JP2006282914A - Method of manufacturing biomass coke - Google Patents

Method of manufacturing biomass coke Download PDF

Info

Publication number
JP2006282914A
JP2006282914A JP2005106661A JP2005106661A JP2006282914A JP 2006282914 A JP2006282914 A JP 2006282914A JP 2005106661 A JP2005106661 A JP 2005106661A JP 2005106661 A JP2005106661 A JP 2005106661A JP 2006282914 A JP2006282914 A JP 2006282914A
Authority
JP
Japan
Prior art keywords
gas
biomass
coke
pyrolysis
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005106661A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishida
吉浩 石田
Hiroshi Nukaga
寛 額賀
Masaru Horie
賢 堀江
Takeshi Nishi
猛 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005106661A priority Critical patent/JP2006282914A/en
Publication of JP2006282914A publication Critical patent/JP2006282914A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Coke Industry (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing biomass coke usable in a domestic waste direct melting furnace or the like while reducing crushing power and molding power necessary to manufacture coke from biomass. <P>SOLUTION: The method includes a thermal decomposition process for separating the biomass into a thermal decomposition gas and solid carbonized matter at a temperature of 400-900°C by indirectly heating the biomass in an air-cut state; a gas reforming process converting a high boiling point liquid gas, which is contained in the thermal decomposition gas obtained by the thermal decomposition process and liquefied at normal temperatures and normal pressure, into low-boiling point gases, which are not liquefied at normal temperatures and normal pressure, such as hydrogen, carbon monoxide, and methane by a reforming reaction using a catalyst reacting at temperatures of 400-900°C; a gas purifying process for removing moisture, corrosive components and heavy metals in the gas by cooling and cleaning the reformed gas after reforming; and a pulverizing process for pulverizing solid carbonized matter obtained in the thermal decomposition process; and by a granulation process for adding a binder to the pulverized solid carbonized matter, pressurizing, molding and granulating them to manufacture the biomass coke. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、未利用のバイオマスからコークスを製造する方法に関する。   The present invention relates to a method for producing coke from unused biomass.

近年、地球温暖化防止の観点からCO削減のために、短期間サイクルでのCO循環、固定化が可能なバイオマス資源の活用に関する開発が推進され、例えば、特許文献1には、そのための廃棄物の処理方法及び廃棄物処理装置が開示されている。これは、バイオマスを含む廃棄物を間接加熱の熱分解炉で熱分解ガスと乾留残差(炭化物)に分離し、その後、熱分解ガス中に含有する常温常圧で液化する高沸点液状ガス、いわゆるタール分を熱分解ガスの部分燃焼による熱によって熱分解すると共に、得られた炭化物を溶融ガス化炉でガス化するものである。 In recent years, in order to reduce CO 2 from the viewpoint of preventing global warming, development related to the utilization of biomass resources capable of CO 2 circulation and fixation in a short-term cycle has been promoted. A waste processing method and a waste processing apparatus are disclosed. This is a high-boiling liquid gas that separates waste containing biomass into pyrolysis gas and carbonization residue (carbide) in an indirect heating pyrolysis furnace, and then liquefies at normal temperature and normal pressure contained in the pyrolysis gas, The so-called tar is thermally decomposed by heat generated by partial combustion of the pyrolysis gas, and the obtained carbide is gasified in a melt gasification furnace.

この特許文献1の方法では、バイオマスの炭化物を溶融ガス化炉でガス化しているが、このバイオマスの炭化物を一般廃棄物直接溶融炉等の溶融燃料用コークスとして利用する場合、以下の問題があった。   In the method of Patent Document 1, biomass carbide is gasified in a melt gasifier. However, when this biomass carbide is used as a coke for molten fuel in a general waste direct melting furnace, there are the following problems. It was.

1.バイオマスから所定形状のコークスを製造する場合、バイオマス(未乾留)の微粉化、高圧成型が必要であり、とくに繊維質のバイオマスを原料とする場合、その微粉化、高圧成型のために多大な粉砕動力、成型動力が必要となる。 1. When producing coke of a predetermined shape from biomass, it is necessary to pulverize biomass (non-distilled) and high-pressure molding. Especially when fiber biomass is used as raw material, a large amount of pulverization is required for pulverization and high-pressure molding. Power and molding power are required.

2.逆に微粉化、高圧成型を行うことなく、単に成型したものをコークス化のために炭化する場合、十分な成型炭化物の強度を得ることができず、コークスとして使用できない。 2. Conversely, when carbonizing a simply molded product for coking without performing pulverization and high pressure molding, sufficient strength of the molded carbide cannot be obtained and cannot be used as coke.

3.下水汚泥のような高水分バイオマスを単独で炭化しコークスを製造する場合、水分を乾燥するのに膨大な外部エネルギーが必要となる。 3. When carbonizing high-moisture biomass such as sewage sludge alone to produce coke, enormous external energy is required to dry the moisture.

4.バイオマスを炭化・コークス化する際に揮発分がガス化し、炭化・コークス化するために必要な熱量より多くのガスが発生するが、その中にはタール分が含まれるため有効利用できず、エネルギーの無駄が生じる。上記特許文献1の方法では、熱分解ガス中のタール分を熱分解するために熱分解炉で発生した熱分解ガスの一部を部分燃焼し、1000℃以上の高温にする必要があるため、得られるガスの発熱量は低く、また、ガスエネルギーの回収率も低くなる。
特開平11−290810号公報
4). When biomass is carbonized and coke, volatile components are gasified, and more gas is generated than the amount of heat necessary to carbonize and coke, but it cannot be effectively used because it contains tar. Is wasted. In the method of Patent Document 1, it is necessary to partially burn part of the pyrolysis gas generated in the pyrolysis furnace in order to pyrolyze the tar content in the pyrolysis gas, and to increase the temperature to 1000 ° C. or higher. The amount of heat generated from the gas is low, and the gas energy recovery rate is also low.
Japanese Patent Laid-Open No. 11-290810

本発明が解決しようとする課題は、バイオマスからコークスを製造するために必要な破砕動力、成型動力を低減し、一般廃棄物直接溶融炉等で使用可能なバイオマスコークスを製造する方法を提供することにある。   The problem to be solved by the present invention is to provide a method for producing biomass coke that can be used in a general waste direct melting furnace, etc., by reducing crushing power and molding power necessary for producing coke from biomass. It is in.

他の課題は、バイオマスの熱分解で得られた熱分解ガス中に含まれるタール分によるトラブルをなくし、熱分解ガスを有効利用できるようにすることにある。   Another problem is to eliminate troubles caused by tar contained in the pyrolysis gas obtained by pyrolysis of biomass so that the pyrolysis gas can be used effectively.

さらに他の課題は、高水分バイオマスを乾燥するための外部エネルギーを削減または不要にすることにある。   Yet another challenge is to reduce or eliminate external energy for drying high moisture biomass.

本発明のバイオマスコークスの製造方法は、バイオマスを空気遮断状態での間接加熱により400〜900℃の熱分解ガスと固形炭化物に分離する熱分解工程と、熱分解工程で得られた熱分解ガス中に含有する常温常圧で液化する高沸点液状ガスを400〜900℃で反応する触媒を用いた改質反応によって常温常圧で液化しない水素、一酸化炭素、メタン等の低沸点のガスに変換するガス改質工程と、改質後の改質ガスを冷却、浄化してガス中の水分、腐食成分及び重金属を除去するガス精製工程と、熱分解工程で得られた固形炭化物を微粉砕する粉砕工程とを含み、微粉砕された固形炭化物にバインダーを添加して加圧成型により造粒する造粒工程によりバイオマスコークスを製造することを特徴とする。   The method for producing biomass coke according to the present invention includes a pyrolysis step of separating biomass into a pyrolysis gas and a solid carbide of 400 to 900 ° C. by indirect heating in an air shut-off state, and in the pyrolysis gas obtained in the pyrolysis step. Converts high-boiling liquid gas liquefied at room temperature and normal pressure into low-boiling gases such as hydrogen, carbon monoxide, and methane that do not liquefy at room temperature and normal pressure by a reforming reaction using a catalyst that reacts at 400 to 900 ° C. Gas reforming process, gas reforming process for cooling and purifying the reformed gas after reforming to remove moisture, corrosive components and heavy metals in the gas, and solid carbide obtained in the pyrolysis process is pulverized A biomass coke is produced by a granulation step including adding a binder to the finely pulverized solid carbide and granulating by pressure molding.

このように、本発明においては、バイオマスの熱分解で得られた固形炭化物を微粉砕し、バインダーを添加して加圧成型することで、バインダーが炭化物粒子間に十分浸透し、結合力が高くなり高強度のバイオマスコークスを製造できる。そして、バイオマスの熱分解で得られた固形炭化物の強度は元のバイオマスに比べ低いため、粉砕動力、成型動力を低減できる。また、繊維質のバイオマスを原料として含む場合であっても、炭化した後であれば容易に微粉化できるので高密度に成型可能である。さらに、建設廃棄物の木材チップのように、リグニン含有量が少なく加圧成型しにくいものでも成型可能であり、バイオマス原料の性状を問わずに、バイオマスコークスを製造することができる。   Thus, in the present invention, the solid carbide obtained by pyrolysis of biomass is finely pulverized, and the binder is added and pressure-molded, so that the binder sufficiently penetrates between the carbide particles, and the bonding strength is high. It is possible to produce high-strength biomass coke. And since the intensity | strength of the solid carbide | carbonized_material obtained by thermal decomposition of biomass is low compared with the original biomass, grinding | pulverization power and shaping | molding power can be reduced. Further, even when fibrous biomass is included as a raw material, it can be easily pulverized after carbonization and can be molded at high density. Furthermore, it is possible to mold a material having a low lignin content and difficult to be pressure-molded, such as a wood chip of construction waste, and it is possible to produce biomass coke regardless of the properties of the biomass raw material.

加えて、熱分解ガス中に含有する常温常圧で液化する高沸点液状ガス、すなわちタール分を触媒により改質することで、タール分によるトラブルをなくことができる。また、触媒なしに比べ、低温で改質反応を促進することができ、ガス改質のために熱分解ガスを部分燃焼する必要がないため、得られるガスの発熱量を高く維持でき、常温で利用可能なガスエネルギーの回収率も高くなる。   In addition, by modifying the high-boiling liquid gas contained in the pyrolysis gas at room temperature and normal pressure, that is, the tar component with a catalyst, troubles due to the tar component can be eliminated. In addition, the reforming reaction can be promoted at a low temperature as compared to the case without a catalyst, and it is not necessary to partially burn the pyrolysis gas for gas reforming, so that the calorific value of the obtained gas can be kept high and at room temperature. The recovery rate of available gas energy is also increased.

本発明においては、ガス精製工程で得られた精製ガスを熱分解工程、又は熱分解工程及びガス改質工程の外熱源として利用すると共に、その余剰精製ガスをガスエンジンで発電利用する発電工程を含むことができる。   In the present invention, the refined gas obtained in the gas purification process is used as an external heat source for the thermal decomposition process, or the thermal decomposition process and the gas reforming process, and the power generation process for generating and using the surplus purified gas with a gas engine is provided. Can be included.

熱分解工程においては、バイオマスの乾燥・昇温・熱分解用の熱量を供するために間接加熱を行い、ガス改質工程においては、タール分の分解の吸熱反応分を補填し触媒が活性化する温度に維持するために、間接加熱を行う。その外熱源としてガス精製工程で得られた精製ガスを利用することで、外部燃料もしくは熱分解生成ガスを使用しなくても良いので、エネルギーの回収効率を高くすることができると共に、バイオマスエネルギーのみで処理を行うので、環境に対するCO負荷も小さくすることが可能である。 In the pyrolysis process, indirect heating is performed to provide the amount of heat for drying, heating, and pyrolysis of the biomass. In the gas reforming process, the endothermic reaction component of the tar decomposition is compensated and the catalyst is activated. Indirect heating is performed to maintain the temperature. By using the purified gas obtained in the gas purification process as the external heat source, it is not necessary to use external fuel or pyrolysis product gas, so that the energy recovery efficiency can be increased, and only biomass energy can be used. Therefore, the CO 2 load on the environment can be reduced.

熱分解工程に用いる熱分解炉としては、バイオマスを空気遮断状態での間接加熱するために、外熱式ロータリーキルンや外熱形式のパドルもしくはスクリュウ式搬送反応器を用いることができる。   As the pyrolysis furnace used in the pyrolysis step, an externally heated rotary kiln, an externally heated paddle, or a screw type transport reactor can be used for indirectly heating the biomass in an air shut-off state.

ガス改質工程の温度範囲は400〜900℃、望ましくは500〜850℃、さらに望ましくは550〜800℃であり、触媒が活性化する温度により決定される。   The temperature range of the gas reforming step is 400 to 900 ° C, desirably 500 to 850 ° C, more desirably 550 to 800 ° C, and is determined by the temperature at which the catalyst is activated.

このガス改質工程では、熱分解工程出口の温度を高くし、そのガス顕熱でタール分の分解の吸熱反応分を賄い、ガス改質工程出口で触媒が活性化する温度を保持するようにする場合は、ガス改質工程での間接加熱による熱補填は不要とすることができる。すなわち、ガス改質工程では、間接加熱を行わないことで、設備をシンプルに構成でき、安価にすることが可能となる。その際、熱分解工程出口のガス温度は極力高温とし、ガス改質工程に用いる触媒は、より低温でも反応するものを用いることで、例えば、ガス改質工程に900℃で導入し、500℃でも反応する触媒を用いれば、400℃のガス顕熱分をタール分改質時の吸熱反応に利用することが可能となる。   In this gas reforming process, the temperature at the outlet of the pyrolysis process is increased, the endothermic reaction of the decomposition of tar is covered by the gas sensible heat, and the temperature at which the catalyst is activated is maintained at the outlet of the gas reforming process. In this case, heat compensation by indirect heating in the gas reforming step can be made unnecessary. That is, in the gas reforming step, by not performing indirect heating, the equipment can be configured simply and can be made inexpensive. At that time, the gas temperature at the outlet of the pyrolysis process is set as high as possible, and the catalyst used in the gas reforming process is one that reacts even at a lower temperature, for example, introduced into the gas reforming process at 900 ° C., and 500 ° C. However, if a reacting catalyst is used, the sensible heat of gas at 400 ° C. can be used for the endothermic reaction during the tar reforming.

ガス改質工程に用いる触媒は、タール分のクラッキング(熱分解)を促進させる触媒、もしくは、水蒸気によりタール分を改質する反応を促進させる触媒で、シリカ−アルミナ、ゼオライト、ドロマイト、ニッケル−アルミナ系、ニッケル−マグネシア系のニッケル系触媒や、セリウム酸化物担体の表面上に、触媒金属としてロジウムもしくはロジウム、ルテニウム、パラジウムまたは白金を担持したもののいずれか、もしくはその混合構成のいずれでも良い。触媒が活性化する温度範囲は、選定する材料により異なるが、いずれにおいても、触媒による反応促進作用により、触媒が無い場合に比べ、より低温でタール分の分解が可能となるので、得られるガスカロリーとガスの回収率は高くなる。   The catalyst used in the gas reforming process is a catalyst that promotes cracking (thermal decomposition) of the tar, or a catalyst that promotes the reaction of reforming the tar with water vapor. Silica-alumina, zeolite, dolomite, nickel-alumina Any of a nickel-based or nickel-magnesia-based catalyst, a cerium oxide support on which rhodium, rhodium, ruthenium, palladium or platinum is supported as a catalytic metal, or a mixed configuration thereof may be used. The temperature range at which the catalyst is activated varies depending on the material selected, but in any case, the reaction can be promoted by the catalyst, so that the tar content can be decomposed at a lower temperature than when there is no catalyst. The recovery rate of calories and gas is high.

ガス改質工程に用いる触媒反応器は、バニカム状やペレット状の触媒を充填した固定床式反応器、もくしは砂状の触媒を充填し、ガス流により触媒を流動化状態とした流動床式反応器のいずれでも良い。   The catalyst reactor used in the gas reforming process is a fixed bed reactor filled with a vanicum or pellet catalyst, or a fluidized bed filled with a sand catalyst and fluidized by a gas flow. Any of the reactors can be used.

熱分解工程及びガス改質工程の外熱源として利用して残った余剰の精製ガスは、ガスエンジンによる発電工程で発電利用する。この発電工程では、ガス精製工程で得られた精製ガスを利用するので高効率の発電が可能である。   The surplus purified gas remaining as an external heat source in the pyrolysis process and the gas reforming process is used for power generation in a power generation process using a gas engine. In this power generation process, since the purified gas obtained in the gas purification process is used, highly efficient power generation is possible.

また、得られた精製ガスから水素を分離し、燃料電池用水素として利用すると共に、水素分離後のオフガスをガスエンジン用燃料として利用することもできる。   In addition, hydrogen can be separated from the obtained purified gas and used as fuel cell hydrogen, and the off-gas after hydrogen separation can be used as gas engine fuel.

使用するバイオマスが低水分バイオマス(含水率:50質量%以下)であれば、乾燥工程を経ることなく直接、熱分解工程に供することができる。低水分バイオマスとしては、建設廃木材、間伐材等の木質系バイオマス、紙等が挙げられる。   If the biomass to be used is low moisture biomass (moisture content: 50% by mass or less), it can be directly subjected to the pyrolysis step without going through the drying step. Examples of low moisture biomass include construction waste wood, woody biomass such as thinned wood, and paper.

これに対して、高水分バイオマス(含水率:50質量%超)を使用する場合、これを乾燥工程によって乾燥させた後の乾燥バイオマスを熱分解工程に供する。この乾燥工程においては、熱分解工程及びガス改質工程の外熱排ガスと発電工程の排ガスの少なくとも一つを利用するより高水分バイオマスの乾燥を行うようにすることで、乾燥のための外部燃料を不要とすることができる。高水分バイオマスとしては、下水汚泥、し尿汚泥、それらの消化汚泥、脱水汚泥、家畜糞尿、食品廃棄物、もしくは、それらの堆肥化物のいずれか又は混合物が挙げられる。   On the other hand, when using high moisture biomass (moisture content: more than 50 mass%), the dried biomass after drying this by a drying process is used for a thermal decomposition process. In this drying process, the external fuel for drying is dried by drying at least one of the external heat exhaust gas from the pyrolysis process and the gas reforming process and the exhaust gas from the power generation process. Can be made unnecessary. Examples of the high moisture biomass include sewage sludge, human waste sludge, their digested sludge, dehydrated sludge, livestock manure, food waste, or composted materials thereof or a mixture thereof.

本発明においては、得られたバイオマスコークス(固定炭化物の圧縮成型品)を800℃以上に再加熱する再加熱工程を含むことができる。この再加熱処理により、バインダー中の炭素分により炭素分子間を結合させ黒鉛化度を上げることで、バイオマスコークスの熱間強度をさらに強くすることができる。本発明により得られたバイオマスコークスは、シャフト炉式溶融炉等の一般廃棄物直接溶融炉の溶融燃料用コークスとして利用することができ、とくに、上述のように再加熱処理したバイオマスコークスを使用すれば、揮発分が少ないため燃焼温度が高くなる。   In this invention, the reheating process of reheating the obtained biomass coke (compression molding product of fixed carbide) to 800 degreeC or more can be included. By this reheating treatment, the hot strength of biomass coke can be further increased by bonding the carbon molecules with the carbon content in the binder to increase the degree of graphitization. Biomass coke obtained by the present invention can be used as coke for molten fuel in a general waste direct melting furnace such as a shaft furnace type melting furnace. In particular, the biomass coke reheated as described above is used. In this case, the combustion temperature increases because of the low volatile content.

以上のとおり、本発明は以下の効果を奏する。   As described above, the present invention has the following effects.

1.バイオマス原料の性状を問わずに、少ない破砕動力、成型動力により、一般廃棄物直接溶融炉等で使用可能なバイオマスコークスを製造することができる。 1. Regardless of the nature of the biomass raw material, biomass coke that can be used in a general waste direct melting furnace or the like can be produced with less crushing power and molding power.

2.熱分解ガス中に含有するタール分を触媒により改質することで、タール分によるトラブルをなくことができる。また、触媒なしに比べ、低温で改質反応を促進することができるので、常温で利用可能なガスエネルギーの回収率を上げることができ、発電効率も上げることができる。 2. By modifying the tar content contained in the pyrolysis gas with a catalyst, troubles due to the tar content can be eliminated. Further, since the reforming reaction can be promoted at a low temperature as compared with the case without a catalyst, the recovery rate of gas energy that can be used at room temperature can be increased, and the power generation efficiency can be increased.

3.バイオマス由来のコークスを一般廃棄物直接溶融炉等に使用することで、化石燃料由来のCO発生量を低減でき、地球温暖化防止等の地球環境保全に寄与できる。 3. By using biomass-derived coke in a general waste direct melting furnace or the like, the amount of CO 2 generated from fossil fuels can be reduced, contributing to global environmental conservation such as prevention of global warming.

以下、添付図に基づき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明のバイオマスコークスの製造方法を示す工程図である。   FIG. 1 is a process diagram showing a method for producing biomass coke according to the present invention.

同図において、下水汚泥等の高水分バイオバスは、乾燥工程にて乾燥した後に熱分解工程に供される。乾燥工程には内熱式の乾燥炉を使用し、その熱源としては、後述する熱分解工程及びガス改質工程の外熱排ガスと発電工程及び再加熱工程の排ガスを利用する。この乾燥工程により、高水分バイオバスを含水率5〜20質量%程度の乾燥バイオマスとする。   In the figure, a high moisture biobath such as sewage sludge is subjected to a pyrolysis step after being dried in the drying step. An internal heating type drying furnace is used for the drying process, and as the heat source, an external heat exhaust gas in a thermal decomposition process and a gas reforming process, which will be described later, and an exhaust gas in a power generation process and a reheating process are used. By this drying step, the high moisture biobath is made dry biomass having a water content of about 5 to 20% by mass.

一方、木質系バイオマス等の低水分バイオマスは、直接、熱分解工程に供される。熱分解工程には外熱式ロータリーキルンを使用し、その外熱部の熱源として後述するガス精製工程で得られた精製ガスを導入し、700〜1000℃で燃焼する。この外熱部からの外熱排ガスは、上述のとおり乾燥工程の熱源として利用される。   On the other hand, low moisture biomass such as woody biomass is directly subjected to a pyrolysis process. An external heating type rotary kiln is used for the thermal decomposition process, the purified gas obtained in the gas purification process described later is introduced as a heat source for the external heating section, and burned at 700 to 1000 ° C. The external heat exhaust gas from the external heat section is used as a heat source for the drying process as described above.

外熱式ロータリーキルンのキルン炉殻は外熱部と遮断されており、キルン炉殻内に装入されたバイオマスは、空気遮断状態での間接加熱により400〜900℃に昇温されて、乾燥、熱分解し、熱分解ガスと固形炭化物に分離する。   The kiln furnace shell of the externally heated rotary kiln is cut off from the external heating part, and the biomass charged in the kiln furnace shell is heated to 400 to 900 ° C. by indirect heating in an air shut-off state, dried, Pyrolysis and separation into pyrolysis gas and solid carbide.

熱分解ガスは、バイオマス中の付着水分と揮発分が乾燥、熱分解により揮発したもので、CO、CO、H、CH主体の低沸点ガスと常温で液状化する高沸点の液状物質、いわゆるタール分と水蒸気とからなり、熱分解炉工程の出口温度で400〜900℃となる。 Pyrolysis gas is a low boiling point gas mainly composed of CO, CO 2 , H 2 , and CH 4 and a high boiling point liquid substance that is liquefied at room temperature. It consists of so-called tar and water vapor, and is 400 to 900 ° C. at the outlet temperature of the pyrolysis furnace process.

この熱分解ガスは触媒反応器からなるガス改質工程に導入され、触媒反応器において熱分解ガス中のタール分が触媒を用いた改質反応により、水素、一酸化炭素、メタンを主体とする低沸点のガスに変換される。触媒反応器は外熱式となっており、その外熱部の熱源として後述するガス精製工程で得られた精製ガスを導入して700〜1000℃の温度で燃焼し、タール分改質時の吸熱反応熱を間接的に補填する。触媒反応器の外熱部からの外熱排ガスは、上述のとおり乾燥工程の熱源として利用される。   This pyrolysis gas is introduced into a gas reforming process comprising a catalytic reactor, and the tar content in the pyrolysis gas is mainly composed of hydrogen, carbon monoxide, and methane by the reforming reaction using the catalyst in the catalytic reactor. Converted to low boiling point gas. The catalytic reactor is of the external heating type, and the purified gas obtained in the gas purification step described later is introduced as a heat source of the external heating portion and burned at a temperature of 700 to 1000 ° C. It indirectly compensates for the endothermic reaction heat. The external heat exhaust gas from the external heat part of the catalytic reactor is used as a heat source for the drying process as described above.

ガス改質工程を出た改質後の熱分解ガス(改質ガス)は、スクラバーを利用したガス精製工程で、冷却、除塵、脱硫、脱塩される。スクラバー出口の温度は60℃以下、より好ましくは40℃以下に十分低くして含有水蒸気を抑え、高熱量でクリーンな熱分解ガス(精製ガス)とする。この精製ガスは、上述のとおり熱分解工程及びガス改質工程の外熱源として利用される。本実施例では後述する再加熱工程の熱源とても精製ガスを利用する。余剰の精製ガスは発電工程においてガスエンジンで発電利用される。精製ガスの他の用途として、精製ガスから水素を分離し、燃料電池用水素として利用すると共に、水素分離後のオフガスを発電工程のガスエンジン用燃料として利用することもできる。   The reformed pyrolysis gas (reformed gas) exiting the gas reforming process is cooled, dedusted, desulfurized, and desalted in a gas purification process using a scrubber. The temperature at the scrubber outlet is sufficiently lowered to 60 ° C. or less, more preferably 40 ° C. or less to suppress the contained water vapor, and a high-heat and clean pyrolysis gas (purified gas) is obtained. As described above, this purified gas is used as an external heat source in the thermal decomposition process and the gas reforming process. In this embodiment, a refining gas is used as a heat source for the reheating process described later. The surplus refined gas is used by the gas engine in the power generation process. As other uses of the purified gas, hydrogen can be separated from the purified gas and used as fuel cell hydrogen, and the off-gas after hydrogen separation can be used as a fuel for a gas engine in a power generation process.

一方、熱分解工程で得られる固形炭化物は、熱分解温度によって一部揮発分が残留するが、大部分は、固定炭素分と灰分とからなる炭化物であり、熱分解工程の出口温度で400〜900℃となる。   On the other hand, the solid carbide obtained in the pyrolysis step partially retains volatile matter depending on the pyrolysis temperature, but most of the solid carbide is a carbide composed of fixed carbon and ash, and has an outlet temperature of 400 to 400 at the pyrolysis step. 900 ° C.

この固形炭化物は粉砕工程において、例えば粒径200μm以下に微粉砕される。この微粉砕された固形炭化物に外掛けで20質量%程度のバインダーを添加、混合し、造粒工程において加圧成型し、バイオマスコークスとする。   This solid carbide is finely pulverized, for example, to a particle size of 200 μm or less in the pulverization step. About 20% by mass of binder is added to the finely pulverized solid carbide as an outer shell, mixed, and pressure-molded in the granulation step to obtain biomass coke.

バインダーとしては、タール・ピッチ系バインダー、プラスチック、水、水ガラス、セメント、セルロースのいずれか、もしくはその混合物が使用できるが、好ましくはタール・ピッチ系バインダーを使用する。バインダー混合後の加圧成型は、押出成型機、ダブルロール成型機等の加圧成型機を使用して行い、その加圧圧力は例えば300〜3000MPa程度とする。   As the binder, a tar / pitch binder, plastic, water, water glass, cement, cellulose, or a mixture thereof can be used, and a tar / pitch binder is preferably used. The pressure molding after mixing the binder is performed using a pressure molding machine such as an extrusion molding machine or a double roll molding machine, and the pressure is about 300 to 3000 MPa, for example.

造粒工程で得られたバイオマスコークスは、シャフト炉式溶融炉等の一般廃棄物直接溶融炉の溶融燃料用コークスとして使用する。この溶融炉利用時に温度上昇にしても揮発分はバインダー分が主体のため、熱間での強度は維持できる。   The biomass coke obtained in the granulation step is used as molten fuel coke in a general waste direct melting furnace such as a shaft furnace type melting furnace. Even if the temperature rises when using this melting furnace, the volatile matter is mainly the binder, so the strength during hotness can be maintained.

バイオマスコークスの熱間強度をさらに強くするには、造粒工程で得られたバイオマスコークスを再加熱工程において800℃以上に再加熱する。これにより、バインダー中の炭素分により炭素分子間が結合され黒鉛化度が上がるので、バイオマスコークスの熱間強度がさらに強くなる。この再加熱工程には内熱式加熱炉を使用し、その熱源としては上述のとおり精製工程で得られた精製ガスを利用する。また、再加熱工程の排ガスは、上述した乾燥工程の熱源として利用する。   In order to further increase the hot strength of the biomass coke, the biomass coke obtained in the granulation step is reheated to 800 ° C. or higher in the reheating step. As a result, carbon molecules are bonded to each other by the carbon content in the binder and the graphitization degree is increased, so that the hot strength of the biomass coke is further increased. An internal heating furnace is used for the reheating process, and the purified gas obtained in the purification process as described above is used as the heat source. Further, the exhaust gas from the reheating process is used as a heat source for the above-described drying process.

本発明のバイオマスコークスの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the biomass coke of this invention.

Claims (8)

バイオマスを空気遮断状態での間接加熱により400〜900℃の熱分解ガスと固形炭化物に分離する熱分解工程と、熱分解工程で得られた熱分解ガス中に含有する常温常圧で液化する高沸点液状ガスを400〜900℃で反応する触媒を用いた改質反応によって常温常圧で液化しない水素、一酸化炭素、メタン等の低沸点のガスに変換するガス改質工程と、改質後の改質ガスを冷却、浄化してガス中の水分、腐食成分及び重金属を除去するガス精製工程と、熱分解工程で得られた固形炭化物を微粉砕する粉砕工程とを含み、微粉砕された固形炭化物にバインダーを添加して加圧成型により造粒する造粒工程によりバイオマスコークスを製造することを特徴とするバイオマスコークスの製造方法。   A pyrolysis process in which biomass is separated into a pyrolysis gas of 400 to 900 ° C. and solid carbide by indirect heating in an air shut-off state, and a high temperature liquefaction at normal temperature and normal pressure contained in the pyrolysis gas obtained in the pyrolysis process A gas reforming step for converting a low-boiling point liquid gas into a low-boiling point gas such as hydrogen, carbon monoxide, and methane, which is not liquefied at room temperature and normal pressure, by a reforming reaction using a catalyst that reacts at 400 to 900 ° C. The refined gas was cooled and purified to remove moisture, corrosive components and heavy metals in the gas, and a pulverization step to finely pulverize the solid carbide obtained in the thermal decomposition step. A method for producing biomass coke, characterized in that biomass coke is produced by a granulation step in which a binder is added to solid carbide and granulated by pressure molding. ガス精製工程で得られた精製ガスを熱分解工程、又は熱分解工程及びガス改質工程の外熱源として利用すると共に、その余剰精製ガスをガスエンジンで発電利用する発電工程を含む請求項1に記載のバイオマスコークスの製造方法。   The power generation process includes using the purified gas obtained in the gas purification process as an external heat source for the thermal decomposition process, or the thermal decomposition process and the gas reforming process, and using the surplus purified gas for power generation by a gas engine. The manufacturing method of biomass coke as described. 熱分解工程に供するバイオマスが、建設廃木材、間伐材等の低水分バイオマスである請求項1又は2に記載のバイオマスコークスの製造方法。   The method for producing biomass coke according to claim 1 or 2, wherein the biomass to be subjected to the pyrolysis step is low moisture biomass such as construction waste wood and thinned wood. 熱分解工程及びガス改質工程の外熱排ガスと発電工程の排ガスの少なくとも一つを利用することにより、高水分バイオマスの乾燥を行う乾燥工程を含み、この乾燥工程によって得られる乾燥バイオマスを熱分解工程に供する請求項2に記載のバイオマスコークスの製造方法。   It includes a drying process to dry high-moisture biomass by using at least one of the external heat exhaust gas from the pyrolysis process and gas reforming process and the exhaust gas from the power generation process, and the dry biomass obtained by this drying process is pyrolyzed The manufacturing method of the biomass coke of Claim 2 with which it uses for a process. 使用する高水分バイオマスが、下水汚泥、し尿汚泥、それらの消化汚泥、脱水汚泥、家畜糞尿、食品廃棄物、もしくは、それらの堆肥化物のいずれか又は混合物である請求項4に記載のバイオマスコークスの製造方法。   The biomass coke according to claim 4, wherein the high moisture biomass used is sewage sludge, human waste sludge, digested sludge thereof, dehydrated sludge, livestock manure, food waste, or composted materials thereof or a mixture thereof. Production method. 得られたバイオマスコークスを800℃以上に再加熱する再加熱工程を含む請求項1〜5のいずれかに記載のバイオマスコークスの製造方法。   The manufacturing method of the biomass coke in any one of Claims 1-5 including the reheating process which reheats the obtained biomass coke to 800 degreeC or more. 得られたバイオマスを、廃棄物のシャフト炉式溶融炉の溶融燃料用コークスとして利用する請求項1〜6のいずれかに記載のバイオマスコークスの製造方法。   The method for producing biomass coke according to any one of claims 1 to 6, wherein the obtained biomass is used as molten fuel coke in a shaft furnace type melting furnace for waste. 得られた精製ガスから水素を分離し、燃料電池用水素として利用すると共に、水素分離後のオフガスをガスエンジン用燃料として利用する請求項1〜7のいずれかに記載のバイオマスコークスの製造方法。   The method for producing biomass coke according to any one of claims 1 to 7, wherein hydrogen is separated from the obtained purified gas and used as fuel cell hydrogen, and off-gas after hydrogen separation is used as fuel for a gas engine.
JP2005106661A 2005-04-01 2005-04-01 Method of manufacturing biomass coke Withdrawn JP2006282914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106661A JP2006282914A (en) 2005-04-01 2005-04-01 Method of manufacturing biomass coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106661A JP2006282914A (en) 2005-04-01 2005-04-01 Method of manufacturing biomass coke

Publications (1)

Publication Number Publication Date
JP2006282914A true JP2006282914A (en) 2006-10-19

Family

ID=37405158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106661A Withdrawn JP2006282914A (en) 2005-04-01 2005-04-01 Method of manufacturing biomass coke

Country Status (1)

Country Link
JP (1) JP2006282914A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246452A (en) * 2007-03-30 2008-10-16 Gunma Univ Dry treatment method for nitrogen-containing waste and apparatus therefor
JP2009046726A (en) * 2007-08-20 2009-03-05 Jp Steel Plantech Co Steelmaking method in arc furnace
JP2010242035A (en) * 2009-04-10 2010-10-28 Jfe Steel Corp Manufacturing process of biomass charcoal
JP2012052060A (en) * 2010-09-03 2012-03-15 Miike Iron Works Co Ltd Manufacturing method and plant for solid fuel
JP2013082997A (en) * 2011-09-28 2013-05-09 Jfe Steel Corp Converter steelmaking method
KR101458681B1 (en) * 2010-02-10 2014-11-05 에스지엘 카본 에스이 Method for producing a molded part from a carbon material using recycled carbon fibers
JP5636527B1 (en) * 2014-02-07 2014-12-10 明和工業株式会社 Carbonization method
CN104538644A (en) * 2014-12-18 2015-04-22 广东省生态环境与土壤研究所 Preparation method and application of sludge carbon plate electrode
CN104531216A (en) * 2015-01-06 2015-04-22 梁佩贤 Biomass gas electricity generation and combined heat and electricity supply technology
JP2015120924A (en) * 2015-02-04 2015-07-02 株式会社御池鐵工所 Manufacturing method and manufacturing plant for solid fuel
CN105776796A (en) * 2016-04-11 2016-07-20 浙江大学 Method of reducing heavy metal bio-availability through pig manure pyrolysis and biochar application of pig manure
CN107002169A (en) * 2014-12-09 2017-08-01 埃尔凯姆有限公司 For the integrated approach for the Energy Efficient for producing metal or alloy
CN107236558A (en) * 2016-03-29 2017-10-10 北京三聚环保新材料股份有限公司 A kind of handling process of biomass
CN107236557A (en) * 2016-03-29 2017-10-10 北京三聚环保新材料股份有限公司 A kind of process for upgrading of biomass moulding material
CN115572033A (en) * 2022-09-19 2023-01-06 北京城市排水集团有限责任公司 Two-stage carbonization system and method for preparing sludge carbon

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246452A (en) * 2007-03-30 2008-10-16 Gunma Univ Dry treatment method for nitrogen-containing waste and apparatus therefor
JP2009046726A (en) * 2007-08-20 2009-03-05 Jp Steel Plantech Co Steelmaking method in arc furnace
JP2010242035A (en) * 2009-04-10 2010-10-28 Jfe Steel Corp Manufacturing process of biomass charcoal
KR101458681B1 (en) * 2010-02-10 2014-11-05 에스지엘 카본 에스이 Method for producing a molded part from a carbon material using recycled carbon fibers
JP2012052060A (en) * 2010-09-03 2012-03-15 Miike Iron Works Co Ltd Manufacturing method and plant for solid fuel
JP2013082997A (en) * 2011-09-28 2013-05-09 Jfe Steel Corp Converter steelmaking method
TWI574750B (en) * 2014-02-07 2017-03-21 明和工業股份有限公司 Carbonization process
WO2015119228A1 (en) * 2014-02-07 2015-08-13 明和工業株式会社 Carbonization method
JP5636527B1 (en) * 2014-02-07 2014-12-10 明和工業株式会社 Carbonization method
CN107002169A (en) * 2014-12-09 2017-08-01 埃尔凯姆有限公司 For the integrated approach for the Energy Efficient for producing metal or alloy
US10392678B2 (en) 2014-12-09 2019-08-27 Elkem Asa Energy efficient integrated process for production of metals or alloys
CN104538644A (en) * 2014-12-18 2015-04-22 广东省生态环境与土壤研究所 Preparation method and application of sludge carbon plate electrode
CN104531216A (en) * 2015-01-06 2015-04-22 梁佩贤 Biomass gas electricity generation and combined heat and electricity supply technology
JP2015120924A (en) * 2015-02-04 2015-07-02 株式会社御池鐵工所 Manufacturing method and manufacturing plant for solid fuel
CN107236558A (en) * 2016-03-29 2017-10-10 北京三聚环保新材料股份有限公司 A kind of handling process of biomass
CN107236557A (en) * 2016-03-29 2017-10-10 北京三聚环保新材料股份有限公司 A kind of process for upgrading of biomass moulding material
CN105776796A (en) * 2016-04-11 2016-07-20 浙江大学 Method of reducing heavy metal bio-availability through pig manure pyrolysis and biochar application of pig manure
CN115572033A (en) * 2022-09-19 2023-01-06 北京城市排水集团有限责任公司 Two-stage carbonization system and method for preparing sludge carbon

Similar Documents

Publication Publication Date Title
JP2006282914A (en) Method of manufacturing biomass coke
Yoon et al. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier
JP4267968B2 (en) Biomass processing method
JP2005112956A (en) Gasification method for biomass
JP2006225483A (en) Method for carbonizing biomass
JP2015025145A (en) Method and device for producing low-tar synthesis gas from biomass
JP2010533769A (en) Steam hydrogenation gasification method and apparatus with increased conversion time
Lan et al. Research on the characteristics of biomass gasification in a fluidized bed
JP2009057438A (en) Method for manufacturing semi-dry distilled biomass carbon micropowder and method for using the same
WO2010119973A1 (en) Hydrocarbon oil production system and method for producing hydrocarbon oil
JP2008260832A (en) Method for waste regeneration treatment and system for waste regeneration treatment
CN108314040A (en) A kind of method of wood substance grain gasifying electricity generation co-producing active carbon
JP5385396B2 (en) Method for producing hydrogen-containing gas
JP5460970B2 (en) Woody biomass gas reforming system
Niu et al. Enriched‐Air Gasification of Refuse‐Derived Fuel in a Fluidized Bed: Effect of Gasifying Conditions and Bed Materials
JP7140341B2 (en) Hydrogen production method using biomass as raw material
JP2009543934A (en) Steam hydrogenation gasification method and apparatus in fluidized bed reactor
US20230348276A1 (en) Methods and systems for producing an enhanced surface area biochar product
CN104046373B (en) The method being prepared bio-oil and synthesis gas by biomass
CN105925282A (en) Biomass thermal conversion device and method based on carbon cycle
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
Kuo et al. Impact of using calcium oxide as a bed material on hydrogen production in two-stage fluidized bed gasification
JP2016204235A (en) Gasification apparatus and gas production method
JP2020040861A (en) Method and apparatus for producing amorphous silica
JP4155507B2 (en) Biomass gasification method and gasification apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603