JP3914474B2 - Gasification method and apparatus for carbonaceous resources - Google Patents

Gasification method and apparatus for carbonaceous resources Download PDF

Info

Publication number
JP3914474B2
JP3914474B2 JP2002200001A JP2002200001A JP3914474B2 JP 3914474 B2 JP3914474 B2 JP 3914474B2 JP 2002200001 A JP2002200001 A JP 2002200001A JP 2002200001 A JP2002200001 A JP 2002200001A JP 3914474 B2 JP3914474 B2 JP 3914474B2
Authority
JP
Japan
Prior art keywords
pyrolysis
carbonaceous
gas
gasification
resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002200001A
Other languages
Japanese (ja)
Other versions
JP2004041848A (en
Inventor
茂 橋本
隆文 河村
晴是 汐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2002200001A priority Critical patent/JP3914474B2/en
Publication of JP2004041848A publication Critical patent/JP2004041848A/en
Application granted granted Critical
Publication of JP3914474B2 publication Critical patent/JP3914474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Description

【0001】
【発明の属する技術分野】
本発明は、各種炭素質資源を効率よく原燃料ガスに転換する技術に関するものである。
【0002】
【従来の技術】
近年、3R(reduce:削減、reuse:再使用、recycle:再利用)の考え方が、政策の後押しもあり、共通概念として認知され初めている。使用後または故障・破壊後の製品や製品製造時の副生品等のいわゆる廃棄物は、焼却あるいは埋め立てが主な処理方法であり、最終処分場の逼迫する現実と相まって、それらを有効に利用することは、地球温暖化問題への対応の一つの解答となるであろう。しかしながら廃棄物は、種々雑多な性状を有しており、エネルギー密度の低いものが多く含まれる、処理後のガス精製負担が大きい等の理由で、作業、設備に手間とコストが掛かり、特に小規模で経済的に自立可能なプロセスは少ない。
【0003】
廃棄物の多くは炭素を含んでおり、発熱量は一般的には低いものの、石炭、石油、天然ガス等と変わりないエネルギー資源と見ることができる。
【0004】
廃棄物の処理は、自治体から排出される一般廃棄物ゴミ焼却に蒸気発電を組み合わせて電力として回収するゴミ焼却発電方式が一般的であり、従来の10〜15%の送電端効率から、ボイラ材質改良や原料調整(RDF化)、外部燃料使用による効率向上(スーパーゴミ発電)等により、30%近い送電端効率に向上している焼却炉もある。ただしこれらは、廃棄物の事前処理やボイラ材質、外部燃料導入が必要であり、コスト面、適用面からは特殊解であり、一般化していない。
【0005】
最終処分場の逼迫やダイオキシン規制により自治体での実機採用が増加しつつある処理方法としては、灰分の減容・無害化処理やダイオキシン低減を狙い、高温でガス化溶融して灰分を溶融・スラグ化し、発電まで持ってゆくいわゆる廃棄物ガス化溶融技術がある。この技術は種類が多く、大きく▲1▼直接溶融型(シャフト炉等を使い、熱分解、ガス化、燃焼・溶融を前段の反応器で行い、後段では燃焼してボイラ、蒸気タービンでエネルギー回収を行うものが主。)、▲2▼熱分解+燃焼・溶融型(低温熱分解して生成したガス、タール、チャーを充分な空気で高温燃焼し、ボイラ、蒸気タービンでエネルギー回収。)、▲3▼熱分解+ガス化型(低温熱分解して生成したガス、チャーを高温ガス化し、可燃性ガスを発生させ、ガスタービン、ガスエンジンによる発電または化学原料としてガスを利用。)に分けられる。▲1▼及び▲2▼の燃焼−蒸気発電方式では、廃棄物中に含まれる塩素等による腐食のために回収する蒸気条件に制約があることから、発電効率に限界がある。▲3▼のクリーンアップしたガスを用いる発電では、一般的に発電効率を高められる可能性が高い。例えば石炭利用発電に例を取ると、燃焼ボイラでの送電端効率(38−39%、USCタイプで39−41%)より、ガスタービンと蒸気タービンを組み合わせた複合発電(IGCC)において、高い送電端効率が得られる(通常タイプで43−44%、高温型ガスタービンで46−48%)。さらに、ガス化を燃料電池と組み合わせる次世代技術では、50%を超える送電端効率が見込まれるなど、高効率エネルギー転換方法への展開が見込める等のメリットがあり、今後は廃棄物の分野でもガス化を中心とした技術がさらに広く展開すると予測される。
【0006】
本発明は、廃棄物を含む炭素質原料の高効率エネルギー転換を指向しており、主に前述▲3▼の技術範疇に属する。ガス化を使用した廃棄物利用分野を見ると、特許としては、特開平10−81885号公報では、低温流動層ガス化炉と高温溶融ガス化炉を組み合わせ、廃棄物からアンモニア合成用原料ガス(水素)を製造する方法及び装置が、また特開平10−310783号公報では、内部循環式流動層炉と高温ガス化炉を組み合わせ、廃棄物をガス化して原燃料ガスを製造する方法及び装置が、特開平11−294726号公報では、廃棄物を熱分解し、熱分解チャーの部分酸化ガスで熱分解タールを改質して可燃ガスを製造する方法及び装置が提案されている。▲3▼の熱分解+ガス化に属する技術で実機稼働しているものは少ない。実機化されているものとしては、低温熱分解技術として外熱式のロータリーキルンを用い、生成した熱分解ガスおよびタールを空気で高温改質し、1000kcal/Nm3程度の低カロリーガスを得てこれをガスエンジンで発電するプロセスや、低温熱分解技術として、廃棄物を圧密し、プッシャー方式の外熱式熱分解炉で生成した熱分解ガス、タールおよび熱分解残渣を酸素でガス化および改質し、2000kcal/Nm3程度の中カロリーガスを得るプロセスがある。これらの技術は、発電を対象とした場合、送電端効率は7〜12%であり、熱効率は高くない。
【0007】
【発明が解決しようとする課題】
上記廃棄物のガス化を中心とした従来技術においては、効率向上を阻害する要因がいくつかある。前述特開平10−81885号公報、特開平10−310783号公報の技術では、熱分解(低温ガス化)に流動層方式を用いている。流動層では、適する流動層状態の維持のため流動ガスが必要であり、一般的には空気、酸素、水蒸気等が用いられる。これらのガスは、反応に関与しないものが大部分であり、高温ガス化炉における不要な加熱(必要酸素量の増加)、熱回収時の効率損等が生じて効率が低くなるという構造的な課題を持つ。現在、実機稼働しているロータリーキルンやプッシャー方式のプロセスは、ガスシール性の点から基本的に加圧ができないこと、低温熱分解炉が外熱方式であるために、設備のコンパクト化が困難でかつ発電には生成ガスの圧縮工程が必要となること、またプロセス熱効率が低いことが課題である。
【0008】
本発明は、炭素質資源のガスエネルギーへの高効率な転換を可能とすることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、以上の課題を解決するに有効な方法であり、
(1)廃棄物を含む炭素質資源をシャフト型の炉で熱分解し、熱分解ガス及び熱分解タールを生成させ、更に、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源を、気流搬送で気流層へ投入し、酸素、又は酸素及び水蒸気にて気流層で部分酸化しガス化ガスを発生させ、該熱分解ガス、該熱分解タール、及び該ガス化ガス中に、酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質することを特徴とする炭素質資源のガス化方法、
(2)前記気流搬送で気流層へ投入する、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源が、木材、硬質プラスチックのいずれか又は双方であることを特徴とする(1)記載の炭素質資源のガス化方法、
(3)シュレッダーダスト、軟質プラスチック、生木、一般廃棄物ゴミのうちいずれか一つ以上の炭素質資源をシャフト型の炉で熱分解し、熱分解ガス及び熱分解タールを生成させ、更に、木材、硬質プラスチックのいずれか又は双方の炭素質資源を、気流搬送で気流層へ投入し、酸素、又は酸素及び水蒸気にて気流層で部分酸化しガス化ガスを発生させ、該熱分解ガス、該熱分解タール、及び該ガス化ガス中に、酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質することを特徴とする炭素質資源のガス化方法、
(4)前記炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、前記気流搬送で気流層へ投入する、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源、或いは、前記木材、硬質プラスチックのいずれか又は双方の炭素質資源と共に酸素、又は酸素及び水蒸気にて気流層で部分酸化することを特徴とする前記(1)〜(3)のいずれか1項に記載の炭素質資源のガス化方法、
(5)前記炭素質資源を熱分解する際に、シャフト型の炉を用いて、反応部温度を300℃〜800℃とすることを特徴とする前記(1)〜(4)のいずれか1項に記載の炭素質資源のガス化方法、
(6)前記炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、前記気流搬送で気流層へ投入する、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源、或いは、前記木材、硬質プラスチックのいずれか又は双方の炭素質資源と共に前記気流層にて部分酸化する際に、反応部温度を1200℃〜1600℃とし、さらに熱分解ガス及び熱分解タールを改質する際に、反応部温度を900℃〜1200℃とすることを特徴とする前記()又は()記載の炭素質資源のガス化方法、
(7)前記熱分解に必要な熱を、熱分解される炭素質資源自身の燃焼熱でまかなうことを特徴とする前記(1)〜()のいずれか1項に記載の炭素質資源のガス化方法、
(8)炭素質資源の熱分解及び部分酸化、並びに熱分解ガス及び熱分解タールの改質を、0.5MPa〜3.0MPaの圧力で行うことを特徴とする前記(1)〜()のいずれか1項に記載の炭素質資源のガス化方法、
(9)廃棄物を含む炭素質資源を熱分解するシャフト型熱分解炉と、炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源と共に、気流搬送で気流層へ投入し、酸素、又は酸素及び水蒸気で部分ガス化する気流層ガス化炉と、該熱分解炉で生成した熱分解ガス及び熱分解タール、該ガス化炉で発生したガス化ガス、並びに酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質する改質炉、有することを特徴とする炭素質資源のガス化装置、
(10)前記改質炉で改質された生成ガスを処理するガス精製装置を有することを特徴とする前記()記載の炭素質資源のガス化装置、
(11)前記ガス化炉と前記改質炉が連接することを特徴とする前記()又は(10)に記載の炭素質資源のガス化装置、
(12)前記熱分解炉で生成した熱分解残渣を破砕する破砕機と、該熱分解残渣から金属を分離する装置と、金属が分離された炭素質残渣を前記ガス化炉へ供給する供給装置を有することを特徴とする前記()〜(11)のいずれか1項に記載の炭素質資源のガス化装置、
からなる。
【0010】
尚、本発明における炭素質資源とは、バイオマスやプラスチック、一般廃棄物ゴミ等を指し、具体的には、農業系バイオマス(麦わら、サトウキビ、米糠、草木等)、林業系バイオマス(製紙廃棄物、製材廃材、除間伐材、薪炭林等)、畜産系バイオマス(家畜廃棄物)、水産系バイオマス(水産加工残滓)、廃棄物系バイオマス(生ゴミ、RDF:ゴミ固形化燃料;Refused Derived Fuel、庭木、建設廃材、下水汚泥)、硬質プラスチック、軟質プラスチック、シュレッダーダスト等を指す。特に木材に関しては、製材廃材、建設廃材、木製電柱、木製枕木等、一度乾燥工程を経た、比較的水分が少ない(3〜20質量%)ものを指し、草木、除間伐材に代表される生木類と区別される。プラスチックに関しては、通常曲げ弾性率が定常状態で7000kg/cm2以上を硬質プラスチック、700kg/cm2以下を軟質プラスチックと区別される(その間の性状のものは半硬質プラスチックとされる)。本発明では、曲げ弾性率のみでは破砕特性が決まらないこともあり、実施経験上から、熱硬化性プラスチック、スチロール樹脂、プロプロピレン、アクリル樹脂、硬質塩ビ樹脂等の破砕時に溶融、融着を示しにくいものを硬質プラスチックとし、ポリエチレン、軟質塩化ビニル樹脂、ウレタン樹脂、発泡スチロール等の、主に溶融性を持つことで破砕に向かないものを軟質プラスチックとする。また一般廃棄物ゴミとは産廃指定19種類以外のゴミのことで、自治体単位で収集する家庭系ゴミや事業者から出る紙類を多く含む事業系ゴミである。ただし、本発明は炭素質のエネルギー転換に関するものであるため、炭素質をほとんど含まないもの、すなわち分別された金属、ガラス類等は対象とはしない。
【0011】
【発明の実施の形態】
前記(1)、()及び(10)に係る本発明の基本的プロセスフロー及び設備構成を、図1に示した。炭素質資源1は、ガス化炉2と熱分解炉3の2箇所に供給される。特開平11−294726号公報に開示された方法では、廃棄物は全量熱分解炉に投入され、反応後の残渣をガス化溶融する。本発明では、炭素質資源は主に破砕性、形状によって区別され、ガス化用と熱分解用に並行して供給される。ガス化炉2では、炭素質資源1は、酸素4又は酸素4及び水蒸気5で部分酸化され、ガス化ガス6を生成する。炭素質資源1中の灰分は、ガス化炉2で溶融して、スラグ7としてガス化炉2の下部から排出される。熱分解炉3では、熱分解によって炭素質資源1が熱分解ガス・熱分解タール8と熱分解残渣9に分けられ、熱分解ガス・熱分解タール8はガス化炉2で発生するガス化ガス6が導入されている改質炉10に導入され、ガス化ガス6と共に、蒸気5、酸素4の何れか又は双方によって改質される。熱分解残渣9は金属11を分離して炭素質残渣12となる。改質炉10でされた生成ガス13は、必要に応じガス精製設備14で精製され、精製ガス15となる。
【0012】
前記()及び()に係る発明と、前記()に係る発明を具体化する設備構成を示した前記(12)に係る発明のフローを図2に示す。熱分解残渣9が、還元状態で原料として使いやすい金属11と、熱分解されることで炭化して破砕性が改善された炭素質残渣12からなることを利用する。熱分解残渣9を熱分解残渣破砕機16で破砕し、金属分離装置17で金属11を分離して炭素質残渣12を炭素質残渣供給装置18でガス化炉2に供給して部分酸化する。炭素質残渣12は、炭素質資源1に含有されている灰分が濃縮されているが、酸素や水素が少なく炭素の多い、いわゆる炭の状態になっており、ガス化原料として優れた炭材である。図2では、打ち込まれた釘や電気配線等の、熱分解前には分離しにくい金属を想定して熱分解残渣破砕機16の後に金属分離装置17を設置しているが、空き缶や抜け落ちた釘、金具等の既に炭素質と分離している金属の混入が想定される場合には、熱分解残渣破砕機16の破砕動力低減のために、熱分解残渣破砕機16の前にも別の金属分離装置を設置しても良い。()で示した熱分解用の熱に関しては、熱分解炉3の下部より酸化剤21を導入し、炭素質資源1や熱分解残渣9を一部燃焼して熱源とする。自燃による直接熱交換であり、キルン等での間接加熱方式と比較しても効率が高く、追加燃料を必要としない。
【0013】
炭素質資源のガスへの転換という観点からは、原料の転換率の高さ、熱効率の高さや、反応時間が短時間であることによるコンパクトな設備であることとそれに基づく生産性の高さを考えると、気流層でのガス化が最も有利であり、可能ならば全量をこの方法で処理することが好ましい。ところが、一般廃棄物ゴミに例を見るように、形状、性状が雑多な炭素質資源を、気流搬送向けに均一に乾燥、微粉砕することは技術的には可能であるが、経済的に現実的ではない。従って、現在の主流技術には、形状、性状の許容度が大きいキルンや流動層を使用したものが多い。本発明では、前記()でも具体的に示したが、木材や硬質プラ等の、粉砕性がよく、数mmサイズに加工しやすい炭素質資源は直接ガス化炉で高効率ガス化を実施し、シュレッダーダスト、軟質プラスチック等の、熱を受けると溶融して付着性を発現するものや、除間伐材を含む生木等のように繊維方向に強度・靱性が高く、粉砕時に長径と短径の差が大きくて貯留・搬送トラブルを誘発するもの、またシュレッダーダストのように、金属(特に配線)を含むために気流搬送に向かないもの、一般廃棄物ゴミのように水分が多く雑多な性状の集合であり、均一な破砕に向かないものは、熱分解炉で熱分解ガス・熱分解タールと熱分解残渣を分離して熱分解ガス・熱分解タールは改質工程を経て原燃料として使い、熱分解によって粉砕性等が改善した炭素質残渣は、金属を分離の上、そのまま炭素材料として使用するか、粉砕してガス化炉で原料として利用することとした。前記()の発明で言う木材とは、乾燥工程を経ている木々を指し、生木と区別している。上記のように炭素質資源毎に最適利用方法を選ぶことで、従来技術の持つ課題である、不必要な加熱や過剰の酸化剤は不要となり、純粋にガスに転換するためのエネルギーだけの使用で済む。
【0014】
前記()に係る発明では、熱分解炉3での熱分解に適した反応部温度範囲を示した。図3に熱分解炉3の内部状況を示す。炉のタイプは、鉄鋼業の高炉で使用されているシャフト型の炉を使用した。説明の都合上、図3では主に反応の違いによって下部ゾーン19と上部ゾーン20に分けて示したが、明確に分岐されているわけではなく、概念的なものであり、実際は反応が重なっている区域がある。下部ゾーン19は、炭素質資源1の燃焼を主体としたゾーンであり、上部ゾーン20は炭素質資源1の乾燥、昇温、熱分解を主体としたゾーンである。炭素質資源1は熱分解炉3上部に投入され、下部ゾーン19で発生したガスにより暖められながら徐々に下降する。下部ゾーン19では酸化剤21が導入され、下降してきた炭素質資源1の一部が燃焼して熱を発生する。酸化剤21には酸素又は空気を使用するが、温度調整の役目も含めて蒸気を併用する場合がある。燃焼したガスは、下降する炭素質資源1の間を上昇し、上部ゾーン20に熱を与えて、上部ゾーン20で発生したガス、タールと共に熱分解ガス・熱分解タール8となって改質炉との接続部22から排出される。下部ゾーン19の反応温度は、燃焼反応が起きているため、400℃〜800℃であり、上部ゾーン20の反応温度は、乾燥、昇温、熱分解に燃焼ガスの熱が使われて下がり、300℃〜500℃であることから、熱分解炉3の温度は300〜800℃となる。上部ゾーン20の反応温度が300℃未満のときには、熱分解があまり進まず、また生成した熱分解タールが再凝縮して通気障害等のトラブルを起こすため、操業温度として望ましくない。下部ゾーン19の反応温度は、直接加熱であるため、800℃までで充分上部ゾーンを加熱できる。800℃を越える温度は熱的に不要であり、放熱量が増加することから酸化剤21が多く必要になるデメリットが生じ、結果として熱分解ガス熱量が下がる、耐熱の設備構成に変える必要が出る等の理由で好ましくない。下部ゾーン19で炭素質資源1が一部燃焼した残りの熱分解残渣9は、下部ゾーン19の下部から排出される。
【0015】
前記()に係る発明では、ガス化炉の反応部温度範囲と、改質炉の反応部温度範囲を示した。ガス化では、含有灰分をスラグ化して溶融させるために、1200℃〜1600℃の温度が必要で、例えば代表的な例を示すと、稲藁に例を見る農業系バイオマスの場合は反応部温度は1200℃〜1400℃程度、プラスチックでは1300℃〜1500℃、石炭では1400℃〜1600℃と、ガス化対象によって異なる。各物質の灰分溶流点が異なるためであり、使用原料に合わせて酸素4、水蒸気5の量を調整してガス化炉温制御を実施する。1200℃未満の温度では、灰の溶流点が低い農業系バイオマスでも溶融せず、フライアッシュとして後段の工程に流出し、ガス精製設備14のダスト除去設備負荷の増加、精製ガス15の純度低下が起こる。1600℃を越える温度では、放熱の増加や炉壁構造の変更(通常の耐火・断熱材質では長期間の炉壁維持は困難)により、熱効率の悪化と設備費の増大が見込まれ、実用的ではない。
【0016】
改質炉10では、ガス化炉2からのガス化ガス6の温度により改質温度を確保し、ガス化ガス6中の水蒸気と、追加して添加する酸素4、水蒸気5のいずれか一つ以上によって熱分解ガス・熱分解タール8を改質する。改質炉10の温度は900℃〜1200℃が適しており、900℃未満では、分解しきれないタールが後段のガス精製設備14で付着トラブルをおこしたり、発生が懸念されるダイオキシンが分解せずに後段工程まで残存する。一方、1200℃を越えると改質炉からの飛灰の後段の精製設備14への融着・付着が顕著になるため好ましくない。改質炉10での温度調整は酸素4の量と水蒸気5の量で調整する。原料中に明らかに塩素が含まれており、特にダイオキシンの生成をほぼ0にしたい場合は、改質炉10の温度範囲の中でも、ほぼ全量分解可能な1000℃〜1200℃で操業することが望ましい。また、改質反応には、ガス化炉2のガス化ガス6の顕熱を利用している。従来技術では、熱分解後の炭化物は多くとも熱分解原料の10質量%程度しか生成しないため、改質反応のための熱源としては貧弱であり、改質炉10に酸素を大量に投入して燃焼反応熱を生成させる必要がある。本発明では投入量は任意に規定可能であり、最小限の酸素投入で済む(実施例では、熱分解:ガス化=1:1で運転)。
【0017】
前記()に係る発明では、熱分解炉3、ガス化炉2、改質炉10の操業圧力をしめした。本発明で示したプロセス全体で適する圧力範囲は、0.5MPa〜3.0MPaである。
【0018】
圧力をかける基本的な効果は、反応速度の上昇による生産性の向上と設備のコンパクト化による熱損失(主に放散熱)の低減である。反応速度は、概略圧力比の0.5乗に比例して上昇するため、圧力による生成物変化の少ない数MPaまででは高ければ高いほどよい。熱損失も圧力が高いほど有利になるが、設備費は高圧ほど高くなるトレード−オフの関係になるため、実機設備の少ない3MPaより高い圧力は、経済的に現実的ではない。
【0019】
本発明の方法及び装置を用いて発生した精製ガス15の主要用途の一つは発電である。圧力の低いものとしてはガスエンジン発電があり、0.3〜0.8MPaの圧力域が最も効率的である。また、圧力の高いものとしては、ガスタービン−蒸気タービンのコンバインドサイクル発電が代表的であり、1.4〜1.7MPaの圧力域が最も効率的である。これら発電設備への利用を考えたとき、熱交換やガス精製等の圧損も考慮して、ガス化炉、熱分解炉、改質炉の操業圧力は、0.5〜1.0MPa(ガスエンジン)、2.4〜3.0MPa(コンバインドサイクル)にするのが好ましい。既存の高効率ガス化発電はほぼ上記の圧力領域に入ることから、0.5〜3.0MPaを本発明における適切な圧力範囲とした。
【0020】
前記(11)に係る発明では、ガス化炉2と改質炉10の最適配置について示した。基本的には高温のガス化ガス6顕熱が改質の熱エネルギーになることが必須の要件であるが、最も熱ロスを防ぎ、ガス化炉2で生成した溶融スラグ7によるスラッギングトラブルを防ぐには、ガス化炉2のすぐ後段に改質炉10が連接することが望ましい。
【0021】
【実施例】
本発明で示した設備において、ガス化炉に建設廃木材破砕品(平均粒度数mm)及び硬質プラスチック破砕品(硬質PE、硬質PP、ABS樹脂混合;平均粒度数mm)を、熱分解炉に軟質プラスチック及びシュレッダーダスト成型品(PEフィルム・シート、PPシート、カーシュレッダーダスト混合品:粒度100mm以下)品を使用した試験を実施した。各炉温は、熱分解炉下部ゾーン温度600℃、上部ゾーン温度300℃、ガス化炉温度1300℃、改質炉温度1000℃及び1100℃の温度条件、0.8MPaの圧力条件で操業した。
【0022】
比較例として、同じ成分の炭素質資源を混合したものを、全量数mmまで破砕して1300℃でガス化した。この比較例では、本発明の装置のうち、ガス化炉部分のみを使用した。
【0023】
比較例との効率比較を表1に示す。比較数値としては、熱回収率(使用した炭素質資源の全発熱量に対し、精製ガスとして回収できた熱量)を使用した。同じ原料を使用したにも関わらず、熱量回収率は、比較例65%に対し、改質炉温度を1100℃とした本発明例1で72%、改質炉温度を1000℃とした本発明例2で78%となり、非常に転換効率の良いプロセスであるといえる。比較例の、ガス化炉部分のみを使用した試験結果において、プロセス数が少ないにもかかわらず効率が悪化するのは、主に▲1▼全量を1300℃まで昇温すること、▲2▼水分の多い低カロリー原料を高カロリー原料と混合していること、による。▲1▼に関しては、原料中の灰分を溶融してスラグとして排出するために1300℃という温度が必要であり、比較例では全ガスはこの温度で排出され、本発明の例では最終的な全ガス温度は1000℃又は1100℃であるため、顕熱の差分が潜熱に転換していると説明できる。本発明の中でも、改質炉温度を下げた本発明例2で更に高い。また▲2▼に関しては、比較例は多く含む水分ごと1300℃に昇温するために、本発明の例に比べ、必要な単位重量あたりの酸素量が増加しており、酸素/炭素質原料比の高い操業をせざるを得ないため、潜熱回収量が減っていると説明できる。
【0024】
【表1】

Figure 0003914474
【0025】
【発明の効果】
本発明により、熱分解炉、ガス化炉、改質炉を組み合わせ、種々の炭素質資源の性状別に、違うエネルギー転換方法を与えることで、高効率な炭素質資源のガスエネルギーへの転換を可能とする。
【図面の簡単な説明】
【図1】 本発明の基本的設備構成(プロセスフロー)
【図2】 熱分解残渣を利用した炭素質資源利用プロセスフロー
【図3】 熱分解炉内部状況
【符号の説明】
1:炭素質資源
2:ガス化炉
3:熱分解炉
4:酸素
5:水蒸気
6:ガス化ガス
7:スラグ
8:熱分解ガス・熱分解タール
9:熱分解残渣
10:改質炉
11:金属
12:炭素質残渣
13:生成ガス
14:ガス精製設備
15:精製ガス
16:熱分解残渣破砕機
17:金属分離装置
18:炭素質残渣供給装置
19:下部ゾーン
20:上部ゾーン
21:酸化剤
22:接続部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for efficiently converting various carbonaceous resources into raw fuel gas.
[0002]
[Prior art]
In recent years, the concept of 3R (reduce, reduce, reuse) has been recognized as a common concept, with the support of policies. The so-called waste such as products after use or after breakdown / destruction and by-products at the time of product production is mainly incinerated or landfilled. Doing this will be one answer to the response to the global warming issue. However, wastes have various properties, many of them have low energy density, and the burden of gas purification after processing is large. There are few processes that can be economically independent on a scale.
[0003]
Most of the waste contains carbon, and although the calorific value is generally low, it can be regarded as an energy resource that is not different from coal, oil, natural gas, and the like.
[0004]
Waste disposal is generally performed by a waste incineration power generation system that collects steam power generation in combination with municipal waste incineration from municipalities and collects it as electric power. Some incinerators have improved power transmission efficiency to nearly 30% through improvements, raw material adjustments (RDF conversion), and efficiency improvements using external fuel (super garbage power generation). However, these require pre-treatment of waste, boiler material, and external fuel introduction, are special solutions in terms of cost and application, and are not generalized.
[0005]
As a treatment method where the adoption of actual machines in the local government is increasing due to tightness of final disposal sites and dioxin regulations, ash is melted and slag by gasifying and melting at high temperature, aiming at volume reduction / detoxification treatment of ash and reduction of dioxin There is a so-called waste gasification and melting technology that takes electricity to power generation. There are many types of this technology. (1) Direct melting type (using a shaft furnace, etc., thermal decomposition, gasification, combustion / melting is performed in the reactor in the previous stage, and combustion is performed in the subsequent stage to recover energy in the boiler and steam turbine. (2) Pyrolysis + combustion / melting type (gas, tar and char generated by low-temperature pyrolysis are burned at high temperature with sufficient air, and energy is recovered with a boiler and steam turbine.), (3) Pyrolysis + gasification type (gas generated by low temperature pyrolysis, char is gasified at high temperature to generate combustible gas, gas turbine, power generation by gas engine or use gas as chemical raw material) It is done. In the combustion-steam power generation methods (1) and (2), there is a limit in power generation efficiency because there are restrictions on the steam conditions to be recovered due to corrosion caused by chlorine contained in the waste. In the power generation using the clean-up gas (3), it is generally highly possible that the power generation efficiency can be improved. For example, in the case of coal-based power generation, power transmission is higher in combined power generation (IGCC) that combines a gas turbine and a steam turbine than the power transmission efficiency (38-39% in a USC type, 39-41% in a combustion boiler). Edge efficiency is obtained (43-44% for normal type, 46-48% for high-temperature gas turbine). In addition, next-generation technology that combines gasification with fuel cells has the advantage that it can be expected to expand to a high-efficiency energy conversion method, such as a power transmission end efficiency exceeding 50%. It is expected that technology centered on the development will be further expanded.
[0006]
The present invention is directed to high-efficiency energy conversion of carbonaceous raw materials including waste and mainly belongs to the technical category (3). Looking at the waste utilization field using gasification, Japanese Patent Application Laid-Open No. 10-81885 discloses a combination of a low-temperature fluidized bed gasification furnace and a high-temperature melt gasification furnace. And a method and apparatus for producing raw fuel gas by gasifying waste and combining an internal circulation fluidized bed furnace and a high-temperature gasification furnace. JP-A-11-294726 proposes a method and an apparatus for producing a combustible gas by thermally decomposing waste and reforming pyrolysis tar with a partial oxidation gas of pyrolysis char. There are few actual machines in operation that belong to pyrolysis + gasification in (3). As an actual machine, an external heat type rotary kiln is used as a low-temperature pyrolysis technique, and the generated pyrolysis gas and tar are reformed at high temperature with air, and 1000 kcal / Nm.ThreePyrolysis gas, tar, and pyrolysis generated in a pusher-type external thermal cracking furnace as a process for generating a low-calorie gas of a certain level and generating this with a gas engine, or as a low-temperature pyrolysis technology The residue is gasified and modified with oxygen, 2000 kcal / NmThreeThere is a process to get medium calorie gas. When these technologies are intended for power generation, the power transmission end efficiency is 7 to 12%, and the thermal efficiency is not high.
[0007]
[Problems to be solved by the invention]
In the prior art centering on the gasification of the waste, there are several factors that hinder the efficiency improvement. In the techniques disclosed in Japanese Patent Laid-Open Nos. 10-81885 and 10-310783, a fluidized bed method is used for thermal decomposition (low temperature gasification). In a fluidized bed, a fluidized gas is required to maintain a suitable fluidized bed state, and generally air, oxygen, water vapor, or the like is used. Most of these gases do not participate in the reaction, and the structural efficiency is such that unnecessary heating (increased amount of required oxygen) in the high-temperature gasification furnace, efficiency loss at the time of heat recovery, etc. occur, resulting in low efficiency. Have a challenge. Currently, the rotary kiln and pusher type processes that are in operation are basically incapable of pressurization from the viewpoint of gas sealability, and the low-temperature pyrolysis furnace is an external heating type, making it difficult to make equipment compact. In addition, the power generation requires a product gas compression step, and the process heat efficiency is low.
[0008]
An object of the present invention is to enable highly efficient conversion of carbonaceous resources to gas energy.
[0009]
[Means for Solving the Problems]
  The present invention is an effective method for solving the above problems,
(1)Includes wasteCarbonaceous resourcesIn a shaft-type furnacePyrolyzing to produce pyrolysis gas and pyrolysis tar,In addition, carbonaceous resources including waste or crushed or crushed wasteCarbonaceous resources, Put into the airflow layer by airflow conveyance,Oxygen or oxygen and water vaporIn the air current layerPartially oxidized to generate gasified gas, oxygen or water vapor is introduced into the pyrolysis gas, the pyrolysis tar, and the gasification gas to modify the pyrolysis gas and pyrolysis tar. Gasification method of carbonaceous resources, characterized by
(2)The carbonaceous resource containing waste or the carbonaceous resource containing crushed or crushed waste to be introduced into the airstream layer by the airflow conveyance is either wood or hard plastic, or both (1) Gasification method of the described carbonaceous resources,
(3)One or more carbonaceous resources of shredder dust, soft plastic, raw wood, and general waste are pyrolyzed in a shaft-type furnace to produce pyrolysis gas and pyrolysis tar, and wood, hard Either or both of the plastic carbonaceous resources are introduced into the airflow layer by airflow conveyance, and partially oxidized in the airflow layer with oxygen or oxygen and water vapor to generate gasified gas. A gasification method for carbonaceous resources, characterized by reforming the pyrolysis gas and pyrolysis tar by introducing either or both of oxygen and water vapor into the gas and the gasification gas,
(4)SaidA carbonaceous residue obtained by separating metal from a pyrolysis residue generated by pyrolyzing carbonaceous resources,Either carbonaceous resources including waste, carbonaceous resources including pulverized or crushed waste, or either wood or hard plastic, or both of which are thrown into the airflow layer by the airflow conveyanceAlong with carbonaceous resources,Oxygen or oxygen and water vaporIn the air current layerSaid (1) characterized by carrying out partial oxidationAny one of-(3)A gasification method for carbonaceous resources according to claim 1,
(5)SaidWhen pyrolyzing carbonaceous resources, the reaction temperature is set to 300 ° C. to 800 ° C. using a shaft-type furnace.In any one of (1) to (4)Gasification method of the described carbonaceous resources,
(6)SaidA carbonaceous residue obtained by separating metal from a pyrolysis residue generated by pyrolyzing carbonaceous resources,Either carbonaceous resources including waste, carbonaceous resources including pulverized or crushed waste, or either wood or hard plastic, or both of which are thrown into the airflow layer by the airflow conveyanceAlong with carbonaceous resourcesIn the airflow layerThe reaction section temperature is set to 1200 ° C. to 1600 ° C. during partial oxidation, and the reaction section temperature is set to 900 ° C. to 1200 ° C. when reforming the pyrolysis gas and pyrolysis tar.4Or (5) Gasification method for carbonaceous resources
(7) The heat required for the pyrolysis is provided by the combustion heat of the carbonaceous resource itself to be pyrolyzed (1) to (1)6) Gasification method for carbonaceous resources according to any one of
(8) The above (1) to (1), wherein the pyrolysis and partial oxidation of carbonaceous resources and the reforming of pyrolysis gas and pyrolysis tar are performed at a pressure of 0.5 MPa to 3.0 MPa.7) Gasification method for carbonaceous resources according to any one of
(9)Includes wasteA shaft-type pyrolysis furnace that pyrolyzes carbonaceous resources;TheCarbonaceous residue obtained by separating metal from pyrolysis residue generated by pyrolyzing carbonaceous resources, Including carbonaceous resources including waste or crushed or crushed wasteAlong with carbonaceous resources, Put into the airflow layer by airflow conveyance,Partial gasification with oxygen or oxygen and water vaporAirflow layerGasification furnace, pyrolysis gas and pyrolysis tar generated in the pyrolysis furnace, gasification generated in the gasification furnacegas,And a reforming furnace for reforming the pyrolysis gas and pyrolysis tar by introducing either or both of oxygen and steamWhenThe, YesA gasifier for carbonaceous resources, characterized by
(10) The gas purification apparatus according to (10), further comprising a gas purification device that processes the product gas reformed in the reforming furnace.9) Gasification equipment for carbonaceous resources,
(11) The gasification furnace and the reforming furnace are connected to each other.9Or (10) Gasifier for carbonaceous resources,
(12) A crusher that crushes the pyrolysis residue generated in the pyrolysis furnace, a device that separates the metal from the pyrolysis residue, and a supply device that supplies the carbonaceous residue from which the metal has been separated to the gasification furnace Characterized by having (9) ~ (11) A gasification apparatus for carbonaceous resources according to any one of
Consists of.
[0010]
In addition, the carbonaceous resource in the present invention refers to biomass, plastics, general waste garbage, and the like, specifically, agricultural biomass (straw, sugarcane, rice bran, vegetation, etc.), forestry biomass (paper waste, Saw-timber waste, thinned wood, wood-fired forest, etc.), livestock biomass (livestock waste), aquaculture biomass (fishery processing residue), waste biomass (raw garbage, RDF: solid waste fuel; Refuse Derived Fuel, garden tree , Construction waste, sewage sludge), hard plastic, soft plastic, shredder dust, etc. For wood in particular, sawn lumber, construction waste, wooden utility poles, wooden sleepers, etc., which have undergone a drying process once (3-20% by mass) and are represented by plants and thinned wood Differentiated from trees. For plastics, the normal flexural modulus is 7000 kg / cm in a steady state.2The above is hard plastic, 700kg / cm2The following are distinguished from soft plastics (the properties in between are considered to be semi-rigid plastics). In the present invention, the crushing characteristics may not be determined only by the flexural modulus. From experience, it shows melting and fusion during crushing of thermosetting plastic, styrene resin, propylene, acrylic resin, hard PVC resin, etc. Hard plastic is used as hard plastic, and soft plastic such as polyethylene, soft vinyl chloride resin, urethane resin, polystyrene foam, etc. that is mainly meltable and is not suitable for crushing. General waste is garbage other than the 19 types designated as industrial waste. It is business waste that contains a lot of household waste collected by local governments and papers from businesses. However, since the present invention relates to carbonaceous energy conversion, those that contain almost no carbonaceous matter, that is, fractionated metals, glasses, etc. are not covered.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  (1), (9)as well as(101) shows the basic process flow and equipment configuration of the present invention. The carbonaceous resource 1 is supplied to two places, a gasification furnace 2 and a pyrolysis furnace 3. In the method disclosed in Japanese Patent Application Laid-Open No. 11-294726, the entire amount of waste is put into a pyrolysis furnace, and the residue after reaction is gasified and melted. In the present invention, carbonaceous resources are distinguished mainly by crushability and shape, and supplied in parallel for gasification and pyrolysis. In the gasification furnace 2, the carbonaceous resource 1 is partially oxidized with oxygen 4 or oxygen 4 and water vapor 5 to generate gasified gas 6. The ash content in the carbonaceous resource 1 is melted in the gasification furnace 2 and discharged from the lower part of the gasification furnace 2 as slag 7. In the pyrolysis furnace 3, the carbonaceous resource 1 is divided into pyrolysis gas / pyrolysis tar 8 and pyrolysis residue 9 by pyrolysis, and the pyrolysis gas / pyrolysis tar 8 is gasified gas generated in the gasification furnace 2. 6 is introduced into the reforming furnace 10 and is reformed together with the gasification gas 6 by either or both of the steam 5 and the oxygen 4. The pyrolysis residue 9 separates the metal 11 and becomes a carbonaceous residue 12. The product gas 13 generated in the reforming furnace 10 is purified by a gas purification facility 14 as necessary to become a purified gas 15.
[0012]
  Said (4)as well as(7) And the above (4) Which shows the equipment configuration embodying the invention according to12FIG. 2 shows a flow of the invention according to (). The fact that the pyrolysis residue 9 is composed of a metal 11 that is easy to use as a raw material in a reduced state and a carbonaceous residue 12 that is carbonized and improved in friability by pyrolysis is utilized. The pyrolysis residue 9 is crushed by the pyrolysis residue crusher 16, the metal 11 is separated by the metal separation device 17, and the carbonaceous residue 12 is supplied to the gasification furnace 2 by the carbonaceous residue supply device 18 to be partially oxidized. The carbonaceous residue 12 is enriched in ash contained in the carbonaceous resource 1, but is in a so-called charcoal state with little oxygen and hydrogen and a lot of carbon, and is an excellent carbonaceous material as a gasification raw material. is there. In FIG. 2, the metal separation device 17 is installed after the pyrolysis residue crusher 16 on the assumption of metals that are difficult to separate before pyrolysis, such as driven nails and electrical wiring. In order to reduce the crushing power of the pyrolysis residue crusher 16, when another metal such as a nail or metal fitting is already mixed with the carbonaceous material, it is necessary to put another in front of the pyrolysis residue crusher 16. A metal separator may be installed. (7With regard to the heat for pyrolysis shown in (), an oxidant 21 is introduced from the lower part of the pyrolysis furnace 3, and the carbonaceous resources 1 and the pyrolysis residue 9 are partially burned to form a heat source. Direct heat exchange by self-combustion is more efficient than indirect heating methods in kilns and does not require additional fuel.
[0013]
  From the viewpoint of conversion of carbonaceous resources to gas, the high conversion rate of raw materials, high thermal efficiency, compact equipment due to short reaction time, and high productivity based on it. When considered, gasification in the gas flow layer is most advantageous, and it is preferable to treat the entire amount in this way if possible. However, as seen in the case of general waste garbage, it is technically possible to uniformly dry and pulverize carbonaceous resources with various shapes and properties for airflow transportation, but it is economically practical. Not right. Therefore, many current mainstream technologies use kilns or fluidized beds that have a large tolerance for shape and properties. In the present invention, the above (3However, carbonaceous resources, such as wood and hard plastic, which have good crushability and are easy to be processed into several millimeters, are directly gasified in a gasification furnace, and shredder dust and soft plastic. Such as those that melt when exposed to heat and exhibit adhesiveness, and that have high strength and toughness in the fiber direction, such as raw wood that includes thinned wood, etc.・ Things that cause transportation troubles, and that are not suitable for airflow transportation because they contain metal (especially wiring), such as shredder dust, and are a collection of miscellaneous properties with a lot of moisture such as general waste garbage. For those that are not suitable for crushing, the pyrolysis gas / pyrolysis tar and pyrolysis residue are separated in a pyrolysis furnace, and the pyrolysis gas / pyrolysis tar is used as a raw fuel after the reforming process. The carbonaceous residue improved Metal over the separation, it may be used as it is as a carbon material, it was decided to use as a raw material in the gasification furnace and pulverized. Said (3In the invention of), wood refers to trees that have undergone a drying process, and is distinguished from raw wood. By selecting the optimal utilization method for each carbonaceous resource as described above, unnecessary heating and excess oxidant, which are the problems of the conventional technology, are no longer necessary, and only the energy used for pure gas conversion is used. Just do it.
[0014]
  Said (5In the invention according to), the reaction part temperature range suitable for the thermal decomposition in the thermal decomposition furnace 3 is shown. FIG. 3 shows the internal state of the pyrolysis furnace 3. The type of furnace used was a shaft type furnace used in the blast furnace of the steel industry. For convenience of explanation, FIG. 3 mainly shows the lower zone 19 and the upper zone 20 according to the difference in the reaction, but it is not clearly branched and is conceptual, and the reactions actually overlap. There is an area. The lower zone 19 is a zone mainly composed of combustion of the carbonaceous resource 1, and the upper zone 20 is a zone mainly composed of drying, heating and pyrolysis of the carbonaceous resource 1. The carbonaceous resource 1 is put into the upper part of the pyrolysis furnace 3 and gradually descends while being warmed by the gas generated in the lower zone 19. In the lower zone 19, an oxidant 21 is introduced, and a part of the descending carbonaceous resource 1 burns to generate heat. Oxygen or air is used for the oxidant 21, but steam may be used in combination with the role of temperature adjustment. The combusted gas rises between the descending carbonaceous resources 1 to give heat to the upper zone 20, and becomes a pyrolysis gas / pyrolysis tar 8 together with the gas and tar generated in the upper zone 20. It is discharged from the connection part 22. The reaction temperature of the lower zone 19 is 400 ° C. to 800 ° C. because the combustion reaction occurs, and the reaction temperature of the upper zone 20 is decreased by using the heat of the combustion gas for drying, temperature rising and thermal decomposition, Since it is 300 to 500 degreeC, the temperature of the pyrolysis furnace 3 will be 300 to 800 degreeC. When the reaction temperature in the upper zone 20 is less than 300 ° C., the thermal decomposition does not proceed so much, and the generated thermal decomposition tar recondenses and causes troubles such as aeration failure. Since the reaction temperature of the lower zone 19 is direct heating, the upper zone can be sufficiently heated up to 800 ° C. A temperature exceeding 800 ° C. is not necessary thermally, and since the amount of heat release increases, there is a demerit that a large amount of oxidant 21 is required, and as a result, it is necessary to change to a heat-resistant equipment configuration that reduces the amount of heat of pyrolysis gas. It is not preferable for such reasons. The remaining pyrolysis residue 9 from which the carbonaceous resource 1 has partially combusted in the lower zone 19 is discharged from the lower portion of the lower zone 19.
[0015]
  Said (6In the invention according to), the reaction part temperature range of the gasification furnace and the reaction part temperature range of the reforming furnace are shown. In gasification, a temperature of 1200 ° C. to 1600 ° C. is necessary to slag the contained ash to melt it. For example, in the case of agricultural biomass, an example of rice straw is the reaction part temperature. Is about 1200 ° C to 1400 ° C, 1300 ° C to 1500 ° C for plastic, and 1400 ° C to 1600 ° C for coal, depending on the gasification target. This is because the ash melting point of each substance is different, and the gasifier temperature control is performed by adjusting the amounts of oxygen 4 and water vapor 5 according to the raw materials used. At temperatures below 1200 ° C., even agricultural biomass with a low ash pour point does not melt and flows out as fly ash to the subsequent process, increasing the dust removal equipment load of the gas purification equipment 14 and reducing the purity of the refined gas 15 Happens. At temperatures exceeding 1600 ° C, heat efficiency is increased and equipment costs are expected to increase due to increased heat dissipation and changes in the furnace wall structure (maintenance of furnace walls for a long time is difficult with normal fireproof and heat insulating materials). Absent.
[0016]
In the reforming furnace 10, the reforming temperature is secured by the temperature of the gasification gas 6 from the gasification furnace 2, and any one of water vapor in the gasification gas 6, oxygen 4 to be added additionally, and water vapor 5 is added. Thus, the pyrolysis gas / pyrolysis tar 8 is reformed. The temperature of the reforming furnace 10 is suitably 900 ° C. to 1200 ° C. When the temperature is less than 900 ° C., tar that cannot be decomposed may cause adhesion troubles in the gas purification equipment 14 at the later stage, or dioxins that may be generated are decomposed. Without remaining until the subsequent step. On the other hand, if it exceeds 1200 ° C., fusion / adhesion to the subsequent purification equipment 14 from the fly ash from the reforming furnace becomes remarkable. The temperature adjustment in the reforming furnace 10 is adjusted by the amount of oxygen 4 and the amount of water vapor 5. It is desirable to operate at 1000 ° C. to 1200 ° C. where almost all of the raw material can be decomposed within the temperature range of the reforming furnace 10 when chlorine is clearly contained in the raw material, and particularly when it is desired to reduce the production of dioxin to almost zero. . Further, the sensible heat of the gasification gas 6 of the gasification furnace 2 is used for the reforming reaction. In the prior art, at most, the carbide after pyrolysis produces only about 10% by mass of the pyrolysis raw material, so it is a poor heat source for the reforming reaction, and a large amount of oxygen is charged into the reforming furnace 10. It is necessary to generate heat of combustion reaction. In the present invention, the input amount can be arbitrarily defined, and a minimum amount of oxygen can be input (in the embodiment, operation with pyrolysis: gasification = 1: 1).
[0017]
  Said (8), The operating pressure of the pyrolysis furnace 3, the gasification furnace 2, and the reforming furnace 10 was increased. The pressure range suitable for the whole process shown in the present invention is 0.5 MPa to 3.0 MPa.
[0018]
The basic effect of applying pressure is to improve productivity by increasing the reaction rate and to reduce heat loss (mainly dissipated heat) by making equipment compact. Since the reaction rate rises in proportion to the approximate power of 0.5, the higher the reaction rate, the higher the pressure up to several MPa where the product change due to pressure is small. Although the heat loss is more advantageous as the pressure is higher, the equipment cost becomes higher as the pressure is higher. Therefore, a pressure higher than 3 MPa, which has less actual equipment, is not economically practical.
[0019]
One of the main uses of the purified gas 15 generated using the method and apparatus of the present invention is power generation. Gas engine power generation is one with a low pressure, and the pressure range of 0.3 to 0.8 MPa is the most efficient. Moreover, as a thing with a high pressure, the combined cycle power generation of a gas turbine-steam turbine is typical, and the pressure range of 1.4-1.7 MPa is the most efficient. When considering use in these power generation facilities, the operating pressure of the gasification furnace, pyrolysis furnace, and reforming furnace is 0.5 to 1.0 MPa (gas engine) in consideration of pressure loss such as heat exchange and gas purification. ) 2.4 to 3.0 MPa (combined cycle) is preferable. Since existing high-efficiency gasification power generation almost falls within the above pressure range, 0.5 to 3.0 MPa was set as an appropriate pressure range in the present invention.
[0020]
  Said (11), The optimal arrangement of the gasification furnace 2 and the reforming furnace 10 is shown. Basically, it is an essential requirement that the sensible heat of the high-temperature gasified gas 6 becomes the heat energy for reforming, but the most heat loss is prevented, and the slagging trouble caused by the molten slag 7 generated in the gasification furnace 2 is prevented. For this, it is desirable that the reforming furnace 10 is connected immediately after the gasification furnace 2.
[0021]
【Example】
In the equipment shown in the present invention, a construction waste wood crushed product (average particle size of several millimeters) and a hard plastic crushed product (hard PE, hard PP, ABS resin mixed; average particle size of several millimeters) are put in a pyrolysis furnace. A test using a soft plastic and a shredder dust molded product (PE film / sheet, PP sheet, car shredder dust mixed product: particle size of 100 mm or less) was performed. Each furnace temperature was operated under a pyrolysis furnace lower zone temperature of 600 ° C, an upper zone temperature of 300 ° C, a gasifier temperature of 1300 ° C, a reforming furnace temperature of 1000 ° C and 1100 ° C, and a pressure condition of 0.8 MPa.
[0022]
As a comparative example, a mixture of carbonaceous resources of the same component was crushed to a total amount of several mm and gasified at 1300 ° C. In this comparative example, only the gasifier portion of the apparatus of the present invention was used.
[0023]
Table 1 shows the efficiency comparison with the comparative example. As a comparative numerical value, the heat recovery rate (the amount of heat recovered as purified gas with respect to the total calorific value of the carbonaceous resources used) was used. In spite of using the same raw material, the heat recovery rate is 72% in the present invention example 1 in which the reforming furnace temperature is 1100 ° C. and the reforming furnace temperature is 1000 ° C., compared to 65% in the comparative example. It is 78% in Example 2, and it can be said that this is a process with very high conversion efficiency. In the test results using only the gasification furnace part of the comparative example, the efficiency deteriorates despite the small number of processes. (1) The whole amount is heated to 1300 ° C., and (2) moisture. It is based on mixing low-calorie raw materials with a lot of high-calorie raw materials. Regarding (1), in order to melt the ash content in the raw material and discharge it as slag, a temperature of 1300 ° C. is necessary. In the comparative example, all the gases are discharged at this temperature. Since the gas temperature is 1000 ° C. or 1100 ° C., it can be explained that the difference in sensible heat is converted to latent heat. Among the present inventions, the present invention example 2 in which the reforming furnace temperature is lowered is even higher. Regarding (2), since the temperature of the comparative example is increased to 1300 ° C. together with a large amount of moisture, the required amount of oxygen per unit weight is increased compared to the example of the present invention, and the oxygen / carbonaceous raw material ratio Therefore, it can be explained that the amount of latent heat recovery has been reduced.
[0024]
[Table 1]
Figure 0003914474
[0025]
【The invention's effect】
By combining a pyrolysis furnace, gasification furnace, and reforming furnace according to the present invention, and providing different energy conversion methods according to the properties of various carbonaceous resources, it is possible to convert highly efficient carbonaceous resources to gas energy. And
[Brief description of the drawings]
FIG. 1 Basic equipment configuration (process flow) of the present invention
[Fig.2] Carbonaceous resource utilization process flow using pyrolysis residue
[Fig.3] Inside the pyrolysis furnace
[Explanation of symbols]
1: Carbonaceous resources
2: Gasification furnace
3: Pyrolysis furnace
4: Oxygen
5: Water vapor
6: Gasification gas
7: Slag
8: Pyrolysis gas and pyrolysis tar
9: Thermal decomposition residue
10: Reforming furnace
11: Metal
12: Carbonaceous residue
13: Generated gas
14: Gas purification equipment
15: Purified gas
16: Pyrolysis residue crusher
17: Metal separator
18: Carbonaceous residue supply device
19: Lower zone
20: Upper zone
21: Oxidizing agent
22: Connection part

Claims (12)

廃棄物を含む炭素質資源をシャフト型の炉で熱分解し、熱分解ガス及び熱分解タールを生成させ、更に、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源を、気流搬送で気流層へ投入し、酸素、又は酸素及び水蒸気にて該気流層で部分酸化しガス化ガスを発生させ、該熱分解ガス、該熱分解タール、及び該ガス化ガス中に、酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質することを特徴とする炭素質資源のガス化方法。Carbonaceous resources including waste are pyrolyzed in a shaft type furnace to generate pyrolysis gas and pyrolysis tar, and further, carbonaceous resources including waste or carbonaceous resources including pulverized or crushed waste and poured into a stream layer in pneumatic conveying, oxygen, or in oxygen and water vapor is generated by partial oxidation of the gasification gas in the gas flow layer, pyrolysis gas, pyrolysis tars, and the gasification gas, A method for gasifying a carbonaceous resource, comprising introducing either or both of oxygen and steam to reform the pyrolysis gas and pyrolysis tar. 前記気流搬送で気流層へ投入する、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源が、木材、硬質プラスチックのいずれか又は双方であることを特徴とする請求項1記載の炭素質資源のガス化方法 2. The carbonaceous resource containing waste or the carbonaceous resource containing crushed or crushed waste to be introduced into the airstream layer by the airflow conveyance is either wood or hard plastic, or both. The gasification method of the carbonaceous resource as described . シュレッダーダスト、軟質プラスチック、生木、一般廃棄物ゴミのうちいずれか一つ以上の炭素質資源をシャフト型の炉で熱分解し、熱分解ガス及び熱分解タールを生成させ、更に、木材、硬質プラスチックのいずれか又は双方の炭素質資源を、気流搬送で気流層へ投入し、酸素、又は酸素及び水蒸気にて該気流層で部分酸化しガス化ガスを発生させ、該熱分解ガス、該熱分解タール、及び該ガス化ガス中に、酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質することを特徴とする炭素質資源のガス化方法。One or more carbonaceous resources of shredder dust, soft plastic, raw wood, and general waste are pyrolyzed in a shaft-type furnace to produce pyrolysis gas and pyrolysis tar, and wood, hard Either or both of the plastic carbonaceous resources are introduced into the airflow layer by airflow conveyance, and partially oxidized in the airflow layer with oxygen or oxygen and water vapor to generate gasified gas, and the pyrolysis gas, the heat A method for gasifying a carbonaceous resource, comprising reforming the pyrolysis gas and the pyrolysis tar by introducing either or both of oxygen and water vapor into the cracking tar and the gasification gas. 前記炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、前記気流搬送で気流層へ投入する、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源、或いは、前記木材、硬質プラスチックのいずれか又は双方の炭素質資源と共に酸素、又は酸素及び水蒸気にて前記気流層で部分酸化することを特徴とする請求項1〜3のいずれか1項に記載の炭素質資源のガス化方法。The carbonaceous residue separating the metal the carbonaceous resources from the pyrolysis residue produced by pyrolysis, put into the stream layer in the pneumatic conveying, including carbonaceous resources or ground or crushed wastes including waste carbonaceous resources, or the wood, with either or both of the carbonaceous resources hard plastic, oxygen, or any at oxygen and water vapor according to claim 1 to 3, characterized in that the partial oxidation in the air flow layer The method for gasifying carbonaceous resources according to item 1 . 前記炭素質資源を熱分解する際に、シャフト型の炉を用いて、反応部温度を300℃〜800℃とすることを特徴とする請求項1〜4のいずれか1項に記載の炭素質資源のガス化方法。 The carbonaceous material according to any one of claims 1 to 4, wherein when the carbonaceous resource is pyrolyzed, a reaction temperature is set to 300 ° C to 800 ° C using a shaft type furnace. Gasification method for resources. 前記炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、前記気流搬送で気流層へ投入する、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源、或いは、前記木材、硬質プラスチックのいずれか又は双方の炭素質資源と共に前記気流層で部分酸化する際に、反応部温度を1200℃〜1600℃とし、さらに熱分解ガス及び熱分解タールを改質する際に、反応部温度を900℃〜1200℃とすることを特徴とする請求項又は記載の炭素質資源のガス化方法。The carbonaceous residue separating the metal the carbonaceous resources from the pyrolysis residue produced by pyrolysis, put into the stream layer in the pneumatic conveying, including carbonaceous resources or ground or crushed wastes including waste When partial oxidation is performed in the airflow layer together with carbonaceous resources, or the carbonaceous resources of either wood or hard plastic, or both , the reaction temperature is set to 1200 ° C to 1600 ° C, and further, pyrolysis gas and pyrolysis tar The method for gasifying a carbonaceous resource according to claim 4 or 5 , wherein the temperature of the reaction section is set to 900 ° C to 1200 ° C when reforming. 前記熱分解に必要な熱を、熱分解される炭素質資源自身の燃焼熱でまかなうことを特徴とする請求項1〜のいずれか1項に記載の炭素質資源のガス化方法。The method for gasifying a carbonaceous resource according to any one of claims 1 to 6 , wherein the heat necessary for the pyrolysis is provided by combustion heat of the carbonaceous resource itself to be pyrolyzed. 前記炭素質資源の熱分解及び部分酸化、並びに前記熱分解ガス及び熱分解タールの改質を、0.5MPa〜3.0MPaの圧力で行うことを特徴とする請求項1〜のいずれか1項に記載の炭素質資源のガス化方法。Pyrolysis and partial oxidation of the carbonaceous resources, as well as the modification of the pyrolysis gas and pyrolysis tars, claim 1-7, characterized in that at a pressure of 0.5MPa~3.0MPa 1 The gasification method of the carbonaceous resource as described in the item. 廃棄物を含む炭素質資源を熱分解するシャフト型熱分解炉と、炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、廃棄物を含む炭素質資源又は粉砕若しくは破砕した廃棄物を含む炭素質資源と共に、気流搬送で気流層へ投入し、酸素及び水蒸気で部分酸化する気流層ガス化炉と、該熱分解シャフト炉で生成した熱分解ガス及び熱分解タール、該ガス化炉で発生したガス化ガス、並びに酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質する改質炉有することを特徴とする炭素質資源のガス化装置。 Waste and pyrolysis shaft type pyrolysis furnace a carbonaceous resources including, a carbonaceous residue separating the metal the carbonaceous resources from the pyrolysis residue produced by pyrolysis, a carbonaceous resources including waste or Along with carbonaceous resources including pulverized or crushed waste, an airflow gasification furnace that is charged into the airstream layer by airflow conveyance and partially oxidized with oxygen and water vapor, and a pyrolysis gas and pyrolysis generated in the pyrolysis shaft furnace tar, gasification gas generated in the gasification furnace, and oxygen, and a reforming furnace by introducing either or both of the steam reforming the thermal decomposed gas and pyrolysis tars, and having Gasification equipment for carbonaceous resources. 前記改質炉で改質された生成ガスを処理するガス精製装置を有することを特徴とする請求項記載の炭素質資源のガス化装置。 The gasification apparatus for carbonaceous resources according to claim 9 , further comprising a gas purification apparatus that processes the product gas reformed in the reforming furnace. 前記ガス化炉と前記改質炉が連接することを特徴とする請求項又は10に記載の炭素質資源のガス化装置。The gasification apparatus for carbonaceous resources according to claim 9 or 10 , wherein the gasification furnace and the reforming furnace are connected to each other. 前記熱分解炉で生成した熱分解残渣を破砕する破砕機と、該熱分解残渣から金属を分離する装置と、金属が分離された炭素質残渣を前記ガス化炉へ供給する供給装置を有することを特徴とする請求項11のいずれか1項に記載の炭素質資源のガス化装置。A crusher for crushing the pyrolysis residue generated in the pyrolysis furnace, a device for separating the metal from the pyrolysis residue, and a supply device for supplying the carbonaceous residue from which the metal has been separated to the gasification furnace The gasification apparatus for carbonaceous resources according to any one of claims 9 to 11 .
JP2002200001A 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources Expired - Fee Related JP3914474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200001A JP3914474B2 (en) 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200001A JP3914474B2 (en) 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources

Publications (2)

Publication Number Publication Date
JP2004041848A JP2004041848A (en) 2004-02-12
JP3914474B2 true JP3914474B2 (en) 2007-05-16

Family

ID=31706985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200001A Expired - Fee Related JP3914474B2 (en) 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources

Country Status (1)

Country Link
JP (1) JP3914474B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002042A (en) * 2004-06-17 2006-01-05 Central Res Inst Of Electric Power Ind System for carbonizing and gasifying biomass and method for carbonizing or gasifying biomass
JP4731988B2 (en) * 2005-05-12 2011-07-27 新日本製鐵株式会社 Gasification method and apparatus for carbonaceous resources
JP4814621B2 (en) * 2005-11-21 2011-11-16 新日鉄エンジニアリング株式会社 Waste disposal method
JP5503485B2 (en) * 2010-10-07 2014-05-28 一般財団法人電力中央研究所 Biomass carbonization / gasification system and carbonization / gasification method
US8636923B2 (en) * 2010-10-29 2014-01-28 Enerkem, Inc. Production of synthesis gas by heating oxidized biomass with a hot gas obtained from oxidation of residual products

Also Published As

Publication number Publication date
JP2004041848A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
CA2183326C (en) Process for generating burnable gas
CN1249207C (en) Power generation system based on gasification of combustible material
JP4267968B2 (en) Biomass processing method
EP2716970B1 (en) Waste-melting method
JP4377824B2 (en) Waste melting treatment method using biomass
EP0908672B1 (en) Methods for fusion treating a solid waste for gasification
JPH10156314A (en) Method of recovering energy from waste
JP2005272530A (en) Biomass power generation system
JP3916179B2 (en) High temperature gasification method and apparatus for waste
CN211367490U (en) Material pyrolysis gasification system
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
CN110903855A (en) Material pyrolysis gasification process, system and application
CN112161273A (en) Household garbage harmless treatment device and method
JP3914474B2 (en) Gasification method and apparatus for carbonaceous resources
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP2004051745A (en) System of gasifying biomass
AU2003261772B2 (en) Method of recovering hydrogen from organic waste
JP2012087222A (en) Treatment method and treatment apparatus for carbonaceous material
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JP2004075852A (en) Method for gasifying carbonaceous resource and apparatus therefor
JP5020779B2 (en) Carbonaceous raw material gasification apparatus and gasification method
JP2007238782A (en) Method for pyrolyzing carbonaceous raw material
WO2005080874A1 (en) Waste fusion treatment method utilizing powdery biomass
JP5945929B2 (en) Waste gasification and melting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees