WO2005080874A1 - Waste fusion treatment method utilizing powdery biomass - Google Patents

Waste fusion treatment method utilizing powdery biomass Download PDF

Info

Publication number
WO2005080874A1
WO2005080874A1 PCT/JP2004/017821 JP2004017821W WO2005080874A1 WO 2005080874 A1 WO2005080874 A1 WO 2005080874A1 JP 2004017821 W JP2004017821 W JP 2004017821W WO 2005080874 A1 WO2005080874 A1 WO 2005080874A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
tuyere
biomass
furnace
blown
Prior art date
Application number
PCT/JP2004/017821
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Tanaka
Yasuhiko Kato
Takeshi Nishi
Hideharu Shibaike
Yasusuke Hoshizawa
Yoshihiro Ishida
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO2005080874A1 publication Critical patent/WO2005080874A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a method for melting waste such as general waste and industrial waste, and more particularly to a method for melting waste using powdery pyomas.
  • Shaft furnace waste melting furnaces are used to directly melt waste (see JP-A-2001-90923).
  • the furnace body 1 is composed of a shaft la and a lower bosh section 5, and a lower tuyere 3 for the combustion melting zone is provided at the lower end of the bosh section 5.
  • a plurality of upper tuyeres 2 for the pyrolysis zone Oxygen or oxygen-enriched air is supplied from the lower tuyere 3, and air is supplied from the upper tuyere 2 as a combustion supporting gas.
  • a charging inlet 11 for charging waste to be treated, coke as a combustion aid, limestone as a basicity adjusting agent, etc. into the furnace.
  • the section is provided with a slag and metal tap 13 after the waste is melted.
  • the charged waste 1 b is placed on the melting furnace body 1 From the layer, it passes through the drying zone 6, the thermal decomposition zone 7, and the combustion melting zone 8, and is melted.
  • the coke 4 and the pyrolysis residue 14 are burned at a high temperature by the oxygen or oxygen-enriched air supplied from the lower tuyere 3 and used as a heat source for melting, while air is supplied from the upper tuyere 2 and mainly disposed. Combustion of thermal decomposition residue 14 of wastes, and drying and thermal decomposition of waste with generated gas. The molten waste is discharged from the slag port 13 as slag and metal.
  • the high-temperature flue gas raises and melts the packed bed of waste in the shaft furnace as countercurrent, and is recovered as combustible gas from the flue gas pipe 12 at the top of the furnace body, or to the combustion chamber. Supplied. Combustion air is supplied to the combustion chamber via an air supply pipe, and is burned in the chamber.
  • the flue gas is introduced into the boiler through an exhaust gas pipe, and after the waste heat is recovered, the temperature is adjusted in a cooling tower and passed through a dust collector, and after removing pollutants in a catalytic reaction tower, Emitted from the chimney.
  • the present invention is both when used as a melting heat source for the biomass resource waste melting furnace U one replacement task cost, waste utilizing powdery Paiomasu capable of suppressing the C0 2 generation of fossil fuel melting It provides a processing method.
  • waste is charged together with coke and limestone into a shaft furnace type waste melting furnace having a plurality of blowing tuyeres, air is blown from an upper blowing tuyere and oxygen-rich from a lower blowing tuyere. Blowing the bubbling air
  • the method is characterized in that the powdered biomass is blown into the furnace from the lower blast tuyere and burned.
  • Waste is charged together with coatas and limestone into a shaft furnace waste melting furnace with multiple stages of tuyere and air is blown from the upper tuyere and from the lower tuyeres.
  • waste melting method which blows oxygen-enriched air to dry, pyrolyze, burn, and melt the waste
  • a method for melting waste using powdery biomass wherein powdery biomass is blown into a furnace from a lower-stage tuyere and burned.
  • the powdery biomass is characterized by being livestock manure such as chicken dung and cow dung, food waste, sewage sludge, night soil sludge or residue after methane fermentation, dried matter such as construction waste material, or carbonized carbonized.
  • livestock manure such as chicken dung and cow dung
  • food waste such as sewage sludge, night soil sludge or residue after methane fermentation
  • dried matter such as construction waste material, or carbonized carbonized.
  • the powdered biomass described in (1) or (2) is characterized in that the volatile content of the powdered biomass is 5% by mass or more, the water content is 25% by mass or less, and the particle size is 10mm or less. Waste melting method.
  • the reaction molar ratio (oxygen ratio) between the amount of combustibles blown from the lower blast tuyere and the amount of coats charged into the furnace is 0.5 to the amount of oxygen supplied from the lower blast tuyere.
  • the amount of oxygen supplied from the lower blast tuyere or the amount of combustible material blown from the lower blast tuyere is adjusted so as to be in the range of 1.0.
  • Any Item 6 The waste melting treatment method according to item 1. Brief Description of Drawings
  • FIG. 1 is a diagram showing a process of waste melting treatment according to the present invention.
  • FIG. 2 is a diagram showing a conventional waste melting process.
  • Biomass is classified by FA0 (International Food and Agriculture Organization), and in the present invention, woody biomass such as forest residue, thinned wood, unused ⁇ , sawmill residue, construction waste, rice straw, rice husk, etc., or papermaking Utilize unused biomass resources such as biomass, agricultural residues, livestock manure, food waste, etc., or charcoal after their carbonization.
  • FA0 International Food and Agriculture Organization
  • biomass is dried to form a powder, or carbonized powder after carbonization is used.
  • charcoal is produced by carbonizing woody biomass and subjecting it to sieve screening, or carbonizing the woody biomass for screening and pulverizing.
  • it is easier to grind the carbonized material because the strength is weaker, and it requires less power.
  • It is manufactured by carbonization in a patch furnace, rotary kiln or fluidized bed, or a shaft furnace as a carbonization furnace.
  • a dust collector such as a cycle mouth is installed at the latter stage of the carbonization furnace, and the dust collected there can be used as it is as powdered carbide.
  • FIG. 1 is a diagram showing the steps of the waste melting treatment according to the present invention. The same components as those of the waste melting furnace shown in Fig. Is omitted. In FIG. 1, powdery biomass is blown from the lower tuyere 3.
  • Powder blown into the lower tuyeres at a water content 25 wt% or less of the dry matter and child, moisture drying heat in a furnace feathers mouth, the water gas reaction endotherm (C + H 2 0 ⁇ C0 + H 2 ), And contributes as a heat source alternative heat source. If the volatile content is 5% by mass or more, the powder is blown at room temperature in the furnace, and if there is no volatile content, the ignition time is long and it does not contribute to the furnace bottom as a substitute for coke. It is.
  • the particle size of lOmin or less is the size required for airflow transport to the tuyere.
  • a flame at the tuyere and combusting it, it reacts with oxygen before the coat and is the size necessary to replace the coat.
  • Pulverized biomass such as charcoal of woody biomass
  • Pulverized biomass has almost no inorganic components and high calorific value.However, such as dry sludge and powdered biomass containing a little water, And low flammability.
  • carbides such as dry sludge and powdered biomass containing a little water
  • Low flammability In order to use such carbides as substitutes for coats in the waste melting furnace, it is necessary to improve the flammability at the tuyere. Therefore, by providing a gas fuel such as LPG and a combustion support gas such as O 2 inside the tuyere, it is possible to use the flame of LPG ZO 2 as the ignition source.
  • Low-leakage biomass fuel can be used as a substitute for coke.
  • the reaction molar ratio (oxygen ratio) of the amount of combustible material blown from the lower blast tuyere and the amount of coke charged into the furnace with respect to the amount of oxygen supplied from the lower blast tuyere is 0.
  • the range is from 5 to 1.0. If the oxygen ratio is lower, the amount And it becomes difficult to maintain operation at a low coatas ratio of about 2%.
  • the blowing conditions were as follows: lower air volume ⁇ 3 / h, oxygen volume 60 Nm 3 Z h, and upper air volume 350 Nm 3 / h.
  • the amount of coke added as auxiliary material was 2% to the refuse and limestone was added to 5%.
  • the slag and metal carried out of the melting furnace are carried out at an average temperature of about 1500 ° C. There is no deterioration in the fluidity, and the lead content in the slag is 0 or less. Was not detected. This was achieved by injecting biomass with a coke addition amount of about 2%, compared to the case where no nomas were injected from the tuyere.
  • Example 2 In this example, sewage sludge carbide was used as powdery carbide.
  • the properties of the carbide at that time were: C: 25%, Calorie: SOOOkcalZk ⁇ Average particle size: 1 mm.
  • the amount of carbide injected was 100 kgZh.
  • the waste disposal rate was 840 kg / h.
  • the blowing conditions were as follows: the lower air volume was 250Nm 3 // h, the oxygen volume was SONm 3 / h, and the upper oxygen volume was 350Nm 3 _ h.
  • the amount of coke added could not be reduced by simply blowing, because the calories of the carbides were low and the particle size was large. Therefore, using a triple tube tuyere which may be added in the LPG and 0 2 in the internal tuyere, LPG and l Nm 3 / h, and the O 2 and 5 Nm 3 Zh added. As a result, it has become possible to reduce the amount of the costas added by 2%.
  • Table 1 shows the operating conditions and results of Examples 1 and 2.
  • Example Base condition Example 1
  • Example 2 Treated material General waste
  • the present invention provides a waste melting furnace, since the coke consumption Ri by the be combusted in a furnace by blowing powdery biomass from the lower air blowing tuyeres can be suppressed, by C0 2 generation of fossil fuel can be prevented Instead, it is possible to use biomass-derived fuel without reducing the amount of waste processed in the melting furnace.
  • Et al is, Ri particular good performing vapor recovery power generation by boiler in a subsequent exhaust gas treatment system of a waste melting furnace, heat energy, upon conversion to electric energy, similarly C0 2 generation fossil fuels Origin Can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A waste fusion treatment method utilizing biomass resource as a fusion heat source of a waste fusion furnace in place of coke and utilizing powdery biomass capable of suppressing production of CO2 resulting from fossil fuel. In the method for drying, thermally decomposing, combusting, and fusing waste by inputting waste into a waste fusion furnace of a shaft furnace type having a plurality of air supply tuyeres together with coke and limestone, supplying air from the upper tuyere (2) and supplying oxygen-rich air from the lower tuyere (3), combustion is performed by blowing powdery biomass from the lower tuyere (3).

Description

粉状パイォマスを利用する廃棄物溶融処理方法 Waste melting method using powdered pyomas
技術分野 Technical field
本発明は、 一般廃棄物、 産業廃棄物等の廃棄物の溶融処理方法に 関し、 特に粉状パイォマスを利用する廃棄物溶融処理方法に関する 明  The present invention relates to a method for melting waste such as general waste and industrial waste, and more particularly to a method for melting waste using powdery pyomas.
背景技術 書 Background art
一般廃棄物、 産業廃棄物、 あるいはそれらを乾燥、 焼却、 破砕処 理等によって得られた処理物、 これらを一度埋め立て処理後、 再度 掘り起こした土砂分を含む埋め立てごみ等の廃棄物を処理する方法 として、 廃棄物を溶融してスラグ、 メタルと して再資源化する方法 が実施されている。  General waste, industrial waste, or processed materials obtained by drying, incineration, crushing, etc., and landfilling these once, then reclaiming landfill waste including sediment reclaimed As a method, waste is melted and recycled as slag and metal.
廃棄物を直接溶融処理する方法にシャフ ト炉式廃棄物溶融炉が使 用される (特開 2001— 90923号公報参照) 。 これは図 2に示すよう に、 炉本体 1 は、 シャフ ト部 l a と下部の朝顔部 5 とからなり、 朝 顔部 5の下端には燃焼溶融帯用の下段羽口 3を設けると共に、 その 上方には熱分解帯用の複数段の上段羽口 2を有している。 下段羽口 3からは酸素または酸素富化空気を供給し、 上段羽口 2からは燃焼 支持ガスと して空気を供給している。  Shaft furnace waste melting furnaces are used to directly melt waste (see JP-A-2001-90923). As shown in Fig. 2, the furnace body 1 is composed of a shaft la and a lower bosh section 5, and a lower tuyere 3 for the combustion melting zone is provided at the lower end of the bosh section 5. Above is a plurality of upper tuyeres 2 for the pyrolysis zone. Oxygen or oxygen-enriched air is supplied from the lower tuyere 3, and air is supplied from the upper tuyere 2 as a combustion supporting gas.
炉本体の上部には処理対象となる廃棄物や助燃剤と してのコーク ス、 塩基度調整剤と しての石灰石等を炉内に装入する装入口 11が設 けられ、 炉本体下端部には廃棄物を溶融処理した後のスラグ、 メタ ルの出滓口 13が設けられている。  At the upper part of the furnace body, there is provided a charging inlet 11 for charging waste to be treated, coke as a combustion aid, limestone as a basicity adjusting agent, etc. into the furnace. The section is provided with a slag and metal tap 13 after the waste is melted.
上記構成にあって、 装入された廃棄物 1 bは、 溶融炉本体 1 の上 層から乾燥帯 6、 熱分解帯 7、 燃焼溶融帯 8を経過して溶融処理さ れる。 In the above configuration, the charged waste 1 b is placed on the melting furnace body 1 From the layer, it passes through the drying zone 6, the thermal decomposition zone 7, and the combustion melting zone 8, and is melted.
下段羽口 3から供給した酸素又は酸素富化空気によってコ一クス 4や熱分解残渣 14を高温で燃焼し、 溶融熱源と し、 一方、 上段羽口 2からは空気を供給して主に廃棄物の熱分解残渣 14を燃焼し、 発生 したガスで廃棄物の乾燥及び熱分解を行う。 溶融した廃棄物はスラ グ、 メタルと して出滓口 13よ り排出される。  The coke 4 and the pyrolysis residue 14 are burned at a high temperature by the oxygen or oxygen-enriched air supplied from the lower tuyere 3 and used as a heat source for melting, while air is supplied from the upper tuyere 2 and mainly disposed. Combustion of thermal decomposition residue 14 of wastes, and drying and thermal decomposition of waste with generated gas. The molten waste is discharged from the slag port 13 as slag and metal.
高温の燃焼排ガスは、 シャフ ト炉内の廃棄物の充填層を対向流と して上昇させ、 溶融.炉本体上部の排ガス管 12から可燃ガスと して回 収するか、 又は、 燃焼室へ供給される。 燃焼室には空気供給管を介 して燃焼用空気が供給され、 室内で燃焼される。 燃焼排ガスは、 排 ガス管を通ってボイラー へ導入され、 廃熱が回収された後、 減温塔 で温度を調整して集塵機に通し、 更には、 触媒反応塔で公害物質を 除去した後、 煙突から排出される。  The high-temperature flue gas raises and melts the packed bed of waste in the shaft furnace as countercurrent, and is recovered as combustible gas from the flue gas pipe 12 at the top of the furnace body, or to the combustion chamber. Supplied. Combustion air is supplied to the combustion chamber via an air supply pipe, and is burned in the chamber. The flue gas is introduced into the boiler through an exhaust gas pipe, and after the waste heat is recovered, the temperature is adjusted in a cooling tower and passed through a dust collector, and after removing pollutants in a catalytic reaction tower, Emitted from the chimney.
一方で、 地球温暖化防止の観点から C02削減のために、 短期間サ イタルでの C02循環、 固定化が可能なバイオマス資源の活用に関す る開発が推進されている。 On the other hand, because of the C0 2 reduction from the viewpoint of preventing global warming, C0 2 circulating in the short term service Ital, development related to utilization of biomass resources that can be immobilized has been promoted.
直接溶融炉設備においても、 化石燃料から作られたコークスを溶 融熱源として用いるので、 環境に対する C02負荷を削減するために コータス使用量を削減させるための技術が提案されている。 例えば 、 燃料源となるコークスを出来るだけ少なく して被処理物を効率よ く燃焼溶融せしめるための手段と して、 炉頂から排出した可燃性ダ ス ト (チヤ一) を捕集し、 再度^融炉本体へ羽口を介して装入する 方法 (特開平 8—285250号公報、 特開 2001— 21123号公報参照) 、 また、 廃プラスチックを破碎し、 同じく羽口から又は大きなものは 炉頂から装入する方法 (特開平 11— 153309号公報参照) 等がある。 発明の開示 Also in direct melting furnaces, since use of coke made from fossil fuels as melting heat source, techniques for reducing the Kotasu usage to reduce the C0 2 loading on the environment is proposed. For example, combustible dust (char) discharged from the furnace top is collected as a means to reduce the coke as a fuel source as much as possible and to efficiently burn and melt the object to be treated. ^ A method of charging the melting furnace body through a tuyere (see JP-A-8-285250 and JP-A-2001-21123). Also, waste plastic is crushed. There is a method of loading from the top (see Japanese Patent Application Laid-Open No. 11-153309). Disclosure of the invention
バイオマス資源のうち、 食品廃棄物、 家畜糞尿、 下水汚泥、 し尿 汚泥については、 適正処分が必要であるが、 臭気の問題や輸送効率 の問題から、 発酵処理による堆肥化が主に実施されてきた。 しかし ながら、 .堆肥化の場合、 輸送限界の観点から、 発生元と利用元が近 設し、 さらに需給パランスが取れていることが条件となるため、 堆 肥が余剰となるケースが多くなつている。  Of the biomass resources, food waste, livestock manure, sewage sludge, and human waste sludge require proper disposal, but composting by fermentation has been mainly performed due to odor problems and transportation efficiency problems. . However, in the case of composting, from the viewpoint of transportation limitations, it is necessary that the source and the source are located close to each other, and that there is a balance between supply and demand. I have.
一方、 これらのバイ オマス資源利用のために、 発酵ガス化や熱分 解ガス化発電等新技術が開発されつつあるが、 新規の設備投資が必 要であるだけでなく、 その過程で発生する発酵処理後の残渣ゃ熱分 解後の炭化物の処理先を確保することが必要となる。 炭化物の処理 先と して、 自家発電や事業用発電所での燃料と して利用する試みが あるが、 バイオマス資源を発電用に利用する場合、 燃焼灰中のアル 力 リ分やリ ン濃度が高く、 ボイラー管の付着による トラブルの問題 が発生するために、 極少量の利用にと どめる必要がある。  On the other hand, new technologies such as fermentation gasification and pyrolysis gasification power generation are being developed to utilize these biomass resources, but not only new capital investment is required, but also in the process It is necessary to secure the processing destination of the residue after fermentation and the carbide after thermal decomposition. Attempts have been made to use carbide as a fuel in private or commercial power plants as a treatment destination.However, when biomass resources are used for power generation, the amount of phosphorus and phosphorus concentration in combustion ash It is necessary to use only a very small amount because of the high cost and the problem of trouble due to the adhesion of the boiler tube.
また、 廃棄物溶融炉においては、 溶融炉から飛散する可燃性ダス トを捕集して下段羽口から酸素と共に吹き込むことによ り コークス 消費量の低減を行ってきたが、 飛散する可燃性ダス トは、 廃棄物の 組成によつて増減するために、 コークスの代替機能とするために必 要な十分な量が必ずしも得られないといった問題があった。  In the waste melting furnace, coke consumption has been reduced by collecting combustible dust scattered from the melting furnace and blowing it together with oxygen from the lower tuyere. However, there was a problem that the amount of waste needed to replace the coke could not always be obtained because it increased or decreased depending on the composition of the waste.
そこで、 本発明は、 バイオマス資源を廃棄物溶融炉でコ一タス代 替の溶融用熱源として利用すると ともに、 化石燃料起源の C02発生 を抑制することができる粉状パイォマスを利用する廃棄物溶融処理 方法を提供するものである。 Accordingly, the present invention is both when used as a melting heat source for the biomass resource waste melting furnace U one replacement task cost, waste utilizing powdery Paiomasu capable of suppressing the C0 2 generation of fossil fuel melting It provides a processing method.
本発明は、 複数段の送風羽口を有するシャフ ト炉式廃棄物溶融炉 に廃棄物をコークス、 石灰石と共に装入し、 上段送風羽口から空気 を送風すると ともに、 下段送風羽口から酸素富化空気を吹き込んで 、 廃棄物を乾燥、 熱分解、 燃焼、 溶融して溶融処理する廃棄物溶融 処理方法において、 下段送風羽口から粉状バイオマスを炉内に吹き 込んで燃焼させることを特徴とするもので、 その要旨は次のとおり である。 According to the present invention, waste is charged together with coke and limestone into a shaft furnace type waste melting furnace having a plurality of blowing tuyeres, air is blown from an upper blowing tuyere and oxygen-rich from a lower blowing tuyere. Blowing the bubbling air In the waste melting treatment method for drying, pyrolyzing, burning, melting and melting the waste, the method is characterized in that the powdered biomass is blown into the furnace from the lower blast tuyere and burned. The summary is as follows.
( 1 ) 複数段の送風羽口を有するシャフ ト炉式廃棄物溶融炉に廃 棄物をコータス、 石灰石と共に装入し、 上段送風羽口から空気を送 風する と ともに、 下段送風羽口から酸素富化空気を吹き込んで、 廃 棄物を乾燥、 熱分解、 燃焼、 溶融処理する廃棄物溶融処理方法にお いて、  (1) Waste is charged together with coatas and limestone into a shaft furnace waste melting furnace with multiple stages of tuyere and air is blown from the upper tuyere and from the lower tuyeres. In the waste melting method, which blows oxygen-enriched air to dry, pyrolyze, burn, and melt the waste,
下段送風羽口から粉状バイオマスを炉内に吹き込んで燃焼させる ことを特徴とする粉状パイォマスを利用する廃棄物溶融処理方法。  A method for melting waste using powdery biomass, wherein powdery biomass is blown into a furnace from a lower-stage tuyere and burned.
( 2 ) 粉状バイオマスが、 鶏糞、 牛糞等の家畜糞尿、 食品廃棄物 、 下水汚泥、 し尿汚泥又はメタン発酵後残渣、 建築廃材等の乾燥物 あるいは乾留炭化物であることを特徴とする ( 1 ) 記載の粉状バイ ォマスを利用する廃棄物溶融処理方法。  (2) The powdery biomass is characterized by being livestock manure such as chicken dung and cow dung, food waste, sewage sludge, night soil sludge or residue after methane fermentation, dried matter such as construction waste material, or carbonized carbonized. A waste melting method using the powdered biomass as described.
( 3 ) 粉状バイオマスの揮発分は 5質量%以上、 水分は 25質量% 以下、 粒径は 10mm以下であることを特徴とする ( 1 ) 又は ( 2 ) 記 載の粉状パイォマスを利用する廃棄物溶融処理方法。  (3) The powdered biomass described in (1) or (2) is characterized in that the volatile content of the powdered biomass is 5% by mass or more, the water content is 25% by mass or less, and the particle size is 10mm or less. Waste melting method.
( 4 ) 羽口内部に LPG等のガス燃料と 02等の燃焼支持ガスの吹込 み口を設け、 粉状パイォマスを炉内に吹き込んで燃焼させることを 特徴とする ( 1 ) 〜 ( 3 ) のいずれかの項に記載の廃棄物溶融処理 方法。 (4) providing a blowing viewed mouth of the combustion supporting gas in the gas fuel and 0 2 such as LPG inside tuyere, and wherein the combusting by blowing powdery Paiomasu into the furnace (1) to (3) 13. The waste melting treatment method according to any one of the above items.
( 5 ) 下段送風羽口から供給される酸素量に対して、 下段送風羽 口から吹き込まれる可燃物の量と炉内に装入されるコータス量の反 応モル比 (酸素比) を 0.5〜: 1.0の範囲となるよ うに、 下段送風羽口 から供給される酸素量、 または、 下段送風羽口から吹き込まれる可 燃物の量を調整することを特徴とする ( 1 ) 〜 (4 ) のいずれかの 項に記載の廃棄物溶融処理方法。 図面の簡単な説明 (5) The reaction molar ratio (oxygen ratio) between the amount of combustibles blown from the lower blast tuyere and the amount of coats charged into the furnace is 0.5 to the amount of oxygen supplied from the lower blast tuyere. : The amount of oxygen supplied from the lower blast tuyere or the amount of combustible material blown from the lower blast tuyere is adjusted so as to be in the range of 1.0. (1) to (4) Any Item 6. The waste melting treatment method according to item 1. Brief Description of Drawings
図 1 は、 本発明による廃棄物溶融処理の工程を示す図である。 図 2は、 従来の廃棄物溶融処理の工程を示す図である。 発明を実施するための最良の実施形態  FIG. 1 is a diagram showing a process of waste melting treatment according to the present invention. FIG. 2 is a diagram showing a conventional waste melting process. BEST MODE FOR CARRYING OUT THE INVENTION
バイオマスは FA0 (国際食料農業機関) によって分類されており 、 本発明では、 林地残材、 間伐材、 未利用榭、 製材残材、 建設廃材 、 稲わら、 籾殻等の木質系バイオマスまたは、 製紙系バイオマス、 農業残渣、 家畜糞尿、 食品廃棄物等の未利用バイオマス資源、 また は、 それらの乾留処理後の炭化物を利用する。  Biomass is classified by FA0 (International Food and Agriculture Organization), and in the present invention, woody biomass such as forest residue, thinned wood, unused 榭, sawmill residue, construction waste, rice straw, rice husk, etc., or papermaking Utilize unused biomass resources such as biomass, agricultural residues, livestock manure, food waste, etc., or charcoal after their carbonization.
本発明においては、 バイオマスを乾燥させて粉状物にしたもの、 あるいは乾留処理後の炭化物の粉状物を利用する。  In the present invention, biomass is dried to form a powder, or carbonized powder after carbonization is used.
炭化物の製造は、 例えば木質系バイオマスの場合、 木質系バイオ マスを粉碎したものを乾留し篩選別するか、 乾留したものを篩選別 、 粉砕することによ り製造する。 通常、 乾留したものを粉碎する方 が強度が弱いため、 より容易であり、 所要動力も少なくて済む。 乾 留炉と してパッチ炉、 ロータリーキルンあるいは流動床、 シャフ ト 炉などで乾留することにより製造する。 また、 乾留炉の後段にサイ ク口ン等の集塵機を設けるが、 そこで集じんされたダス トをそのま ま粉状の炭化物として使用することが可能である。 更には、 乾留炉 の排ガス中に含まれるタール分を分解するために、 800〜1200°Cに 部分酸化することが考えられるが、 未分解のダス ト分ゃスス等も粉 状の炭化物と して利用可能である。  For example, in the case of woody biomass, charcoal is produced by carbonizing woody biomass and subjecting it to sieve screening, or carbonizing the woody biomass for screening and pulverizing. Usually, it is easier to grind the carbonized material because the strength is weaker, and it requires less power. It is manufactured by carbonization in a patch furnace, rotary kiln or fluidized bed, or a shaft furnace as a carbonization furnace. In addition, a dust collector such as a cycle mouth is installed at the latter stage of the carbonization furnace, and the dust collected there can be used as it is as powdered carbide. Furthermore, in order to decompose the tar component contained in the exhaust gas from the carbonization furnace, it is conceivable to partially oxidize at 800 to 1200 ° C, but undecomposed dust and soot are also converted to powdery carbides. Available.
図 1 は本発明による廃棄物溶融処理の工程を示す図である。 図 2 に示す廃棄物溶融炉と同一の構成には同一の符号を付してその説明 は省略する。 図 1において、 下段送風羽口 3から粉状バイオマスを 吹き込む。 FIG. 1 is a diagram showing the steps of the waste melting treatment according to the present invention. The same components as those of the waste melting furnace shown in Fig. Is omitted. In FIG. 1, powdery biomass is blown from the lower tuyere 3.
下段羽口に吹き込む粉体は、 水分 25質量%以下の乾燥物とするこ とで、 炉内羽口先での水分乾燥熱、 水性ガス化反応の吸熱 (C +H2 0 →C0+H 2 ) を考慮した上で、 コ ータス代替熱源と して寄与する。 揮発分を 5質量%以上にするのは、 炉内では常温で粉体を吹き込 むため、 揮発分がないと、 着火に要する時間が長く、 炉底でコーク ス代替と して寄与しないためである。 Powder blown into the lower tuyeres, at a water content 25 wt% or less of the dry matter and child, moisture drying heat in a furnace feathers mouth, the water gas reaction endotherm (C + H 2 0 → C0 + H 2 ), And contributes as a heat source alternative heat source. If the volatile content is 5% by mass or more, the powder is blown at room temperature in the furnace, and if there is no volatile content, the ignition time is long and it does not contribute to the furnace bottom as a substitute for coke. It is.
粒径を lOmin以下とするのは、 羽口への気流搬送上、 必要なサイズ である。 また、 羽口先で火炎を形成し、 燃焼することで、 コ ータス よ り先に酸素と反応し、 コ ータス代替となるために必要なサイズで ある。  The particle size of lOmin or less is the size required for airflow transport to the tuyere. In addition, by forming a flame at the tuyere and combusting it, it reacts with oxygen before the coat and is the size necessary to replace the coat.
粉状バイオマスは、 木質系バイ オマスの炭化物のよ うに、 ほとん ど無機成分がなくカロ リ ーの高いものも存在するが、 乾燥汚泥や、 若干の水分を含んだ粉状バイオマスのよ うに、 カロ リーも低く、 燃 焼性の劣るものも多く存在する。 そのような炭化物を上記廃棄物溶 融炉でコータス代替として利用するためには、 羽口先での燃焼性を 向上することが必要となる。 そのため、 羽口内部に LPG等のガス燃 料と、 O 2等の燃焼支持ガスの吹き込み口を設けることによ り、 LPG Z O 2の火炎を着火源とすることが可能となるため、 カロ リーの低 いバイオマス燃料もコークス代替とすることが可能となる。 Pulverized biomass, such as charcoal of woody biomass, has almost no inorganic components and high calorific value.However, such as dry sludge and powdered biomass containing a little water, And low flammability. In order to use such carbides as substitutes for coats in the waste melting furnace, it is necessary to improve the flammability at the tuyere. Therefore, by providing a gas fuel such as LPG and a combustion support gas such as O 2 inside the tuyere, it is possible to use the flame of LPG ZO 2 as the ignition source. Low-leakage biomass fuel can be used as a substitute for coke.
また、 実験の結果、 廃棄物溶融炉で効率よく コータス代替とする 場合には、 羽口から吹き込む可燃物の量に最適値が存在することが わかった。 それは、 下段送風羽口から供給される酸素量に対して、 下段送風羽口から吹き込まれる可燃物の量と炉内に装入されるコ ー クス量の反応モル比 (酸素比) を 0. 5〜1. 0の範囲となるよ うにする ことである。 酸素比がそれよ り少ない場合には、 コ ータスの燃焼量 が多くなり、 2 %程度という低いコータス比率で運転を維持するこ とが難しくなる。 また、 酸素比がそれよ り多い場合には、 吹き込ん だ可燃物中の Cや Hが吸熱反応を起こしスラグ温度を低温化させる 。 また、 過剰に吹き込んだケースでは、 炉内で消費されない Cが再 飛散し、 除じん器の捕集量が加速的に増加し、 溶融炉内で処理する ことが不能になる。 In addition, as a result of experiments, it was found that there is an optimum value for the amount of combustible material blown from the tuyere when the waste melting furnace is effectively used as a substitute for the coater. That is, the reaction molar ratio (oxygen ratio) of the amount of combustible material blown from the lower blast tuyere and the amount of coke charged into the furnace with respect to the amount of oxygen supplied from the lower blast tuyere is 0. The range is from 5 to 1.0. If the oxygen ratio is lower, the amount And it becomes difficult to maintain operation at a low coatas ratio of about 2%. When the oxygen ratio is higher than that, C and H in the combustibles blown cause an endothermic reaction to lower the slag temperature. In the case of excessive blowing, C that is not consumed in the furnace re-scatters, and the amount of dust collected by the dust remover increases rapidly, making it impossible to process in the melting furnace.
その比率を実験的に求めたところ、 酸素比が 0. 5〜: L . 0の場合が、 コークス比が低いまま、 スラグ温度が安定した蓮転が可能となるこ とカ ゎ力、つた。 実施例 1  When the ratio was experimentally determined, it was found that when the oxygen ratio was 0.5 to: L. 0, it was possible to perform lotus rotation with a stable slag temperature while keeping the coke ratio low. Example 1
本実施例では、 廃棄物中の灰分が 15〜 20 %湿ベースの一般廃棄物 の溶融処理を行い、 粉状バイオマスと して建築廃材を炭化処理した ものを使用した。 その時の炭化物の性状は、 炭素 : 90 %、 カロ リー : 7000Kc a l / kg , 平均粒度 : 40 μ mのものであった。 吹き込んだ炭 化物の量は 35kg hであつた。 廃棄物の処理速度は 850kgZ hであ つた。 In this example, municipal solid waste with an ash content of 15% to 20% was melted and used as carbonaceous biomass as powdered biomass. The properties of the carbide at that time were as follows: carbon: 90%, calorie: 7000 Kcal / kg, average particle size: 40 μm. The amount of injected carbohydrate was 35 kg h. The waste disposal rate was 850 kgZh.
また、 送風条件は、 下段の送風量 ΖδΟΝιη3 / h、 酸素量は 60Nm3 Z h、 上段の送風量は 350Nm3 / hを吹き込んだ。 このとき、 副資材と して投入するコークスの量はごみに対して 2 %、 石灰石は 5 %添加 した。 溶融炉より搬出されたスラグ、 メタルは、 平均 1500°C程度で 搬出され、 流動性の悪化も無く、 スラグ中の鉛の含有量も 0〜: L Opp mと十分低く、 スラグ中の溶出量も検出されなかった。 これは、 ノ ィォマスを羽口よ り吹き込まない場合と比較して、 コークス添加量 で 2 %程度の低減効果が、 バイオマスの吹き込みによって可能とな つた。 The blowing conditions were as follows: lower air volume ΖδΟΝιη 3 / h, oxygen volume 60 Nm 3 Z h, and upper air volume 350 Nm 3 / h. At this time, the amount of coke added as auxiliary material was 2% to the refuse and limestone was added to 5%. The slag and metal carried out of the melting furnace are carried out at an average temperature of about 1500 ° C. There is no deterioration in the fluidity, and the lead content in the slag is 0 or less. Was not detected. This was achieved by injecting biomass with a coke addition amount of about 2%, compared to the case where no nomas were injected from the tuyere.
実施例 2 本実施例は、 下水汚泥の炭化物を粉状炭化物と して使用した。 そ の時の炭化物の性状は、 C : 25%、 カロ リー : SOOOkcalZk^ 平均 粒径 : 1 mmのものであった。 吹き込んだ炭化物の量は lOOkgZ hで あった。 廃棄物の処理速度は 840kg/ hであった。 Example 2 In this example, sewage sludge carbide was used as powdery carbide. The properties of the carbide at that time were: C: 25%, Calorie: SOOOkcalZk ^ Average particle size: 1 mm. The amount of carbide injected was 100 kgZh. The waste disposal rate was 840 kg / h.
送風条件は、 下段の送風量 250Nm3// h、 酸素量は SONm3/ h、 上 段の酸素量は 350Nm3_ hを吹き込んだ。 このときは、 炭化物のカロ リーが低く、 粒径も大きいため、 単に吹き込むだけではコークス添 加量を低減することはできなかった。 そこで、 羽口内部に LPG及び 02の添加できる 3重管羽口を用い、 LPGを l Nm3/ h、 O 2を 5 Nm3 Zh添加した。 その結果、 コ ータス添加量を 2 %低減することが可 能となった。 The blowing conditions were as follows: the lower air volume was 250Nm 3 // h, the oxygen volume was SONm 3 / h, and the upper oxygen volume was 350Nm 3 _ h. At this time, the amount of coke added could not be reduced by simply blowing, because the calories of the carbides were low and the particle size was large. Therefore, using a triple tube tuyere which may be added in the LPG and 0 2 in the internal tuyere, LPG and l Nm 3 / h, and the O 2 and 5 Nm 3 Zh added. As a result, it has become possible to reduce the amount of the costas added by 2%.
表 1 に、 実施例 1及び 2の操業条件とその結果を示す。  Table 1 shows the operating conditions and results of Examples 1 and 2.
表 1  table 1
実施例 ベース条件 実施例 1 実施例 2 処理物 一般廃棄物  Example Base condition Example 1 Example 2 Treated material General waste
処理物中灰分割合 15〜20%、 湿ベース  Ash content 15-20%, wet base
処理速度(kg/h) 833 850 845 使用バイオマス なし 建築廃材(粉状炭化物) 下水汚泥Processing speed ( kg / h) 833 850 845 Biomass used None Building waste (pulverized carbide) Sewage sludge
C ( % ) ― 90 25 発熱量 (kcal/kg) 一 7000 2000 平均粒径( μ m) ― 40 1000 バイオマス吹き込み量 ― 35 100 コークス使用量(kgZh) 40 17 17C (%)-90 25 Calorific value (kcal / kg)-7000 2000 Average particle size (μm)-40 1000 Biomass injection-35 100 Coke consumption (kgZh) 40 17 17
LPG吹き込み量(Nm3ノ h) 0 0 1LPG blowing amount (Nm 3 h) 0 0 1
02吹き込み量(Nm3Zh) 0 0 5 スラグ温度 C) 1534 1547 1522 *送風条件 : 下段送風量 250Nm3 / h、 下段送酸量 60Nm3 Z h、 上 段送風量 350Nm3 / hで固定 産業上の利用可能性 0 2 Injection volume (Nm 3 Zh) 0 0 5 Slag temperature C) 1534 1547 1522 * Blowing conditions: lower blowing rate 250 Nm 3 / h, the lower the oxygen-flow quantity 60 Nm 3 Z h, the availability of the fixed industrial above stage blast volume 350 Nm 3 / h
本発明は、 廃棄物溶融炉において、 下段送風羽口から粉状バイオ マスを吹き込んで炉内で燃焼処理させることによ り コークス消費量 が抑制できるため、 化石燃料起源の C02発生が抑制できるだけでな く、 溶融炉での廃棄物処理量を低下させることなく、 バイオマス起 源の燃料の利用を行う ことができる。 さ らに、 廃棄物溶融炉の後段 の排ガス処理系でボイラーによる蒸気回収発電を行う ことによ り、 熱エネルギー、 電気エネルギーへの変換の際に、 同様に化石燃料起 源の C02発生を抑制できる。 The present invention provides a waste melting furnace, since the coke consumption Ri by the be combusted in a furnace by blowing powdery biomass from the lower air blowing tuyeres can be suppressed, by C0 2 generation of fossil fuel can be prevented Instead, it is possible to use biomass-derived fuel without reducing the amount of waste processed in the melting furnace. Et al is, Ri particular good performing vapor recovery power generation by boiler in a subsequent exhaust gas treatment system of a waste melting furnace, heat energy, upon conversion to electric energy, similarly C0 2 generation fossil fuels Origin Can be suppressed.

Claims

1 . 複数段の送風羽口を有するシャフ ト炉式廃棄物溶融炉に廃棄 物をコータス、 石灰石と共に装入し、 上段送風羽口から空気を送風 すると ともに、 下段送風羽口から酸素富化空気を吹き込んで、 廃棄 物を乾燥、 熱分解、 燃焼、 溶融処理する廃棄物溶融処理方法におい 請 1. The waste is charged together with the coatus and limestone into a shaft-type waste melting furnace with multiple blast tuyeres, air is blown from the upper blast tuyeres, and oxygen-enriched air is blown from the lower blast tuyeres. To dry, pyrolyze, burn, and melt the waste.
て、 hand,
下段送風羽口から粉状バイオマスを炉内に吹き込んで燃焼させる ことを特徴とする粉状パイォマスのを利用する廃棄物溶融処理方法。  A method for melting waste using powdery biomass, wherein the biomass is blown into a furnace through a lower tuyere and burned.
2 . 粉状バイオマスが、 鶏糞、 牛糞等の家畜糞尿、 食品廃棄物、 下水汚泥、 し尿汚泥又はメタン発酵後残渣囲、 建築廃材等の乾燥物あ るいは乾留炭化物であることを特徴とする請求項 1記載の粉状パイ ォマスを利用する廃棄物溶融処理方法。  2. The powdery biomass is a livestock excrement such as chicken dung and cow dung, food waste, sewage sludge, human waste sludge or a residue after methane fermentation, or a dry matter such as construction waste material or a dry carbonized charcoal. Item 1. A waste melting treatment method using the powdered pyomasu according to Item 1.
3 . 粉状バイオマスの揮発分は 5質量%以上、 水分は 25質量%以 下、 粒径は 10mm以下であることを特徴とする請求項 1又は 2記載の 粉状バイオマスを利用する廃棄物溶融処理方法。  3. Waste melting using powdered biomass according to claim 1 or 2, wherein volatile matter of the powdered biomass is 5% by mass or more, moisture is 25% by mass or less, and particle size is 10mm or less. Processing method.
4 . 羽口内部に LPG等のガス燃料と O 2等の燃焼支持ガスの吹込み 口を設け、 粉状パイォマスを炉内に吹き込んで燃焼させることを特 徴とする請求項 1〜 3のいずれか 1項に記載の廃棄物溶融処理方法 4. An air inlet for gas fuel such as LPG and a combustion supporting gas such as O 2 is provided inside the tuyere, and powdered pyomas is blown into the furnace for combustion. Or the waste melting method according to item 1.
5 . 下段送風羽口から供給される酸素量に対して、 下段送風羽口 から吹き込まれる可燃物の量と炉内に装入されるコータス量の反応 モル比 (酸素比) を 0, 5〜: L 0の範囲となるよ うに、 下段送風羽口か ら供給される酸素量、 または、 下段送風羽口から吹き込まれる可燃 物の量を調整することを特徴とする請求項 1 〜 4のいずれか 1項に 記載の廃棄物溶融処理方法。 5. The reaction molar ratio (oxygen ratio) between the amount of combustibles blown from the lower blast tuyere and the amount of coats charged into the furnace is set to 0.5 to 5 to the amount of oxygen supplied from the lower blast tuyere. The amount of oxygen supplied from the lower blast tuyere or the amount of combustible material blown from the lower blast tuyere is adjusted so as to fall within the range of L0. Or the waste melting method according to item 1.
PCT/JP2004/017821 2004-02-24 2004-11-24 Waste fusion treatment method utilizing powdery biomass WO2005080874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004048474A JP4486377B2 (en) 2004-02-24 2004-02-24 Waste melting treatment method using powdery biomass
JP2004-048474 2004-02-24

Publications (1)

Publication Number Publication Date
WO2005080874A1 true WO2005080874A1 (en) 2005-09-01

Family

ID=34879515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017821 WO2005080874A1 (en) 2004-02-24 2004-11-24 Waste fusion treatment method utilizing powdery biomass

Country Status (2)

Country Link
JP (1) JP4486377B2 (en)
WO (1) WO2005080874A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449055B1 (en) 2005-08-23 2014-10-08 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
JPWO2011027394A1 (en) * 2009-09-03 2013-01-31 新日鉄住金エンジニアリング株式会社 Waste disposal method
JP2011085349A (en) * 2009-10-16 2011-04-28 Nippon Steel Engineering Co Ltd Gas collecting section of shaft-type waste gasification melting furnace
JP5490488B2 (en) * 2009-10-21 2014-05-14 新日鉄住金エンジニアリング株式会社 Waste melting treatment method
JP5794662B2 (en) * 2011-01-13 2015-10-14 新日鉄住金エンジニアリング株式会社 Waste melting treatment method
JP5601688B2 (en) * 2011-01-13 2014-10-08 新日鉄住金エンジニアリング株式会社 Blow-off elimination method in shaft furnace type gasification melting furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109198A (en) * 1981-12-21 1983-06-29 Nippon Furnace Kogyo Kaisha Ltd Recovering system for resources from sewer sludge
JPH0611124A (en) * 1992-03-30 1994-01-21 Osaka Gas Co Ltd Waste melting furnace and waste feeding method
JPH11153309A (en) * 1997-11-20 1999-06-08 Nippon Steel Corp Waste melting treatment method and apparatus
JP2003056820A (en) * 2001-08-20 2003-02-26 Nippon Steel Corp Blowing method for combustible dust into waste melting furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109198A (en) * 1981-12-21 1983-06-29 Nippon Furnace Kogyo Kaisha Ltd Recovering system for resources from sewer sludge
JPH0611124A (en) * 1992-03-30 1994-01-21 Osaka Gas Co Ltd Waste melting furnace and waste feeding method
JPH11153309A (en) * 1997-11-20 1999-06-08 Nippon Steel Corp Waste melting treatment method and apparatus
JP2003056820A (en) * 2001-08-20 2003-02-26 Nippon Steel Corp Blowing method for combustible dust into waste melting furnace

Also Published As

Publication number Publication date
JP2005241054A (en) 2005-09-08
JP4486377B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
KR101356177B1 (en) Waste treatment process and apparatus
KR101298907B1 (en) Waste treatment process and apparatus
JP4377824B2 (en) Waste melting treatment method using biomass
AU2012259853B2 (en) Method of waste melting treatment
JP2005272530A (en) Biomass power generation system
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP4276559B2 (en) Waste melting treatment method using biomass
WO2005080874A1 (en) Waste fusion treatment method utilizing powdery biomass
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP5945929B2 (en) Waste gasification and melting equipment
JP3914474B2 (en) Gasification method and apparatus for carbonaceous resources
JP2014234968A (en) Waste melting treatment method
JP2012163260A (en) Waste gasification melting device
CN118240578A (en) Method for generating electricity by coupling waste incineration in biomass activated carbon production
JP2012145291A (en) Waste melting treatment method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase