JP2004307326A - Method for recovering energy from organic waste - Google Patents

Method for recovering energy from organic waste Download PDF

Info

Publication number
JP2004307326A
JP2004307326A JP2004075697A JP2004075697A JP2004307326A JP 2004307326 A JP2004307326 A JP 2004307326A JP 2004075697 A JP2004075697 A JP 2004075697A JP 2004075697 A JP2004075697 A JP 2004075697A JP 2004307326 A JP2004307326 A JP 2004307326A
Authority
JP
Japan
Prior art keywords
ammonia
organic waste
component
hydrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004075697A
Other languages
Japanese (ja)
Other versions
JP4364022B2 (en
Inventor
Takao Masuda
隆夫 増田
Terufusa Tako
輝興 多湖
Tetsuya Yanase
哲也 柳瀬
Masato Endo
正人 遠藤
Terushiro Fukumatsu
輝城 福松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2004075697A priority Critical patent/JP4364022B2/en
Publication of JP2004307326A publication Critical patent/JP2004307326A/en
Application granted granted Critical
Publication of JP4364022B2 publication Critical patent/JP4364022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Landscapes

  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for additionally recovering energy from ammonia which is transferred to waste water, in a process to recover a combustible gas by gasifying and reforming an organic waste. <P>SOLUTION: When the combustible gas is recovered from the organic waste by using a gasifying and reforming furnace 4, ammonia is contained in the waste water discharged at a pretreatment step, namely a dewatering and drying process, and in the waste water discharged in a dust eliminating and washing process for the gas generated by gasifying and reforming the dewatered and dried organic waste. The ammonia in the both waste water is recovered and decomposed into hydrogen and nitrogen using a catalyst. The hydrogen is used as an energy resource for an electric power generator. The catalyst for decomposing ammonia prepared by carrying nickel or nickel oxide as a first component on a metal oxide carrier such as alumina, silica, titania, and zirconia and adding at least one of alkaline earth metals and lanthanoid elements as a form of a metal or an oxide as a second component is preferable. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、下水汚泥、バイオマスなどの有機性廃棄物からのエネルギー回収方法に関するものである。   The present invention relates to a method for recovering energy from organic waste such as sewage sludge and biomass.

従来一般に、下水汚泥やバイオマスなどの有機性廃棄物は脱水または焼却され、脱水汚泥や焼却灰として埋め立て処分されてきたが、新たな処分場の確保は次第に困難になりつつある。また焼却時に発生する二酸化炭素は地球温暖化の原因とされ排出量の削減が求められている。このため最近では特許文献1に示されるように、有機性廃棄物を熱分解してガス化するとともに改質し、有機分を可燃性ガスとして回収する有機性廃棄物のガス化改質技術が開発されている。   Conventionally, organic wastes such as sewage sludge and biomass have generally been dehydrated or incinerated and landfilled as dehydrated sludge or incinerated ash. However, it has become increasingly difficult to secure new disposal sites. In addition, carbon dioxide generated during incineration is considered to be a cause of global warming, and reduction of emissions is required. For this reason, recently, as shown in Patent Document 1, an organic waste gasification and reforming technology for thermally decomposing and gasifying organic waste and reforming the same to recover organic components as combustible gas has been developed. Is being developed.

この方法により有機性廃棄物から可燃性ガスを得るためには、まず有機性廃棄物を脱水・乾燥する前処理を施したうえで、ガス化改質炉でガス化及び改質処理する方法が取られる。この前処理として行われる脱水、乾燥工程においては、有機性廃棄物中に含まれる窒素分の一部はアンモニアとして排水(ドレン水)に移行する。   In order to obtain flammable gas from organic waste by this method, there is a method in which organic waste is first subjected to pretreatment for dehydration and drying, and then gasification and reforming treatment is performed in a gasification and reforming furnace. Taken. In the dehydration and drying steps performed as this pretreatment, a part of the nitrogen contained in the organic waste is transferred to wastewater (drain water) as ammonia.

また、脱水、乾燥された有機性廃棄物はガス化改質炉において酸素、水蒸気、空気等と反応(部分燃焼)することによりH,CO,CO,HOから構成される可燃性ガスに改質される。このとき可燃性ガス中に含有される窒素分はアンモニアとしてガス中に移行し、ガス化改質炉の後段のガス洗浄工程において排水中へ移行する。 The dewatered and dried organic waste reacts with oxygen, water vapor, air, etc. (partial combustion) in a gasification reforming furnace to form a flammable fuel composed of H 2 , CO, CO 2 , and H 2 O. Reformed into gas. At this time, the nitrogen content contained in the combustible gas is transferred to the gas as ammonia, and is transferred to wastewater in a gas cleaning step at the latter stage of the gasification and reforming furnace.

このように有機性廃棄物の脱水・乾燥工程およびガスの洗浄工程において排水中に移行したアンモニアは、生物処理法、不連続塩素処理法、オゾン処理法などにより分解して放流したり、あるいはアンモニアストリッピング法により排水中から放散させ、放散されたアンモニアを燃焼分解あるいは吸着除去している。また放散させたアンモニアの処理方法としては、ガス化改質炉へ再投入して分解する方法もあるが分解率が悪く、投入したアンモニアはガス洗浄工程において再度排水中へ移行してしまう。いずれの方法でも、前処理やガス洗浄工程において排水中へ移行したアンモニア、及びガス洗浄工程において排水中へ移行したアンモニアはエネルギーとして全く利用されていない。
特許第3054595号公報
Ammonia that has migrated into the wastewater in the organic waste dehydration / drying process and gas cleaning process is decomposed and discharged by biological treatment, discontinuous chlorination, ozone treatment, etc. The ammonia is released from the wastewater by the stripping method, and the released ammonia is decomposed by combustion or removed by adsorption. As a method of treating the released ammonia, there is a method of re-introducing the gas into a gasification reforming furnace to decompose the ammonia. However, the decomposition rate is low, and the introduced ammonia is transferred to wastewater again in the gas cleaning step. In any of the methods, the ammonia transferred to the wastewater in the pretreatment or the gas cleaning step and the ammonia transferred to the wastewater in the gas cleaning step are not used at all as energy.
Japanese Patent No. 3054595

本発明は上記した従来の問題点を解決し、有機性廃棄物をガス化改質して可燃性ガスを回収する工程において、排水中へ移行したアンモニアから更にエネルギーを回収することができる有機性廃棄物からのエネルギー回収方法を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and in the step of gasifying and reforming organic waste to recover flammable gas, an organic material capable of further recovering energy from ammonia transferred to wastewater. This was done to provide a method of recovering energy from waste.

上記の課題を解決するためになされた本発明は、有機性廃棄物をガス化改質する前処理段階の脱水・乾燥工程で発生する排水、および脱水・乾燥した有機性廃棄物をガス化改質して発生させたガスの除塵・洗浄工程で発生する排水中に含まれるアンモニアを回収し、回収されたアンモニアを分解触媒により水素と窒素に分解して水素を回収し、この水素を発電装置のエネルギー源として利用することを特徴とするものである。   The present invention made in order to solve the above-mentioned problems is intended to convert wastewater generated in a dehydration / drying step in a pretreatment step of gasifying and reforming organic waste and gasification and reforming of dehydrated / dried organic waste. Ammonia contained in wastewater generated in the dust removal / cleaning process of the generated gas is recovered, and the recovered ammonia is decomposed into hydrogen and nitrogen by a decomposition catalyst to recover hydrogen. It is characterized in that it is used as an energy source.

なお、アンモニアの分解触媒として、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものを用いることができる。特に第1成分/担体の重量比を1〜40%、第2成分/担体の重量比を1〜15%としたアンモニア分解触媒を用いることが好ましい。
また発電装置が、水素ガスにより駆動されるガスエンジンまたは燃料電池であることが好ましい。
As a catalyst for decomposing ammonia, nickel or a nickel oxide is supported as a first component on a metal oxide carrier such as alumina, silica, titania, and zirconia, and at least one of an alkaline earth metal and a lanthanoid element is used as a metal or a metal. Those added as the second component in the form of an oxide can be used. In particular, it is preferable to use an ammonia decomposition catalyst in which the weight ratio of the first component / carrier is 1 to 40% and the weight ratio of the second component / carrier is 1 to 15%.
Preferably, the power generation device is a gas engine or a fuel cell driven by hydrogen gas.

本発明によれば、有機性廃棄物をガス化改質して可燃性ガスを回収することができるのみならず、この工程において排水中へ移行したアンモニアからも水素を回収し、発電装置のエネルギー源として利用することができる。このため有機性廃棄物からのエネルギー回収率が高まるとともに、環境への負担も軽減される。特に上記したアンモニア分解触媒を用いれば、水蒸気の存在下においても触媒活性の低下がなく、アンモニアをほぼ完全に分解して効率よく水素を得ることができる。   According to the present invention, not only can combustible gas be recovered by gasifying and reforming organic waste, but also hydrogen can be recovered from ammonia transferred to wastewater in this step, and the energy of the power generator can be improved. Can be used as a source. This increases the energy recovery rate from organic waste and reduces the burden on the environment. In particular, when the above-described ammonia decomposition catalyst is used, the catalytic activity does not decrease even in the presence of water vapor, and ammonia can be almost completely decomposed to efficiently obtain hydrogen.

以下に本発明の実施形態を示す。
図1は本発明の実施形態を示すブロック図であり、1は下水汚泥、バイオマスなどの窒素分を含む有機性廃棄物である。これらの有機性廃棄物1は多くの場合、大量の水分を含有しており、そのまま高温のガス化改質炉4に投入することができないのが普通であるので、脱水機2と乾燥機3とによる脱水・乾燥の前処理が行われる。脱水機2としては、ベルトプレス、フィルタープレス、ロータリープレスなどの従来公知の様々な形式のものを使用することができる。また乾燥機3の形式も任意であるが、例えば外部熱源を利用したパドルドライヤを用いることができる。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a block diagram showing an embodiment of the present invention. Reference numeral 1 denotes an organic waste containing nitrogen such as sewage sludge and biomass. Since these organic wastes 1 often contain a large amount of water and cannot usually be directly introduced into the high-temperature gasification reforming furnace 4, the dewatering machine 2 and the drying machine 3 And the pretreatment of dehydration and drying is performed. As the dehydrator 2, various types known in the art such as a belt press, a filter press, and a rotary press can be used. The type of the dryer 3 is also arbitrary. For example, a paddle dryer using an external heat source can be used.

しかしどのような形式の脱水機2や乾燥機3を使用しても、水分を含んだ有機性廃棄物1を加熱するため、必ず多量の水蒸気が発生すると同時に、有機性廃棄物1が加熱分解されることによってアンモニアが発生する。このアンモニアは水蒸気が凝結した排水(乾燥ドレン)中に必ず移行する。本発明ではこのアンモニアを含むドレン水を排水処理工程5に送る。   However, no matter what type of dehydrator 2 or drier 3 is used, the organic waste 1 containing water is heated, so that a large amount of steam is always generated and the organic waste 1 is thermally decomposed. This produces ammonia. This ammonia always migrates into waste water (dry drain) in which steam condenses. In the present invention, the drain water containing ammonia is sent to the wastewater treatment step 5.

一方、脱水・乾燥の前処理が行われた有機性廃棄物は、ガス化改質炉4に送り込まれる。ガス化改質炉4の内部は600〜1400℃の高温に保たれており、外部から酸素・空気・水蒸気が供給されている。有機性廃棄物はガス化改質炉4の内部で部分酸化され、H分とC分はCO,H等の燃料ガスに変換される。なお、ガス化炉と改質炉とは分離した炉とすることもできる。このガス化改質の工程自体は、前記の特許文献1にも示されているように公知である。 On the other hand, the organic waste subjected to the pretreatment of dehydration and drying is sent to the gasification and reforming furnace 4. The inside of the gasification reforming furnace 4 is maintained at a high temperature of 600 to 1400 ° C., and oxygen, air, and steam are supplied from the outside. Organic waste is partially oxidized within the gasifier reforming furnace 4, H min C content is converted CO, the fuel gas such as H 2. Note that the gasification furnace and the reforming furnace may be separate furnaces. The gasification reforming process itself is known as shown in Patent Document 1 mentioned above.

ガス化改質炉4から出た燃料ガスは、除塵・洗浄工程6においてダスト、S分などの不純物を取り除かれる。このとき、有機性廃棄物中のN分に由来するアンモニアが洗浄排水側に移行する。本発明ではこのアンモニアを高濃度で含む洗浄排水もまた、排水処理工程5に送られる。   In the dust removal / cleaning step 6, impurities such as dust and sulfur are removed from the fuel gas discharged from the gasification reforming furnace 4. At this time, the ammonia derived from the N content in the organic waste moves to the cleaning drainage side. In the present invention, the washing wastewater containing the ammonia at a high concentration is also sent to the wastewater treatment step 5.

本実施形態では、これらのアンモニアを含む排水はストリッピング塔に送られ、公知のアンモニアストリッピング法により、アンモニアをガス中へ放散させる。ストリッピング塔の内部には格子や波板などが充填されており、塔下部から空気または水蒸気が吹き込まれる。アンモニア含有排水は消石灰などによってpHをアルカリ側に調整され、ストリッピング塔の上部から噴霧される。この結果、排水中のNHOHはNHとHOとに分解され、アンモニアガスのみが塔上部から回収される。このようにして排水中から、アンモニアガスのみを回収することができる。しかし本発明においてアンモニアの回収方法はストリッピング法に限定されるものではなく、吸着剤を用いるなど任意の手段を採ることができる。 In the present embodiment, the wastewater containing these ammonia is sent to a stripping tower, and ammonia is released into the gas by a known ammonia stripping method. The inside of the stripping tower is filled with a lattice or a corrugated sheet, and air or steam is blown from the lower part of the tower. The pH of the ammonia-containing wastewater is adjusted to an alkaline side by slaked lime or the like, and sprayed from the top of the stripping tower. As a result, NH 4 OH in the waste water is decomposed into NH 3 and H 2 O, and only ammonia gas is recovered from the upper part of the tower. Thus, only the ammonia gas can be recovered from the wastewater. However, in the present invention, the method for recovering ammonia is not limited to the stripping method, and any means such as using an adsorbent can be employed.

この高濃度のアンモニアガスは、ニッケルベースのアンモニア分解触媒により分解され、N2とH2となる。ここで用いるアンモニア分解触媒は、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものが好ましい。このアンモニア分解触媒を触媒反応器の内部に充填しアンモニアガスを供給すれば、純粋な水素ガスを効率よく取り出すことができる。このアンモニア分解触媒については、後に詳細に説明する。 This high-concentration ammonia gas is decomposed by a nickel-based ammonia decomposition catalyst to become N 2 and H 2 . The ammonia decomposition catalyst used here supports nickel or a nickel oxide as a first component on a metal oxide carrier such as alumina, silica, titania, and zirconia, and further contains at least one of an alkaline earth metal and a lanthanoid element as a metal or Those added as a second component in the form of an oxide are preferred. If this ammonia decomposition catalyst is filled into the inside of the catalytic reactor and ammonia gas is supplied, pure hydrogen gas can be efficiently extracted. This ammonia decomposition catalyst will be described later in detail.

この水素は、発電装置8のエネルギー源として利用することができる。発電装置8としては例えば燃料電池があり、本発明によれば燃料電池に有害なCOを全く含まない水素ガスが得られるため、有利である。しかし水素を燃料としてガスエンジンを駆動し、発電機を動かすこともできる。この場合にはガスエンジンの排熱はボイラにより回収し、乾燥機3の熱源として使用することができる。また温水として暖房などに利用することもできる。   This hydrogen can be used as an energy source of the power generator 8. The power generation device 8 is, for example, a fuel cell, and according to the present invention, hydrogen gas containing no harmful CO to the fuel cell can be obtained, which is advantageous. However, it is also possible to drive a gas engine using hydrogen as fuel and run a generator. In this case, the exhaust heat of the gas engine can be recovered by a boiler and used as a heat source of the dryer 3. It can also be used as heating water for heating.

(アンモニア分解触媒の詳細)
本発明で用いるアンモニア分解触媒は、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものが好ましい。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが用いられ、ランタノイド元素としてはランタン、セリウムなどが用いられる。このようなアンモニア分解触媒は、例えば周知の共沈法によりニッケル/アルミナ触媒を製造し、これを乾燥させた後にバリウムなどの第2成分をエタノールや水に溶解させて含浸させる方法で製造することができる。
(Details of ammonia decomposition catalyst)
The ammonia decomposition catalyst used in the present invention is obtained by supporting nickel or nickel oxide as a first component on a metal oxide carrier such as alumina, silica, titania, and zirconia, and further converting at least one of an alkaline earth metal and a lanthanoid element into a metal. Or those added as the second component in the form of an oxide are preferred. As the alkaline earth metal, magnesium, calcium, strontium, barium and the like are used, and as the lanthanoid element, lanthanum, cerium and the like are used. Such an ammonia decomposition catalyst is produced by, for example, producing a nickel / alumina catalyst by a well-known coprecipitation method, drying the nickel / alumina catalyst, and then dissolving and impregnating a second component such as barium in ethanol or water. Can be.

ここで第1成分/担体の重量比は、1〜40%、より好ましくは5〜25%、最も好ましくは10〜20%とする。また第2成分/担体の重量比は、1〜15%、より好ましくは5〜10%、最も好ましくは5〜10%とする。最良の実施形態においては、ニッケル15.7%、バリウム7.36%、残部アルミナである。アンモニア分解触媒の比表面積は、10〜1000m/g、より好ましくは50〜500m/g、最も好ましくは100〜300m/gとする。また触媒粒子径は、10〜1000μm,より好ましくは200〜700μm,最も好ましくは300〜500μmである。 Here, the weight ratio of the first component / carrier is 1 to 40%, more preferably 5 to 25%, and most preferably 10 to 20%. The weight ratio of the second component / carrier is 1 to 15%, more preferably 5 to 10%, and most preferably 5 to 10%. In the preferred embodiment, nickel is 15.7%, barium is 7.36%, and the balance is alumina. The specific surface area of the ammonia decomposition catalyst is 10 to 1000 m 2 / g, more preferably 50 to 500 m 2 / g, and most preferably 100 to 300 m 2 / g. The catalyst particle size is 10 to 1000 μm, more preferably 200 to 700 μm, and most preferably 300 to 500 μm.

以下に、このアンモニア分解触媒の特性を実験により確認した結果を示す。予備実験によりアンモニア分解触媒は水蒸気の存在下では活性が低下することが確認されているが、実際には水蒸気が存在しない条件でアンモニア分解触媒を使用することは容易ではない。このため以下のグラフは全て水蒸気の存在下におけるアンモニア転化率を示す。なおアンモニア流量は9.1×10−3mol/h,水蒸気/アンモニアの比は5.5×10−2kg・h/molとした。 Hereinafter, the results of confirming the characteristics of the ammonia decomposition catalyst by experiments will be described. Preliminary experiments have confirmed that the activity of the ammonia decomposition catalyst is reduced in the presence of steam, but it is not easy to use the ammonia decomposition catalyst in the absence of steam. Therefore, the following graphs all show the conversion of ammonia in the presence of steam. The ammonia flow rate was 9.1 × 10 −3 mol / h, and the ratio of steam / ammonia was 5.5 × 10 −2 kg · h / mol.

図2のグラフは、アルミナ担体にニッケルのみを担持させた触媒と、更に第2成分を添加した各種触媒のアンモニア転化率を示すもので、横軸は反応温度である。図2の上段のグラフは第2成分としてアルカリ土類金属を添加したもの、下段のグラフは第2成分としてランタノイド元素を添加したものである。いずれもニッケルに対する添加金属のモル比を0.3とした。これらのグラフに示されるように、第2成分を添加することにより触媒活性が向上することが分かる。特にバリウムを添加した場合に最も優れた結果を示している。   The graph in FIG. 2 shows the ammonia conversion of the catalyst in which only nickel is supported on the alumina carrier and the various catalysts in which the second component is further added. The horizontal axis indicates the reaction temperature. The upper graph in FIG. 2 is a graph in which an alkaline earth metal is added as a second component, and the lower graph is a graph in which a lanthanoid element is added as a second component. In each case, the molar ratio of the added metal to nickel was set to 0.3. As shown in these graphs, it can be seen that the addition of the second component improves the catalytic activity. In particular, the best results are shown when barium is added.

図3のグラフは、ニッケルに対するバリウムのモル比がアンモニア転化率に及ぼす影響を示すものである。反応温度を450℃とすれば、このモル比が0.1〜0.3の範囲において、水蒸気の存在下においてもアンモニア転化率はほぼ100%に達することが分かる。さらに図4のグラフは、最も活性の高かったニッケルに対するバリウムのモル比が0.2のアンモニア分解触媒について、その経時変化を調べたものである。使用を継続してもアンモニア転化率がほとんど低下しないことが分かる。   The graph of FIG. 3 shows the effect of the molar ratio of barium to nickel on the conversion of ammonia. If the reaction temperature is 450 ° C., it can be seen that when this molar ratio is in the range of 0.1 to 0.3, the ammonia conversion reaches almost 100% even in the presence of steam. Further, the graph of FIG. 4 shows the change with time of the ammonia decomposition catalyst having the highest activity in which the molar ratio of barium to nickel is 0.2. It can be seen that even if the use is continued, the ammonia conversion rate hardly decreases.

以上の実験では触媒担体としてアルミナを使用したが、シリカ、チタニア、ジルコニア等を用いることもできる。図5のグラフは、第1成分をニッケル、第2成分をバリウムとし、担体をアルミナ、ジルコニア、チタニアの3種類に変更した場合のそれぞれのアンモニア転化率を示すグラフであり、担体をジルコニアやチタニアに変更してもほぼ同様の結果が得られることを示している。図5には記載されていないが、シリカの場合もほぼ同様である。   In the above experiment, alumina was used as the catalyst carrier, but silica, titania, zirconia, or the like may be used. The graph of FIG. 5 is a graph showing the respective ammonia conversion rates when the first component is nickel, the second component is barium, and the carrier is changed to three types of alumina, zirconia, and titania. The carrier is zirconia or titania. It is shown that almost the same result can be obtained by changing to. Although not shown in FIG. 5, the same applies to the case of silica.

上記したように、アルミナ、シリカ、チタニア、ジルコニアから選択された金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したアンモニア分解触媒を用いれば、アンモニアをほぼ完全に分解して効率よく水素を得ることができることが確認された。   As described above, nickel or nickel oxide is supported as a first component on a metal oxide carrier selected from alumina, silica, titania, and zirconia, and at least one of an alkaline earth metal and a lanthanoid element is metal or oxidized. It was confirmed that when the ammonia decomposition catalyst added as the second component in the form of a product was used, it was possible to almost completely decompose ammonia and efficiently obtain hydrogen.

以下に図6を参照しつつ、本発明の実施例を説明する。
含水率80%の下水汚泥を、12500kg/hの流量で減圧蒸発式乾燥機10に送り込み脱水乾燥させた。下水汚泥中の水分は10000kg/h、DS(乾燥固形分)は2500kg/hであり、減圧蒸発式乾燥機10から29.6kg/hのアンモニアを含む9870kg/hの乾燥ドレン水が発生した。乾燥ドレン水中のアンモニア濃度は3000mg/Lである。この乾燥ドレン水は排水処理工程5に送られた。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
The sewage sludge having a water content of 80% was sent to the reduced-pressure evaporative dryer 10 at a flow rate of 12,500 kg / h and dehydrated and dried. The water in the sewage sludge was 10,000 kg / h, the DS (dry solid content) was 2500 kg / h, and the reduced-pressure evaporative dryer 10 produced 9870 kg / h of dry drain water containing 29.6 kg / h of ammonia. The ammonia concentration in the dried drain water is 3000 mg / L. The dried drain water was sent to a wastewater treatment step 5.

脱水乾燥させた下水汚泥は、ガス化炉と改質炉に送られてガス化改質され、発生させたガスはフィルタ11で除塵され、更に洗浄されて5995m/hの燃料ガスとなった。この燃料ガスはボイラ12とガスエンジン13に送られ、発電に使用した。 The dewatered and dried sewage sludge is sent to a gasification furnace and a reforming furnace to be gasified and reformed, and the generated gas is removed by a filter 11 and further washed to be a fuel gas of 5995 m 3 / h. . This fuel gas was sent to the boiler 12 and the gas engine 13 and used for power generation.

ガスの洗浄排水中には16.1kg/hのアンモニアが含有されており、この洗浄排水も排水処理工程5に送られた。排水処理工程5では乾燥ドレン水と洗浄排水とを集め、水中に含まれているアンモニアをアンモニアストリッピング法によりガス中へ放散させた。放散させたアンモニア量は45.7kg/hである。このアンモニアを前記したニッケル15.7%、バリウム7.36%、残部アルミナからなる分解触媒により水素と窒素に分解して90m/hの水素ガスを回収した。その発熱量は275Mcal/hであり、この水素をボイラ12とガスエンジン13に送り発電に使用した。このように、本発明によれば275Mcal/hだけ有機性廃棄物である下水汚泥からのエネルギー回収量が増加したこととなる。 The gas washing wastewater contained 16.1 kg / h of ammonia, and this washing wastewater was also sent to the wastewater treatment step 5. In the wastewater treatment step 5, the dried drain water and the washing wastewater were collected, and the ammonia contained in the water was released into the gas by the ammonia stripping method. The amount of ammonia released is 45.7 kg / h. This ammonia was decomposed into hydrogen and nitrogen by the above-mentioned decomposition catalyst comprising 15.7% of nickel, 7.36% of barium, and the remainder being alumina, and hydrogen gas of 90 m 3 / h was recovered. The calorific value was 275 Mcal / h, and this hydrogen was sent to the boiler 12 and the gas engine 13 and used for power generation. Thus, according to the present invention, the amount of energy recovered from sewage sludge, which is an organic waste, is increased by 275 Mcal / h.

本発明の実施形態を示すブロック図である。It is a block diagram showing an embodiment of the present invention. 第2成分を変えた各種触媒のアンモニア転化率を示すグラフである。It is a graph which shows the ammonia conversion of various catalysts which changed the 2nd component. ニッケルに対するバリウムのモル比がアンモニア転化率に及ぼす影響を示すグラフである。5 is a graph showing the effect of the molar ratio of barium to nickel on the conversion of ammonia. アンモニア分解触媒の経時変化を示すグラフである。It is a graph which shows a time-dependent change of an ammonia decomposition catalyst. 担体を変えた3種類の触媒のアンモニア転化率を示すグラフである。It is a graph which shows the ammonia conversion of three types of catalysts which changed the support. 本発明の実施例を示すブロック図である。FIG. 2 is a block diagram showing an embodiment of the present invention.

符号の説明Explanation of reference numerals

1 有機性廃棄物
2 脱水機
3 乾燥機
4 ガス化改質炉
5 排水処理工程
6 除塵・洗浄工程
7 分解触媒
8 発電装置
10 減圧蒸発式乾燥機
11 フィルタ
12 ボイラ
13 ガスエンジン
DESCRIPTION OF SYMBOLS 1 Organic waste 2 Dehydrator 3 Dryer 4 Gasification reformer 5 Drainage treatment process 6 Dust removal / washing process 7 Decomposition catalyst 8 Power generator 10 Reduced pressure evaporative dryer 11 Filter 12 Boiler 13 Gas engine

Claims (4)

有機性廃棄物をガス化改質する前処理段階の脱水・乾燥工程で発生する排水、および脱水・乾燥した有機性廃棄物をガス化改質して発生させたガスの除塵・洗浄工程で発生する排水中に含まれるアンモニアを回収し、回収されたアンモニアを分解触媒により水素と窒素に分解して水素を回収し、この水素を発電装置のエネルギー源として利用することを特徴とする有機性廃棄物からのエネルギー回収方法。   Wastewater generated in the dewatering / drying process in the pretreatment stage of gasification and reforming of organic waste, and dust removal / cleaning process of gas generated by gasification and reforming of dewatered and dried organic waste Organic waste characterized by recovering ammonia contained in wastewater, decomposing the recovered ammonia into hydrogen and nitrogen with a decomposition catalyst, and recovering hydrogen, and using this hydrogen as an energy source for power generation equipment How to recover energy from things. アンモニア分解触媒として、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものを用いる請求項1記載の有機性廃棄物からのエネルギー回収方法。   As an ammonia decomposition catalyst, nickel or a nickel oxide is supported as a first component on a metal oxide carrier such as alumina, silica, titania, and zirconia, and at least one of an alkaline earth metal and a lanthanoid element is a metal or oxide. 2. The method for recovering energy from organic waste according to claim 1, wherein the second component is added as a second component. 第1成分/担体の重量比を1〜40%、第2成分/担体の重量比を1〜15%とした請求項2記載の有機性廃棄物からのエネルギー回収方法。   The method for recovering energy from organic waste according to claim 2, wherein the weight ratio of the first component / carrier is 1 to 40%, and the weight ratio of the second component / carrier is 1 to 15%. 発電装置が、水素ガスにより駆動されるガスエンジンまたは燃料電池であることを特徴とする請求項1または2記載の有機性廃棄物からのエネルギー回収方法。   3. The method for recovering energy from organic waste according to claim 1, wherein the power generation device is a gas engine or a fuel cell driven by hydrogen gas.
JP2004075697A 2003-03-25 2004-03-17 Energy recovery method from organic waste Expired - Lifetime JP4364022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075697A JP4364022B2 (en) 2003-03-25 2004-03-17 Energy recovery method from organic waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003082143 2003-03-25
JP2004075697A JP4364022B2 (en) 2003-03-25 2004-03-17 Energy recovery method from organic waste

Publications (2)

Publication Number Publication Date
JP2004307326A true JP2004307326A (en) 2004-11-04
JP4364022B2 JP4364022B2 (en) 2009-11-11

Family

ID=33478168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075697A Expired - Lifetime JP4364022B2 (en) 2003-03-25 2004-03-17 Energy recovery method from organic waste

Country Status (1)

Country Link
JP (1) JP4364022B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP2005074328A (en) * 2003-09-01 2005-03-24 Kurimoto Ltd Method for treating organic sludge
KR100710911B1 (en) 2005-12-27 2007-04-27 류지순 A electric-power generation equipment use of waste water
JP2008246452A (en) * 2007-03-30 2008-10-16 Gunma Univ Dry treatment method for nitrogen-containing waste and apparatus therefor
WO2010032790A1 (en) * 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2010094667A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia
WO2010107065A1 (en) * 2009-03-17 2010-09-23 株式会社日本触媒 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP2010240644A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
JP2010240646A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
JP2010241675A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Method of manufacturing hydrogen
JP2012011373A (en) * 2010-06-02 2012-01-19 Nippon Shokubai Co Ltd Catalyst for decomposing ammonia, method for producing the catalyst, and method for decomposing ammonia and method for producing hydrogen using the catalyst
JP2012223768A (en) * 2012-08-20 2012-11-15 Nippon Shokubai Co Ltd Catalyst and method for decomposing ammonia
JP2014067562A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide type fuel cell and power generating method using the same
CN103965966A (en) * 2014-04-23 2014-08-06 中国华能集团清洁能源技术研究院有限公司 Dry powder pressurizing gasification device with organic wastewater treatment
CN104194835A (en) * 2014-08-18 2014-12-10 苏州新协力环保科技有限公司 Biomass gasifying power generation method
WO2016013652A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人産業技術総合研究所 Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition
JP2018023938A (en) * 2016-08-10 2018-02-15 矢崎総業株式会社 Microwave heating ammonia decomposition catalyst and mixture thereof
JP2018096616A (en) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 Caloric power-generating plant, boiler and method for improving boiler
CN110799451A (en) * 2017-08-24 2020-02-14 托普索公司 Autothermal ammonia cracking process

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605992B2 (en) * 2003-03-28 2011-01-05 三井造船株式会社 Fuel cell power generation process and fuel cell system
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP2005074328A (en) * 2003-09-01 2005-03-24 Kurimoto Ltd Method for treating organic sludge
KR100710911B1 (en) 2005-12-27 2007-04-27 류지순 A electric-power generation equipment use of waste water
JP2008246452A (en) * 2007-03-30 2008-10-16 Gunma Univ Dry treatment method for nitrogen-containing waste and apparatus therefor
WO2010032790A1 (en) * 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2010094667A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia
JP2010240644A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
JP2010240646A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
JP2010241675A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Method of manufacturing hydrogen
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
WO2010107065A1 (en) * 2009-03-17 2010-09-23 株式会社日本触媒 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
CN103877983A (en) * 2009-03-17 2014-06-25 株式会社日本触媒 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst
US10857523B2 (en) 2009-03-17 2020-12-08 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP2014159031A (en) * 2009-03-17 2014-09-04 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method for producing hydrogen by using the catalyst
JP2012011373A (en) * 2010-06-02 2012-01-19 Nippon Shokubai Co Ltd Catalyst for decomposing ammonia, method for producing the catalyst, and method for decomposing ammonia and method for producing hydrogen using the catalyst
JP2012223768A (en) * 2012-08-20 2012-11-15 Nippon Shokubai Co Ltd Catalyst and method for decomposing ammonia
JP2014067562A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide type fuel cell and power generating method using the same
CN103965966B (en) * 2014-04-23 2015-10-21 中国华能集团清洁能源技术研究院有限公司 A kind of dry powder pressurizing gasifying apparatus with treatment of Organic Wastewater
CN103965966A (en) * 2014-04-23 2014-08-06 中国华能集团清洁能源技术研究院有限公司 Dry powder pressurizing gasification device with organic wastewater treatment
WO2016013652A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人産業技術総合研究所 Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition
JP2016023126A (en) * 2014-07-24 2016-02-08 国立大学法人群馬大学 Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste
CN104194835A (en) * 2014-08-18 2014-12-10 苏州新协力环保科技有限公司 Biomass gasifying power generation method
JP2018023938A (en) * 2016-08-10 2018-02-15 矢崎総業株式会社 Microwave heating ammonia decomposition catalyst and mixture thereof
JP2018096616A (en) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 Caloric power-generating plant, boiler and method for improving boiler
CN110799451A (en) * 2017-08-24 2020-02-14 托普索公司 Autothermal ammonia cracking process
CN110799451B (en) * 2017-08-24 2023-08-08 托普索公司 Autothermal ammonia cracking process

Also Published As

Publication number Publication date
JP4364022B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4364022B2 (en) Energy recovery method from organic waste
RU2270849C2 (en) System producing electric power with the help of gasification of combustibles
KR101668549B1 (en) Wastewater treatment system and combined power generation equipment
JP4705752B2 (en) Energy recovery from ammonia from waste treatment
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
WO2001004045A1 (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
JP2000153252A (en) Treatment of organic waste
JP2007510533A (en) Organic matter processing method and processing apparatus
JP4662338B2 (en) Waste combined gasification processing system and method
CN106398771A (en) Solid organic waste gasifying process capable of reducing dioxin emission
RU2221863C2 (en) Device to produce carbon using biomass
JP5036608B2 (en) Gasification generator
JP2007002061A (en) Gas cleaning apparatus, gasification system, gasification power generation system
JP6122664B2 (en) Gas purification apparatus and gas purification method
JP2001137691A (en) Device for carbon dioxide fixation
JP2010235915A (en) Gas refining facilities and power generation system
JP2010215802A (en) Dry gas purification facility and coal gasification combined power generation facility
JP2004168883A (en) Method and apparatus for recovering flammable gas from waste
JP2003243019A (en) Waste power generating system
JP4117378B2 (en) Gypsum board processing method
JP4507276B2 (en) Operation method of waste gasification processing equipment
JP7191676B2 (en) Combustible material processing apparatus and combustible material processing method
KR101758515B1 (en) Method for coal gasification and apparatus the same
WO2008100012A1 (en) Method for recovering resource from waste and resource recovery system therefor
JP2006110515A (en) Method for gasification modification treatment of waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4364022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term