JP4787966B2 - Method for dry treatment of nitrogen-containing waste and apparatus therefor - Google Patents
Method for dry treatment of nitrogen-containing waste and apparatus therefor Download PDFInfo
- Publication number
- JP4787966B2 JP4787966B2 JP2007094553A JP2007094553A JP4787966B2 JP 4787966 B2 JP4787966 B2 JP 4787966B2 JP 2007094553 A JP2007094553 A JP 2007094553A JP 2007094553 A JP2007094553 A JP 2007094553A JP 4787966 B2 JP4787966 B2 JP 4787966B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- catalyst layer
- containing waste
- reactor
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明は、畜産廃棄物や下水汚泥等の含窒素廃棄物の乾式処理方法とそのための装置に関するものである。 The present invention relates to a dry treatment method for nitrogen-containing waste such as livestock waste and sewage sludge and an apparatus therefor.
現在の畜産廃棄物の処理は、その大部分が堆肥とされているが、堆肥の過剰生産と施用は、河川や地下水の汚染と海域の富栄養化をもたらし、また悪臭の問題も発生する。 Most of the current processing of livestock waste is compost, but the overproduction and application of compost results in pollution of rivers and groundwater and eutrophication of the sea area, and also causes bad odor problems.
このような状況下において、畜産廃棄物の堆肥以外での利用、処理法が望まれているが、たとえばスラリー状の家畜排泄物の処理法としては、発酵によりメタンを発生させエネルギーを得る技術が知られている。これに対して、堆肥は低含水率であることから、クリーンなエネルギーを得るための処理法として、熱分解・ガス化による方法(特許文献1等参照)への期待が寄せられている。
しかしながら、堆肥の熱分解・ガス化による処理を検討するに際して、堆肥の窒素含有量が高く、熱分解・ガス化するとNH3、HCN等の有害な窒素化合物を生成するという問題がある。表1に、各種の廃棄物、バイオマス、石炭の元素分析値を示す。 However, when examining the treatment by pyrolysis and gasification of compost, there is a problem that the nitrogen content of the compost is high, and harmful nitrogen compounds such as NH 3 and HCN are generated when pyrolysis and gasification. Table 1 shows elemental analysis values of various wastes, biomass, and coal.
表1に示されるように、堆肥等の畜産廃棄物において窒素含有量が特に高いのが分かる。この他、下水汚泥も窒素含有量が高い廃棄物の一つである。たとえば、窒素含有燃料を熱分解すると、窒素分はその一部がタールからすすになるが、それ以外の大部分は、直接に、あるいはタールやチャーからの分解物として、NH3、HCN、N2などのガス成分を生成する。このうちNH3は悪臭物質、HCNは猛毒であり、NH3は、悪臭防止法によって規制の対象とされ、HCNは、水質環境基準その他の法規制として、非常に低い排出基準が要求されている。そのため、これらはスクラバー等を用いて除去することが必要になるが、スクラバーを用いた場合、廃液の処理問題が発生する。 As shown in Table 1, it can be seen that the nitrogen content is particularly high in livestock waste such as compost. In addition, sewage sludge is one of wastes with high nitrogen content. For example, when a nitrogen-containing fuel is pyrolyzed, a part of the nitrogen content is sooted from tar, but most of the rest is directly or as a decomposed product from tar or char, NH 3 , HCN, N A gas component such as 2 is generated. Of these, NH 3 is a malodorous substance and HCN is extremely toxic, NH 3 is subject to regulation by the Malodor Control Law, and HCN requires very low emission standards as water quality environmental standards and other legal regulations . For this reason, it is necessary to remove these using a scrubber or the like. However, when a scrubber is used, a waste disposal problem occurs.
本発明は、このような従来の問題点を解消し、できるだけ低温で揮発性の窒素化合物を窒素ガスまで分解し、効率的にガスを無害化できる含窒素廃棄物の乾式処理方法とそのための装置を提供することを課題としている。 The present invention eliminates such conventional problems, and decomposes volatile nitrogen compounds into nitrogen gas at as low a temperature as possible to efficiently detoxify the nitrogen-containing waste, and an apparatus therefor It is an issue to provide.
本発明は、上記の課題を解決するものとして、以下のことを特徴としている。 The present invention is characterized by the following in order to solve the above problems.
<1> 堆肥および下水汚泥から選ばれる少なくとも1種の窒素を2質量%以上含有する含窒素廃棄物が上流に配置され、含窒素廃棄物の熱分解により生成したガス成分を接触させるためのNi担持炭、Ni担持アルミナ、およびリモナイトから選ばれる少なくとも1種の触媒からなる触媒層が下流に配置される反応器と、含窒素廃棄物を熱分解温度まで加熱するための試料加熱装置と、触媒層を加熱するための触媒層加熱装置と、含窒素廃棄物と触媒層との間に設けられた水蒸気供給口から反応器内へ水蒸気を供給する水蒸気供給装置とを備えた含窒素廃棄物の乾式処理装置を用いて、反応器内に配置された含窒素廃棄物を熱分解し、熱分解により生成したガス成分を水蒸気供給口から反応器内へ供給した水蒸気の存在下で温度が550〜750℃の範囲内にある触媒層に接触させることを特徴とする含窒素廃棄物の乾式処理方法。 <1> Ni for containing nitrogen-containing waste containing 2% by mass or more of at least one kind of nitrogen selected from compost and sewage sludge upstream, and contacting gas components generated by thermal decomposition of nitrogen-containing waste A reactor in which a catalyst layer made of at least one catalyst selected from supported carbon, Ni-supported alumina, and limonite is disposed downstream; a sample heating device for heating nitrogen-containing waste to a pyrolysis temperature; and a catalyst Of nitrogen-containing waste comprising a catalyst layer heating device for heating the layer, and a water vapor supply device for supplying water vapor into the reactor from a water vapor supply port provided between the nitrogen-containing waste and the catalyst layer Using a dry treatment apparatus, the nitrogen-containing waste disposed in the reactor is pyrolyzed, and the gas component generated by the pyrolysis has a temperature of 550 to 550 in the presence of steam supplied from the steam supply port into the reactor. 7 Dry processing method of a nitrogen-containing waste comprising contacting the catalyst layer is in the range of 0 ° C..
<2> 堆肥および下水汚泥から選ばれる少なくとも1種の窒素を2質量%以上含有する含窒素廃棄物を乾式処理するための乾式処理装置であって、含窒素廃棄物が上流に配置され、含窒素廃棄物の熱分解により生成したガス成分を接触させるためのNi担持炭、Ni担持アルミナ、およびリモナイトから選ばれる少なくとも1種の触媒からなる触媒層が下流に配置される反応器と、含窒素廃棄物を熱分解温度まで加熱するための試料加熱装置と、触媒層を加熱するための触媒層加熱装置と、含窒素廃棄物と触媒層との間に設けられた水蒸気供給口から反応器内へ水蒸気を供給する水蒸気供給装置とを備えることを特徴とする含窒素廃棄物の乾式処理装置。 <2> A dry treatment apparatus for dry treatment of nitrogen-containing waste containing 2% by mass or more of at least one kind of nitrogen selected from compost and sewage sludge, the nitrogen-containing waste being disposed upstream, A reactor in which a catalyst layer made of at least one catalyst selected from Ni-supporting carbon, Ni-supporting alumina, and limonite for contacting a gas component generated by thermal decomposition of nitrogen waste is disposed downstream; A sample heating device for heating the waste to the pyrolysis temperature, a catalyst layer heating device for heating the catalyst layer, and a steam supply port provided between the nitrogen-containing waste and the catalyst layer in the reactor. A dry treatment apparatus for nitrogen-containing waste, comprising: a water vapor supply device for supplying water vapor to the water.
上記のとおりの本発明によれば、含窒素廃棄物の熱分解により生成したガス成分を特定の触媒に接触させて改質するようにしたので、熱分解温度が比較的低温である条件において、触媒により、揮発性の窒素化合物を窒素ガスまで分解し、効率的にガスを無害化することができる。すなわち、触媒で処理された改質ガスは、HCNがN2に分解されて無害化され、窒素含有液状生成物もN2まで分解され、さらに、NH3がN2に分解されるので悪臭も防止される。 According to the present invention as described above, since the gas component generated by the thermal decomposition of the nitrogen-containing waste is brought into contact with a specific catalyst for reforming, in a condition where the thermal decomposition temperature is relatively low, A catalyst can decompose a volatile nitrogen compound to nitrogen gas, and can make the gas harmless efficiently. That is, the reformed gas treated with the catalyst is detoxified by decomposing HCN into N 2 , the nitrogen-containing liquid product is also decomposed into N 2 , and further, NH 3 is decomposed into N 2 , so that bad odor is also generated Is prevented.
本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。 The present invention has the features as described above, and an embodiment thereof will be described below.
本発明において乾式処理の対象となる含窒素廃棄物の具体例としては、窒素含有量が比較的高く含水率が比較的低いもの、たとえば堆肥、下水汚泥などが挙げられる。堆肥としては、豚糞コンポスト、鶏糞コンポスト、その他家畜の糞等を発酵して得られるものであれば特に制限はないが、窒素を比較的多量に含むもの、たとえば2質量%以上含有するものが好適である。 In the present invention, specific examples of the nitrogen-containing waste to be dry-treated include those having a relatively high nitrogen content and a relatively low moisture content, such as compost and sewage sludge. The compost is not particularly limited as long as it is obtained by fermenting pig dung compost, chicken dung compost, and other livestock dung, etc., but those containing a relatively large amount of nitrogen, for example, containing 2% by mass or more. Is preferred.
本発明では、この含窒素廃棄物を加熱して熱分解し、熱分解により生成したガス成分をNi担持炭、Ni担持アルミナ、およびリモナイトから選ばれる少なくとも1種の触媒に接触させる。含窒素廃棄物の熱分解温度は、その種類にもよるが、たとえば300〜900℃の範囲である。 In the present invention, the nitrogen-containing waste is heated and pyrolyzed, and the gas component generated by the pyrolysis is brought into contact with at least one catalyst selected from Ni-supporting carbon, Ni-supporting alumina, and limonite. Although the thermal decomposition temperature of a nitrogen-containing waste is based also on the kind, it is the range of 300-900 degreeC, for example.
触媒のNi担持炭としては、たとえば、イオン交換能を有する低品位炭粒子にニッケル塩水溶液を含浸する方法で得られるものを用いることができる。中でも、Ni/C(質量比)が0.1〜1の範囲内にあり、粒径が0.5〜10mmの範囲内にあるNi担持褐炭を用いることが好ましい。 As the Ni-supporting charcoal of the catalyst, for example, those obtained by a method of impregnating low-grade coal particles having ion exchange ability with an aqueous nickel salt solution can be used. Especially, it is preferable to use Ni carrying | support lignite which has Ni / C (mass ratio) in the range of 0.1-1 and a particle size in the range of 0.5-10 mm.
触媒のNi担持アルミナとしては、γ−アルミナ等の多孔質のアルミナ担体にニッケル塩水溶液を含浸する方法で得られるものなどを用いることができる。中でも、Ni/Al2O3(質量比)が0.1〜0.5の範囲内にあり、粒径が0.5〜10mmの範囲内にあるものを用いることが好ましい。 As the Ni-supported alumina for the catalyst, those obtained by impregnating a porous alumina carrier such as γ-alumina with a nickel salt aqueous solution can be used. Among them, there Ni / Al 2 O 3 (mass ratio) is within the range of 0.1 to 0.5, it is preferable to use a particle size in the range of 0.5 to 10 mm.
触媒のリモナイトは、沼地や浅い海などの鉄分を多く含む水が空気に触れて沈殿した黄土で、「褐鉄鉱」、「沼鉄鉱」とも称されるものであり、吸着剤等として市販されているもの、熟成したもの等を用いることができる。 Limonite as a catalyst is a loess in which water containing a lot of iron such as swamps and shallow seas is precipitated by exposure to the air. Thing, aged thing, etc. can be used.
含窒素廃棄物の熱分解により生成する含窒素ガスには、N2の他、NH3、HCN、tar−Nなど含まれるが、これを上記の触媒に接触させることにより、大部分がN2に変換される。熱分解により生成したガス成分の接触時における触媒の温度は、たとえば500〜900℃、好ましくは550℃〜750℃、より好ましくは650℃〜700℃である。触媒の温度が高過ぎると、乾式処理のための運転効率が低下する。触媒の温度が低過ぎると、NH3やHCNなどの揮発性窒素化合物を十分にN2に変換できない。 The nitrogen-containing gas produced by thermal decomposition of nitrogenous wastes, other N 2, NH 3, HCN, but are like tar-N, by contacting it with the catalyst, mostly N 2 Is converted to The temperature of the catalyst at the time of contact with the gas component produced by pyrolysis is, for example, 500 to 900 ° C, preferably 550 ° C to 750 ° C, more preferably 650 ° C to 700 ° C. If the temperature of the catalyst is too high, the operating efficiency for the dry process is reduced. If the temperature of the catalyst is too low, volatile nitrogen compounds such as NH 3 and HCN cannot be sufficiently converted to N 2 .
含窒素廃棄物の熱分解により生成したガス成分を触媒に接触させるときに、これを水蒸気の存在下に行うようにしてもよい。これによって、水蒸気がガス化剤として作用し、N2への変換率を増加させ、N2以外の含窒素化合物の割合を低減させることができる。触媒への水蒸気の供給量は、25℃で0〜30kPaが好ましい。 When the gas component generated by thermal decomposition of the nitrogen-containing waste is brought into contact with the catalyst, this may be performed in the presence of water vapor. Thus, the water vapor acts as a gasifying agent, increase the conversion rate to N 2, it is possible to reduce the proportion of nitrogen-containing compounds other than N 2. The amount of water vapor supplied to the catalyst is preferably 0 to 30 kPa at 25 ° C.
図1は、本発明の一実施形態における含窒素廃棄物の乾式処理装置を概略的に示した図である。同図において、符号1は全体として本実施形態の乾式処理装置を示している。この乾式処理装置1は、反応器2を備えており、反応器2内の反応室3には、含窒素廃棄物の試料20と触媒層30が上下2段に配置されるようになっている。 FIG. 1 is a diagram schematically showing a dry treatment apparatus for nitrogen-containing waste in one embodiment of the present invention. In the same figure, the code | symbol 1 has shown the dry processing apparatus of this embodiment as a whole. The dry processing apparatus 1 includes a reactor 2, and a nitrogen-containing waste sample 20 and a catalyst layer 30 are arranged in two upper and lower stages in a reaction chamber 3 in the reactor 2. .
試料20は、反応室3内における上段の試料配置部4に配置され、上記したNi担持炭などの触媒は、反応室3内における下段の触媒層配置部5に触媒層30として配置される。 The sample 20 is arranged in the upper sample arrangement portion 4 in the reaction chamber 3, and the catalyst such as the Ni-supporting charcoal is arranged as a catalyst layer 30 in the lower catalyst layer arrangement portion 5 in the reaction chamber 3.
試料配置部4の高さ位置における反応器2の外周部には、試料20を加熱して熱分解するための試料加熱装置10が設けられている。また、触媒層配置部5の高さ位置における反応器2の外周部には、触媒層30を加熱するための触媒層加熱装置11が設けられている。 A sample heating device 10 for heating and thermally decomposing the sample 20 is provided on the outer peripheral portion of the reactor 2 at the height position of the sample placement unit 4. A catalyst layer heating device 11 for heating the catalyst layer 30 is provided on the outer peripheral portion of the reactor 2 at the height position of the catalyst layer arrangement portion 5.
さらに、この乾式処理装置1は、試料20の上流にある不活性ガス供給口6からAr、N2などの不活性ガスを反応室3内にキャリアガスとして供給する不活性ガス供給装置12と、反応室3内に、試料20と触媒層30との間の位置にある水蒸気供給口7から水蒸気を供給する水蒸気供給装置13とを備えている。 Furthermore, the dry processing apparatus 1 includes an inert gas supply device 12 that supplies an inert gas such as Ar and N 2 as a carrier gas into the reaction chamber 3 from an inert gas supply port 6 upstream of the sample 20; In the reaction chamber 3, a water vapor supply device 13 that supplies water vapor from the water vapor supply port 7 located between the sample 20 and the catalyst layer 30 is provided.
反応器2における触媒層30の下流には、試料20の熱分解により生成したガス成分が触媒層30を通過して改質された改質ガス成分を反応器2外へ排出するガス排出口8が設けられている。そしてガス排出口8の下流には、必要であれば、ガス排出口8から排出された改質ガス成分の精製や分析をするための精製・分析装置14が設置される。 Downstream of the catalyst layer 30 in the reactor 2, a gas outlet 8 through which the gas component generated by thermal decomposition of the sample 20 passes through the catalyst layer 30 and the reformed gas component is discharged out of the reactor 2. Is provided. A purification / analysis device 14 for purifying and analyzing the reformed gas component discharged from the gas discharge port 8 is installed downstream of the gas discharge port 8 if necessary.
以上の構成を備えた本実施形態の乾式処理装置1により、次のようにして含窒素廃棄物の試料20の改質ガス化が行われる。最初に、Ni担持炭などのガス改質用の触媒を、反応器2内の触媒層配置部5に層状に固定して触媒層30とする。触媒層30は、試料20の熱分解ガス成分が全て触媒層30を通過するように隙間なく敷設され、その厚みや密度は、試料20の熱分解により生じたHCN、NH3などの有害成分が十分にN2に改質されると共に、ガス成分が触媒層30を通過することを過度に妨げないこと等を考慮して適宜のものとされる。 By the dry processing apparatus 1 of the present embodiment having the above-described configuration, the reformed gas of the nitrogen-containing waste sample 20 is performed as follows. First, a catalyst for gas reforming such as Ni-supporting charcoal is fixed to the catalyst layer arranging portion 5 in the reactor 2 in a layered manner to form a catalyst layer 30. The catalyst layer 30 is laid without a gap so that all the pyrolysis gas components of the sample 20 pass through the catalyst layer 30, and the thickness and density of the catalyst layer 30 are such as HCN and NH 3 generated by the pyrolysis of the sample 20. While being sufficiently reformed to N 2 , it is determined appropriately in consideration of not excessively preventing the gas component from passing through the catalyst layer 30.
そして、反応器2内における触媒層30の上流に設けられた試料配置部4に、含窒素廃棄物の試料20を配置する。 Then, the nitrogen-containing waste sample 20 is placed in the sample placement portion 4 provided upstream of the catalyst layer 30 in the reactor 2.
このようにして反応器2内における上段に試料20を配置し下段に触媒層30を固定化した後、不活性ガス供給装置12により、試料20の上流にある不活性ガス供給口6から反応器2内に不活性ガスを供給し、ガス排出口8まで流通させて反応室3内を不活性ガス雰囲気とする。 After the sample 20 is arranged in the upper stage in the reactor 2 and the catalyst layer 30 is fixed in the lower stage in this way, the reactor is passed from the inert gas supply port 6 upstream of the sample 20 by the inert gas supply device 12. An inert gas is supplied into 2 and circulated to the gas discharge port 8 to create an inert gas atmosphere in the reaction chamber 3.
そして、反応器2の外周部に設置された触媒層加熱装置11により触媒層30を所要の温度まで加熱する。次いで、試料加熱装置10により試料20を所要の温度まで加熱することにより、試料20の熱分解を開始させる。 And the catalyst layer 30 is heated to required temperature with the catalyst layer heating apparatus 11 installed in the outer peripheral part of the reactor 2. FIG. Next, the sample 20 is heated to a required temperature by the sample heating device 10 to start thermal decomposition of the sample 20.
試料20の熱分解により生成したガス化成分は、上流から供給されるキャリアガスと共に下流の触媒層30まで流れてゆく。そして、触媒層30に到達した上記ガス成分は、所定温度に加熱された触媒層30に接触することで、HCN、NH3などの有害成分が低減されたガスに改質される。 The gasification component produced by the thermal decomposition of the sample 20 flows to the downstream catalyst layer 30 together with the carrier gas supplied from the upstream. Then, the gas component that has reached the catalyst layer 30, by contacting the catalyst layer 30 which is heated to a predetermined temperature, HCN, harmful components such as NH 3 is modified to reduce gas.
なお、必要であれば、さらに水蒸気供給装置13により、試料20と触媒層30との間に設けられた水蒸気供給口7から反応室3内へ加熱水蒸気を供給し、水蒸気の存在下に試料20を触媒層30に接触させるようにしてもよい。 If necessary, the steam supply device 13 further supplies heated steam into the reaction chamber 3 from the steam supply port 7 provided between the sample 20 and the catalyst layer 30, and the sample 20 is present in the presence of steam. May be brought into contact with the catalyst layer 30.
触媒層30に接触して改質され、その後触媒層30を下流へ通過した改質ガス成分は、反応器2のガス排出口8より反応器2外へ排出される。必要であれば、ガス排出口8の下流に精製/分析装置14を設置して、改質ガス成分を吸着、濾過、分離等によりさらに精製したり、改質ガス成分中のHCN、NH3などの有害成分を監視するようにしてもよい。 The reformed gas component that has been reformed in contact with the catalyst layer 30 and then passed downstream through the catalyst layer 30 is discharged out of the reactor 2 through the gas outlet 8 of the reactor 2. If necessary, a purifying / analyzing device 14 is installed downstream of the gas outlet 8 to further refine the reformed gas component by adsorption, filtration, separation, etc., HCN, NH 3 in the reformed gas component, etc. You may make it monitor the harmful component of.
こうして含窒素廃棄物の試料20をクリーンなガス成分に変換した後、このガス成分はエネルギー源等として再利用してもよいし、大気中に放出してもよい。たとえば、熱分解ガス成分中のHCN、NH3などが触媒層30によって分解され水素が生成しているので、改質ガス成分から水素を回収することも可能である。 After the nitrogen-containing waste sample 20 is converted into a clean gas component in this way, this gas component may be reused as an energy source or the like, or may be released into the atmosphere. For example, since HCN, NH 3 and the like in the pyrolysis gas component are decomposed by the catalyst layer 30 to generate hydrogen, it is also possible to recover hydrogen from the reformed gas component.
以上において、反応器2の材質としては、試料20の熱分解温度や触媒層30の温度において耐熱性を有するものであれば特に制限はないが、石英や、融点が1000℃を超える金属材などが考慮される。反応器2のスケールは目的に応じて適宜のものとされる。また、試料配置部4と触媒層配置部5は、試料20や触媒層30を固定でき、かつ、ガス成分の流通を妨げないものであればどのような構造のものでもよいが、望ましくは、これらの試料配置部4と触媒層配置部5や、反応器2の内面の材質としては、処理後に残存する固体炭素成分の除去が容易なものが用いられる。 In the above, the material of the reactor 2 is not particularly limited as long as it has heat resistance at the thermal decomposition temperature of the sample 20 or the temperature of the catalyst layer 30, but quartz, a metal material having a melting point exceeding 1000 ° C., or the like. Is considered. The scale of the reactor 2 is appropriately determined according to the purpose. The sample placement unit 4 and the catalyst layer placement unit 5 may have any structure as long as they can fix the sample 20 and the catalyst layer 30 and do not hinder the flow of the gas component. As the material for the sample placement portion 4 and the catalyst layer placement portion 5 and the inner surface of the reactor 2, those that can easily remove the solid carbon component remaining after the treatment are used.
そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例示によって発明が限定されることはない。 Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.
<実施例1〜3、比較例1>
試料として、107℃の温度で1時間乾燥させた豚糞コンポスト約1gを使用した。表2に試料の分析値を示す。
<Examples 1-3, Comparative Example 1>
As a sample, about 1 g of pig dung compost dried at a temperature of 107 ° C. for 1 hour was used. Table 2 shows the analytical values of the samples.
図2に示す上下二段の固定層二段反応器52を用いて、Ni担持炭を触媒として上記試料の接触分解を行った。Ni担持炭(褐炭 約7g 粒径0.5−1.0mm Ni含有量10wt%)を、反応室53内の触媒層配置部55に固定して層厚2cmの触媒層30として固定した。 Using the two-stage fixed-bed two-stage reactor 52 shown in FIG. 2, the sample was catalytically decomposed using Ni-supported charcoal as a catalyst. Ni-supporting charcoal (brown coal: about 7 g, particle size: 0.5-1.0 mm, Ni content: 10 wt%) was fixed to the catalyst layer arrangement portion 55 in the reaction chamber 53 and fixed as a catalyst layer 30 having a layer thickness of 2 cm.
そして、反応室53内における触媒層30の上流に設けられた試料配置部54に、試料20として豚糞コンポスト約1gを配置した。その後、試料20の上流にある不活性ガス供給口56から反応室53内に70kPaのArまたはN2を供給し、ガス排出口58まで流通させて反応室53内を不活性ガス雰囲気とした。 Then, about 1 g of swine manure compost was placed as the sample 20 in the sample placement portion 54 provided upstream of the catalyst layer 30 in the reaction chamber 53. Thereafter, 70 kPa of Ar or N 2 was supplied from the inert gas supply port 56 upstream of the sample 20 into the reaction chamber 53 and circulated to the gas discharge port 58, thereby forming an inert gas atmosphere in the reaction chamber 53.
そして、触媒層30の高さ位置において固定層二段反応器52の外周部に設置された電気炉61により、触媒層30を650℃に加熱した。次いで、試料20の高さ位置において固定層二段反応器52の外周部に設置された電気炉60により、試料20を室温から900℃まで10℃/minの速度で昇温した。これにより、試料20の熱分解を行った。なお、試料20および触媒層30の温度は熱電対により測定した。 And the catalyst layer 30 was heated at 650 degreeC with the electric furnace 61 installed in the outer peripheral part of the fixed bed two-stage reactor 52 in the height position of the catalyst layer 30. FIG. Next, the temperature of the sample 20 was increased from room temperature to 900 ° C. at a rate of 10 ° C./min by an electric furnace 60 installed on the outer periphery of the fixed bed two-stage reactor 52 at the height position of the sample 20. Thereby, thermal decomposition of the sample 20 was performed. In addition, the temperature of the sample 20 and the catalyst layer 30 was measured with the thermocouple.
試料20の熱分解により生成したガス成分を、上流から供給されるキャリアガスと共に下流の触媒層30まで流通させ、当該ガス成分を触媒層30に接触させた。 The gas component generated by thermal decomposition of the sample 20 was circulated to the downstream catalyst layer 30 together with the carrier gas supplied from the upstream side, and the gas component was brought into contact with the catalyst layer 30.
そして、触媒層30を下流へ通過したガス成分をガス排出口58より排出し、これを氷浴71中のトラップ72に導入してNH3とHCNをイオン交換水で回収すると共に、その下流にあるガスバック73にN2を回収した。トラップ72に回収したNH3とHCNをイオンクロマトグラフィーで分析し、ガスバック73に回収したN2をガスクロマトグラフィー(TCD)で分析した。また、熱分解後に反応室53内に残ったチャー中窒素を元素分析により定量した。 Then, the gas component which has passed through the catalyst layer 30 to the downstream together with discharged from the gas discharge port 58, which is then introduced into the trap 72 in an ice bath 71 for recovering NH 3 and HCN with deionized water, downstream thereof N 2 was recovered in a certain gas bag 73. NH 3 and HCN collected in the trap 72 were analyzed by ion chromatography, and N 2 collected in the gas bag 73 was analyzed by gas chromatography (TCD). Further, nitrogen in the char remaining in the reaction chamber 53 after pyrolysis was quantified by elemental analysis.
また、触媒として、Ni/Al2O3(実施例2:市販品をあらかじめ水素還元処理したもの 約5g 粒径0.5−1.0mm Ni含有量20wt% 触媒層30の層厚2cm)、リモナイト(実施例3:約7g 粒径0.5〜1.0mm(ただし、ペレット化してから粉砕したもの) 触媒層30の層厚2cm)、川砂(比較例1:約10g 触媒層30の層厚2cm)を用いた以外は実施例1と同様の条件で試料20の乾式処理を行った。 Further, as a catalyst, Ni / Al 2 O 3 (Example 2: a commercially available product previously reduced by hydrogen, about 5 g, particle size 0.5-1.0 mm, Ni content 20 wt%, layer thickness 2 cm of catalyst layer 30), Limonite (Example 3: about 7 g, particle size 0.5 to 1.0 mm (though pelletized and then pulverized) catalyst layer 30 layer thickness 2 cm), river sand (Comparative Example 1: about 10 g catalyst layer 30 layer) Sample 20 was dry-treated under the same conditions as in Example 1 except that 2 cm in thickness was used.
実施例1〜3および比較例1における回収物の窒素分布の分析結果を図3に示す。触媒としてNi担持炭を用いた実施例1では、揮発含窒素成分の大部分がN2に改質された。NH3はほとんど検出されず、HCNは検出下限以下であった。 The analysis result of the nitrogen distribution of the recovered material in Examples 1 to 3 and Comparative Example 1 is shown in FIG. In Example 1 using Ni on charcoal as catalyst, most of the volatile nitrogen-containing component modified in N 2. NH 3 was hardly detected, and HCN was below the lower limit of detection.
触媒としてNi/Al2O3を用いた実施例2も同様に、揮発含窒素成分の大部分がN2に改質された。NH3はほとんど検出されず、HCNは検出下限以下であった。 Similarly in Example 2 using Ni / Al 2 O 3 as a catalyst, most of the volatile nitrogen-containing component was reformed to N 2 . NH 3 was hardly detected, and HCN was below the lower limit of detection.
触媒としてリモナイトを用いた実施例3も同様に、揮発含窒素成分の大部分がN2に改質された。NH3はほとんど検出されず、HCNは検出下限以下であった。なお、その他の含窒素揮発成分の生成がややみられたが、これは、炭素収支よりタールは存在せず、触媒中のFeと化合したものとは考えにくいことから(Naoto Tsubouchi, Catalysis Letters Vol. 105, Nos. 3-4, December 2005参照)、すす中のNと他のガス状窒素化合物のいずれかもしくは両方であると推定される。 Limonite Example 3 similarly using as the catalyst, most of the volatile nitrogen-containing component modified in N 2. NH 3 was hardly detected, and HCN was below the lower limit of detection. Some other nitrogen-containing volatile components were produced, but this is because tar does not exist due to the carbon balance and is unlikely to be combined with Fe in the catalyst (Naoto Tsubouchi, Catalysis Letters Vol. 105, Nos. 3-4, December 2005), presumed to be either or both of N in soot and other gaseous nitrogen compounds.
川砂を用いた比較例1では、N2への変換は少なく、多くのNH3が検出され、HCNも検出された。また、その他の窒素化合物も多く検出された。
<実施例4>
触媒層の温度を550℃とした以外は、実施例2(触媒:Ni/Al2O3)と同様の条件で試料の乾式処理を行った。回収物の窒素分布の分析結果を図4に示す。
In Comparative Example 1 using river sand, there was little conversion to N 2 , much NH 3 was detected, and HCN was also detected. Many other nitrogen compounds were also detected.
<Example 4>
The sample was dry-treated under the same conditions as in Example 2 (Catalyst: Ni / Al 2 O 3 ) except that the temperature of the catalyst layer was 550 ° C. FIG. 4 shows the analysis result of the nitrogen distribution of the recovered material.
図4に示されるように、触媒層30の温度を650℃とした実施例2と比較して、実施例4ではN2の割合がやや減少したものの、NH3とHCNはほとんど検出されなかった。
<実施例5>
実施例2(触媒:Ni/Al2O3)と同様の条件で試料の乾式処理を行うと共に、さらに、マイクロフィーダー70を用いて、水蒸気供給口57から、試料20と触媒層30との間より反応室53内へ30kPaの水蒸気を供給し、水蒸気の存在下に、試料20の熱分解により生成したガス成分を触媒層30に接触させた。回収物の窒素分布の分析結果を図5に示す。
As shown in FIG. 4, compared with Example 2 in which the temperature of the catalyst layer 30 was 650 ° C., the ratio of N 2 was slightly reduced in Example 4, but almost no NH 3 and HCN were detected. .
<Example 5>
The sample was dry-treated under the same conditions as in Example 2 (catalyst: Ni / Al 2 O 3 ), and further, between the sample 20 and the catalyst layer 30 from the water vapor supply port 57 using the microfeeder 70. Further, 30 kPa of water vapor was supplied into the reaction chamber 53, and the gas component generated by thermal decomposition of the sample 20 was brought into contact with the catalyst layer 30 in the presence of water vapor. The analysis result of the nitrogen distribution of the recovered material is shown in FIG.
図5に示されるように、水蒸気を添加した実施例5では、実施例2と比較してN2への変換率がさらに増加し、揮発性窒素化合物のほぼ全てがN2に変換された。また、NH3とHCNもほとんど検出されなかった。 As shown in FIG. 5, in Example 5 to which water vapor was added, the conversion rate to N 2 further increased compared to Example 2, and almost all of the volatile nitrogen compounds were converted to N 2 . Also, NH 3 and HCN were hardly detected.
1 含窒素廃棄物の乾式処理装置
2 反応器
3 反応室
4 試料配置部
5 触媒配置部
6 不活性ガス供給口
7 水蒸気供給口
8 ガス排出口
10 試料加熱装置
11 触媒層加熱装置
12 不活性ガス供給装置
13 水蒸気供給装置
14 精製/分析装置
20 試料
30 触媒層
52 固定層2段反応器
53 反応室
54 試料配置部
55 触媒配置部
56 不活性ガス供給口
57 水蒸気供給口
58 ガス排出口
60 電気炉
61 電気炉
70 マイクロフィーダー
71 氷浴
72 トラップ
73 ガスバック
DESCRIPTION OF SYMBOLS 1 Dry processing apparatus of nitrogen-containing waste 2 Reactor 3 Reaction chamber 4 Sample arrangement | positioning part 5 Catalyst arrangement | positioning part 6 Inert gas supply port 7 Water vapor supply port 8 Gas discharge port 10 Sample heating apparatus 11 Catalyst layer heating apparatus 12 Inert gas Supply device 13 Steam supply device 14 Purification / analysis device 20 Sample 30 Catalyst layer 52 Fixed layer two-stage reactor 53 Reaction chamber 54 Sample placement portion 55 Catalyst placement portion 56 Inert gas supply port 57 Steam supply port 58 Gas discharge port 60 Electricity Furnace 61 Electric furnace 70 Microfeeder 71 Ice bath 72 Trap 73 Gas bag
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007094553A JP4787966B2 (en) | 2007-03-30 | 2007-03-30 | Method for dry treatment of nitrogen-containing waste and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007094553A JP4787966B2 (en) | 2007-03-30 | 2007-03-30 | Method for dry treatment of nitrogen-containing waste and apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008246452A JP2008246452A (en) | 2008-10-16 |
JP4787966B2 true JP4787966B2 (en) | 2011-10-05 |
Family
ID=39972032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007094553A Active JP4787966B2 (en) | 2007-03-30 | 2007-03-30 | Method for dry treatment of nitrogen-containing waste and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4787966B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012092270A (en) * | 2010-10-28 | 2012-05-17 | Kinsei Sangyo:Kk | Apparatus for treating chicken manure |
JP6070462B2 (en) * | 2013-07-29 | 2017-02-01 | 新日鐵住金株式会社 | Method for decomposing organic nitrogen compounds in gas to be treated |
CN104276740A (en) * | 2014-09-24 | 2015-01-14 | 安徽国祯环保节能科技股份有限公司 | Sludge pulsating combustion drying system and sludge treatment method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004115688A (en) * | 2002-09-27 | 2004-04-15 | Jfe Plant & Service Corp | Method and apparatus for gasifying waste |
JP4705752B2 (en) * | 2002-12-04 | 2011-06-22 | メタウォーター株式会社 | Energy recovery from ammonia from waste treatment |
JP4364022B2 (en) * | 2003-03-25 | 2009-11-11 | メタウォーター株式会社 | Energy recovery method from organic waste |
JP4605992B2 (en) * | 2003-03-28 | 2011-01-05 | 三井造船株式会社 | Fuel cell power generation process and fuel cell system |
JP2005112956A (en) * | 2003-10-06 | 2005-04-28 | Nippon Steel Corp | Gasification method for biomass |
JP4363960B2 (en) * | 2003-11-12 | 2009-11-11 | 相村建設株式会社 | Organic waste gasifier |
KR100569120B1 (en) * | 2004-08-05 | 2006-04-10 | 한국에너지기술연구원 | Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof |
JP2006282914A (en) * | 2005-04-01 | 2006-10-19 | Nippon Steel Corp | Method of manufacturing biomass coke |
JP4221506B2 (en) * | 2005-05-25 | 2009-02-12 | 国立大学法人群馬大学 | Biomass gas gasification method and system using metal carrier |
-
2007
- 2007-03-30 JP JP2007094553A patent/JP4787966B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008246452A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lam et al. | Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent | |
Li et al. | Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char | |
CN107129818B (en) | Comprehensive treatment method for solid waste and nickel plating wastewater | |
JP4561481B2 (en) | Gas purification equipment | |
KR20150015520A (en) | Wastewater treatment system and combined power generation equipment | |
JP4364022B2 (en) | Energy recovery method from organic waste | |
Jiang et al. | Removal of pollution from the chemical looping process: A mini review | |
Deng et al. | Investigation of NO conversion by different types of sewage sludge chars under low temperature | |
CN106215878B (en) | A kind of extraordinary desulfurizing agent and deodorization process of food waste deodorization process | |
JP2004209314A (en) | Treatment method and treatment apparatus of waste or the like by superheated steam | |
JP4787966B2 (en) | Method for dry treatment of nitrogen-containing waste and apparatus therefor | |
JP4662338B2 (en) | Waste combined gasification processing system and method | |
Su et al. | Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review | |
Nguyen et al. | Sewage and textile sludge co-gasification using a lab-scale fluidized bed gasifier | |
JP4204916B2 (en) | Processing method and processing system for effective use of biomass resources | |
Lee et al. | Abatement of odor emissions from wastewater treatment plants using biochar: Review of the state-of-the-art approaches | |
JP4221506B2 (en) | Biomass gas gasification method and system using metal carrier | |
Chen et al. | Comparative study of carbon-deNOx process by different sewage sludge chars | |
JP5326766B2 (en) | Waste water treatment method, waste water treatment apparatus, energy gas purification method and purification system | |
RU2006122358A (en) | ORGANIC WASTE PROCESSING METHOD (OPTIONS) | |
CN109626486A (en) | A kind of method of coupling processing high concentrated organic wastewater and heavy metal wastewater thereby | |
JP2012017376A (en) | Organic waste gasification system and organic waste gasification method | |
EA021586B1 (en) | Method and system for the production of a combustible gas from a fuel | |
JP4651014B2 (en) | Material gasification system and material gasification method | |
JP2019137717A (en) | Method and device of treating tar component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |