel compound and zinc compound with the suspension to cause precipitation of the nickel compound and zinc compound on the alumina.
As the nickel compound and zinc compound, respective chlorides, nitrates, sulfates, organic acid salts, hydroxides and the like can be used. Specifically, nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel hydroxide, zinc chloride, zinc nitrate, zinc sulfate, zinc acetate, zinc hydroxide and the like are preferable.
As the base, an aqueous solution of ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate or the like can be used.
[0017]
After making the nickel compound and the zinc compound precipitate on the alumina using alumina as a nucleus, the produced precipitation product (catalyst precursor) is filtered and washed with ion-exchanged water or the like. Insufficient cleaning leaves chlorine, nitric acid traces, sulfuric acid traces, acetic acid traces, sodium, potassium, etc. on the catalyst, which adversely affects catalyst performance. When ion-exchanged water cannot be sufficiently washed, an aqueous solution of a base such as ammonia, sodium carbonate, sodium hydrogen carbonate, or potassium carbonate may be used as the washing liquid. In this case, it is preferable to first wash the precipitated product with an aqueous base solution, and then wash with ion-exchanged water.
After washing the precipitated product, the precipitated product is pulverized and then dried. After drying, baking is subsequently performed. If washing after precipitation is insufficient, washing may be performed again after firing. Also in this case, ion-exchanged water or an aqueous solution of the base described above can be used.
[0018]
The drying method is not particularly limited, and examples thereof include natural drying in air and deaeration drying under reduced pressure. Usually, drying is performed at 100 to 150 ° C. for 5 to 15 hours in an air atmosphere. The firing method is not particularly limited, and the firing is usually performed in an air atmosphere at 200 to 600 ° C., preferably 250 to 450 ° C. for 0.1 to 10 hours, preferably 1 to 5 hours. desirable.
[0019]
The catalyst of the present invention obtained by calcining the above-described catalyst precursor contains nickel oxide, zinc oxide and alumina as constituent components.
The content of nickel oxide in the catalyst is 30 to 80% by mass, preferably 40 to 80% by mass, and more preferably 45 to 80% by mass. When the content of nickel oxide in the catalyst is less than 30% by mass, the catalyst performance becomes insufficient. On the other hand, when the content of nickel oxide in the catalyst exceeds 80% by mass, the dispersibility of nickel is lowered, and not only the catalyst performance is lowered, but also economically undesirable.
The content of zinc oxide in the catalyst is 10 to 70% by mass, preferably 10 to 60% by mass, and more preferably 15 to 50% by mass. When the content of zinc oxide in the catalyst is less than 10% by mass, the catalyst performance is insufficient, and when it exceeds 70% by mass, the nickel content is relatively decreased, and the catalyst performance is lowered.
Content of the alumina in a catalyst is 0.1-40 mass%, Preferably it is 0.5-35 mass%, More preferably, it is 1-30 mass%. When the content of alumina in the catalyst is less than 0.1% by mass, the catalyst performance becomes insufficient. When the content exceeds 40% by mass, the nickel content is relatively decreased, and the catalyst performance is lowered.
[0020]
When the catalyst prepared by the above method is used, it can be subjected to the reaction as it is, but a reduction treatment with hydrogen or the like may be performed as a pretreatment. As the conditions, the temperature is 150 to 500 ° C, preferably 250 to 400 ° C, and the time is 0.1 to 15 hours, preferably 2 to 10 hours.
[0021]
The shape of the catalyst of the present invention is not particularly limited, and the catalyst obtained as a powder may be used as it is, or may be formed into a molded product by tableting. A catalyst that has been sized in an appropriate range after pulverization may be used. Further, an extruded catalyst can be used. In molding, an appropriate binder may be added. The binder is not particularly limited, and carbon black, alumina, silica, titania, zirconia, or a composite oxide thereof can be used. As for the addition amount of a binder, an upper limit is 50 mass% or less normally, Preferably it is 30 mass% or less. The lower limit is not particularly limited as long as it can function as a binder, and is usually 1% by mass or more, and preferably 5% by mass or more.
[0022]
A second aspect of the present invention is a hydrocarbon desulfurization method, characterized in that a sulfur-containing hydrocarbon is desulfurized to a sulfur concentration of 0.1 mass ppm or less using the first catalyst of the present invention. In particular, the desulfurization method of the present invention is characterized in that the sulfur concentration can be desulfurized to 0.1 mass ppm or less under non-coexisting conditions.
The hydrocarbon containing sulfur used in the present invention is not particularly limited, and examples thereof include methane, ethane, propane, butane, natural gas, LPG, naphtha, gasoline, kerosene, and mixtures thereof. The raw material hydrocarbon may contain hydrogen, and various alcohols, ethers, and the like may be contained. These raw material hydrocarbons may be liquid or gas.
These hydrocarbons used in the present invention contain a small amount of sulfur, and the amount varies depending on the production method, but usually contains more than 0.1 ppm by mass and less than 100 ppm by mass. Yes. The sulfur content of the present invention is a generic term for various sulfur, inorganic sulfur compounds, and organic sulfur compounds that are usually contained in these hydrocarbons.
[0023]
The pressure in the desulfurization reaction is preferably a low pressure in the range of normal pressure to 1 MPa, and more preferably normal pressure to 0.2 MPa in consideration of the economics and safety of the fuel cell system. The reaction temperature is not particularly limited as long as it is a temperature that lowers the sulfur concentration, but it is preferable to work effectively from room temperature in consideration of the start of the equipment, and in consideration of the steady state, 10 ° C. to 450 ° C. is preferable. More preferably, 15 to 350 ° C, particularly preferably 20 to 300 ° C is employed. If the SV is too high, the desulfurization reaction does not proceed easily. On the other hand, if the SV is too low, the apparatus becomes large. When using liquid raw materials, 0.01 to 15 hours -1 Is preferably in the range of 0.05 to 5 h -1 Is more preferable, 0.1-3h -1 The range of is particularly preferable. 100 to 10000 hours when using gas fuel -1 Is preferably in the range of 200 to 5000 h -1 More preferably, the range of 300-2000h -1 The range of is particularly preferable. The desulfurization method of the present invention is characterized in that it can be desulfurized under non-hydrogen coexistence conditions, but a small amount of hydrogen may be introduced. The flow rate of hydrogen at that time is, for example, 0.05 to 1.0 NL per 1 g of hydrocarbon raw material.
[0024]
Although the form of the desulfurization apparatus using the desulfurization method of this invention is not specifically limited, For example, a flow-type fixed bed system can be used. The shape of the desulfurization device can be any known shape depending on the purpose of each process, such as a cylindrical shape or a flat plate shape.
[0025]
By using the desulfurization catalyst of the present invention, the sulfur concentration of the hydrocarbon containing the above-described sulfur content can be reduced to 0.1 mass ppm or less under non-coexisting conditions of hydrogen. The sulfur concentration is measured by an ultraviolet fluorescence method.
For hydrocarbons desulfurized to a sulfur concentration of 0.1 mass ppm or less, use the hydrogen-rich gas produced as the fuel for fuel cells through the reforming step, shift step, carbon monoxide selective oxidation step, etc. Can do.
[0026]
The reforming process is not particularly limited, but steam reforming in which the raw material is reformed with steam at a high temperature on a catalyst, partial oxidation with an oxygen-containing gas, and steam and an oxygen-containing gas coexist. In such a system, autothermal reforming that performs a self-heat recovery type reforming reaction can be used.
The reaction conditions for the reforming are not limited, but the reaction temperature is preferably 200 to 1000 ° C, particularly preferably 500 to 850 ° C. The reaction pressure is preferably from normal pressure to 1 MPa, and particularly preferably from normal pressure to 0.2 MPa. LHSV is 0.01-40h -1 Is preferred, especially 0.1 to 10 h -1 Is preferred.
[0027]
The mixed gas containing carbon monoxide and hydrogen obtained at this time can be used as a fuel for a fuel cell as it is in the case of a solid oxide fuel cell. In addition, it can be suitably used as a raw material for hydrogen for a fuel cell, such as a phosphoric acid fuel cell or a polymer electrolyte fuel cell, in which carbon monoxide needs to be removed.
[0028]
The production of hydrogen for a fuel cell can employ a known method, and can be carried out, for example, by treating in a shift step and a carbon monoxide selective oxidation step.
The shift process is a process in which carbon monoxide and water are reacted to convert to hydrogen and carbon dioxide, and contains, for example, iron-chromium mixed oxide, copper-zinc mixed oxide, platinum, ruthenium, iridium, etc. The carbon monoxide content is reduced to 2 vol% or less, preferably 1 vol% or less, and more preferably 0.5 vol% or less.
Although the reaction conditions for the shift reaction are not necessarily limited by the reformed gas composition or the like as a raw material, the reaction temperature is preferably 120 to 500 ° C, and particularly preferably 150 to 450 ° C. The pressure is preferably normal pressure to 1 MPa, particularly preferably normal pressure to 0.2 MPa. GHSV is 100-50000h -1 Is preferred, especially 300-10000h -1 Is preferred. Usually, in the phosphoric acid fuel cell, the mixed gas in this state can be used as fuel.
[0029]
On the other hand, in the polymer electrolyte fuel cell, since it is necessary to further reduce the carbon monoxide concentration, it is desirable to provide a step of removing carbon monoxide. This step is not particularly limited, and various methods such as an adsorption separation method, a hydrogen separation membrane method, and a carbon monoxide selective oxidation step can be used. It is particularly preferable to use a carbon monoxide selective oxidation step. In this step, using a catalyst containing iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold, etc., 0.5 to 10 times the remaining number of moles of carbon monoxide Mole, preferably 0.7 to 5 times mole, more preferably 1 to 3 times mole oxygen is added to selectively convert carbon monoxide to carbon dioxide, thereby reducing the carbon monoxide concentration. Although the reaction conditions of this method are not limited, the reaction temperature is preferably 80 to 350 ° C, particularly preferably 100 to 300 ° C. The pressure is preferably normal pressure to 1 MPa, particularly preferably normal pressure to 0.2 MPa. GHSV is 1000-50000h -1 Is preferred, especially 3000-30000h -1 Is preferred. In this case, the carbon monoxide concentration can be reduced by reacting with the coexisting hydrogen simultaneously with the oxidation of carbon monoxide to generate methane.
[0030]
A third aspect of the present invention is a desulfurization apparatus that has a reaction part filled with the first desulfurization catalyst of the present invention and desulfurizes hydrocarbons containing sulfur, and hydrocarbons desulfurized by the desulfurization apparatus. A fuel cell system having at least a reforming device for reforming into a fuel gas containing hydrogen as a main component.
[0031]
An example of this fuel cell system will be described below with reference to FIG.
The raw fuel in the fuel tank 3 flows into the desulfurizer 5 through the fuel pump 4. At this time, if necessary, the hydrogen-containing gas from the carbon monoxide selective oxidation reactor 11 can be added. The desulfurizer 5 is filled with the desulfurization catalyst of the present invention. The fuel desulfurized in the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, introduced into the vaporizer 6, and sent into the reformer 7.
[0032]
The reformer 7 is heated by a heating burner 18. As the fuel for the heating burner 18, the anode off gas of the fuel cell 17 is mainly used, but the fuel discharged from the fuel pump 4 can be supplemented as necessary. As the catalyst filled in the reformer 7, a nickel-based, ruthenium-based, or rhodium-based catalyst can be used.
The gas containing hydrogen and carbon monoxide produced in this way is passed through the high temperature shift reactor 9, the low temperature shift reactor 10, and the carbon monoxide selective oxidation reactor 11 in order, so that the carbon monoxide concentration is adjusted to the fuel cell. It is reduced to the extent that it does not affect the characteristics of Examples of catalysts used in these reactors include an iron-chromium catalyst for the high temperature shift reactor 9, a copper-zinc catalyst for the low temperature shift reactor 10, and a ruthenium catalyst for the carbon monoxide selective oxidation reactor 11. Etc.
[0033]
The polymer electrolyte fuel cell 17 includes an anode 12, a cathode 13, and a solid polymer electrolyte 14. The fuel gas containing high-purity hydrogen obtained by the above method is provided on the anode side, and the air blower is provided on the cathode side. If necessary, air sent from 8 is introduced after appropriate humidification processing (a humidifier is not shown). At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds at the anode, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds at the cathode. In order to promote these reactions, platinum black and Pt catalyst or Pt-Ru alloy catalyst supported on activated carbon are used for the anode, and platinum black and Pt catalyst supported on activated carbon are used for the cathode. Usually, both the anode and cathode catalysts are formed into a porous catalyst layer together with polytetrafluoroethylene, a low molecular weight polymer electrolyte membrane material, activated carbon, and the like as necessary.
[0034]
Next, the porous catalyst layer is laminated on both sides of a polymer electrolyte membrane known by a trade name such as Nafion (manufactured by DuPont), Gore (manufactured by Gore), Flemion (manufactured by Asahi Glass), Aciplex (manufactured by Asahi Kasei). An MEA (Membrane Electrode Assembly) is formed. Further, the fuel cell is assembled by sandwiching the MEA with a separator having a gas supply function, a current collecting function, particularly an important drainage function in the cathode, and the like made of a metal material, graphite, carbon composite and the like. The electric load 15 is electrically connected to the anode and the cathode.
The anode off gas is consumed in the heating burner 18. The cathode off gas is discharged from the exhaust port 16.
[0035]
【The invention's effect】
By using the desulfurization catalyst of the present invention, sulfur-containing hydrocarbons can be desulfurized under non-hydrogen coexistence conditions, and the sulfur concentration can be reduced to 0.1 mass ppm or less, and the resulting fuel gas is particularly solid. It can be suitably employed in a fuel cell system using a polymer fuel cell.
[0036]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0037]
Example 1
Nickel acetate tetrahydrate (commercial reagent special grade) 62.7 g and zinc acetate dihydrate (commercial reagent special grade) 14.5 g were dissolved in ion-exchanged water, and 1200 ml of aqueous solution A1 was prepared with commercially available γ-alumina (particles). Suspended 6.7 g (diameter of about 80 μm), stirred for 30 minutes, 37.1 g of sodium carbonate (special grade of commercial reagent) was dissolved in ion-exchanged water, and 450 ml of aqueous solution B1 was added dropwise at room temperature while stirring. A precipitate formed. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and then baked at 360 ° C. for 4 hours to obtain 27 g of baked powder. The composition of the calcined powder is NiO / ZnO / Al 2 O Three = 61% by mass / 17% by mass / 22% by mass.
The obtained calcined powder was tableted and molded to give a particle size of 1.0 to 1.4 mm. Catalyst (1) 6 cm Three In a flow-type reaction tube having a diameter of 1.27 cm and reduced in a hydrogen stream at 350 ° C. for 3 hours, followed by a reaction temperature of 180 ° C. and LHSV = 0.5 h. -1 Then, a desulfurization test of JIS No. 1 kerosene (sulfur concentration: 49 mass ppm) was conducted in the absence of hydrogen, and the sulfur concentration of the produced kerosene after 200 hours is shown in Table 1.
[0038]
(Example 2)
Nickel nitrate hexahydrate (commercial reagent special grade) 98.5 g and zinc nitrate hexahydrate (commercial reagent special grade) 26.5 g were dissolved in ion-exchanged water to give 150 ml of aqueous solution A2, sodium carbonate (commercial reagent special grade). ) 47.7 g dissolved in ion-exchanged water to 400 ml, and dropwise added at 40 ° C. with stirring to an aqueous solution B2 in which 1.6 g of commercially available pseudo boehmite (particle size: about 50 μm) was suspended to form a precipitate. . After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and baked at 360 ° C. for 4 hours to obtain 31 g of baked powder. The composition of the calcined powder is NiO / ZnO / Al 2 O Three = 75% by mass / 22% by mass / 3% by mass.
The obtained calcined powder was tableted and molded to a particle size of 1.0 to 1.4 mm. Catalyst (2) 6 cm Three In a flow-type reaction tube having a diameter of 1.27 cm and reduced in a hydrogen stream at 350 ° C. for 3 hours, followed by a reaction temperature of 180 ° C. and LHSV = 0.5 h. -1 Then, a desulfurization test of JIS No. 1 kerosene (sulfur concentration: 49 mass ppm) was conducted in the absence of hydrogen, and the sulfur concentration of the produced kerosene after 200 hours is shown in Table 1.
[0039]
(Comparative Example 1)
Nickel acetate tetrahydrate (commercial reagent special grade) 90.7 g and zinc acetate dihydrate (commercial reagent special grade) 14.8 g were dissolved in ion-exchanged water, and 1200 ml of aqueous solution A3 was prepared with commercially available γ-alumina (particles). Suspend 0.9 g (diameter of about 80 μm), stir for 30 min, dissolve 33.6 g of sodium carbonate (commercial reagent special grade) in ion-exchanged water, add 450 ml of aqueous solution B3 dropwise with stirring at room temperature, precipitate Formed. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and calcined at 360 ° C. for 4 hours to obtain 30 g of calcined powder. The composition of the calcined powder is NiO / ZnO / Al 2 O Three = 81% by mass / 16% by mass / 3% by mass.
The obtained calcined powder was compression-molded, and the catalyst size was adjusted to a particle size of 1.0 to 1.4 mm 6 cm Three In a flow-type reaction tube having a diameter of 1.27 cm and reduced in a hydrogen stream at 350 ° C. for 3 hours, followed by a reaction temperature of 180 ° C. and LHSV = 0.5 h. -1 Then, a desulfurization test of JIS No. 1 kerosene (sulfur concentration: 49 mass ppm) was conducted in the absence of hydrogen, and the sulfur concentration of the produced kerosene after 200 hours is shown in Table 1.
[0040]
(Comparative Example 2)
Nickel acetate tetrahydrate (commercial reagent special grade) 25.3 g and zinc acetate dihydrate (commercial reagent special grade) 44.3 g were dissolved in ion-exchanged water, and 1200 ml of aqueous solution A4 was added to commercially available γ-alumina (particles). Suspend 7.5 g (diameter of about 80 μm), and after stirring for 30 minutes, 23.6 g of sodium carbonate (commercial reagent special grade) is dissolved in ion-exchanged water, and 450 ml of aqueous solution B4 is added dropwise at room temperature while stirring. A precipitate formed. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and baked at 360 ° C. for 4 hours to obtain 28 g of baked powder. The composition of the calcined powder is NiO / ZnO / Al 2 O Three = 24% by mass / 52% by mass / 24% by mass.
The obtained calcined powder was tableted and molded to give a particle size of 1.0 to 1.4 mm. Catalyst (4) 6 cm Three In a flow-type reaction tube having a diameter of 1.27 cm and reduced in a hydrogen stream at 350 ° C. for 3 hours, followed by a reaction temperature of 180 ° C. and LHSV = 0.5 h. -1 Then, a desulfurization test of JIS No. 1 kerosene (sulfur concentration: 49 mass ppm) was conducted in the absence of hydrogen, and the sulfur concentration of the produced kerosene after 200 hours is shown in Table 1.
[0041]
(Comparative Example 3)
Nickel nitrate hexahydrate (commercial reagent special grade) 103.4 g and zinc nitrate hexahydrate (commercial reagent special grade) 27.8 g were dissolved in ion-exchanged water to make 150 ml of aqueous solution A5, sodium carbonate (commercial reagent special grade). ) 50.1 g was dissolved in ion-exchanged water and added dropwise at 40 ° C. to 400 ml of aqueous solution B5 with stirring to form a precipitate. After washing the precipitate with ion-exchanged water, the obtained cake was pulverized, dried at 120 ° C. for 10 hours, and baked at 360 ° C. for 4 hours to obtain 31 g of baked powder. The composition of the calcined powder is NiO / ZnO / Al 2 O Three = 78% by mass / 22% by mass / 0% by mass.
The obtained calcined powder was tableted and molded to a particle size of 1.0 to 1.4 mm (5) 6 cm Three In a flow-type reaction tube having a diameter of 1.27 cm and reduced in a hydrogen stream at 350 ° C. for 3 hours, followed by a reaction temperature of 180 ° C. and LHSV = 0.5 h. -1 Then, a desulfurization test of JIS No. 1 kerosene (sulfur concentration: 49 mass ppm) was conducted in the absence of hydrogen, and the sulfur concentration of the produced kerosene after 200 hours is shown in Table 1.
[0042]
[Table 1]
Figure 0004210130
[0043]
(Example 3)
In the fuel cell system of FIG. 1, the desulfurizer 5 was filled with the catalyst (1) obtained in Example 1, and a power generation test was conducted using No. 1 kerosene (sulfur concentration: 23 mass ppm) as fuel. During the operation for 150 hours, the desulfurizer operated normally and no decrease in the activity of the catalyst was observed. Desulfurization conditions are as follows: temperature 180 ° C., normal pressure, no hydrogen flow, LHSV = 0.5h -1 Met.
At this time, Ru-based catalyst is used for steam reforming, S / C = 3, temperature 700 ° C., LHSV = 5 h -1 In the shift condition (reactor 10), a copper-zinc catalyst was used at 200 ° C., GHSV = 2000 h. -1 In the carbon monoxide selective oxidation step (reactor 11) under the conditions of 2 / CO = 3, temperature 150 ° C., GHSV = 5000h -1 The operation was performed under the conditions. The fuel cell also operated normally and the electric load 15 was operated smoothly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a fuel cell system of the present invention.
[Explanation of symbols]
1 Water tank
2 Water pump
3 Fuel tank
4 Fuel pump
5 Desulfurizer
6 Vaporizer
7 Reformer
8 Air blower
9 High temperature shift reactor
10 Low temperature shift reactor
11 Carbon monoxide selective oxidation reactor
12 Anode
13 Cathode
14 Solid polymer electrolyte
15 Electric load
16 Exhaust port
17 Polymer electrolyte fuel cell
18 Heating burner

Claims (4)

γ−アルミナ、β−アルミナおよび擬ベーマイトから選ばれる少なくとも一種のアルミナを核としてニッケルおよび亜鉛を含む成分を共沈法により形成した触媒前駆体を焼成して得られる30〜80質量%の酸化ニッケル、10〜60質量%の酸化亜鉛および0.1〜40質量%のアルミナを含む炭化水素の脱硫触媒。30 to 80% by mass of nickel oxide obtained by calcining a catalyst precursor formed by coprecipitation using at least one alumina selected from γ-alumina, β-alumina and pseudoboehmite as a core, and a component containing nickel and zinc A hydrocarbon desulfurization catalyst comprising 10 to 60 % by mass of zinc oxide and 0.1 to 40% by mass of alumina. 請求項1記載の触媒を用いて、硫黄分を含有する炭化水素を硫黄濃度0.1質量ppm以下に脱硫することを特徴とする炭化水素の脱硫方法。  A hydrocarbon desulfurization method comprising desulfurizing a hydrocarbon containing a sulfur content to a sulfur concentration of 0.1 mass ppm or less using the catalyst according to claim 1. 水素非共存下に脱硫することを特徴とする請求項2記載の炭化水素の脱硫方法。3. The hydrocarbon desulfurization method according to claim 2, wherein the desulfurization is performed in the absence of hydrogen. 請求項1記載の触媒が充填された反応部を有し、硫黄分を含有する炭化水素を脱硫する脱硫装置と、該脱硫装置により脱硫された炭化水素を、水素を主成分とする燃料ガスに改質する改質装置を少なくとも有する燃料電池システム。  A desulfurization device having a reaction part filled with the catalyst according to claim 1 and desulfurizing hydrocarbons containing sulfur, and hydrocarbons desulfurized by the desulfurization device into hydrogen-based fuel gas A fuel cell system having at least a reforming device for reforming.
JP2003023545A 2003-01-31 2003-01-31 Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system Expired - Fee Related JP4210130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023545A JP4210130B2 (en) 2003-01-31 2003-01-31 Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023545A JP4210130B2 (en) 2003-01-31 2003-01-31 Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system

Publications (2)

Publication Number Publication Date
JP2004230317A JP2004230317A (en) 2004-08-19
JP4210130B2 true JP4210130B2 (en) 2009-01-14

Family

ID=32952316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023545A Expired - Fee Related JP4210130B2 (en) 2003-01-31 2003-01-31 Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system

Country Status (1)

Country Link
JP (1) JP4210130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104415778A (en) * 2013-08-30 2015-03-18 中国石油化工股份有限公司 Desulfurization catalyst, preparation method thereof and sulfur-containing fuel oil desulfurization method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922783B2 (en) * 2006-02-24 2012-04-25 コスモ石油株式会社 Hydrocarbon desulfurization agent
JP5284361B2 (en) * 2008-09-29 2013-09-11 一般財団法人石油エネルギー技術センター Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil
RU2517639C2 (en) * 2008-12-31 2014-05-27 Чайна Петролеум & Кемикал Корпорейшн Adsorbent, method for production thereof and method of removing sulphur from cracked petrol or diesel fuel
KR101137122B1 (en) 2009-12-29 2012-04-19 재단법인 포항산업과학연구원 Manufacturing Method Of High Temperature Desulfuring Catalyst Used By Steelmaking Slag And The Same
CA2793807A1 (en) 2010-03-19 2011-09-22 Japan Petroleum Energy Center Desulfurizing agent and method for manufacturing the same
JP5462686B2 (en) * 2010-03-30 2014-04-02 Jx日鉱日石エネルギー株式会社 Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
CN116408094A (en) * 2021-12-29 2023-07-11 中国石油天然气股份有限公司 Adsorption desulfurization catalyst and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104415778A (en) * 2013-08-30 2015-03-18 中国石油化工股份有限公司 Desulfurization catalyst, preparation method thereof and sulfur-containing fuel oil desulfurization method
CN104415778B (en) * 2013-08-30 2016-08-10 中国石油化工股份有限公司 The sulfur method that desulphurization catalyst and preparation method thereof is oily with sulfurous fuels

Also Published As

Publication number Publication date
JP2004230317A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
WO2010113506A1 (en) Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4210130B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5324205B2 (en) Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
JP5275113B2 (en) Hydrocarbon desulfurizing agent precursor and production method thereof, hydrocarbon desulfurization agent firing precursor and production method thereof, hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP5275114B2 (en) Hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2003265956A (en) Catalyst for selectively oxidizing carbon monoxide, method of reducing concentration of carbon monoxide, and fuel cell system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP4037122B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP4011886B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2003147372A (en) Method for desulfurizing hydrocarbon and fuel battery system
JP5041781B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP4246978B2 (en) Cu-containing catalyst
JP2011088779A (en) Hydrogen production apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees