JP4364022B2 - Energy recovery method from organic waste - Google Patents

Energy recovery method from organic waste Download PDF

Info

Publication number
JP4364022B2
JP4364022B2 JP2004075697A JP2004075697A JP4364022B2 JP 4364022 B2 JP4364022 B2 JP 4364022B2 JP 2004075697 A JP2004075697 A JP 2004075697A JP 2004075697 A JP2004075697 A JP 2004075697A JP 4364022 B2 JP4364022 B2 JP 4364022B2
Authority
JP
Japan
Prior art keywords
ammonia
organic waste
component
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004075697A
Other languages
Japanese (ja)
Other versions
JP2004307326A (en
Inventor
隆夫 増田
輝興 多湖
哲也 柳瀬
正人 遠藤
輝城 福松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2004075697A priority Critical patent/JP4364022B2/en
Publication of JP2004307326A publication Critical patent/JP2004307326A/en
Application granted granted Critical
Publication of JP4364022B2 publication Critical patent/JP4364022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

本発明は、下水汚泥、バイオマスなどの有機性廃棄物からのエネルギー回収方法に関するものである。   The present invention relates to a method for recovering energy from organic waste such as sewage sludge and biomass.

従来一般に、下水汚泥やバイオマスなどの有機性廃棄物は脱水または焼却され、脱水汚泥や焼却灰として埋め立て処分されてきたが、新たな処分場の確保は次第に困難になりつつある。また焼却時に発生する二酸化炭素は地球温暖化の原因とされ排出量の削減が求められている。このため最近では特許文献1に示されるように、有機性廃棄物を熱分解してガス化するとともに改質し、有機分を可燃性ガスとして回収する有機性廃棄物のガス化改質技術が開発されている。   Conventionally, organic waste such as sewage sludge and biomass has been dehydrated or incinerated and disposed of in landfill as dehydrated sludge or incinerated ash, but securing new disposal sites is becoming increasingly difficult. In addition, carbon dioxide generated during incineration is a cause of global warming and reduction of emissions is required. For this reason, recently, as shown in Patent Document 1, organic waste gasification reforming technology that thermally decomposes organic waste and gasifies and reforms, and recovers organic components as a combustible gas has been developed. Has been developed.

この方法により有機性廃棄物から可燃性ガスを得るためには、まず有機性廃棄物を脱水・乾燥する前処理を施したうえで、ガス化改質炉でガス化及び改質処理する方法が取られる。この前処理として行われる脱水、乾燥工程においては、有機性廃棄物中に含まれる窒素分の一部はアンモニアとして排水(ドレン水)に移行する。   In order to obtain a combustible gas from organic waste by this method, there is a method in which the organic waste is first subjected to pretreatment for dehydration and drying, and then gasified and reformed in a gasification reforming furnace. Taken. In the dehydration and drying steps performed as the pretreatment, a part of nitrogen contained in the organic waste is transferred to drainage (drain water) as ammonia.

また、脱水、乾燥された有機性廃棄物はガス化改質炉において酸素、水蒸気、空気等と反応(部分燃焼)することによりH,CO,CO,HOから構成される可燃性ガスに改質される。このとき可燃性ガス中に含有される窒素分はアンモニアとしてガス中に移行し、ガス化改質炉の後段のガス洗浄工程において排水中へ移行する。 In addition, dehydrated and dried organic waste is combustible composed of H 2 , CO, CO 2 , and H 2 O by reacting with oxygen, water vapor, air, etc. (partial combustion) in a gasification reforming furnace. It is reformed to gas. At this time, the nitrogen content contained in the combustible gas is transferred into the gas as ammonia, and is transferred into the waste water in the gas cleaning step after the gasification reforming furnace.

このように有機性廃棄物の脱水・乾燥工程およびガスの洗浄工程において排水中に移行したアンモニアは、生物処理法、不連続塩素処理法、オゾン処理法などにより分解して放流したり、あるいはアンモニアストリッピング法により排水中から放散させ、放散されたアンモニアを燃焼分解あるいは吸着除去している。また放散させたアンモニアの処理方法としては、ガス化改質炉へ再投入して分解する方法もあるが分解率が悪く、投入したアンモニアはガス洗浄工程において再度排水中へ移行してしまう。いずれの方法でも、前処理やガス洗浄工程において排水中へ移行したアンモニア、及びガス洗浄工程において排水中へ移行したアンモニアはエネルギーとして全く利用されていない。
特許第3054595号公報
As described above, the ammonia transferred into the waste water in the dehydration / drying process and the gas washing process of organic waste can be decomposed and discharged by a biological treatment method, a discontinuous chlorination method, an ozone treatment method, or the like. It is diffused from the wastewater by the stripping method, and the emitted ammonia is burned, decomposed or removed by adsorption. In addition, as a method for treating the diffused ammonia, there is a method of re-introducing it into the gasification reforming furnace and decomposing it. However, the decomposition rate is poor, and the introduced ammonia is transferred again into the waste water in the gas cleaning step. In any method, ammonia transferred into the waste water in the pretreatment or gas cleaning process and ammonia transferred into the waste water in the gas cleaning process are not used at all as energy.
Japanese Patent No. 3054595

本発明は上記した従来の問題点を解決し、有機性廃棄物をガス化改質して可燃性ガスを回収する工程において、排水中へ移行したアンモニアから更にエネルギーを回収することができる有機性廃棄物からのエネルギー回収方法を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and in the process of recovering combustible gas by gasifying and reforming organic waste, it is possible to recover further energy from ammonia transferred into waste water. It was made to provide a method for recovering energy from waste.

上記の課題を解決するためになされた本発明は、有機性廃棄物をガス化改質する前処理段階の脱水・乾燥工程で発生する排水、および脱水・乾燥した有機性廃棄物をガス化改質して発生させたガスの除塵・洗浄工程で発生する排水中に含まれるアンモニアを回収し、回収されたアンモニアを分解触媒により水素と窒素に分解して水素を回収し、この水素を発電装置のエネルギー源として利用することを特徴とするものである。   In order to solve the above-mentioned problems, the present invention is directed to gasifying and reforming wastewater generated in a dehydration / drying process in a pretreatment stage for gasifying and reforming organic waste, and dehydrated / dried organic waste. The ammonia contained in the wastewater generated in the dust removal and cleaning process of the gas generated by the gas is recovered, the recovered ammonia is decomposed into hydrogen and nitrogen by the decomposition catalyst, and hydrogen is recovered, and this hydrogen is recovered as a power generator. It is characterized by being used as an energy source.

なお、アンモニアの分解触媒として、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものを用いることができる。特に第1成分/担体の重量比を1〜40%、第2成分/担体の重量比を1〜15%としたアンモニア分解触媒を用いることが好ましい。
また発電装置が、水素ガスにより駆動されるガスエンジンまたは燃料電池であることが好ましい。
As an ammonia decomposition catalyst, nickel or nickel oxide is supported as a first component on a metal oxide carrier such as alumina, silica, titania, zirconia, and at least one of an alkaline earth metal and a lanthanoid element is a metal or What was added as a 2nd component in the form of an oxide can be used. In particular, it is preferable to use an ammonia decomposition catalyst in which the weight ratio of the first component / support is 1 to 40% and the weight ratio of the second component / support is 1 to 15%.
The power generation device is preferably a gas engine or a fuel cell driven by hydrogen gas.

本発明によれば、有機性廃棄物をガス化改質して可燃性ガスを回収することができるのみならず、この工程において排水中へ移行したアンモニアからも水素を回収し、発電装置のエネルギー源として利用することができる。このため有機性廃棄物からのエネルギー回収率が高まるとともに、環境への負担も軽減される。特に上記したアンモニア分解触媒を用いれば、水蒸気の存在下においても触媒活性の低下がなく、アンモニアをほぼ完全に分解して効率よく水素を得ることができる。   According to the present invention, not only the organic waste can be gasified and reformed to recover the combustible gas, but hydrogen is also recovered from the ammonia transferred into the wastewater in this process, and the energy of the power generation apparatus is recovered. Can be used as a source. This increases the energy recovery rate from organic waste and reduces the burden on the environment. In particular, when the above ammonia decomposition catalyst is used, the catalytic activity does not decrease even in the presence of water vapor, and ammonia can be decomposed almost completely and hydrogen can be obtained efficiently.

以下に本発明の実施形態を示す。
図1は本発明の実施形態を示すブロック図であり、1は下水汚泥、バイオマスなどの窒素分を含む有機性廃棄物である。これらの有機性廃棄物1は多くの場合、大量の水分を含有しており、そのまま高温のガス化改質炉4に投入することができないのが普通であるので、脱水機2と乾燥機3とによる脱水・乾燥の前処理が行われる。脱水機2としては、ベルトプレス、フィルタープレス、ロータリープレスなどの従来公知の様々な形式のものを使用することができる。また乾燥機3の形式も任意であるが、例えば外部熱源を利用したパドルドライヤを用いることができる。
Embodiments of the present invention will be described below.
FIG. 1 is a block diagram showing an embodiment of the present invention, where 1 is an organic waste containing nitrogen such as sewage sludge and biomass. In many cases, these organic wastes 1 contain a large amount of moisture and cannot be put into the high-temperature gasification reforming furnace 4 as they are. Therefore, the dehydrator 2 and the dryer 3 Pre-treatment for dehydration and drying is performed. As the dehydrator 2, various conventionally known types such as a belt press, a filter press, and a rotary press can be used. Also, the type of the dryer 3 is arbitrary, but for example, a paddle dryer using an external heat source can be used.

しかしどのような形式の脱水機2や乾燥機3を使用しても、水分を含んだ有機性廃棄物1を加熱するため、必ず多量の水蒸気が発生すると同時に、有機性廃棄物1が加熱分解されることによってアンモニアが発生する。このアンモニアは水蒸気が凝結した排水(乾燥ドレン)中に必ず移行する。本発明ではこのアンモニアを含むドレン水を排水処理工程5に送る。   However, no matter what type of dehydrator 2 or dryer 3 is used, since the organic waste 1 containing water is heated, a large amount of water vapor is always generated, and at the same time, the organic waste 1 is thermally decomposed. As a result, ammonia is generated. This ammonia always moves into the waste water (dry drain) condensed with water vapor. In the present invention, this drain water containing ammonia is sent to the waste water treatment step 5.

一方、脱水・乾燥の前処理が行われた有機性廃棄物は、ガス化改質炉4に送り込まれる。ガス化改質炉4の内部は600〜1400℃の高温に保たれており、外部から酸素・空気・水蒸気が供給されている。有機性廃棄物はガス化改質炉4の内部で部分酸化され、H分とC分はCO,H等の燃料ガスに変換される。なお、ガス化炉と改質炉とは分離した炉とすることもできる。このガス化改質の工程自体は、前記の特許文献1にも示されているように公知である。 On the other hand, the organic waste that has undergone dehydration / drying pretreatment is sent to the gasification reforming furnace 4. The inside of the gasification reforming furnace 4 is kept at a high temperature of 600 to 1400 ° C., and oxygen, air, and steam are supplied from the outside. Organic waste is partially oxidized within the gasifier reforming furnace 4, H min C content is converted CO, the fuel gas such as H 2. Note that the gasification furnace and the reforming furnace may be separated from each other. This gasification reforming process itself is known as shown in the above-mentioned Patent Document 1.

ガス化改質炉4から出た燃料ガスは、除塵・洗浄工程6においてダスト、S分などの不純物を取り除かれる。このとき、有機性廃棄物中のN分に由来するアンモニアが洗浄排水側に移行する。本発明ではこのアンモニアを高濃度で含む洗浄排水もまた、排水処理工程5に送られる。   From the gasification reforming furnace 4, impurities such as dust and S are removed in the dust removal / cleaning process 6. At this time, ammonia derived from the N content in the organic waste moves to the washing drainage side. In the present invention, the cleaning waste water containing ammonia at a high concentration is also sent to the waste water treatment step 5.

本実施形態では、これらのアンモニアを含む排水はストリッピング塔に送られ、公知のアンモニアストリッピング法により、アンモニアをガス中へ放散させる。ストリッピング塔の内部には格子や波板などが充填されており、塔下部から空気または水蒸気が吹き込まれる。アンモニア含有排水は消石灰などによってpHをアルカリ側に調整され、ストリッピング塔の上部から噴霧される。この結果、排水中のNHOHはNHとHOとに分解され、アンモニアガスのみが塔上部から回収される。このようにして排水中から、アンモニアガスのみを回収することができる。しかし本発明においてアンモニアの回収方法はストリッピング法に限定されるものではなく、吸着剤を用いるなど任意の手段を採ることができる。 In this embodiment, the wastewater containing ammonia is sent to a stripping tower, and ammonia is diffused into the gas by a known ammonia stripping method. The stripping tower is filled with lattices, corrugated plates, etc., and air or water vapor is blown from the bottom of the tower. The ammonia-containing wastewater is adjusted to the alkali side by slaked lime and sprayed from the upper part of the stripping tower. As a result, NH 4 OH in the waste water is decomposed into NH 3 and H 2 O, and only ammonia gas is recovered from the top of the tower. In this way, only ammonia gas can be recovered from the waste water. However, in the present invention, the ammonia recovery method is not limited to the stripping method, and any means such as using an adsorbent can be adopted.

この高濃度のアンモニアガスは、ニッケルベースのアンモニア分解触媒により分解され、N2とH2となる。ここで用いるアンモニア分解触媒は、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものが好ましい。このアンモニア分解触媒を触媒反応器の内部に充填しアンモニアガスを供給すれば、純粋な水素ガスを効率よく取り出すことができる。このアンモニア分解触媒については、後に詳細に説明する。 This high-concentration ammonia gas is decomposed by a nickel-based ammonia decomposition catalyst into N 2 and H 2 . The ammonia decomposition catalyst used here has nickel or nickel oxide supported as a first component on a metal oxide carrier such as alumina, silica, titania, zirconia, etc., and at least one of an alkaline earth metal and a lanthanoid element is a metal or What was added as a 2nd component in the form of an oxide is preferable. If this ammonia decomposition catalyst is filled in the catalyst reactor and ammonia gas is supplied, pure hydrogen gas can be taken out efficiently. This ammonia decomposition catalyst will be described in detail later.

この水素は、発電装置8のエネルギー源として利用することができる。発電装置8としては例えば燃料電池があり、本発明によれば燃料電池に有害なCOを全く含まない水素ガスが得られるため、有利である。しかし水素を燃料としてガスエンジンを駆動し、発電機を動かすこともできる。この場合にはガスエンジンの排熱はボイラにより回収し、乾燥機3の熱源として使用することができる。また温水として暖房などに利用することもできる。   This hydrogen can be used as an energy source of the power generation device 8. As the power generation device 8, for example, there is a fuel cell, and according to the present invention, hydrogen gas containing no CO harmful to the fuel cell can be obtained, which is advantageous. However, the gas engine can be driven using hydrogen as a fuel to move the generator. In this case, the exhaust heat of the gas engine can be recovered by a boiler and used as a heat source for the dryer 3. It can also be used as heating water for heating.

(アンモニア分解触媒の詳細)
本発明で用いるアンモニア分解触媒は、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものが好ましい。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが用いられ、ランタノイド元素としてはランタン、セリウムなどが用いられる。このようなアンモニア分解触媒は、例えば周知の共沈法によりニッケル/アルミナ触媒を製造し、これを乾燥させた後にバリウムなどの第2成分をエタノールや水に溶解させて含浸させる方法で製造することができる。
(Details of ammonia decomposition catalyst)
The ammonia decomposition catalyst used in the present invention has nickel or nickel oxide supported as a first component on a metal oxide support such as alumina, silica, titania, zirconia, etc., and at least one of an alkaline earth metal and a lanthanoid element is a metal. Or what was added as a 2nd component in the form of an oxide is preferable. Magnesium, calcium, strontium, barium and the like are used as the alkaline earth metal, and lanthanum and cerium are used as the lanthanoid element. Such an ammonia decomposition catalyst is manufactured by, for example, manufacturing a nickel / alumina catalyst by a well-known coprecipitation method, and drying and impregnating a second component such as barium in ethanol or water. Can do.

ここで第1成分/担体の重量比は、1〜40%、より好ましくは5〜25%、最も好ましくは10〜20%とする。また第2成分/担体の重量比は、1〜15%、より好ましくは5〜10%、最も好ましくは5〜10%とする。最良の実施形態においては、ニッケル15.7%、バリウム7.36%、残部アルミナである。アンモニア分解触媒の比表面積は、10〜1000m/g、より好ましくは50〜500m/g、最も好ましくは100〜300m/gとする。また触媒粒子径は、10〜1000μm,より好ましくは200〜700μm,最も好ましくは300〜500μmである。 Here, the weight ratio of the first component / carrier is 1 to 40%, more preferably 5 to 25%, and most preferably 10 to 20%. The weight ratio of the second component / carrier is 1 to 15%, more preferably 5 to 10%, and most preferably 5 to 10%. In the best embodiment, nickel 15.7%, barium 7.36%, balance alumina. The specific surface area of the ammonia decomposition catalyst is 10 to 1000 m 2 / g, more preferably 50 to 500 m 2 / g, and most preferably 100 to 300 m 2 / g. The catalyst particle diameter is 10 to 1000 μm, more preferably 200 to 700 μm, and most preferably 300 to 500 μm.

以下に、このアンモニア分解触媒の特性を実験により確認した結果を示す。予備実験によりアンモニア分解触媒は水蒸気の存在下では活性が低下することが確認されているが、実際には水蒸気が存在しない条件でアンモニア分解触媒を使用することは容易ではない。このため以下のグラフは全て水蒸気の存在下におけるアンモニア転化率を示す。なおアンモニア流量は9.1×10−3mol/h,水蒸気/アンモニアの比は5.5×10−2kg・h/molとした。 Below, the result of having confirmed the characteristic of this ammonia decomposition catalyst by experiment is shown. Although it has been confirmed by preliminary experiments that the activity of the ammonia decomposition catalyst decreases in the presence of water vapor, it is not easy to actually use the ammonia decomposition catalyst under conditions where water vapor does not exist. Thus, the following graphs all show ammonia conversion in the presence of water vapor. The ammonia flow rate was 9.1 × 10 −3 mol / h, and the water vapor / ammonia ratio was 5.5 × 10 −2 kg · h / mol.

図2のグラフは、アルミナ担体にニッケルのみを担持させた触媒と、更に第2成分を添加した各種触媒のアンモニア転化率を示すもので、横軸は反応温度である。図2の上段のグラフは第2成分としてアルカリ土類金属を添加したもの、下段のグラフは第2成分としてランタノイド元素を添加したものである。いずれもニッケルに対する添加金属のモル比を0.3とした。これらのグラフに示されるように、第2成分を添加することにより触媒活性が向上することが分かる。特にバリウムを添加した場合に最も優れた結果を示している。   The graph of FIG. 2 shows the ammonia conversion rate of a catalyst in which only nickel is supported on an alumina support and various catalysts to which a second component is further added, and the horizontal axis represents the reaction temperature. The upper graph in FIG. 2 is obtained by adding an alkaline earth metal as the second component, and the lower graph is obtained by adding a lanthanoid element as the second component. In all cases, the molar ratio of the added metal to nickel was set to 0.3. As shown in these graphs, it can be seen that the catalytic activity is improved by adding the second component. In particular, the best results are shown when barium is added.

図3のグラフは、ニッケルに対するバリウムのモル比がアンモニア転化率に及ぼす影響を示すものである。反応温度を450℃とすれば、このモル比が0.1〜0.3の範囲において、水蒸気の存在下においてもアンモニア転化率はほぼ100%に達することが分かる。さらに図4のグラフは、最も活性の高かったニッケルに対するバリウムのモル比が0.2のアンモニア分解触媒について、その経時変化を調べたものである。使用を継続してもアンモニア転化率がほとんど低下しないことが分かる。   The graph of FIG. 3 shows the influence of the molar ratio of barium to nickel on the ammonia conversion. It can be seen that when the reaction temperature is 450 ° C., the ammonia conversion reaches almost 100% even in the presence of water vapor when the molar ratio is in the range of 0.1 to 0.3. Further, the graph of FIG. 4 shows the change over time of the ammonia decomposition catalyst having the highest activity of barium to nickel with a molar ratio of 0.2. It can be seen that even if the use is continued, the ammonia conversion rate hardly decreases.

以上の実験では触媒担体としてアルミナを使用したが、シリカ、チタニア、ジルコニア等を用いることもできる。図5のグラフは、第1成分をニッケル、第2成分をバリウムとし、担体をアルミナ、ジルコニア、チタニアの3種類に変更した場合のそれぞれのアンモニア転化率を示すグラフであり、担体をジルコニアやチタニアに変更してもほぼ同様の結果が得られることを示している。図5には記載されていないが、シリカの場合もほぼ同様である。   In the above experiments, alumina was used as the catalyst carrier, but silica, titania, zirconia, or the like can also be used. The graph of FIG. 5 is a graph showing the ammonia conversion rates when the first component is nickel, the second component is barium, and the carrier is changed to three types of alumina, zirconia, and titania. The carrier is zirconia or titania. This shows that almost the same result can be obtained even when changed to. Although not shown in FIG. 5, the same applies to the case of silica.

上記したように、アルミナ、シリカ、チタニア、ジルコニアから選択された金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したアンモニア分解触媒を用いれば、アンモニアをほぼ完全に分解して効率よく水素を得ることができることが確認された。   As described above, nickel or nickel oxide is supported as a first component on a metal oxide support selected from alumina, silica, titania, and zirconia, and at least one of an alkaline earth metal and a lanthanoid element is metal or oxidized. It was confirmed that if ammonia decomposition catalyst added as a second component in the form of a product is used, ammonia can be decomposed almost completely and hydrogen can be obtained efficiently.

以下に図6を参照しつつ、本発明の実施例を説明する。
含水率80%の下水汚泥を、12500kg/hの流量で減圧蒸発式乾燥機10に送り込み脱水乾燥させた。下水汚泥中の水分は10000kg/h、DS(乾燥固形分)は2500kg/hであり、減圧蒸発式乾燥機10から29.6kg/hのアンモニアを含む9870kg/hの乾燥ドレン水が発生した。乾燥ドレン水中のアンモニア濃度は3000mg/Lである。この乾燥ドレン水は排水処理工程5に送られた。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
Sewage sludge having a water content of 80% was sent to the vacuum evaporation dryer 10 at a flow rate of 12500 kg / h and dehydrated and dried. The water in the sewage sludge was 10,000 kg / h, the DS (dry solid content) was 2500 kg / h, and 9870 kg / h of dry drain water containing 29.6 kg / h of ammonia was generated from the vacuum evaporator 10. The ammonia concentration in the dry drain water is 3000 mg / L. This dry drain water was sent to the waste water treatment step 5.

脱水乾燥させた下水汚泥は、ガス化炉と改質炉に送られてガス化改質され、発生させたガスはフィルタ11で除塵され、更に洗浄されて5995m/hの燃料ガスとなった。この燃料ガスはボイラ12とガスエンジン13に送られ、発電に使用した。 The dewatered and dried sewage sludge is sent to a gasification furnace and a reforming furnace to be gasified and reformed. The generated gas is removed by a filter 11 and further washed to become a fuel gas of 5995 m 3 / h. . This fuel gas was sent to the boiler 12 and the gas engine 13 and used for power generation.

ガスの洗浄排水中には16.1kg/hのアンモニアが含有されており、この洗浄排水も排水処理工程5に送られた。排水処理工程5では乾燥ドレン水と洗浄排水とを集め、水中に含まれているアンモニアをアンモニアストリッピング法によりガス中へ放散させた。放散させたアンモニア量は45.7kg/hである。このアンモニアを前記したニッケル15.7%、バリウム7.36%、残部アルミナからなる分解触媒により水素と窒素に分解して90m/hの水素ガスを回収した。その発熱量は275Mcal/hであり、この水素をボイラ12とガスエンジン13に送り発電に使用した。このように、本発明によれば275Mcal/hだけ有機性廃棄物である下水汚泥からのエネルギー回収量が増加したこととなる。 The gas cleaning wastewater contained 16.1 kg / h of ammonia, and this cleaning wastewater was also sent to the wastewater treatment step 5. In the waste water treatment process 5, the dry drain water and the washing waste water were collected, and ammonia contained in the water was diffused into the gas by the ammonia stripping method. The amount of ammonia diffused is 45.7 kg / h. This ammonia was decomposed into hydrogen and nitrogen by a decomposition catalyst comprising 15.7% nickel, 7.36% barium, and the remainder alumina, and 90 m 3 / h hydrogen gas was recovered. The calorific value was 275 Mcal / h, and this hydrogen was sent to the boiler 12 and the gas engine 13 and used for power generation. Thus, according to the present invention, the amount of energy recovered from sewage sludge, which is organic waste, is increased by 275 Mcal / h.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 第2成分を変えた各種触媒のアンモニア転化率を示すグラフである。It is a graph which shows the ammonia conversion rate of the various catalysts which changed the 2nd component. ニッケルに対するバリウムのモル比がアンモニア転化率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the molar ratio of barium with respect to nickel has on the ammonia conversion rate. アンモニア分解触媒の経時変化を示すグラフである。It is a graph which shows a time-dependent change of an ammonia decomposition catalyst. 担体を変えた3種類の触媒のアンモニア転化率を示すグラフである。It is a graph which shows the ammonia conversion rate of three types of catalysts which changed the support | carrier. 本発明の実施例を示すブロック図である。It is a block diagram which shows the Example of this invention.

符号の説明Explanation of symbols

1 有機性廃棄物
2 脱水機
3 乾燥機
4 ガス化改質炉
5 排水処理工程
6 除塵・洗浄工程
7 分解触媒
8 発電装置
10 減圧蒸発式乾燥機
11 フィルタ
12 ボイラ
13 ガスエンジン
DESCRIPTION OF SYMBOLS 1 Organic waste 2 Dehydrator 3 Dryer 4 Gasification reformer 5 Waste water treatment process 6 Dust removal and washing process 7 Decomposition catalyst 8 Power generation device 10 Vacuum evaporation dryer 11 Filter 12 Boiler 13 Gas engine

Claims (4)

有機性廃棄物をガス化改質する前処理段階の脱水・乾燥工程で発生する排水、および脱水・乾燥した有機性廃棄物をガス化改質して発生させたガスの除塵・洗浄工程で発生する排水中に含まれるアンモニアを回収し、回収されたアンモニアを分解触媒により水素と窒素に分解して水素を回収し、この水素を発電装置のエネルギー源として利用することを特徴とする有機性廃棄物からのエネルギー回収方法。   Wastewater generated in the dehydration / drying process in the pretreatment stage for gasifying and reforming organic waste and generated in the dust removal / cleaning process of gas generated by gasifying and reforming dehydrated / dried organic waste Organic waste characterized by recovering ammonia contained in wastewater, and recovering hydrogen by decomposing the recovered ammonia into hydrogen and nitrogen using a decomposition catalyst and using this hydrogen as an energy source for power generation equipment Energy recovery method from things. アンモニア分解触媒として、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物担体上にニッケルまたはニッケル酸化物を第1成分として担持させ、更にアルカリ土類金属及びランタノイド元素の少なくとも一方を金属または酸化物の形で第2成分として添加したものを用いる請求項1記載の有機性廃棄物からのエネルギー回収方法。   As an ammonia decomposition catalyst, nickel or nickel oxide is supported as a first component on a metal oxide carrier such as alumina, silica, titania or zirconia, and at least one of an alkaline earth metal and a lanthanoid element is made of a metal or oxide. The method for recovering energy from organic waste according to claim 1, wherein the second component added in the form is used. 第1成分/担体の重量比を1〜40%、第2成分/担体の重量比を1〜15%とした請求項2記載の有機性廃棄物からのエネルギー回収方法。   The method for recovering energy from organic waste according to claim 2, wherein the weight ratio of the first component / carrier is 1 to 40% and the weight ratio of the second component / carrier is 1 to 15%. 発電装置が、水素ガスにより駆動されるガスエンジンまたは燃料電池であることを特徴とする請求項1または2記載の有機性廃棄物からのエネルギー回収方法。   The method for recovering energy from organic waste according to claim 1 or 2, wherein the power generation device is a gas engine or a fuel cell driven by hydrogen gas.
JP2004075697A 2003-03-25 2004-03-17 Energy recovery method from organic waste Expired - Lifetime JP4364022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075697A JP4364022B2 (en) 2003-03-25 2004-03-17 Energy recovery method from organic waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003082143 2003-03-25
JP2004075697A JP4364022B2 (en) 2003-03-25 2004-03-17 Energy recovery method from organic waste

Publications (2)

Publication Number Publication Date
JP2004307326A JP2004307326A (en) 2004-11-04
JP4364022B2 true JP4364022B2 (en) 2009-11-11

Family

ID=33478168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075697A Expired - Lifetime JP4364022B2 (en) 2003-03-25 2004-03-17 Energy recovery method from organic waste

Country Status (1)

Country Link
JP (1) JP4364022B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605992B2 (en) * 2003-03-28 2011-01-05 三井造船株式会社 Fuel cell power generation process and fuel cell system
JP4225866B2 (en) * 2003-09-01 2009-02-18 株式会社栗本鐵工所 Organic sludge treatment method
KR100710911B1 (en) 2005-12-27 2007-04-27 류지순 A electric-power generation equipment use of waste water
JP4787966B2 (en) * 2007-03-30 2011-10-05 国立大学法人群馬大学 Method for dry treatment of nitrogen-containing waste and apparatus therefor
JP2010094667A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia
JP5547936B2 (en) * 2008-09-17 2014-07-16 株式会社日本触媒 Ammonia decomposition catalyst, production method thereof, and ammonia treatment method
WO2010032790A1 (en) * 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
WO2010107065A1 (en) * 2009-03-17 2010-09-23 株式会社日本触媒 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP5483705B2 (en) * 2009-03-17 2014-05-07 株式会社日本触媒 Hydrogen production catalyst and hydrogen production method using the same
JP5624343B2 (en) * 2009-03-17 2014-11-12 株式会社日本触媒 Hydrogen production method
JP5763890B2 (en) * 2009-03-17 2015-08-12 株式会社日本触媒 Hydrogen production catalyst and hydrogen production method using the same
JP5746539B2 (en) * 2010-06-02 2015-07-08 株式会社日本触媒 Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst
JP2012223768A (en) * 2012-08-20 2012-11-15 Nippon Shokubai Co Ltd Catalyst and method for decomposing ammonia
JP2014067562A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide type fuel cell and power generating method using the same
CN103965966B (en) * 2014-04-23 2015-10-21 中国华能集团清洁能源技术研究院有限公司 A kind of dry powder pressurizing gasifying apparatus with treatment of Organic Wastewater
JP6403135B2 (en) * 2014-07-24 2018-10-10 国立大学法人群馬大学 Method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste
CN104194835A (en) * 2014-08-18 2014-12-10 苏州新协力环保科技有限公司 Biomass gasifying power generation method
JP6789550B2 (en) * 2016-08-10 2020-11-25 矢崎総業株式会社 Ammonia decomposition catalyst for microwave heating and its mixture
JP7079068B2 (en) * 2016-12-13 2022-06-01 三菱重工業株式会社 Thermal power plant, boiler and how to modify boiler
TWI812634B (en) * 2017-08-24 2023-08-21 丹麥商托普索公司 Autothermal ammonia cracking process

Also Published As

Publication number Publication date
JP2004307326A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4364022B2 (en) Energy recovery method from organic waste
RU2270849C2 (en) System producing electric power with the help of gasification of combustibles
RU2433163C2 (en) Method of solid fuel gasification combined with gas sweetening and gasification system
JP4243295B2 (en) Low-temperature catalytic gasification apparatus and method for biomass refined fuel
KR101668549B1 (en) Wastewater treatment system and combined power generation equipment
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
JP4705752B2 (en) Energy recovery from ammonia from waste treatment
KR20020026536A (en) Apparatus and method for cleaning acidic gas
JP2007510533A (en) Organic matter processing method and processing apparatus
JP2000153252A (en) Treatment of organic waste
WO2001004045A1 (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
JPS6140279B2 (en)
CN106398771A (en) Solid organic waste gasifying process capable of reducing dioxin emission
JP4662338B2 (en) Waste combined gasification processing system and method
JP5594370B2 (en) Product gas reforming method and apparatus
US20060137579A1 (en) Gasification system
JP2004209314A (en) Treatment method and treatment apparatus of waste or the like by superheated steam
JP5036608B2 (en) Gasification generator
JP2019203078A (en) Gasification gas manufacturing apparatus and manufacturing method of gasification gas
JP2009096888A (en) Gasification system effectively utilizing steam produced during drying of high-water content fuel
JP2001137691A (en) Device for carbon dioxide fixation
JP2003243021A (en) Waste power generating system
JP2004168883A (en) Method and apparatus for recovering flammable gas from waste
JP4507276B2 (en) Operation method of waste gasification processing equipment
WO2008100012A1 (en) Method for recovering resource from waste and resource recovery system therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4364022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term