JP4267968B2 - Biomass processing method - Google Patents

Biomass processing method Download PDF

Info

Publication number
JP4267968B2
JP4267968B2 JP2003137548A JP2003137548A JP4267968B2 JP 4267968 B2 JP4267968 B2 JP 4267968B2 JP 2003137548 A JP2003137548 A JP 2003137548A JP 2003137548 A JP2003137548 A JP 2003137548A JP 4267968 B2 JP4267968 B2 JP 4267968B2
Authority
JP
Japan
Prior art keywords
gas
reforming
carbide
pyrolysis
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003137548A
Other languages
Japanese (ja)
Other versions
JP2004339360A (en
Inventor
靖裕 末岡
猛 甘利
裕姫 本多
岳洋 橘田
衛 荒岡
Original Assignee
三菱重工環境エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境エンジニアリング株式会社 filed Critical 三菱重工環境エンジニアリング株式会社
Priority to JP2003137548A priority Critical patent/JP4267968B2/en
Publication of JP2004339360A publication Critical patent/JP2004339360A/en
Application granted granted Critical
Publication of JP4267968B2 publication Critical patent/JP4267968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、間伐材、流木材、剪定材、建築廃材などの木材チップ、雑草、牧草、砂糖きびなどの草本系物、籾殻、牛糞、その他の木質系系バイオマス原料を炭化させた後、発電、活性炭の製造等の所定の目的に使用させるバイオマス処理方法に関する。
【0002】
【従来の技術】
人類の生活や社会の進歩を支えるために、エネルギーや資源は不可欠であるが、環境保全を図りながらエネルギー・資源を確保する必要性が強く認識されており、太陽エネルギーが形をかえて貯蓄されたバイオマスを利用する技術、即ち、再生可能なバイオマス資源をエネルギー、工業原材料等に変換するバイオマス変換技術が注目されている。例えば、大気中の二酸化炭素(CO)濃度は年間1.8ppmの割合で増加しており、CO濃度上昇による地球温暖化の進行が問題になっている。大気中のCOは光合成反応によりバイオマスとして固定されるが、バイオマスをそのまま放置すると腐敗により再びCOやメタンとして大気中に戻る。この大気中の再入を防止するためにバイオマスの処理方法が種々提案されている。
【0003】
従来のバイオマス処理方法としては、例えば発酵法や熱水分解法等によるアルコール転換方法が提案されているが、前者の発酵法は、糖分とでんぷん質しか原料とならず、発酵時間がかかるので大量の発酵タンクを設置する必要があると共に、後者の熱水分解法では高温・高圧・低収率、という問題がある。また、共に供給したバイオマスの残渣物が多く発生し、バイオマスの利用率が低いという問題もある。
【0004】
一方、バイオマスをガス化する場合においては、例えば固定床或いは流動床等のガス化炉等を用いるようにしていたが、バイオマスの粒子の表面のみが反応し、内部まで均一に反応しないことにより、タールが発生し、生成したガス化ガスは、H、COが少ないため、メタノール合成の原料とならない。また、上記発生したタールが炉内へ付着すると共に、後流側に設置する機器等への付着等が起こり、運転に不具合を来す、という問題がある。
【0005】
そこで、従来においては、酸素を多量に供給することで高温で燃焼することとしたが、この場合部分的に1200℃を超える高温域が形成され、ガスにならずに、バイオマス自身が燃焼し、スート化してしまうという問題がある。
【0006】
かかる欠点を解消するために、特開平11−286692号(特許文献1)において、前記バイオマス原料を、予め30cm未満、好ましくは15cm未満、より好ましくは5cm未満の粒子サイズにサイズを減少した後、該サイズ減少したバイオマス物質を350〜650℃の温度で熱分解に供し、(a)外部から導入した酸素リッチガスおよび場合に応じてスチームの影響下に、該熱分解の過程で放出されたガスを、凝縮させることなく、1100〜1600℃の温度でクラッキング(改質)処理に供し、(c)該熱分解の過程で遊離された残渣を0.5〜1.5バールの圧力下、1200〜1700℃の温度でガス化し、気化させ、または場合に応じて、還元性条件の下で溶融させ、(d)段階(c)で得られた溶融スラグまたは金属濃縮物を廃棄し、または場合に応じて回収し、(e)段階(b)および(c)の過程で得られた生成物ガスを併せるか、または併せずに、ガスクリーニングに供する技術が提案されている。
【0007】
しかしながらかかる従来技術は、熱分解の過程で放出されたガスを、凝縮させることなく、1100〜1600℃の温度でクラッキング処理に供したり、熱分解の過程で遊離された残渣を1200〜1700℃の温度でガス化し、気化させ、または場合に応じて、還元性条件の下で溶融させるという高温処理工程が必要であり、結果として処理工程の大型化と耐熱性を必要とし、装置全体の高コスト化につながる。
【0008】
バイオマスからメタノール等の有効な合成ガスを、小規模な装置で、効率よく作り出すことのできるバイオマスのガス化方法及び装置として特開2003−49177号(特許文献2)に示す技術が提案されている。
【0009】
かかる技術は、バイオマス燃料を燃焼ガス化炉内の熱分解ゾーンで燃焼して熱分解ガスCH化を行い、この熱分解ガスCHを前記熱分解ゾーンの下方位置の燃焼層ゾーンに吸引して高温の水蒸気と空気の混合気に反応させて酸化し、さらに、その下方の還元層、改質層で改質ガスを得、この改質ガスから灰分と未反応タール分を除去して精製ガスを得る。また、精製ガスを得た後に、通過する精製ガスの潜熱による改質層ゾーンへ供給する水蒸気と空気を加熱してエネルギーを有効利用するものであるが、ガスの改質は1000℃前後の温度場で水蒸気を供給してH、CO主体の汎用ガスに改質する高温仕様となるため燃焼ガス化炉が熱分解炉と一体の改質炉として構成しても炉自体のコストが嵩む欠点があった。
【0010】
又、熱分解ゾーンと改質ゾーンを一体化しているために、燃焼ガス化炉内の温度が800〜1000℃と高い状態で空気を導入してガス改質を図るために、熱分解で分解された固形炭化分が改質ゾーン側に落下し、改質ゾーン側で燃焼に寄与してしまうものであるためにバイオマスの炭化物としての固形分の有効利用につながらない。
特にバイオマスから生成されるメタノール(CHOH)やメタン若しくはCOは、これに対応する燃料ガスとしての天然ガスが安いので、バイオマス処理システムでは単に合成ガスを作って発電しても経済的に対応できないのみならず、化石燃料としての天然ガスの方がブタンやプロパンを含むために高カロリーであり、一方、前記したバイオマスから生成されるメタノール(CHOH)やメタン若しくはCOは炭素基が一つであるために、高カロリーとなり得ず、このため通常のボイラー式発電機の利用が困難であり、工業的にも汎用性が大きくない。
【0011】
なお、木質系バイオマスの代表的な利活用システムとしては、直接燃焼発電システム等の適用が検討されているが、発電効率は送電端で10〜15%程度であり、高いエネルギー転換効率が望めず、また、化石燃料代替としてのCO増加抑制効果はあるものの直接的なCO削減にはつながらない。
又、木質系バイオマスの代表的な利用システムとして、炭化・ガス化してガスは燃焼しボイラー等で熱回収すると共に炭化物は燃焼等に利用するシステムがあるが、炭化物は嵩張るため、燃料として外部利用する場合輸送コストが嵩むと共に灰塵等のハンドリング上の問題があった。
【0012】
【特許文献1】
特開平11−286692号
【特許文献2】
特開2003−49177号
【0013】
【発明が解決しようとする課題】
本発明の目的は、かかる従来技術の課題に鑑み、バイオマスを熱分解後の固形分としても合成ガスとしても有効利用を図り、トータル処理コストの低減及び有価物としての有効利用を図ったバイオマス処理方法を提供することにある。
本発明の他の目的はバイオマスの熱分解で得られた炭化物の有効利用を図るとともにそのハンドリング性の向上を図ったバイオマス処理方法を提供することにある。
本発明の他の目的は、バイオマスから生成されるメタン若しくはCO等の低カロリーガスを有効に利用して円滑且つ高効率な発電を可能にしたバイオマス処理方を提供することにある。
【0014】
【課題を解決するための手段】
かかる課題を解決するために、本発明の第1の発明は、20〜80mm篩いメッシュに粗破砕した木質系バイオマス原料を300〜600℃の温度で酸素不足下のロータリキルンで炭化処理して熱分解ガスとともに多孔質炭化物を得るとともに、前記熱分解ガスを高沸点成分の凝縮点以下で且つ100℃以上に冷却して熱分解ガスCH中の水蒸気が凝縮せずに高沸点成分を除去した後に、前記熱分解ガスを改質空間に投入して、前記熱分解ガスの改質空間温度を800〜1100℃に設定するとともに、前記多孔質炭化物を0.5〜5mm粒度に調整して前記改質空間内に投入して多孔質炭化物の賦活を行うことを特徴とする。
又第2の発明は、20〜80mm篩いメッシュに粗破砕した木質系バイオマス原料を300〜600℃の温度で酸素不足下のロータリキルンで炭化処理して熱分解ガスとともに多孔質炭化物を得るとともに、前記熱分解ガスを高沸点成分の凝縮点以下で且つ100℃以上に冷却して熱分解ガスCH中の水蒸気が凝縮せずに高沸点成分を除去した後に、前記熱分解ガスを改質空間に投入して、前記熱分解ガスの改質空間温度を800〜1100℃に設定するとともに、前記多孔質炭化物を0.5mm未満粒度に調整して前記改質空間内に投入して多孔質炭化物のガス化を行うことを特徴とするバイオマス処理法にある。
即ち、前記熱分解ガスの改質空間温度を800〜1100℃に設定するとともに、前記多孔質炭化物0.5〜5mm粒度に調整して前記改質空間内に投入すれば、多孔質炭化物の賦活を行うことが出来、前記多孔質炭化物を0.5mm未満粒度に調整して前記改質空間内に投入して多孔質炭化物のガス化を行うがことが出来る。
従ってかかる発明によれば固体燃料としての炭化物C(化石燃料代替利用)、環境浄化に利用の活性炭AC、及び発電エネルギの3種が、粉砕機での炭化物Cの粒度調整によりその生成量と配分割合を需要に応じて自在に調整出来、特に改質賦活炉の温度条件は炭化物を活性炭化する賦活温度条件を兼ねることが可能であり、水蒸気量、炭化物粒度を調整することにより、炭化物のガス化率(活性炭収率)を制御できるのみならず、分解ガスを高カロリーガスに改質(水蒸気改質)し、ガスエンジン(発電効率36%)により発電することにより高効率にエネルギー転換可能であり、COの直接削減にもつながる独自の炭化・ガス改質発電システムとして、経済的で広く社会に受け入れられる木質系バイオマスの利用システムを確立出来る。
【0015】
そしてかかる発明は、好適には粗破砕した木質系バイオマス原料を300〜600℃の温度で炭化処理して熱分解ガスとともに多孔質炭化物を得る炭化装置と、該多孔質炭化物を下流側の目的に応じて所定粒度に粉砕する粉砕装置と、前記熱分解ガスの改質を行うとともに該改質空間内に前記粉砕多孔質炭化物を投入して賦活を行う改質賦活炉とを備えて構成され、この場合前記粉砕装置が、目的製造物に応じて前記多孔質炭化物を所定粒度に調整可能な粉砕装置であることがよく、又前記改質賦活炉の炉内温度を800〜1100℃に設定するとともに、前記炉内の熱分解ガス導入口の下方に多孔質炭化物の導入口を設けることにより改質と賦活が円滑に行われる。
【0016】
又、前記改質賦活炉により改質された改質ガスによって駆動されるガスエンジン発電装置若しくは燃料電池型発電装置を設けるのがよい。
特に前記改質ガスには炭化物Cの賦活により生成したガスも含むために、数千Kcal/kgの高カロリーガスを得ることが出来、更にガスエンジン(発電効率36%)により発電することにより高効率にエネルギー転換が可能であり、送電端効率は20〜25%が見込める。
又、前記改質ガスにはH成分も多く含むために、燃料電池型発電装置に有効利用が可能である。
又、本発明は、前記熱分解ガスを冷却分離して得た液状成分を前記多孔質炭化物を粉砕して得た粉砕多孔質炭化物に混合して流動燃料を製造すれば、高カロリーでハンドリング性のよい燃料を得ることが出来る。
【0017】
このような発明の具体的な構成として粗破砕した木質系バイオマス原料を300〜600℃の温度で炭化処理して熱分解ガスとともに多孔質炭化物を得る炭化装置と、該炭化装置より得た熱分解ガスを冷却し液状成分を分離する冷却手段と、前記多孔質炭化物を粉砕する粉砕手段と、前記冷却手段より分離された液状成分を前記粉砕多孔質炭化物に混合して流動燃料を得る手段とを備えて構成される。
この場合に前記冷却手段の冷却温度が、高沸点成分の凝縮点以下で且つ100℃以上に設定されているのがよい。
これにより熱分解ガスCH中の水蒸気が凝縮せずに、改質賦活炉に供給する水蒸気の補完が出来るのみならず、分離された液状成分側に水分が混ざらずに、後記する流動燃料としての利用が可能となる。
【0018】
そしてこのような流動燃料は、前記炭化装置に設けた専用バーナに供給することにより、炭化工程の熱源として、改質ガスを熱源として用いることなく、生産物としての改質ガスの回収率が低下する等の問題の解決が出来る。
【0019】
又、本発明は粗破砕した木質系バイオマス原料を300〜600℃の温度で炭化処理して熱分解ガスとともに多孔質炭化物を得る炭化装置と、前記熱分解ガスをFCC廃触媒を流動媒体として改質を行う循環流動層炉と、前記FCC廃触媒の再生を行う再生炉を備え、前記循環流動層炉と再生炉の炉内温度がいずれも1000℃以下であることを特徴とする。
かかる発明によれば前記夫々の炉の流動媒体はFCCの廃触媒を利用して改質炉は触媒存在下で行うので温度条件を700〜800℃前後の低温領域で行うことができ、改質炉の低コスト化が図れるとともに、前記改質触媒はFCC廃触媒を活用するので低コスト処理が可能であり、循環流動層は攪拌効果が大きく、反応速度が大きくなるので、設備のコンパクト化が図れる。
又、前記炭化装置は、ロータリキルンを用いることにより、機械的な強制攪拌により300〜600℃の低温度でも改質が可能となる。
【0020】
又、本発明の第3の発明は、20〜80mm篩いメッシュに粗破砕した木質系バイオマス原料を300〜600℃の温度で酸素不足下のロータリキルンで炭化処理して熱分解ガスとともに多孔質炭化物を得るとともに、前記熱分解ガスを高沸点成分の凝縮点以下で且つ100℃以上に冷却して得た液状成分を、前記多孔質炭化物を粉砕して得た粉砕多孔質炭化物に混合して流動燃料を製造することを特徴とするバイオマス処理法にある。
【0021】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は間伐材、流木材、剪定材、建築廃材などの木材チップ、雑草、牧草、砂糖きびなどの草本系物、籾殻、牛糞、その他の木質系バイオマス原料の炭化・発電システムの全体フローを示す基本システムフロー図である。
図1において、1は木質系バイオマス原料の粗破砕機で、打撃式のハンマーミルや鋸歯等のカッタ若しくは粉砕機等を利用して木質系バイオマスを100mm篩いメッシュ以下、好ましくは20〜80mm篩いメッシュ程度に粗破砕する。
この場合、木質系バイオマス原料は延性を有するため粉砕され難く、10〜20mm篩いメッシュ以下では粉砕コストが幾何級数的に大きくなるのみならず、後記する活性炭ACとしての有効利用が図れない。
又、100mm篩いメッシュ以上では後記する300〜600℃前後での低温のロータリキルン3で攪拌した場合に表面のみ熱分解して内部まで熱分解することは出来ない。
さてこのような粗破砕機1は必ずしも炭化・発電システムの隣接地域に置く必要はなく、該システムと離れた木材集積場等においてもよい。
例えば森林などの計画的伐採地域では、森林涵養機能が正常に機能するように多年的な森林計画が遂行される地域では、この計画に基づき林木の主伐、間伐が行われており、伐採した木質系バイオマスを回収している。このような地域では木材が集積される水源周辺地域の製材所に粗破砕機1を配設する場合もある。
又、工場及び一般家屋などからは製材廃材、建築廃材においてもこれらの現場に粗破砕機1を設置して粗破砕を行うのがよい。
【0022】
そしてこのように木材集積地側で粗破砕を行ったバイオマスはトラック等の輸送手段を用いて処理システムに送られる。又は処理システムに隣接して粗破砕機1を設置した場合は、バケットコンベヤやクレーンにより粗破砕バイオマス集積場2に収納され、つり上げクレーンを介してロータリキルン3側のホッパに投入して前記粗破砕バイオマスを酸素不足状態で熱分解させて炭化物と熱分解ガスCHを生成させる。
このようなロータリキルン3は熱分解ドラム3aとその周囲に熱ガスが流通する外殻3bを有し、前記外殻3bにはバーナ40で加熱された熱ガスが導入され、内殻側の熱分解ドラム3a内を300℃〜600℃に維持される。
【0023】
熱分解ドラム3aは、その回転により粗破砕バイオマスを加熱攪拌しながら熱分解ガスCHと炭化物Cが生成し,熱分解ガスCHは改質賦活炉5に送られ,炭化物Cは固体燃料として利用するか若しくは粉砕機4で所定粒度に粉砕した後、改質賦活炉5に供給して賦活を行う。
より具体的に説明するに、ロータリキルン3ではC1からなる木質系セルローズを酸素不足下で300〜600℃の加熱、より好ましくは400〜500℃の加熱により炭化水素系の熱分解ガスCHと炭化物Cに分解される。
ここで下限を300℃に限定したのは、これより低い温度では熱分解が困難であるのみならず、熱分解して生成されるタール分が蒸発せずに、熱分解ドラム3a内壁に付着してしまう恐れがあるからである。
又、600℃以上の加熱では、熱分解ドラム3aに耐熱材料を用いなければならず、コストアップにつながるのみならず、後記するように炭化物Cを賦活する際の吸着孔の生成がこれ以上の温度では孔が目つぶれして好ましい活性炭ACが形成できないためである。
【0024】
改質賦活炉5は、底部が先細の円筒ドーム状をなし、炉頂部より前記熱分解ガスCHとともに、酸素Oと水蒸気HOを導入して約800〜1100℃、好ましくは900〜1000℃で改質を行うとともに、その炉途中位置より所定粒度に粉砕した炭化物Cを投入し、該粉砕炭化物Cの賦活を行い、活性炭ACの製造を行う。
熱分解ガスCHの改質は、酸素不足下で炭化水素を燃焼して生成されたCOを水蒸気とともに、高温のガス化反応場に供給することにより、水蒸気は当該雰囲気に晒されて高温(約900℃程度)になり、高温となった水蒸気により、(炭化水素)+HO←→CO+HというCOシフト反応が右辺側へ進み、H濃度を向上することができる。
すなわち改質賦活炉5の上部の還元ゾーンでは、酸素が奪われ、さらに、この還元層ゾーンの下方の改質層ゾーンでは、以下の反応で、タール分をCOとHへと改質する。
C+CO→2CO、C+HO→CO+H …1)
+nHO→nCO+(n+1/2・m)H …2)
これらの反応は、800℃程度以上の高温でなければ起こらず、しかも、吸熱反応であるため、水蒸気に酸素を混ぜて、次の反応によって改質に必要なエネルギーを供給する。
C+O→CO …3)
C+1/2・O→CO …4)
【0025】
そして更に前記粉砕機4で所定粒度に粉砕された炭化物Cを前記改質賦活炉空間の途中の還元ゾーンより下方に導入することにより炭化物Cが水蒸気と反応して活性炭ACの製造、即ち賦活が可能となる。
即ち図4に示すように、前記粉砕炭化物Cは、粗破砕バイオマス(A)をロータローキルン3によって300〜600℃、好ましくは400〜500℃で蒸し焼き状態で炭化することにより多孔質状態(B)になり、更に前記改質賦活炉5で酸素不足状態で水蒸気とともに、800〜1000℃の温度で熱処理を行うことにより、前記多孔質部分が水性ガス化(C+HO→CO+H)、(C)に示す活性炭ACの製造が可能となる。この熱処理は賦活と呼ばれ、これによって原料の炭素骨格が壊れていき、微細な孔が生じるような状態を作り出す。
このような賦活温度を800〜1100℃、好ましくは900〜1000℃の温度で製造が可能である。従って前記改質賦活炉5の温度を1100℃以上にすることは炉の耐火構造が厳しくなるので改質賦活炉5内温度は、800〜1100℃、好ましくは、900〜1000℃の温度範囲に設定するのがよい。
又、賦活を中心に考えるならば、改質賦活炉5の頂部からの水蒸気供給と、炭化物導入路5a側からも賦活を行う炭素の水性ガス化反応場に直接水蒸気を供給するようにしてもよい。
【0026】
又、改質賦活炉5の1000℃の温度で改質と賦活処理を行う場合に、投入される炭化物Cの粒度が小さいと表面積が大きくなるために、C+HO→CO+Hの反応が大きく進み、活性炭ACの歩留まりが極端に低下するため投入炭化物Cの粒度が問題となる。
そこでロータリキルン3によって蒸し焼き状態で炭化した多孔質炭化物Cを前もって0.5mm、5mm、10mmに粉砕したものを前記改質賦活炉5に投入して1000℃の温度で改質と賦活処理を行った後、サイクロン9で固気分離を行って得た活性炭ACの取得比を調べてみたところ、粒度0.5mmでは0%で、ほとんど炭化物Cの100%が「C+HO→CO+H」の反応が進みCO/Hガスが多く製造されることがわかり、又粒度5mmでは50%、10mmでは60%の活性炭ACが製造されることが理解された。
又、粒度が15mm以上では表面積の大幅な低下により性能のよいAC化が出来ないことも実験で確かめられた。
【0027】
そして前記改質賦活炉5で製造されたCO/Hガスは、サイクロン9で固気分離した後、ガス精製器6でHS等の微量有害ガスを分離し、さらに除塵した後、不図示のガスホルダーに貯留し、ガスエンジン発電機7に供給して高効率発電を行う。
ガスエンジン発電機7は、ボイラーを用いた蒸気タービン型の発電機と異なり、CO/Hガスでも十分に燃焼発電が可能である。特に本実施例によれば改質賦活炉5で炭化物Cを加え、粒度0.5mmでは100%CO/Hガスが生成され、又粒度5mmでも50%CO/Hガスが生成されるために、通常の改質炉に加えて、カロリー数が増加し、数千kcal/kgの熱量を得ることが出来る。
【0028】
なお、前記精製CO/Hガスは前記ロータリキルン3のバーナ40の燃料として用いてもよく、更にガスエンジン発電機7の排気ガスは400〜500℃前後の温度があるために、直接ロータリキルン3の加熱用熱源として利用してもよい。なお、8は排気塔である。
【0029】
従って本実施例においては、粉砕機4での炭化物Cの粒度調整行う制御機10の制御により、固体燃料としての炭化物C(化石燃料代替利用)、環境浄化に利用の活性炭AC、及び発電エネルギーの3種が、粉砕機4での炭化物Cの粒度調整によりその生成量と配分割合を需要に応じて自在に調整出来る。
即ち、粉砕機4の粒度を0.5mm以下に設定した場合は、100mm以下に粗破砕した木質系バイオマスをロータリキルン3で、300〜600℃の温度で炭化し、分解ガスは改質賦活炉5に供給する。炭化物Cは粉砕機4で0.5mm以下の微粉にして改質賦活炉5に供給する。改質賦活炉5では、1000℃前後の温度条件にて、水蒸気を供給し、分解ガス及び炭化物C微粉を全てH、CO等の汎用燃料ガスに改質出来、該改質ガスは、サイクロン9で固気分離した後、ガス精製器6でHS等の微量有害ガスを分離し、さらに除塵した後、ガスホルダーに貯留し、ガスエンジン発電機7に供給して高効率発電を行うことができる。
【0030】
一方活性炭ACの需要がある場合は、粉砕機4の粒度を0.5〜5mmに設定することにより、改質賦活炉5での炭化物Cの水性ガス化反応を制御し、サイクロン9で固気分離することにより、炭化物Cを活性炭ACとして回収することができるので、バイオマス炭化物Cを活性炭ACとして炭素を固定化しCOが直接削減出来る。
なお、改質炉温度条件は炭化物Cを活性炭化する賦活温度条件をも満たすことが必要であり、更にこれに加えて炭化物C粒度や改質賦活炉に供給する水蒸気量や酸化ガスを調整することにより、炭化物Cのガス化率(活性炭収率)を制御できる。
又、発電用燃料ガスには炭化物Cの賦活により生成したガスも含むために、数千kcal/kgの高カロリーガスを得ることが出来、更にガスエンジン(発電効率36%)により発電することにより高効率にエネルギー転換が可能であり、送電端効率は20〜25%が見込める。
【0031】
従って本実施例によれば、ガス改質炉と炭化物C賦活炉を一体化し設備簡素化させるとともに炭化物Cの粒度調整可能な粉砕機4を設けたために、効率良く活性炭化またはガス化が可能となる。
又、粒度調整若しくは改質賦活炉5の温度調整により炭化物Cの活性炭化/ガス化比率の調整が容易で、需要に応じたシステム構築が可能となる。
又、本実施例は粗破砕されたバイオマスの炭化処理工程と粉砕工程により、バイオマスを先ず分解ガスと炭化物Cに変換した後、前記炭化物Cを粉砕処理することにより、賦活またはガス化速度が著しく向上するとともに、炭化処理後のバイオマスは、原料バイオマスの20〜30%に減量化し、かつ脆化するので粉砕容易であり、粉砕工程を設けたことによるコストアップは微少である。
更に粉砕した炭化物Cを分解ガスと共に改質炉(賦活炉)に導入することで、ガス改質と炭化物賦活処理(活性炭化)が同時に実施可能となり設備簡素化が実現する。
【0032】
なお、前記ロータリキルン3の炭化(熱分解)炉より発生した熱分解ガスCHは、500℃前後の温度で改質賦活炉5に導くが、前記1)2)の改質反応式は吸熱反応であるため、水蒸気に酸素を混ぜて、その酸化反応熱により改質に必要なエネルギーを供給するが、改質炉は賦活を兼用しているために、改質温度を1100℃以上にあげることは炉耐火構造が厳しくなるため得策ではない。
このためタール分のような高分子構造の高沸点成分は前もって除去しておいた方がよい。
【0033】
図2はかかる点の工夫をした他の実施例で、前記ロータリキルン3の炭化(熱分解)炉と改質賦活炉5との間の熱分解ガスCH経路途中に冷却用熱交換器11を介在させ、前記熱分解ガスを冷却し液状物とガス状成分に分離・回収することにより、前記タール等の高分子構造の高沸点成分を前もって除去することが出来る。
そしてこの場合に前記冷却用熱交換器11の温度はタール分の凝縮点以下であればよいが、100℃以上に設定することにより、熱分解ガスCH中の水蒸気が凝縮せずに、改質炉に供給する水蒸気の補完が出来るのみならず、タール分側に水分が混ざらずに、後記する流動燃料としての利用が可能となる。
【0034】
即ち、前記ロータリキルン3の炭化(熱分解)炉より発生した炭化物Cは釘等の混入をさけるために、磁選機若しくは渦流選別機12によるアルミニウム選別をした後、粉砕機13で所定粒度に粉砕して前記タール分と混合して流動燃料を得る。かかる流動燃料を用いてロータリキルン3の加熱用の熱ガスを得るバーナ40の燃料に用いてもよい。
このように構成すれば、炭化工程の熱源として、改質ガスを燃焼して熱源に用いていたが、生産物としての改質ガスの回収率が低下する等の問題の解決が出来る。
又、活性炭賦活用の粉砕炭化物Cについても前もって水と混合して、水スラリーとした上で改質賦活炉5に供給すればノズル等を用いて均一な分散状態で改質賦活炉5に供給するようにしてもよい。
【0035】
さて前記第1及び第2の実施例において、熱分解ガスの改質は1000℃前後の温度場で水蒸気を供給してH、CO主体の汎用ガスに改質するが、高温仕様となるため改質炉のコストが嵩む。
そこで第3の実施例は、図3に示すように、ロータリキルン3からなる炭化炉の後段に、流動ガスとして水蒸気を供給するとともに、FCC触媒を流動媒体とした循環流動層式の改質炉21を設けるとともに、改質炉21には触媒の再生炉22を付帯する。
【0036】
さて、FCC等の石油系炭化水素の接触分解触媒には、従来からゼオライトをアルミナ等のマトリックス成分に分散させて調製したものが最も一般的に使用されている。ところが、上記したように原油が重質化するにつれて、重質炭化水素類をより効率よく有効に分解できるようにリフレッシュな触媒を必要とし、FCCの廃触媒が発生する。この廃触媒は直前までプロセス内で使用されていたものであり、未だ十分な触媒活性を有している。そこで本発明はこの廃触媒を利用して改質温度の低下を図っている。
【0037】
即ちロータリキルン3で熱分解された熱分解ガスCHは、ガス流路31より直接、または、ガス流路32を介して冷却用熱交換器11に導入され、該冷却用熱交換器11でタール分を除去した後、流動層式の改質炉21に導入される。このとき、ガス流路31、32の両方を備え、適宜選択的に使い分ける構成としても良いし、または、がス流路31、32のどちらか一方のみを備える構成としても良い。該改質炉21は底部の分散板より酸素と水蒸気を供給し、一方流動媒体としてFCC等の石油系炭化水素の接触分解触媒の廃触媒を触媒再生炉22より供給し、循環流動層を形成する。
そして前記循環流動層改質炉で改質された、改質ガスとFCC流動媒体は、サイクロン23で固気分離し、分離したFCC廃触媒を触媒再生炉22に導入する。
触媒再生炉22はバブリング式の気泡流動床で構成され、底部の分散板より空気若しくは酸素富化空気を供給し800〜900℃でFCC触媒に付着したチャーを燃焼させて再生処理を行う。
【0038】
従って本実施例によれば、流動媒体はFCCの廃触媒を利用することにより改質炉21を触媒存在下で行うので温度条件を700〜800℃前後の低温領域で行うことができ、改質炉21の低コスト化が図れる。
又、触媒はFCC廃触媒を活用するので低コスト処理が可能であり、循環流動層は攪拌効果が大きく、反応速度が大きくなるので、設備のコンパクト化が図れる。
【0039】
【発明の効果】
以上記載のごとく本発明によれば、バイオマスを熱分解後の固形分としても合成ガスとしても有効利用を図り、トータル処理コストの低減及び有価物としての有効利用を図ることができる。
又、本発明は、炭化処理装置より得られた多孔質炭化物を熱分解ガスより分離した液状回収物と共に燃焼スラリーとすることで貯蔵及び輸送の容易な液状燃料として利用できるようになる。
更に本発明は、バイオマスから生成されるメタン若しくはCO等の低カロリガスを有効に利用して円滑且つ高効率な発電を可能にする。
これによりエネルギー転換効率が高く、更にはCOの直接削減にもつながる独自の炭化・ガス改質発電システムを開発し、経済的で広く社会に受け入れられる木質系バイオマスの利用システムを確立出来る。
【図面の簡単な説明】
【図1】木質系バイオマス原料の炭化・発電システムの全体フローを示す本発明の基本実施例のシステムフロー図である。
【図2】木質系バイオマス原料の炭化・発電システムの全体フローを示す本発明の第2実施例のシステムフロー図である。
【図3】炭化炉の後段に、FCC触媒を流動媒体とした循環流動層式の改質炉を設けるとともに、改質炉には触媒の再生炉を付帯した本発明の第3実施例のシステムフロー図である。
【図4】炭化処理から賦活処理までの作用図である。
【符号の説明】
1 木質系バイオマス原料の粗破砕機
3 ロータリキルン
4、13 粉砕機
5 改質賦活炉
6 ガス精製器
7 ガスエンジン発電機
11 冷却用熱交換器
21 循環流動層式の改質炉
22 触媒再生炉
[0001]
BACKGROUND OF THE INVENTION
The present invention carbonizes wood chips such as thinned wood, driftwood, pruned wood, construction waste, grassy material such as weeds, pastures, sugar cane, rice husks, cow dung, and other woody biomass raw materials, then power generation, Biomass processing method to be used for a predetermined purpose such as activated carbon production To the law Related.
[0002]
[Prior art]
Energy and resources are indispensable to support the progress of human life and society, but there is a strong recognition of the need to secure energy and resources while protecting the environment, and solar energy is stored in different forms. In particular, technology that uses biomass, that is, biomass conversion technology that converts renewable biomass resources into energy, industrial raw materials, and the like, has attracted attention. For example, atmospheric carbon dioxide (CO 2 ) Concentration is increasing at a rate of 1.8 ppm annually, CO 2 The progress of global warming due to concentration rise is a problem. CO in the atmosphere 2 Is fixed as biomass by the photosynthetic reaction. 2 And return to the atmosphere as methane. Various methods for treating biomass have been proposed to prevent re-entry in the atmosphere.
[0003]
As a conventional biomass treatment method, for example, an alcohol conversion method by a fermentation method, a hydrothermal decomposition method, or the like has been proposed. However, the former fermentation method uses only sugar and starch as raw materials and takes a long time for fermentation. In addition, the latter hydrothermal decomposition method has problems of high temperature, high pressure, and low yield. In addition, there is a problem that a large amount of biomass residues are supplied together and the utilization rate of biomass is low.
[0004]
On the other hand, in the case of biomass gasification, for example, a gasification furnace such as a fixed bed or a fluidized bed was used, but only the surface of the biomass particles reacted and did not react uniformly to the inside, Tar is generated and the gasification gas produced is H 2 Because of low CO, it is not a raw material for methanol synthesis. Further, there is a problem in that the generated tar adheres to the inside of the furnace and also adheres to equipment or the like installed on the downstream side, resulting in trouble in operation.
[0005]
Therefore, in the past, it was decided to burn at a high temperature by supplying a large amount of oxygen, but in this case, a high temperature region partially exceeding 1200 ° C. was formed, and the biomass itself burned without becoming a gas, There is a problem of sooting.
[0006]
In order to eliminate such disadvantages, in JP-A-11-286692 (Patent Document 1), the biomass raw material is reduced in size to a particle size of less than 30 cm in advance, preferably less than 15 cm, more preferably less than 5 cm, The biomass material reduced in size is subjected to pyrolysis at a temperature of 350 to 650 ° C., and (a) oxygen-rich gas introduced from the outside and gas released in the process of pyrolysis under the influence of steam according to circumstances. Without condensing, subjected to cracking (reforming) treatment at a temperature of 1100 to 1600 ° C., and (c) the residue liberated in the pyrolysis process under a pressure of 0.5 to 1.5 bar and 1200 Molten slag or metal obtained in step (c), gasified at a temperature of 1700 ° C., vaporized or optionally melted under reducing conditions A technique is proposed in which the condensate is discarded or recovered as required and used for gas cleaning with or without the product gas obtained in the process of (e) steps (b) and (c). Has been.
[0007]
However, such prior art does not condense the gas released in the process of thermal decomposition without cracking, and is subjected to a cracking treatment at a temperature of 1100 to 1600 ° C, or residues released in the process of thermal decomposition at 1200 to 1700 ° C. It requires a high-temperature treatment process that gasifies at temperature, vaporizes, or in some cases, melts under reducing conditions, resulting in increased process size and heat resistance, resulting in higher costs for the entire equipment Leading to
[0008]
Japanese Patent Application Laid-Open No. 2003-49177 (Patent Document 2) has been proposed as a biomass gasification method and apparatus capable of efficiently producing effective synthesis gas such as methanol from biomass with a small-scale apparatus. .
[0009]
Such a technique involves burning biomass fuel in a pyrolysis zone in a combustion gasification furnace to produce pyrolysis gas CH, and sucking this pyrolysis gas CH into the combustion layer zone below the pyrolysis zone to increase the temperature. It is oxidized by reacting with a mixture of water vapor and air, and a reformed gas is obtained in the reduction layer and reforming layer below it, and ash and unreacted tar are removed from the reformed gas to obtain purified gas. obtain. In addition, after obtaining the purified gas, the steam and air supplied to the reformed layer zone due to the latent heat of the purified gas passing through are heated to effectively use the energy. H 2 However, since it has a high temperature specification for reforming into a general-purpose gas mainly composed of CO, there is a disadvantage that the cost of the furnace itself increases even if the combustion gasification furnace is configured as a reforming furnace integrated with the pyrolysis furnace.
[0010]
In addition, since the pyrolysis zone and the reforming zone are integrated, it is decomposed by pyrolysis in order to introduce gas at a high temperature of 800 to 1000 ° C in the combustion gasifier and perform gas reforming. The solid carbon content that has fallen to the reforming zone side and contributes to combustion on the reforming zone side, so that it does not lead to effective utilization of the solid content as a carbide of biomass.
Methanol produced from biomass (CH 3 OH), methane, and CO are cheaper than natural gas as the corresponding fuel gas. Therefore, the biomass processing system cannot be economically responded to by simply generating synthesis gas and generating electricity. Gas is higher in calories because it contains butane and propane, while methanol (CH 3 OH), methane, or CO cannot have a high calorie because it has one carbon group, so that it is difficult to use a normal boiler generator, and it is not very versatile industrially.
[0011]
In addition, as a typical utilization system of woody biomass, application of a direct combustion power generation system or the like is being studied, but the power generation efficiency is about 10 to 15% at the transmission end, and high energy conversion efficiency cannot be expected. CO as a fossil fuel alternative 2 Although there is an increase suppression effect, direct CO 2 It does not lead to reduction.
In addition, as a typical utilization system of woody biomass, there is a system that carbonizes and gasifies, burns the gas, recovers heat with a boiler, etc. and uses the carbide for combustion, etc., but the carbide is bulky, so it is used externally as fuel In this case, there is a problem in handling such as ash dust and the transportation cost increases.
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-286692
[Patent Document 2]
JP 2003-49177 A
[0013]
[Problems to be solved by the invention]
In view of the problems of the prior art, an object of the present invention is to effectively use biomass as a solid component after pyrolysis or as synthesis gas, thereby reducing the total processing cost and effectively using it as a valuable resource. Direction The law It is to provide.
Another object of the present invention is to provide a biomass processing method in which the carbide obtained by pyrolysis of biomass is effectively used and its handling property is improved. The law It is to provide.
Another object of the present invention is to provide a biomass processing method that enables smooth and highly efficient power generation by effectively using low-calorie gas such as methane or CO produced from biomass. Law Is to provide.
[0014]
[Means for Solving the Problems]
In order to solve this problem, the first invention of the present invention is to heat a woody biomass raw material roughly crushed into a 20 to 80 mm sieve mesh with a rotary kiln under oxygen shortage at a temperature of 300 to 600 ° C. After obtaining the porous carbide together with the cracked gas and cooling the pyrolyzed gas below the condensation point of the high boiling point component and at 100 ° C. or higher to remove the high boiling point component without condensing the water vapor in the pyrolyzed gas CH , Put the pyrolysis gas into the reforming space, The reforming space temperature of the pyrolysis gas is set to 800 to 1100 ° C., the porous carbide is adjusted to a particle size of 0.5 to 5 mm, and is injected into the reforming space to activate the porous carbide. It is characterized by that.
Also, the second invention is A woody biomass raw material roughly crushed into a 20 to 80 mm sieve mesh is carbonized in a rotary kiln under oxygen shortage at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and the pyrolysis gas has a high boiling point. After cooling to 100 ° C. or more below the condensation point of the components and removing the high boiling point components without condensing the water vapor in the pyrolysis gas CH, Put the pyrolysis gas into the reforming space, The reforming space temperature of the pyrolysis gas is set to 800 to 1100 ° C., and the porous carbide is adjusted to a particle size of less than 0.5 mm and introduced into the reforming space to gasify the porous carbide. It is characterized by Ru Iomas treatment method.
That is, when the reforming space temperature of the pyrolysis gas is set to 800 to 1100 ° C. and the particle size of the porous carbide is adjusted to 0.5 to 5 mm and charged into the reforming space, the porous carbide is activated. The porous carbide can be gasified by adjusting the particle size of the porous carbide to less than 0.5 mm and introducing it into the modified space.
Therefore, according to this invention, three types of carbide C as solid fuel (substituting fossil fuel), activated carbon AC used for environmental purification, and power generation energy are generated and distributed by adjusting the particle size of carbide C in a pulverizer. The ratio can be freely adjusted according to demand. Especially, the temperature condition of the reforming activation furnace can also serve as the activation temperature condition for active carbonization of the carbide, and by adjusting the water vapor amount and the carbide particle size, the gas of the carbide can be adjusted. Not only can the conversion rate (activated carbon yield) be controlled, but also reforming the cracked gas into a high-calorie gas (steam reforming) and generating electricity with a gas engine (power generation efficiency 36%) enables high-efficiency energy conversion. Yes, CO 2 As a unique carbonization and gas reforming power generation system that leads to direct reduction of electricity, it is possible to establish an economical and widely accepted system for using woody biomass that is widely accepted by society.
[0015]
And this invention is the carbonization apparatus which obtains porous carbide with a pyrolysis gas by carbonizing the wood biomass raw material which carried out coarse crushing suitably at the temperature of 300-600 degreeC, and uses this porous carbide for the downstream objective. A pulverizing apparatus for pulverizing to a predetermined particle size, and a reforming activation furnace that performs the reforming of the pyrolysis gas and activates by introducing the pulverized porous carbide into the reforming space, In this case, the pulverizer is preferably a pulverizer capable of adjusting the porous carbide to a predetermined particle size according to the target product, and the furnace temperature of the reforming activation furnace is set to 800 to 1100 ° C. At the same time, by providing a porous carbide inlet below the pyrolysis gas inlet in the furnace, the reforming and activation can be performed smoothly.
[0016]
Further, it is preferable to provide a gas engine power generator or a fuel cell power generator driven by the reformed gas reformed by the reforming activation furnace.
In particular, since the reformed gas includes a gas generated by the activation of the carbide C, a high calorie gas of several thousand Kcal / kg can be obtained, and further, high power can be obtained by generating power with a gas engine (power generation efficiency 36%). Energy conversion is possible with efficiency, and the power transmission end efficiency is expected to be 20-25%.
The reformed gas contains H 2 Since it contains many components, it can be effectively used in a fuel cell power generator.
In addition, the present invention provides a high calorie and handling property by producing a fluid fuel by mixing the liquid component obtained by cooling and separating the pyrolysis gas with the pulverized porous carbide obtained by pulverizing the porous carbide. A good fuel can be obtained.
[0017]
As a specific configuration of such an invention, a carbonized biomass material roughly crushed and carbonized at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and a pyrolysis obtained from the carbonizer A cooling means for cooling the gas and separating the liquid component, a pulverizing means for pulverizing the porous carbide, and a means for obtaining a fluid fuel by mixing the liquid component separated by the cooling means with the pulverized porous carbide. It is prepared for.
In this case, the cooling temperature of the cooling means is preferably set to be equal to or lower than the condensation point of the high boiling point component and equal to or higher than 100 ° C.
As a result, the steam in the pyrolysis gas CH is not condensed, and not only the steam supplied to the reforming activation furnace can be supplemented, but also water is not mixed into the separated liquid component side. It can be used.
[0018]
By supplying such fluid fuel to a dedicated burner provided in the carbonization apparatus, the recovery rate of the reformed gas as a product is reduced without using the reformed gas as a heat source for the carbonization process. You can solve problems such as.
[0019]
The present invention also includes a carbonization apparatus for carbonizing coarsely crushed woody biomass raw material at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and modifying the pyrolysis gas using an FCC waste catalyst as a fluid medium. A circulating fluidized bed furnace for performing the quality treatment and a regeneration furnace for regenerating the FCC waste catalyst, and the temperature of the circulating fluidized bed furnace and the regeneration furnace are both 1000 ° C. or less.
According to this invention, since the fluidizing medium of each furnace uses the FCC waste catalyst and the reforming furnace is carried out in the presence of the catalyst, the temperature condition can be carried out in a low temperature region of about 700 to 800 ° C. The cost of the furnace can be reduced, and the reforming catalyst uses an FCC waste catalyst so that it can be processed at low cost. The circulating fluidized bed has a large stirring effect and a high reaction speed, so that the equipment can be made compact. I can plan.
Further, the carbonization apparatus can be reformed even at a low temperature of 300 to 600 ° C. by mechanical forced stirring by using a rotary kiln.
[0020]
or, The third invention of the present invention is: A woody biomass raw material roughly crushed into a 20 to 80 mm sieve mesh is carbonized in a rotary kiln under oxygen shortage at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and the pyrolysis gas has a high boiling point. A biomass process characterized by producing a fluid fuel by mixing a liquid component obtained by cooling to 100 ° C. or higher below a component condensation point with a pulverized porous carbide obtained by pulverizing the porous carbide. Is in the law.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
Figure 1 shows the overall flow of the carbonization and power generation system for wood chips such as thinned wood, driftwood, pruned wood, construction waste wood, herbaceous materials such as weeds, pastures and sugar cane, rice husks, cow dung, and other woody biomass raw materials. It is a basic system flow diagram.
In FIG. 1, 1 is a rough crushing machine for woody biomass, which uses a hammer hammer or saw blade cutter or crusher etc. to make woody biomass less than 100 mm sieve mesh, preferably 20-80 mm sieve mesh Crush roughly.
In this case, the woody biomass material is difficult to be crushed because it has ductility, and the pulverization cost is not only geometrically increased below 10 to 20 mm sieve mesh, but it cannot be effectively used as activated carbon AC described later.
On the other hand, when the mesh size is 100 mm or more, when the mixture is stirred with a low-temperature rotary kiln 3 at about 300 to 600 ° C., which will be described later, only the surface cannot be thermally decomposed to the inside.
Now, such a rough crusher 1 does not necessarily need to be located in the adjacent area of a carbonization and electric power generation system, and may be in a wood accumulation place etc. away from the system.
For example, in planned logging areas such as forests, in the areas where perennial forest planning is carried out so that the forest recharge function functions normally, main cutting and thinning of forest trees are carried out based on this plan. System biomass is collected. In such an area, the rough crusher 1 may be arranged at a sawmill in the area around the water source where the timber is accumulated.
In addition, from a factory or a general house, it is preferable to perform rough crushing by installing the rough crusher 1 at these sites for sawmill waste and building waste.
[0022]
The biomass that has been roughly crushed on the side of the wood accumulation site is sent to the processing system using a transportation means such as a truck. Alternatively, when the rough crusher 1 is installed adjacent to the processing system, the rough crusher 1 is stored in the rough crushing biomass accumulation site 2 by a bucket conveyor or a crane, and is put into a hopper on the rotary kiln 3 side via a lifting crane. Biomass is pyrolyzed in an oxygen-deficient state to generate carbides and pyrolysis gas CH.
Such a rotary kiln 3 has a pyrolysis drum 3a and an outer shell 3b through which hot gas flows. The outer shell 3b is supplied with hot gas heated by a burner 40, and is heated on the inner shell side. The inside of the decomposition drum 3a is maintained at 300 ° C to 600 ° C.
[0023]
The pyrolysis drum 3a generates pyrolysis gas CH and carbide C while heating and stirring coarsely crushed biomass by the rotation, and the pyrolysis gas CH is sent to the reforming activation furnace 5, and the carbide C is used as a solid fuel. Alternatively, the powder is pulverized to a predetermined particle size by the pulverizer 4 and then supplied to the reforming activation furnace 5 for activation.
More specifically, in the rotary kiln 3, C n H m O 1 The wood-based cellulose made of is decomposed into hydrocarbon-based pyrolysis gas CH and carbide C by heating at 300 to 600 ° C., more preferably at 400 to 500 ° C. in the absence of oxygen.
Here, the lower limit is limited to 300 ° C., not only is pyrolysis difficult at temperatures lower than this, but the tar content generated by pyrolysis does not evaporate and adheres to the inner wall of the pyrolysis drum 3a. This is because there is a risk of losing.
Further, when heating at 600 ° C. or higher, a heat-resistant material must be used for the pyrolysis drum 3a, which not only leads to an increase in cost, but also generates adsorption holes when activating the carbide C as described later. This is because the pores are clogged at a temperature, and a preferable activated carbon AC cannot be formed.
[0024]
The reforming activation furnace 5 has a cylindrical dome shape with a tapered bottom, and the oxygen O together with the pyrolysis gas CH from the top of the furnace. 2 And water vapor H 2 O is introduced and reformed at about 800 to 1100 ° C., preferably 900 to 1000 ° C., and carbide C pulverized to a predetermined particle size is introduced from the middle position of the furnace to activate the pulverized carbide C. AC is manufactured.
The reforming of the pyrolysis gas CH is performed by supplying CO generated by burning hydrocarbons under oxygen shortage together with steam to a high-temperature gasification reaction field. (Hydrocarbon) + H 2 O ← → CO + H 2 CO shift reaction proceeds to the right side and H 2 The concentration can be improved.
That is, oxygen is deprived in the reduction zone at the upper part of the reforming activation furnace 5, and further, in the reformed zone below the reducing zone, the tar content is reduced to CO and H by the following reaction. 2 To improve.
C + CO 2 → 2CO, C + H 2 O → CO + H 2 ... 1)
C n H m + NH 2 O → nCO + (n + 1/2 · m) H 2 ... 2)
These reactions must occur at a high temperature of about 800 ° C. or higher, and are endothermic. Therefore, oxygen is mixed with water vapor, and energy necessary for reforming is supplied by the next reaction.
C + O 2 → CO 2 ... 3)
C + 1/2 · O 2 → CO 4)
[0025]
Further, by introducing the carbide C pulverized to a predetermined particle size by the pulverizer 4 below the reduction zone in the middle of the reforming activation furnace space, the carbide C reacts with water vapor to produce activated carbon AC, ie, activation. It becomes possible.
That is, as shown in FIG. 4, the pulverized carbide C is obtained by carbonizing the coarsely crushed biomass (A) in a roasted kiln 3 at 300 to 600 ° C., preferably 400 to 500 ° C. in a steamed state (B In addition, the porous portion is converted into water gas (C + H) by performing a heat treatment at a temperature of 800 to 1000 ° C. with steam in an oxygen-deficient state in the reforming activation furnace 5. 2 O → CO + H 2 ) And activated carbon AC shown in (C) can be produced. This heat treatment is called activation, which creates a state in which the carbon skeleton of the raw material is broken and fine pores are generated.
Manufacture is possible at such an activation temperature of 800 to 1100 ° C, preferably 900 to 1000 ° C. Therefore, if the temperature of the reforming activation furnace 5 is set to 1100 ° C. or more, the fire resistance structure of the furnace becomes strict, so the temperature inside the reforming activation furnace 5 is 800 to 1100 ° C., preferably 900 to 1000 ° C. It is good to set.
Further, considering the activation mainly, the steam is supplied from the top of the reforming activation furnace 5 and the steam is directly supplied from the carbide introduction path 5a side to the carbon water gasification reaction field to be activated. Good.
[0026]
In addition, when the reforming and activation treatment is performed at a temperature of 1000 ° C. in the reforming activation furnace 5, the surface area increases when the particle size of the carbide C to be input is small. 2 O → CO + H 2 The reaction proceeds greatly and the yield of the activated carbon AC is extremely reduced, so the particle size of the input carbide C becomes a problem.
Therefore, the porous carbide C carbonized in the steamed state by the rotary kiln 3 is previously crushed to 0.5 mm, 5 mm, and 10 mm into the reforming activation furnace 5 and reformed and activated at a temperature of 1000 ° C. After that, when the acquisition ratio of the activated carbon AC obtained by solid-gas separation with the cyclone 9 was examined, it was 0% when the particle size was 0.5 mm, and almost 100% of the carbide C was “C + H”. 2 O → CO + H 2 CO / H is progressing 2 It was understood that a large amount of gas was produced, and that 50% activated carbon AC was produced at a particle size of 5 mm, and 60% activated carbon was produced at 10 mm.
In addition, it was also confirmed by experiments that when the particle size is 15 mm or more, it is not possible to make AC with good performance due to a significant decrease in surface area.
[0027]
The CO / H produced in the reforming activation furnace 5 2 After the gas is solid-gas separated by the cyclone 9, the gas is purified by the gas purifier 6. 2 After separating a trace amount of harmful gas such as S and removing dust, it is stored in a gas holder (not shown) and supplied to the gas engine generator 7 for high-efficiency power generation.
The gas engine generator 7 is different from a steam turbine generator using a boiler in that it is CO / H 2 Even gas can sufficiently generate power for combustion. In particular, according to the present embodiment, carbide C is added in the reforming activation furnace 5, and 100% CO / H at a particle size of 0.5 mm. 2 Gas is generated and 50% CO / H even at 5 mm particle size 2 Since gas is generated, the number of calories is increased in addition to a normal reforming furnace, and a calorific value of several thousand kcal / kg can be obtained.
[0028]
The purified CO / H 2 The gas may be used as a fuel for the burner 40 of the rotary kiln 3, and the exhaust gas of the gas engine generator 7 has a temperature of about 400 to 500 ° C., so it can be directly used as a heat source for heating the rotary kiln 3. May be. In addition, 8 is an exhaust tower.
[0029]
Therefore, in the present embodiment, the control of the controller 10 for adjusting the particle size of the carbide C in the pulverizer 4 allows the carbide C as a solid fuel (alternative use of fossil fuel), activated carbon AC used for environmental purification, and power generation energy. Three types can adjust freely the generation amount and distribution ratio according to demand by adjusting the particle size of the carbide C in the pulverizer 4.
That is, when the particle size of the pulverizer 4 is set to 0.5 mm or less, the woody biomass roughly crushed to 100 mm or less is carbonized in the rotary kiln 3 at a temperature of 300 to 600 ° C., and the cracked gas is reformed activation furnace. 5 is supplied. The carbide C is made into a fine powder of 0.5 mm or less by the pulverizer 4 and supplied to the reforming activation furnace 5. In the reforming activation furnace 5, steam is supplied under a temperature condition of around 1000 ° C., and all of the cracked gas and carbide C fine powder are H. 2 The gas can be reformed into a general-purpose fuel gas such as CO. 2 After separating a trace amount of harmful gas such as S and further removing dust, it can be stored in a gas holder and supplied to the gas engine generator 7 for high-efficiency power generation.
[0030]
On the other hand, when there is a demand for activated carbon AC, by setting the particle size of the pulverizer 4 to 0.5 to 5 mm, the water gasification reaction of the carbide C in the reforming activation furnace 5 is controlled, and the cyclone 9 is solid gas. By separating, the carbide C can be recovered as the activated carbon AC, so that the carbon is fixed with the biomass carbide C as the activated carbon AC and the carbon is immobilized. 2 Can be reduced directly.
The reforming furnace temperature condition must satisfy the activation temperature condition for active carbonization of the carbide C, and in addition to this, the carbide C particle size, the amount of steam supplied to the reforming activation furnace and the oxidizing gas are adjusted. Thus, the gasification rate (activated carbon yield) of the carbide C can be controlled.
In addition, since the fuel gas for power generation includes the gas generated by the activation of the carbide C, a high calorie gas of several thousand kcal / kg can be obtained, and further by generating power with a gas engine (power generation efficiency 36%). Energy conversion is possible with high efficiency, and the power transmission efficiency is expected to be 20-25%.
[0031]
Therefore, according to the present embodiment, since the gas reforming furnace and the carbide C activation furnace are integrated to simplify the equipment and the pulverizer 4 capable of adjusting the particle size of the carbide C is provided, the activated carbonization or gasification can be efficiently performed. Become.
In addition, it is easy to adjust the activated carbonization / gasification ratio of the carbide C by adjusting the particle size or adjusting the temperature of the reforming activation furnace 5, and a system can be constructed according to demand.
Further, in this example, the biomass is first converted into cracked gas and carbide C by the carbonization treatment process and pulverization process of the roughly crushed biomass, and then the carbide C is pulverized to significantly increase the activation or gasification rate. In addition to the improvement, the carbonized biomass is reduced to 20-30% of the raw biomass and becomes brittle, so that it is easy to grind, and the cost increase due to the provision of the grinding step is small.
Furthermore, by introducing the pulverized carbide C together with the cracked gas into a reforming furnace (activation furnace), gas reforming and carbide activation treatment (activated carbonization) can be performed simultaneously, and the equipment can be simplified.
[0032]
The pyrolysis gas CH generated from the carbonization (pyrolysis) furnace of the rotary kiln 3 is led to the reforming activation furnace 5 at a temperature of about 500 ° C., but the reforming reaction formula of 1) and 2) is an endothermic reaction. Therefore, oxygen is mixed with water vapor and the energy required for reforming is supplied by the heat of oxidation reaction, but the reforming furnace is also used for activation, so the reforming temperature is raised to 1100 ° C or higher. Is not a good idea because the furnace refractory structure becomes severe.
For this reason, it is better to remove the high-boiling component having a high molecular structure such as tar.
[0033]
FIG. 2 shows another embodiment in which such a point is devised. A cooling heat exchanger 11 is provided in the middle of the pyrolysis gas CH path between the carbonization (pyrolysis) furnace of the rotary kiln 3 and the reforming activation furnace 5. By interposing and cooling the pyrolysis gas and separating and recovering it into a liquid substance and a gaseous component, the high-boiling components having a polymer structure such as tar can be removed in advance.
In this case, the temperature of the cooling heat exchanger 11 may be equal to or lower than the condensation point of tar, but by setting the temperature to 100 ° C. or higher, the water vapor in the pyrolysis gas CH is not condensed and reformed. Not only can the steam supplied to the furnace be complemented, but also water can be used as a fluidized fuel, which will be described later, without mixing water on the tar side.
[0034]
That is, the carbide C generated from the carbonization (pyrolysis) furnace of the rotary kiln 3 is subjected to aluminum selection by a magnetic separator or a vortex separator 12 in order to avoid nail contamination, and then pulverized to a predetermined particle size by a pulverizer 13. Then, a fluid fuel is obtained by mixing with the tar content. You may use for the fuel of the burner 40 which obtains the hot gas for the heating of the rotary kiln 3 using this fluid fuel.
If constituted in this way, although reformed gas was burned and used for a heat source as a heat source of a carbonization process, problems, such as a recovery rate of reformed gas as a product falling, can be solved.
Moreover, if the activated carbide activated pulverized carbide C is mixed with water in advance to form a water slurry and then supplied to the reforming activation furnace 5, it is supplied to the reforming activation furnace 5 in a uniformly dispersed state using a nozzle or the like. You may make it do.
[0035]
In the first and second embodiments, the reforming of the pyrolysis gas is performed by supplying water vapor in a temperature field around 1000 ° C. 2 Although it is reformed to a general-purpose gas mainly composed of CO, the temperature of the reforming furnace increases because of high temperature specifications.
Accordingly, in the third embodiment, as shown in FIG. 3, a circulating fluidized bed type reforming furnace using a FCC catalyst as a fluid medium and supplying steam as a fluid gas to the subsequent stage of the carbonization furnace comprising the rotary kiln 3. 21 and a reforming furnace 21 with a catalyst regeneration furnace 22.
[0036]
Conventionally, a catalyst prepared by dispersing zeolite in a matrix component such as alumina has been most commonly used as a catalytic cracking catalyst for petroleum hydrocarbons such as FCC. However, as the crude oil becomes heavier as described above, a refreshing catalyst is required so that heavy hydrocarbons can be efficiently and effectively decomposed, and an FCC waste catalyst is generated. This waste catalyst has been used in the process until just before, and still has sufficient catalytic activity. Therefore, the present invention uses this waste catalyst to lower the reforming temperature.
[0037]
That is, the pyrolysis gas CH pyrolyzed in the rotary kiln 3 is introduced into the cooling heat exchanger 11 directly from the gas flow path 31 or via the gas flow path 32, and the tar is passed through the cooling heat exchanger 11. After the portion is removed, it is introduced into the fluidized bed type reforming furnace 21. At this time, both the gas flow paths 31 and 32 may be provided, and the structure may be selectively used appropriately or may be the structure provided with only one of the gas flow paths 31 and 32. The reforming furnace 21 supplies oxygen and water vapor from a dispersion plate at the bottom, and supplies a catalyst for catalytic cracking of petroleum hydrocarbons such as FCC as a fluid medium from a catalyst regeneration furnace 22 to form a circulating fluidized bed. To do.
Then, the reformed gas and the FCC fluidized medium reformed in the circulating fluidized bed reforming furnace are solid-gas separated by the cyclone 23, and the separated FCC waste catalyst is introduced into the catalyst regeneration furnace 22.
The catalyst regeneration furnace 22 is composed of a bubbling bubble fluidized bed, and air or oxygen-enriched air is supplied from a dispersion plate at the bottom, and the char attached to the FCC catalyst is burned at 800 to 900 ° C. to perform a regeneration process.
[0038]
Therefore, according to the present embodiment, since the reforming furnace 21 is performed in the presence of the catalyst by utilizing the FCC waste catalyst, the temperature condition can be performed in a low temperature region of about 700 to 800 ° C. The cost of the furnace 21 can be reduced.
In addition, since the catalyst uses an FCC waste catalyst, low-cost processing is possible, and the circulating fluidized bed has a large stirring effect and a high reaction rate, so that the equipment can be made compact.
[0039]
【The invention's effect】
As described above, according to the present invention, the biomass can be effectively used as a solid content after pyrolysis or as a synthesis gas, and the total processing cost can be reduced and the biomass can be effectively used as a valuable resource.
In addition, the present invention can be used as a liquid fuel that can be easily stored and transported by forming a porous slurry obtained from the carbonization apparatus together with a liquid recovered material separated from the pyrolysis gas into a combustion slurry.
Furthermore, the present invention enables smooth and highly efficient power generation by effectively using low calorie gas such as methane or CO generated from biomass.
As a result, energy conversion efficiency is high, and CO 2 By developing a unique carbonization and gas reforming power generation system that leads to a direct reduction, it is possible to establish a woody biomass utilization system that is economical and widely accepted by society.
[Brief description of the drawings]
FIG. 1 is a system flow diagram of a basic embodiment of the present invention showing an overall flow of a carbonization / power generation system for a woody biomass raw material.
FIG. 2 is a system flow diagram of a second embodiment of the present invention showing an overall flow of a carbonization / power generation system for a woody biomass raw material.
FIG. 3 is a system of a third embodiment of the present invention in which a circulating fluidized bed type reforming furnace using an FCC catalyst as a fluid medium is provided at the subsequent stage of the carbonization furnace, and a catalyst regeneration furnace is attached to the reforming furnace. FIG.
FIG. 4 is an operation diagram from carbonization treatment to activation treatment.
[Explanation of symbols]
1 Rough crusher for woody biomass
3 Rotary kiln
4,13 Crusher
5 reformer activation furnace
6 Gas purifier
7 Gas engine generator
11 Heat exchanger for cooling
21 Circulating fluidized bed reforming furnace
22 Catalyst regeneration furnace

Claims (3)

20〜80mm篩いメッシュに粗破砕した木質系バイオマス原料を300〜600℃の温度で酸素不足下のロータリキルンで炭化処理して熱分解ガスとともに多孔質炭化物を得るとともに、前記熱分解ガスを高沸点成分の凝縮点以下で且つ100℃以上に冷却して熱分解ガスCH中の水蒸気が凝縮せずに高沸点成分を除去した後に、前記熱分解ガスを改質空間に投入して、前記熱分解ガスの改質空間温度を800〜1100℃に設定するとともに、前記多孔質炭化物を0.5〜5mm粒度に調整して前記改質空間内に投入して多孔質炭化物の賦活を行うことを特徴とするバイオマス処理法。A woody biomass raw material roughly crushed into a 20 to 80 mm sieve mesh is carbonized in a rotary kiln under oxygen shortage at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and the pyrolysis gas has a high boiling point. After the high boiling point component is removed without cooling the water vapor in the pyrolysis gas CH by condensation below the component condensation point and above 100 ° C., the pyrolysis gas is introduced into the reforming space and the pyrolysis The reforming space temperature of the gas is set to 800 to 1100 ° C., the porous carbide is adjusted to a particle size of 0.5 to 5 mm, and is injected into the reforming space to activate the porous carbide. and to Luba biomass processing method. 20〜80mm篩いメッシュに粗破砕した木質系バイオマス原料を300〜600℃の温度で酸素不足下のロータリキルンで炭化処理して熱分解ガスとともに多孔質炭化物を得るとともに、前記熱分解ガスを高沸点成分の凝縮点以下で且つ100℃以上に冷却して熱分解ガスCH中の水蒸気が凝縮せずに高沸点成分を除去した後に、前記熱分解ガスを改質空間に投入して、前記熱分解ガスの改質空間温度を800〜1100℃に設定するとともに、前記多孔質炭化物を0.5mm未満粒度に調整して前記改質空間内に投入して多孔質炭化物のガス化を行うことを特徴とするバイオマス処理法。A woody biomass raw material roughly crushed into a 20 to 80 mm sieve mesh is carbonized in a rotary kiln under oxygen shortage at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and the pyrolysis gas has a high boiling point. After the high boiling point component is removed without cooling the water vapor in the pyrolysis gas CH by condensation below the component condensation point and above 100 ° C., the pyrolysis gas is introduced into the reforming space and the pyrolysis The reforming space temperature of the gas is set to 800 to 1100 ° C., the porous carbide is adjusted to a particle size of less than 0.5 mm, and is injected into the reforming space to gasify the porous carbide. and to Luba biomass processing method. 20〜80mm篩いメッシュに粗破砕した木質系バイオマス原料を300〜600℃の温度で酸素不足下のロータリキルンで炭化処理して熱分解ガスとともに多孔質炭化物を得るとともに、前記熱分解ガスを高沸点成分の凝縮点以下で且つ100℃以上に冷却して得た液状成分を、前記多孔質炭化物を粉砕して得た粉砕多孔質炭化物に混合して流動燃料を製造することを特徴とするバイオマス処理法。  A woody biomass raw material roughly crushed into a 20 to 80 mm sieve mesh is carbonized in a rotary kiln under oxygen shortage at a temperature of 300 to 600 ° C. to obtain a porous carbide together with a pyrolysis gas, and the pyrolysis gas has a high boiling point. A biomass process characterized by producing a fluid fuel by mixing a liquid component obtained by cooling to 100 ° C. or higher below a component condensation point with a pulverized porous carbide obtained by pulverizing the porous carbide. Law.
JP2003137548A 2003-05-15 2003-05-15 Biomass processing method Expired - Lifetime JP4267968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137548A JP4267968B2 (en) 2003-05-15 2003-05-15 Biomass processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137548A JP4267968B2 (en) 2003-05-15 2003-05-15 Biomass processing method

Publications (2)

Publication Number Publication Date
JP2004339360A JP2004339360A (en) 2004-12-02
JP4267968B2 true JP4267968B2 (en) 2009-05-27

Family

ID=33527185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137548A Expired - Lifetime JP4267968B2 (en) 2003-05-15 2003-05-15 Biomass processing method

Country Status (1)

Country Link
JP (1) JP4267968B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123096A1 (en) * 2012-02-16 2013-08-22 Biochar Now, Llc Controlled kiln and manufacturing system for biochar production
KR101769823B1 (en) 2016-10-14 2017-08-22 서울시립대학교 산학협력단 Rotary Kiln type continuous system for biomass pyrolysis
US9752078B2 (en) 2012-03-11 2017-09-05 Biochar Now, Llc Airflow control and heat recovery in a managed kiln
US9878924B2 (en) 2015-02-06 2018-01-30 Biochar Now, Llc Contaminant removal from water bodies with biochar
US20180282628A1 (en) 2012-02-16 2018-10-04 Biochar Now , Llc Exhaust System For A Biochar Kiln
US10385274B2 (en) 2016-04-03 2019-08-20 Biochar Now, Llc Portable biochar kiln
US10751885B2 (en) 2012-02-16 2020-08-25 Biochar Now, Llc Gripper assembly for portable biochar kiln
US11135728B2 (en) 2012-02-16 2021-10-05 Biochar Now, Llc Lid assembly for portable biochar kiln

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505247B2 (en) * 2004-03-26 2010-07-21 出光興産株式会社 Method for removing tar in a fluidized bed furnace
JP5071895B2 (en) * 2004-05-18 2012-11-14 株式会社還元溶融技術研究所 Method and apparatus for producing carbon fine particles
JP2005330125A (en) * 2004-05-18 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and apparatus for producing carbon particulate
JP4783582B2 (en) * 2005-04-21 2011-09-28 日工株式会社 Asphalt plant using flammable gas generated from biomass
JP2007070166A (en) * 2005-09-07 2007-03-22 Kinugawa Mura Method and apparatus for producing raw material gas for producing carbon nanomaterial
JP4910348B2 (en) * 2005-09-29 2012-04-04 宇部興産機械株式会社 Method for crushing woody biomass
JP4910349B2 (en) * 2005-09-29 2012-04-04 宇部興産機械株式会社 Biomass fuel production system
JP2007269905A (en) * 2006-03-30 2007-10-18 Ihi Corp Gasification device
JP4825589B2 (en) * 2006-06-05 2011-11-30 日工株式会社 Use of heat generated at biomass power generation facilities
JP4986042B2 (en) * 2007-06-04 2012-07-25 三井造船株式会社 Biomass fuel compatible engine system
US20090151251A1 (en) * 2007-12-17 2009-06-18 Range Fuels, Inc. Methods and apparatus for producing syngas and alcohols
US8277643B2 (en) * 2008-03-04 2012-10-02 University Of Massachusetts Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds
CN101412929B (en) * 2008-11-28 2012-02-01 武汉凯迪工程技术研究总院有限公司 High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN101418239B (en) * 2008-12-01 2011-12-21 武汉凯迪工程技术研究总院有限公司 High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN101418238B (en) * 2008-12-01 2012-02-29 武汉凯迪工程技术研究总院有限公司 High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN101418240B (en) * 2008-12-01 2012-05-30 武汉凯迪工程技术研究总院有限公司 High temperature gasification technological process and system for preparing synthesis gas by using biomass
EP2494008B1 (en) 2009-09-09 2021-02-24 University of Massachusetts Process with olefin recycle for catalytic pyrolysis of biomass and hydrocarbonaceous materials in a fluidized bed for production of aromatics
CN101693841B (en) * 2009-11-02 2013-06-12 中节环(北京)能源技术有限公司 Methods for intermediate-temperature rapid pyrolysis and repeated splitting decomposition for carbonic solid fuels
KR101070636B1 (en) 2010-01-22 2011-10-07 신광화학공업주식회사 Equipment for continuously making active carbon
CN102434226A (en) * 2011-08-02 2012-05-02 肖国雄 Biomass power generating method
JP5961497B2 (en) * 2012-09-14 2016-08-02 株式会社チサキ Pyrolysis equipment for combustible materials
JP5793125B2 (en) * 2012-09-19 2015-10-14 一般財団法人電力中央研究所 Carbonization and gasification method and system
JP2015196815A (en) * 2014-04-03 2015-11-09 Jfeスチール株式会社 Method for utilizing biomass
JP6432934B2 (en) * 2014-11-04 2018-12-05 日工株式会社 Wood chip dryer for biomass power generation
CN107746729A (en) * 2017-09-18 2018-03-02 福建省爱善环保科技有限公司 A kind of full gasifying electricity generation technique of rubbish and sludge
KR102041070B1 (en) * 2019-02-11 2019-11-27 농업회사법인 주식회사 한국 바이오차 Direct heating type biochar torrefaction produce system using woodchip and sawdust from wood biomass
WO2021132046A1 (en) * 2019-12-27 2021-07-01 日立造船株式会社 Gasification system
JPWO2022220246A1 (en) * 2021-04-14 2022-10-20
CN115215338A (en) * 2022-07-26 2022-10-21 西安交通大学 Process system and method for preparing porous carbon through carbonization and activation of biomass tar

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135728B2 (en) 2012-02-16 2021-10-05 Biochar Now, Llc Lid assembly for portable biochar kiln
WO2013123096A1 (en) * 2012-02-16 2013-08-22 Biochar Now, Llc Controlled kiln and manufacturing system for biochar production
US20180282628A1 (en) 2012-02-16 2018-10-04 Biochar Now , Llc Exhaust System For A Biochar Kiln
US10160911B2 (en) 2012-02-16 2018-12-25 Biochar Now, Llc Exhaust system for a biochar kiln
US10370593B2 (en) 2012-02-16 2019-08-06 Biochar Now, Llc Controlled kiln and manufacturing system for biochar production
US10751885B2 (en) 2012-02-16 2020-08-25 Biochar Now, Llc Gripper assembly for portable biochar kiln
US10527282B2 (en) 2012-03-11 2020-01-07 Biochar Now, Llc Managed biochar kiln
US9752078B2 (en) 2012-03-11 2017-09-05 Biochar Now, Llc Airflow control and heat recovery in a managed kiln
US10253979B2 (en) 2012-03-11 2019-04-09 Biochar Now, Llc Flow regulation for a biochar kiln
US10323845B2 (en) 2012-03-11 2019-06-18 Biochar Now, Llc Airflow control and heat recovery in a managed kiln
US9878924B2 (en) 2015-02-06 2018-01-30 Biochar Now, Llc Contaminant removal from water bodies with biochar
US10385273B2 (en) 2016-04-03 2019-08-20 Biochar Now, Llc Biochar kiln
US10385274B2 (en) 2016-04-03 2019-08-20 Biochar Now, Llc Portable biochar kiln
US10883052B2 (en) 2016-04-03 2021-01-05 Biochar Now, Llc Biochar kiln
KR101769823B1 (en) 2016-10-14 2017-08-22 서울시립대학교 산학협력단 Rotary Kiln type continuous system for biomass pyrolysis

Also Published As

Publication number Publication date
JP2004339360A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4267968B2 (en) Biomass processing method
CN101312905B (en) Process and system for gasification with in-situ tar removal
TWI410487B (en) Process and device for the production of low-tar synthesis gas from biomass
JP2005112956A (en) Gasification method for biomass
US20110035990A1 (en) Method and device for converting carbonaceous raw materials
JP5630626B2 (en) Organic raw material gasification apparatus and method
WO2010109798A1 (en) Gasification system and gasification process
WO2008050727A1 (en) Biomass gasification apparatus
KR20120004979A (en) Two stage dry feed gasification system and process
JP4547244B2 (en) Organic gasifier
JP2006205135A (en) Complex waste disposal system
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP7140341B2 (en) Hydrogen production method using biomass as raw material
JP5460970B2 (en) Woody biomass gas reforming system
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP2008069017A (en) Method for producing hydrogen
JP4227771B2 (en) Biomass gasification method
JP2004051745A (en) System of gasifying biomass
JP2004204106A (en) Gasifier of organic material
AU2003261772B2 (en) Method of recovering hydrogen from organic waste
JP2004275901A (en) Pyrolytic gasification device for vegetable organic substance and power generation facility using pyrolytic gasification device
JP3850431B2 (en) Pyrolysis gasification method and pyrolysis gasification apparatus
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JP4665021B2 (en) Biomass gasification method
JP3914474B2 (en) Gasification method and apparatus for carbonaceous resources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Ref document number: 4267968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

EXPY Cancellation because of completion of term