JP2012223769A - Method for producing ammonia decomposition catalyst - Google Patents

Method for producing ammonia decomposition catalyst Download PDF

Info

Publication number
JP2012223769A
JP2012223769A JP2012181531A JP2012181531A JP2012223769A JP 2012223769 A JP2012223769 A JP 2012223769A JP 2012181531 A JP2012181531 A JP 2012181531A JP 2012181531 A JP2012181531 A JP 2012181531A JP 2012223769 A JP2012223769 A JP 2012223769A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
metal oxide
result
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012181531A
Other languages
Japanese (ja)
Inventor
Hisakazu Shindo
久和 進藤
Masaru Kirishiki
賢 桐敷
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012181531A priority Critical patent/JP2012223769A/en
Publication of JP2012223769A publication Critical patent/JP2012223769A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an ammonia decomposition catalyst with which ammonia of a wide concentration range from low concentration to high concentration can be efficiently decomposed.SOLUTION: The ammonia decomposition catalyst contains: at least one element (active element) selected from the group comprising group 8-10 elements; a compound (addition component A) of an element having ≤1.3 Pauling's electronegativity; and a metal oxide. The method for producing the ammonia decomposition catalyst for converting ammonia into nitrogen and hydrogen comprises the steps of: measuring the amount (volume) of water to be absorbed in the metal oxide when producing the catalyst; impregnating the metal oxide with a solution the concentration of which is adjusted so that the amount of the active element to be impregnated becomes the measured volume exactly; and treating the impregnated metal oxide with hydrogen.

Description

本発明は、アンモニアを分解するアンモニア分解の製造方法を提供するものである。   The present invention provides a method for producing ammonia decomposition for decomposing ammonia.

アンモニアは臭気性を有するのでガス中含まれるとき処理することが必要となるものであり、従来から処理方法は提示され、例えば酸素とアンモニアを接触させて酸化分解する方法、アンモニアを水素へ転化する方法などが提案されている。例えば、コークス炉から生じるアンモニアを空気の存在下に白金アルミナ触媒、マンガンアルミナ触媒、鉄アルミナ触媒を用いてアンモニアを分解し水素を得る方法(特許文献1)であるが、当該方法ではNOxが副生することが多く新たにNOx処理の設備が必要となり好ましくは無く、また有機性廃棄物処理工程から生じるアンモニアガスをニッケル、アルカリ土類、ランタノイドを担持したアルミナ、シリカ等を用いて分解し水素を得る方法(特許文献2)であるが、当該方法では転化率が低く実用的ではないものである。更にコークス炉から生じるアンモニアの処理に際して従来の触媒が鉄アルミナ、白金アルミナ、ルテニウムアルミナであるに対してルテニウムとアルカリ金属、アルカリ土類金属とをアルミナに担持した触媒を用いてアンモニアを分解し水素を得る方法(特許文献3)では当該方法では転化率が低く実用的ではなく好ましくはないものである。   Ammonia is odorous and needs to be treated when it is contained in a gas. Conventionally, a treatment method has been proposed, for example, a method in which oxygen and ammonia are brought into contact with each other to oxidize and decompose, and ammonia is converted to hydrogen. Methods have been proposed. For example, there is a method of decomposing ammonia generated from a coke oven using a platinum alumina catalyst, a manganese alumina catalyst, and an iron alumina catalyst in the presence of air to obtain hydrogen (Patent Document 1). It is often undesirable that new NOx treatment facilities are required, and the ammonia gas generated from the organic waste treatment process is decomposed using nickel, alkaline earth, alumina carrying lanthanoids, silica, etc. to generate hydrogen. However, this method has a low conversion rate and is not practical. Furthermore, in the treatment of ammonia generated from a coke oven, conventional catalysts are iron alumina, platinum alumina, and ruthenium alumina, whereas ammonia is decomposed and hydrogen is decomposed using a catalyst in which ruthenium, alkali metal, and alkaline earth metal are supported on alumina. In this method (Patent Document 3), the conversion rate is low and not practical and not preferable.

特開昭64−56301号公報JP-A 64-56301 特開2004−195454号公報JP 2004-195454 A 特開平01−119341号公報JP-A-01-119341

本発明はアンモニア濃度が低濃度から高濃度まで広範囲において、効率良く分解することができる触媒である。   The present invention is a catalyst that can be efficiently decomposed over a wide range of ammonia concentrations from low to high.

本発明者らは鋭意検討の結果、上記課題を解決する方法として、8族から10族の元素からなる群から選ばれる少なくとも一種の元素(以下、「活性元素」と称する)、電気陰性度がポーリングの電気陰性度で1.3以下である元素の化合物(以下「添加成分A」と称する)及び金属酸化物を含むことを特徴とするアンモニア分解触媒の製造方法を見出し発明の完成に至ったものである。   As a result of diligent studies, the present inventors have determined that at least one element selected from the group consisting of Group 8 to Group 10 elements (hereinafter referred to as “active element”), electronegativity, A method for producing an ammonia decomposition catalyst comprising a compound of an element having a Pauling's electronegativity of 1.3 or less (hereinafter referred to as “additive component A”) and a metal oxide has been found and the invention has been completed. Is.

本発明を用いることでアンモニア、特にガス中に含まれるアンモニアを低濃度から高濃度まで広範囲に分解することができるものである。   By using the present invention, ammonia, particularly ammonia contained in a gas, can be decomposed over a wide range from a low concentration to a high concentration.

本発明は、8族から10族の元素からなる群から選ばれる少なくとも一種の元素(以下、「活性元素」称する)、電気陰性度がポーリングの電気陰性度で1.3以下である元素の化合物(以下、「添加成分A」と称する)及び金属酸化物を含む触媒であって、
当該触媒の製造時に当該金属酸化物の吸水量(体積)を測定しておき、含浸させたい当該活性元素の量がちょうどその体積になるように濃度調整した溶液を、金属酸化物にしみこませ、
更に水素処理すること
を特徴とするアンモニアを窒素、水素に転化するアンモニア分解触媒の製造方法である。
The present invention relates to at least one element selected from the group consisting of elements from Group 8 to Group 10 (hereinafter referred to as “active element”), a compound of an element having an electronegativity of 1.3 or less in Pauling's electronegativity (Hereinafter referred to as “additive component A”) and a metal oxide,
The amount of water absorption (volume) of the metal oxide is measured during the production of the catalyst, and a solution whose concentration is adjusted so that the amount of the active element to be impregnated is just the volume is soaked in the metal oxide.
Further, the present invention is a method for producing an ammonia decomposition catalyst which converts ammonia into nitrogen and hydrogen.

本発明により得られた当該触媒を用いてアンモニアを分解することができる。好ましくは、180〜950℃でアンモニア分解すること、また当該アンモニアが尿素を分解して得られるものを用いることもできる。またアンモニアガスには触媒毒にならない程度であれば他の成分が含まれていても良い。   Ammonia can be decomposed using the catalyst obtained by the present invention. Preferably, ammonia decomposition at 180 to 950 ° C., or one obtained by decomposing urea into urea can be used. The ammonia gas may contain other components as long as they do not cause catalyst poisoning.

当該活性元素は、8族から10族の元素である元素であれば何れのものであっても良いが、好ましくは白金、パラジウム、ロジウム、ルテニウム、鉄、コバルトおよびニッケルからなる群から選ばれる少なくとも一種であり、更に好ましくはルテニウムおよび/または鉄であり、最も好ましくはルテニウムである。   The active element may be any element as long as it is an element belonging to Group 8 to Group 10, but preferably at least selected from the group consisting of platinum, palladium, rhodium, ruthenium, iron, cobalt, and nickel. 1 type, more preferably ruthenium and / or iron, and most preferably ruthenium.

当該活性元素の原料は、金属、水酸化物、酸化物、炭酸塩、硝酸塩、塩化物、ニトロシル硝酸塩、硫酸塩、カルボニル錯体を使用することができ、好ましくは硝酸塩、塩化物、ニトロシル硝酸塩、カルボニル錯体である。   As the raw material of the active element, metals, hydroxides, oxides, carbonates, nitrates, chlorides, nitrosyl nitrates, sulfates, and carbonyl complexes can be used, preferably nitrates, chlorides, nitrosyl nitrates, carbonyls. It is a complex.

当該添加成分Aは、電気陰性度がポーリングの電気陰性度で1.3以下、好ましくは0.7〜1.12である。例えばアルカリ性を示す化合物であり、好ましくはアルカリ金属、アルカリ土類金属、更に好ましくはアルカリ金属の化合物である。添加成分Aの原料は酸化物、水酸化物、硫化物、塩化物、フッ化物、臭化物、リン酸塩、炭酸塩、硝酸塩であっても良いが、好ましくは水酸化物、硝酸塩である。   The additive component A has an electronegativity of 1.3 or less, preferably 0.7 to 1.12. For example, it is a compound showing alkalinity, preferably an alkali metal, an alkaline earth metal, and more preferably an alkali metal compound. The raw material of additive component A may be an oxide, hydroxide, sulfide, chloride, fluoride, bromide, phosphate, carbonate, or nitrate, but is preferably a hydroxide or nitrate.

当該金属酸化物は酸化物であれば何れのものであっても良いが、好ましくは酸化アルミニウム、酸化セリウム、酸化マグネシウム、酸化ニオブ、酸化チタン、酸化バナジウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ランタンおよび酸化ネオジムからなる群から選ばれる少なくとも一種であり、更に好ましくは酸化アルミニウム、酸化セリウム、酸化マグネシウムおよび酸化チタンからなる群から選ばれる少なくとも一種である。これらの酸化物は単独酸化物でも複合酸化物でも用いることができる。   The metal oxide may be any oxide, but preferably aluminum oxide, cerium oxide, magnesium oxide, niobium oxide, titanium oxide, vanadium oxide, tantalum oxide, hafnium oxide, yttrium oxide, oxide At least one selected from the group consisting of lanthanum and neodymium oxide, more preferably at least one selected from the group consisting of aluminum oxide, cerium oxide, magnesium oxide and titanium oxide. These oxides can be used as single oxides or complex oxides.

また、場合によっては、添加成分Bを併用することもでき、例えばNi、Fe、Mo、Co、Pd、PtおよびRhからなる群から選ばれる少なくとも一種である。更に好ましくはルテニウムおよび/または鉄であり、最も好ましくはルテニウムである。   Further, depending on the case, additive component B can be used in combination, for example, at least one selected from the group consisting of Ni, Fe, Mo, Co, Pd, Pt and Rh. More preferred is ruthenium and / or iron, and most preferred is ruthenium.

当該金属酸化物を100質量部に対して、活性元素(金属換算)は0.1〜30質量部、好ましくは1〜6であり、当該添加成分A(元素換算)は1〜40質量部、好ましくは3〜20である。   With respect to 100 parts by mass of the metal oxide, the active element (in metal equivalent) is 0.1 to 30 parts by mass, preferably 1 to 6, and the additive component A (in element equivalent) is 1 to 40 parts by mass. Preferably it is 3-20.

アンモニアガスとしては、アンモニアを一般的に使用することができる他、尿素のように熱分解等によりアンモニアを生じさせるものであっても良い。対触媒当たりのアンモニア量は、SV(空間速度)で、1000〜20000hr−1、好ましくは2000〜15000hr−1、最も好ましくは3000〜10000hr−1である。なお、触媒当たりとは、触媒を反応器に詰めたときに占める容積当たりの単位時間当たりのアンモニアガス容積である。 As the ammonia gas, ammonia can be generally used, and ammonia may be generated by thermal decomposition or the like like urea. Ammonia per pair catalyst, at SV (space velocity), 1000~20000hr -1, preferably 2000~15000Hr -1, and most preferably 3000~10000hr -1. In addition, per catalyst is the volume of ammonia gas per unit time per volume occupied when the catalyst is packed in the reactor.

反応温度は、180〜950℃、好ましくは300〜900℃、更に好ましくは400〜800℃である。   The reaction temperature is 180 to 950 ° C, preferably 300 to 900 ° C, more preferably 400 to 800 ° C.

反応圧力は0.002MPa〜2MPa、好ましくは0.004MPa〜1MPaである。   The reaction pressure is 0.002 MPa to 2 MPa, preferably 0.004 MPa to 1 MPa.

触媒の調製方法としては、一般的に方法を用いることができ、活性元素、添加成分A及び金属酸化物を混合し適宜乾燥、焼成する方法(混合法)、活性元素、添加成分Aを水性液とし金属酸化物に含浸する方法(含浸法)、添加成分と金属酸化物を混合したものに水性液に含まれる活性元素を化学的に吸着させる方法(化学吸着法)などの方法を用いることができ、好ましくは含浸する方法である。   As a method for preparing the catalyst, generally, a method can be used. A method of mixing an active element, an additive component A and a metal oxide, drying and firing appropriately (mixing method), an active element, and the additive component A being an aqueous liquid And a method of impregnating a metal oxide (impregnation method), a method of chemically adsorbing an active element contained in an aqueous liquid to a mixture of an additive component and a metal oxide (chemical adsorption method), etc. Preferably, it is a method of impregnation.

更に具体的に調製方法を示すと、乾燥させた金属酸化物の吸水量(体積)を測定しておき、含浸させたい活性元素の量がちょうどその体積になるように濃度調整した溶液を、乾燥させた金属酸化物に撹拌しながら徐々にしみ込ませる方法である。   More specifically, the preparation method is to measure the water absorption (volume) of the dried metal oxide, and dry the solution whose concentration is adjusted so that the amount of the active element to be impregnated is just the volume. In this method, the metal oxide is gradually soaked with stirring.

また、活性元素、添加成分および金属酸化物を含む触媒であれば何れの形態であっても良いが、好ましくは活性元素、添加成分および金属酸化物同士の混合物である形態、活性元素および添加成分を金属酸化物に担持した形態である。好ましくは担持した形態である。   The catalyst may be in any form as long as it contains an active element, an additive component, and a metal oxide, but is preferably a mixture of the active element, additive component, and metal oxide, active element, and additive component. Is supported on a metal oxide. A supported form is preferred.

以下に実施例と比較例により本発明を詳細に説明するが、本発明の趣旨に反しない限り以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it is contrary to the gist of the present invention.

(実施例1)
(触媒A)
ルテニウム含有率3.938質量%のルテニウム水溶液13.365gを、γ−アルミナ(BET比表面積103m/g)の担体10gに均一になるように含浸し、Ru換算で5質量%になるように調整後、90〜120℃で乾燥を行った。その後、400℃,4時間の水素還元を行った。5質量%Ru/Alを得た。次いで、硝酸セシウムを用いて、乾燥した触媒の吸水量と同じ体積の含浸液がCs/Ru=1(モル比)になるように水容液を調製し、触媒に対して均一になるように含浸した。400℃の水素処理を4時間実施し、Cs−Ru/Al(Cs/Ru=1 モル比)を得た。BET表面積を測定した結果、103m/gであった。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は37.5%であった。SV=15000hr−1に変えた時の結果は、分解率25.9%であった。200℃、SV=6000hr−1、常圧での結果は、分解率3.3%であった。SV=15000hr−1に変えた時の結果は、分解率1.9%であった。450℃、SV=3500hr−1、常圧で25時間実施した時の結果は、分解率は96.2〜99.3%であった。その後、400℃、SV=3000hr−1で実施した時の結果は、分解率96.0%であった。SV=6000hr−1に変えた時の結果は、分解率92.9%であった。反応温度を350℃に下げて実施したところ、SV=3000で分解率73.7%、SV=6000hr−1で分解率65.6%であった。500℃に反応温度を上げて実施したところ、SV=3500hr−1、7000hr−1共に分解率100%であった。又、600℃、750℃で分解率を測定した結果は、SV=3500hr−1、7000hr−1共に分解率100%であった。
Example 1
(Catalyst A)
13.365 g of a ruthenium aqueous solution having a ruthenium content of 3.938% by mass is uniformly impregnated into 10 g of a carrier of γ-alumina (BET specific surface area 103 m 2 / g), so that it is 5% by mass in terms of Ru. After the adjustment, drying was performed at 90 to 120 ° C. Thereafter, hydrogen reduction was performed at 400 ° C. for 4 hours. 5 wt% Ru / Al 2 O 3 was obtained. Next, using cesium nitrate, prepare an aqueous solution so that the impregnating liquid having the same volume as the water absorption amount of the dried catalyst is Cs / Ru = 1 (molar ratio), so that it is uniform with respect to the catalyst. Impregnated. Hydrogen treatment at 400 ° C. was performed for 4 hours to obtain Cs—Ru / Al 2 O 3 (Cs / Ru = 1 molar ratio). As a result of measuring the BET surface area, it was 103 m 2 / g.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 and normal pressure, the decomposition rate was 37.5%. The result of changing to SV = 15000 hr −1 was a decomposition rate of 25.9%. The result at 200 ° C., SV = 6000 hr −1 , and normal pressure was a decomposition rate of 3.3%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.9%. As a result of carrying out at 450 ° C., SV = 3500 hr −1 and normal pressure for 25 hours, the decomposition rate was 96.2 to 99.3%. Thereafter, the decomposition rate was 96.0% when carried out at 400 ° C. and SV = 3000 hr −1 . The result of changing to SV = 6000 hr −1 was a decomposition rate of 92.9%. When the reaction temperature was lowered to 350 ° C., the decomposition rate was 73.7% at SV = 3000, and the decomposition rate was 65.6% at SV = 6000 hr −1 . When the reaction temperature was raised to 500 ° C., SV = 3500 hr −1 and 7000 hr −1 both had a decomposition rate of 100%. Moreover, the result of measuring the decomposition rate at 600 ° C. and 750 ° C. was 100% for both SV = 3500 hr −1 and 7000 hr −1 .

(実施例2)
(触媒B)
触媒Aにおいて、硝酸セシウムに変えて硝酸ルビジウムを用いた以外は触媒Aと同じ方法でRb−Ru/Al(Rb/Ru=1 モル比)を得た。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は26.0%であった。
(Example 2)
(Catalyst B)
In catalyst A, Rb—Ru / Al 2 O 3 (Rb / Ru = 1 molar ratio) was obtained in the same manner as in catalyst A, except that rubidium nitrate was used instead of cesium nitrate.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 26.0%.

(実施例3)
(触媒C)
触媒Aにおいて、硝酸セシウムに変えて硝酸カリウムを用いた以外は触媒Aと同じ方法でK−Ru/Al(K/Ru=1 モル比)を得た。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は20.0%であった。
(Example 3)
(Catalyst C)
In the catalyst A, K-Ru / Al 2 O 3 (K / Ru = 1 molar ratio) was obtained in the same manner as the catalyst A except that potassium nitrate was used instead of cesium nitrate.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 and normal pressure, the decomposition rate was 20.0%.

(実施例4)
(触媒D)
Ce(NO・6HOを水に溶解し0.2N溶液とし、5%アンモニア水でpH10にして沈殿を生成させ、撹拌,静置後に吸引濾過して純水で洗浄した。100℃乾燥後に空気中で500℃、3時間焼成を行い、CeO担体を得た。これに、マヨネーズ瓶にてルテニウムカルボニルRu(CO)12をTHFに溶解させた溶液を含浸させ、一晩攪拌を継続させた後にエバポレーターでTHFを除去し、350℃まで窒素中で昇温、350〜400℃、4時間水素気流で還元処理を行った。2.45質量%Ru/CeOを得た。BET表面積を測定した結果、29m/gであった。触媒Aと同じ調製方法でセシウムを含浸して、Cs−Ru/CeO(Cs/Ru=1 モル比)を得た。BET表面積を測定した結果は、24m/gであった。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は31.4%であった。SV=15000hr−1に変えた時の結果は、分解率21.3%であった。200℃、SV=6000hr−1、常圧での結果は、分解率2.6%であった。SV=15000hr−1に変えた時の結果は、分解率1.6%であった。
Example 4
(Catalyst D)
Ce (NO 3 ) 3 · 6H 2 O was dissolved in water to form a 0.2N solution, pH was adjusted to 10 with 5% aqueous ammonia, a precipitate was formed, stirred, allowed to stand, filtered with suction, and washed with pure water. After drying at 100 ° C., calcination was performed in air at 500 ° C. for 3 hours to obtain a CeO 2 carrier. This was impregnated with a solution in which ruthenium carbonyl Ru 3 (CO) 12 was dissolved in THF in a mayonnaise bottle. After stirring overnight, the THF was removed with an evaporator, and the temperature was raised to 350 ° C. in nitrogen. The reduction treatment was performed in a hydrogen stream at 350 to 400 ° C. for 4 hours. 2.45 mass% Ru / CeO 2 was obtained. It was 29 m < 2 > / g as a result of measuring a BET surface area. Csium was impregnated by the same preparation method as catalyst A to obtain Cs-Ru / CeO 2 (Cs / Ru = 1 molar ratio). The result of measuring the BET surface area was 24 m 2 / g.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 31.4%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 21.3%. The result at 200 ° C., SV = 6000 hr −1 , and normal pressure was a decomposition rate of 2.6%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.6%.

(実施例5)
(触媒E)
触媒Aにおいて、Cs/Ru=1(モル比)をCs/Ru=8(モル比)に変えた以外は触媒Aと同じ調製方法で実施し、Cs−Ru/Al(Cs/Ru=8 モル比)を得た。BET表面積を測定した結果、46m/gであった。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は32.4%であった。SV=15000hr−1に変えた時の結果は、分解率21.0%であった。200℃、SV=6000hr−1、常圧で実施した結果、分解率は3.1%であった。SV=15000hr−1に変えた時の結果は、分解率1.5%であった。
(Example 5)
(Catalyst E)
The catalyst A was prepared in the same manner as the catalyst A except that Cs / Ru = 1 (molar ratio) was changed to Cs / Ru = 8 (molar ratio), and Cs-Ru / Al 2 O 3 (Cs / Ru = 8 molar ratio). It was 46 m < 2 > / g as a result of measuring a BET surface area.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 32.4%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 21.0%. As a result of carrying out at 200 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 3.1%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.5%.

(実施例6)
(触媒F)
触媒Dにおいて、Cs/Ru=1(モル比)をCs/Ru=8(モル比)に変えた以外は触媒Dと同じ調製方法でCs−Ru/CeO(Cs/Ru=8 モル比)を得た。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は16.6%であった。SV=15000hr−1に変えた時の結果は、分解率10.2%であった。
(Example 6)
(Catalyst F)
Cs-Ru / CeO 2 (Cs / Ru = 8 molar ratio) in the same preparation method as catalyst D except that Cs / Ru = 1 (molar ratio) was changed to Cs / Ru = 8 (molar ratio) in catalyst D Got.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 16.6%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 10.2%.

(実施例7)
(触媒G)
Ce(NO・6HOを水に溶解し0.2N溶液とし、5%アンモニア水でpH10にして沈殿を生成させ、撹拌,静置後に吸引濾過して純水で洗浄した。100℃乾燥後に空気中で500℃、3時間焼成を行い、CeO担体を得た。Ni(NO・6HOをメタノールに溶解し、得られたCeOに含浸を行った。500℃空気中1時間焼成を行い、真空排気後、水素中で12時間還元を行った。Ni/CeOを得た。これに、マヨネーズ瓶にてルテニウムカルボニルRu(CO)12をTHFに溶解させた溶液を含浸させ、一晩攪拌を継続させた後にエバポレーターでTHFを除去し、350℃まで窒素中で昇温、350〜400℃、4時間水素気流で還元処理を行った。0.48質量%Ni−2.45質量%Ru/CeOを得た。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は9.0%であった。SV=15000hr−1に変えた時の結果は、分解率5.1%であった。
(Example 7)
(Catalyst G)
Ce (NO 3 ) 3 · 6H 2 O was dissolved in water to form a 0.2N solution, pH was adjusted to 10 with 5% aqueous ammonia, a precipitate was formed, stirred, allowed to stand, filtered with suction, and washed with pure water. After drying at 100 ° C., calcination was performed in air at 500 ° C. for 3 hours to obtain a CeO 2 carrier. Ni (NO 3 ) 2 · 6H 2 O was dissolved in methanol, and the resulting CeO 2 was impregnated. Firing was performed in air at 500 ° C. for 1 hour, and after evacuation, reduction was performed in hydrogen for 12 hours. Ni / CeO 2 was obtained. This was impregnated with a solution in which ruthenium carbonyl Ru 3 (CO) 12 was dissolved in THF in a mayonnaise bottle. After stirring overnight, the THF was removed with an evaporator, and the temperature was raised to 350 ° C. in nitrogen. The reduction treatment was performed in a hydrogen stream at 350 to 400 ° C. for 4 hours. 0.48 mass% Ni-2.45 mass% Ru / CeO 2 was obtained.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 9.0%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 5.1%.

(比較例1)
(触媒H)
和光純薬製(1級)の5%Ru/Alを反応評価用に圧縮成型した。BET表面積を測定した結果、130m/gであった。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000、常圧で実施した結果、分解率は7.1%であった。SV=15000hr−1に変えた時の結果は、分解率4.5%であった。200℃、SV=6000hr−1では活性はなかった。
(Comparative Example 1)
(Catalyst H)
5% Ru / Al 2 O 3 manufactured by Wako Pure Chemical (first grade) was compression molded for reaction evaluation. As a result of measuring the BET surface area, it was 130 m 2 / g.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000, and normal pressure, the decomposition rate was 7.1%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 4.5%. There was no activity at 200 ° C. and SV = 6000 hr −1 .

(比較例2)
(触媒I)
触媒Dと同様の調整法で、Ce(NO・6HOを用いてCeO担体を得た。触媒Dと同様にルテニウムカルボニルRu(CO)12を含浸、還元して2.45質量%Ru/CeOを得た。BET表面積を測定した結果、29m/gであった。
(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は7.8%であった。SV=15000hr−1に変えた時の結果は、分解率4.4%であった。200℃、SV=6000hr−1では活性はなかった。
(Comparative Example 2)
(Catalyst I)
A CeO 2 carrier was obtained using Ce (NO 3 ) 3 .6H 2 O by the same adjustment method as that for catalyst D. In the same manner as Catalyst D, ruthenium carbonyl Ru 3 (CO) 12 was impregnated and reduced to obtain 2.45 mass% Ru / CeO 2 . It was 29 m < 2 > / g as a result of measuring a BET surface area.
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 7.8%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 4.4%. There was no activity at 200 ° C. and SV = 6000 hr −1 .

本発明は、アンモニアの分解に関するものであり、アンモニア臭気を有するガスの無臭化する環境的な分野、アンモニアを窒素、水素に転化する分野に応用できるものである。   The present invention relates to the decomposition of ammonia, and can be applied to an environmental field in which a gas having an ammonia odor is not brominated, and a field in which ammonia is converted to nitrogen or hydrogen.

Claims (1)

8族から10族の元素からなる群から選ばれる少なくとも一種の元素(以下、「活性元素」称する)、電気陰性度がポーリングの電気陰性度で1.3以下である元素の化合物(以下、「添加成分A」と称する)及び金属酸化物を含む触媒であって、
当該触媒の製造時に当該金属酸化物の吸水量(体積)を測定しておき、含浸させたい当該活性元素の量がちょうどその体積になるように濃度調整した溶液を、金属酸化物にしみこませ、
更に水素処理すること
を特徴とするアンモニアを窒素、水素に転化するアンモニア分解触媒の製造方法。
At least one element selected from the group consisting of Group 8 to Group 10 elements (hereinafter referred to as “active element”), a compound of an element having an electronegativity of 1.3 or less in Pauling's electronegativity (hereinafter referred to as “ A catalyst comprising a metal oxide, referred to as additive component A ”,
The amount of water absorption (volume) of the metal oxide is measured during the production of the catalyst, and a solution whose concentration is adjusted so that the amount of the active element to be impregnated is just the volume is soaked in the metal oxide.
A method for producing an ammonia decomposition catalyst for converting ammonia into nitrogen and hydrogen, further characterized by hydrogen treatment.
JP2012181531A 2012-08-20 2012-08-20 Method for producing ammonia decomposition catalyst Pending JP2012223769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181531A JP2012223769A (en) 2012-08-20 2012-08-20 Method for producing ammonia decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181531A JP2012223769A (en) 2012-08-20 2012-08-20 Method for producing ammonia decomposition catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008107511A Division JP2009254980A (en) 2008-04-17 2008-04-17 Ammonia decomposing catalyst and ammonia decomposing method

Publications (1)

Publication Number Publication Date
JP2012223769A true JP2012223769A (en) 2012-11-15

Family

ID=47274553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181531A Pending JP2012223769A (en) 2012-08-20 2012-08-20 Method for producing ammonia decomposition catalyst

Country Status (1)

Country Link
JP (1) JP2012223769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133045A1 (en) * 2013-02-26 2014-09-04 国立大学法人岡山大学 Ferroelectric carrier catalyst and method for producing same
CN111215063A (en) * 2018-11-25 2020-06-02 中国科学院大连化学物理研究所 Application of metal-loaded catalyst taking rare earth carbonate as carrier precursor in ammonia decomposition reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (en) * 1987-10-30 1989-05-11 Nkk Corp Catalyst for ammonia decomposition
JPH11130404A (en) * 1997-04-11 1999-05-18 Chiyoda Corp Production of synthetic gas by partial oxidation method
JP2001104781A (en) * 1999-10-07 2001-04-17 Kansai Research Institute Material for removing nitrogen oxide and method for removing it
JP2003513788A (en) * 1999-11-17 2003-04-15 セラニーズ・インターナショナル・コーポレーション Vinyl acetate catalyst containing palladium metal and gold prepared using sonication
JP2009254980A (en) * 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Ammonia decomposing catalyst and ammonia decomposing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (en) * 1987-10-30 1989-05-11 Nkk Corp Catalyst for ammonia decomposition
JPH11130404A (en) * 1997-04-11 1999-05-18 Chiyoda Corp Production of synthetic gas by partial oxidation method
JP2001104781A (en) * 1999-10-07 2001-04-17 Kansai Research Institute Material for removing nitrogen oxide and method for removing it
JP2003513788A (en) * 1999-11-17 2003-04-15 セラニーズ・インターナショナル・コーポレーション Vinyl acetate catalyst containing palladium metal and gold prepared using sonication
JP2009254980A (en) * 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Ammonia decomposing catalyst and ammonia decomposing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133045A1 (en) * 2013-02-26 2014-09-04 国立大学法人岡山大学 Ferroelectric carrier catalyst and method for producing same
JP2014161811A (en) * 2013-02-26 2014-09-08 Okayama Univ Ferroelectric carrier catalyst
CN111215063A (en) * 2018-11-25 2020-06-02 中国科学院大连化学物理研究所 Application of metal-loaded catalyst taking rare earth carbonate as carrier precursor in ammonia decomposition reaction

Similar Documents

Publication Publication Date Title
France et al. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
Centi et al. Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
Meng et al. Synthesis of highly-dispersed CuO–CeO2 catalyst through a chemisorption-hydrolysis route for CO preferential oxidation in H2-rich stream
JP2847018B2 (en) Carbon dioxide reduction reaction catalyst
BR0112164B1 (en) catalyst for decomposition of n2o, and method for performing a process comprising the formation of n2o.
CN101664690A (en) Catalyst and preparation method and application thereof
JP2011056488A (en) Ammonia reforming catalyst and method of manufacturing hydrogen using the same
AU2014298498B2 (en) Nitrous oxide decomposition catalyst
KR20160112179A (en) Purification Catalyst for Natural Gas Engine Exhaust
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP2012223769A (en) Method for producing ammonia decomposition catalyst
JP2013237045A (en) Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
Aneggi et al. Solvent-free selective oxidation of benzyl alcohol using Ru loaded ceria-zirconia catalysts
CN105642290B (en) A kind of preparation method of synthesizing gas by reforming methane with co 2 catalyst
ZHANG et al. Catalytic decomposition of N2O over NixCo1–xCoAlO4 spinel oxides prepared by sol-gel method
JP2012223768A (en) Catalyst and method for decomposing ammonia
JP3837520B2 (en) Catalyst for CO shift reaction
JP5746539B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst
JP2009254979A (en) Method of manufacturing ammonia decomposing catalyst
JP2009254980A (en) Ammonia decomposing catalyst and ammonia decomposing method
JP2010094667A (en) Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028