JP4276559B2 - Waste melting treatment method using biomass - Google Patents

Waste melting treatment method using biomass Download PDF

Info

Publication number
JP4276559B2
JP4276559B2 JP2004059821A JP2004059821A JP4276559B2 JP 4276559 B2 JP4276559 B2 JP 4276559B2 JP 2004059821 A JP2004059821 A JP 2004059821A JP 2004059821 A JP2004059821 A JP 2004059821A JP 4276559 B2 JP4276559 B2 JP 4276559B2
Authority
JP
Japan
Prior art keywords
biomass
waste
furnace
melting
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059821A
Other languages
Japanese (ja)
Other versions
JP2005249279A (en
Inventor
猛 西
也寸彦 加藤
裕三 堺
康介 星沢
秀治 芝池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2004059821A priority Critical patent/JP4276559B2/en
Publication of JP2005249279A publication Critical patent/JP2005249279A/en
Application granted granted Critical
Publication of JP4276559B2 publication Critical patent/JP4276559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、一般廃棄物・産業廃棄物等の廃棄物の溶融処理方法に関し、特にバイオマスを利用する廃棄物溶融処理方法に関する。   The present invention relates to a method for melting waste such as general waste and industrial waste, and more particularly to a method for melting waste using biomass.

一般廃棄物・産業廃棄物、あるいはそれらを乾燥、焼却、破砕処理等によって得られた処理物、これらを一度埋め立て処理後、再度掘り起こした土砂分を含む埋め立てごみ等の廃棄物を処理する方法として、これらの廃棄物を廃棄物溶融炉で溶融処理してスラグ、メタルとして再資源化する方法が実施されている。   As a method for treating waste such as landfill waste including earth and sand that has been dug up again after landfill processing once, after treating these wastes by general waste and industrial waste, or those obtained by drying, incineration, crushing, etc. These waste materials are melted in a waste melting furnace and recycled as slag and metal.

廃棄物を溶融処理する方法に例えばシャフト炉式廃棄物溶融炉が使用される(特許文献1参照)。 Waste to a method of melting treatment, e.g., a shaft furnace type of waste melting furnace is used (see Patent Document 1).

これは図2に示すように、炉本体1は、シャフト部1aと下部の朝顔部5とからなり、朝顔部5の下端には燃焼溶融帯用の下段羽口2を設けると共に、その上方には熱分解帯用の複数段の上段羽口3を有している。下段羽口2からは酸素または酸素富化空気を供給し、上段羽口3からは燃焼支持ガスとして空気を供給している。   As shown in FIG. 2, the furnace body 1 includes a shaft portion 1 a and a lower morning glory portion 5, and a lower tuyere 2 for a combustion melting zone is provided at the lower end of the morning glory portion 5, and above that Has a plurality of upper tuyere 3 for the pyrolysis zone. Oxygen or oxygen-enriched air is supplied from the lower tuyere 2, and air is supplied from the upper tuyere 3 as a combustion support gas.

炉本体の上部には処理対象となる廃棄物や助燃剤としてのコークス、塩基度調整剤としての石灰石等を炉内に装入する、シール弁を備えた装入装置11が該けられ、炉本体下端部には廃棄物を溶融処理した後のスラグ、メタルの出滓口13が設けられている。   In the upper part of the furnace main body, there is provided a charging device 11 having a seal valve for charging waste to be treated, coke as a combustion aid, limestone as a basicity adjusting agent, etc. into the furnace. The bottom end of the main body is provided with a slag and metal outlet 13 after melting the waste.

上記構成にあって、装入された廃棄物1bは、溶融炉本体1の上層から乾燥予熱帯6(約300〜400℃)、熱分解帯7(約300〜1000℃)、燃焼・溶融帯8(約1700〜1800℃)を通過して溶融処理される。   In the above configuration, the charged waste 1b is dried from the upper layer of the melting furnace main body 1 to the dry pre-tropical zone 6 (about 300 to 400 ° C.), the pyrolysis zone 7 (about 300 to 1000 ° C.), the combustion / melting zone. 8 (about 1700-1800 ° C.) to be melt processed.

下段羽口2から供給した酸素又は酸素富化空気によってコークス4や熱分解残渣14を高温で燃焼し、溶融熱源とし、一方、上段羽口3からは空気を供給して主に廃棄物の熱分解残渣14を燃焼し、発生したガスで廃棄物の乾燥・予熱及び熱分解を行う。溶融した廃棄物はスラグ、メタルを溶融物として出滓口13より排出される。   The coke 4 and the pyrolysis residue 14 are burned at a high temperature by the oxygen supplied from the lower tuyere 2 or oxygen-enriched air and used as a heat source for melting. On the other hand, air is supplied from the upper tuyere 3 to mainly generate heat from waste. The decomposition residue 14 is combusted, and the generated gas is used for drying / preheating and thermal decomposition of the waste. The molten waste is discharged from the outlet 13 with slag and metal as melt.

高温の燃焼排ガスは、シャフト炉内の廃棄物の充填層を対向流として上昇し、溶融炉本体上部の排ガス管12から可燃ガスとして燃焼室へ導入されて燃焼され、燃焼排ガスは、排ガス管を通ってボイラーへ導入され、排熱が回収された後、減温塔で温度を調整して集塵機に通し、更には、触媒反応塔で公害物質を除去した後、煙突から排出される。   The high-temperature combustion exhaust gas rises as a counterflow through the waste bed in the shaft furnace, is introduced into the combustion chamber as a combustible gas from the exhaust gas pipe 12 at the upper part of the melting furnace body, and is combusted. After passing through the boiler and recovering the exhaust heat, the temperature is adjusted in the temperature reducing tower and passed through the dust collector. Further, after the pollutant is removed in the catalytic reaction tower, it is discharged from the chimney.

この方法では、廃棄物をシャフト炉式溶融炉で廃棄物中灰分を溶融する際に、炉底部から上昇する高温燃焼ガスにより廃棄物は、乾燥、乾留(熱分解)されて揮発分は炉上部から可燃性ガスとして排出され、揮発せずに残って乾留された固定炭素分を主体とする熱分解後の残渣は炉底に降下し、炉底部において下段送風羽口前で下段送風羽口から供給される酸素と反応し高温で燃焼し、廃棄物中の灰分を溶融する溶融熱源となる。しかしながら、廃棄物中の可燃分はその大部分が紙やプラスチック等であって、乾留により細粒化するため、乾留後の固定炭素分を含む残渣は、ガス流によって炉頂より多くの割合で飛散するとともに、炉底に到達したものもすぐに燃焼消失してしまうために、コークスのように燃焼火格子を形成することはなく、したがって、高温のスラグ・メタルを産出することは難しく、その溶融を維持するためには、コークスを添加するか、羽口より燃料ガスや酸素を送ることによって、溶融を維持する他は無かった。したがって、いずれにしろ化石燃料を使用せざる終えず、結果としてCOを排出することになった。 In this method, when the waste ash is melted in the shaft furnace type melting furnace, the waste is dried and dry-distilled (pyrolysis) by the high-temperature combustion gas rising from the bottom of the furnace, and the volatile matter is in the upper part of the furnace. Residue after pyrolysis, mainly composed of fixed carbon that has been exhausted as flammable gas and has not been volatilized and is carbonized, descends to the bottom of the furnace. It reacts with the supplied oxygen and burns at a high temperature to become a melting heat source that melts the ash in the waste. However, most of the combustibles in waste are paper, plastic, etc., and are finely divided by dry distillation. Therefore, residues containing fixed carbon after dry distillation are in a larger proportion than the top of the furnace due to gas flow. As it scatters and the one that reaches the bottom of the furnace burns and disappears immediately, it does not form a combustion grate like coke, so it is difficult to produce hot slag metal, its In order to maintain the melting, there was no other way to maintain the melting by adding coke or sending fuel gas or oxygen from the tuyere. Therefore, the fossil fuel must be used anyway, and as a result, CO 2 was discharged.

そのため、直接溶融炉設備においても、環境に対するCO負荷を削減することができるコークス使用量削減技術が提案されている。例えば、コークスを出来るだけ少なくして被処理物を効率よく燃焼溶融させるための手段として、炉頂から排出した可燃性ダスト(チャー)を捕集して再度溶融炉本体へ羽口を介して装入する方法(特許文献2、3参照)、また、廃プラスチックを破砕し、同じく羽口から又は大きなものは炉頂から装入して熱源として利用する方法(特許文献4参照)等がある。 Therefore, a coke usage reduction technique capable of reducing the CO 2 load on the environment has been proposed even in a direct melting furnace facility. For example, as a means to efficiently burn and melt the object to be processed with as little coke as possible, flammable dust (char) discharged from the top of the furnace is collected and loaded again into the melting furnace body via the tuyere. There is a method of entering (see Patent Documents 2 and 3), a method of crushing waste plastic, and charging from the tuyere or a large one from the top of the furnace and using it as a heat source (see Patent Document 4).

また、例えば特許文献5記載の廃棄物溶融炉も、構成は一部異なるものの、シャフト炉において廃棄物の溶融熱源として、コークスを主体とする補助燃料を使用しており、化石燃料起因のCOを排出するという意味では同種の問題をはらんでいる。 Further, for example, the waste melting furnace described in Patent Document 5 also uses a supplementary fuel mainly composed of coke as a melting heat source of waste in the shaft furnace, although the structure is partially different, and CO 2 derived from fossil fuel. The same kind of problem is involved in the sense of discharging.

また、例えば特許文献6記載の廃棄物溶融炉についても、溶融を維持するためにLNGや灯油等の補助燃料を用いている。これらの方式においても、安定な溶融を維持するためのLNGや灯油等の量は多くなり、化石燃料起因のCO排出量の大幅な削減は望めない。
特開2001−90923号公報 特開平8−285250号公報 特開2001−21123号公報 特開平11−153309号公報 特開平5−346221号公報 特開平10−132242号公報
For example, also in the waste melting furnace described in Patent Document 6, auxiliary fuel such as LNG or kerosene is used to maintain melting. Even in these systems, the amount of LNG, kerosene, etc. for maintaining stable melting increases, and it is not possible to expect a significant reduction in CO 2 emissions resulting from fossil fuels.
JP 2001-90923 A JP-A-8-285250 JP 2001-21123 A JP 11-153309 A JP-A-5-346221 JP-A-10-132242

これら課題に対し、シャフト炉式溶融炉において、溶融熱源として木炭などのバイオマスを利用することが考えられる。しかしながら、シャフト炉方式の廃棄物の溶融処理には、シャフト炉下部に高温の火格子を形成することが不可欠であるが、その火格子を形成するには、バイオマスを利用する場合、破砕、加熱圧縮成型などの事前処理を必要としたり、強度の大きなバイオマスのみ選択する必要がある。これは、事前処理を施さない若しくは強度が小さいバイオマスでは、シャフト炉を下降する再に粉化して、シャフト炉内の上昇流に乗って炉外に飛散するためである。   In response to these problems, it is conceivable to use biomass such as charcoal as a melting heat source in a shaft furnace type melting furnace. However, it is indispensable to form a high-temperature grate at the bottom of the shaft furnace for the shaft furnace type waste melting process. To form the grate, when using biomass, crushing and heating Pre-processing such as compression molding is required, or only high-strength biomass needs to be selected. This is because biomass that has not been pretreated or has low strength is pulverized again as it descends the shaft furnace and is scattered outside the furnace on the upflow in the shaft furnace.

また、下段羽口より粉状のバイオマスを吹き込むことも可能であるが、その場合には、気流搬送に適するサイズに破砕する必要があり、バイオマスを破砕する装置が必要であるとともに、そのエネルギーや破砕機の消耗部品等のメンテナンスコストが必要であった。すなわち、塊状バイオマス、粉状バイオマスを利用して、コークス使用量を低減するには、設置場所、地域、原料、経済面等の制約があった。   In addition, although it is possible to blow powdery biomass from the lower tuyere, in that case, it is necessary to crush it to a size suitable for airflow conveyance, and a device for crushing the biomass is required. Maintenance costs for consumable parts of the crusher were necessary. That is, in order to reduce the amount of coke used by using bulk biomass and powdery biomass, there are restrictions on the installation location, region, raw material, economic aspect, and the like.

そこで、本発明では、シャフト炉方式の廃棄物の溶融処理に使用されている化石燃料に由来するコークスやLNG、灯油等の代替として、幅広い種類のバイオマスを利用して、コークス使用量の削減をするとともに、環境に対するCO負荷を削減することができるバイオマスを利用する廃棄物溶融処理方法を提供するものである。 Therefore, in the present invention, as an alternative to coke, LNG, kerosene, etc. derived from fossil fuels used in the melting treatment of shaft furnace type waste, a wide variety of biomass is used to reduce coke consumption. In addition, the present invention provides a waste melting treatment method using biomass that can reduce the CO 2 load on the environment.

本発明のバイオマスを利用する廃棄物溶融処理方法は、シャフト炉式廃棄物溶融炉に廃棄物を装入し、廃棄物を乾燥、熱分解、燃焼、溶融処理する廃棄物溶融処理方法において、強度の不十分なバイオマスであっても、炉上部から廃棄物と共に投入し、炉底部送風羽口から送風する空気、酸素若しくは酸素富化空気が炉下部で廃棄物を還元燃焼することによって発生した無酸素燃焼ガスによって、一部存在する塊状で強度のあるバイオマスは、シャフト炉下部で火格子状の層を形成する。また、それ以外のものは、シャフト炉下部に到達する前に粉化し、シャフト炉内の上昇流に乗って、炉上部より、可燃性ガス及び可燃ごみ起因の可燃性ダストと共に飛散するが、シャフト炉後流側に除じん器を設置し、飛散したバイオマスと可燃性ダストを捕集し、捕集したバイオマスとダストの混合物を、シャフト炉の下段羽口から空気、酸素及び酸素負荷空気と共に炉内に吹き込み、下段羽口前で燃焼させることによって、粉状物を直接的に溶融熱源に転換できる。   The waste melting method using biomass according to the present invention is a waste melting method in which waste is charged into a shaft furnace type waste melting furnace, and the waste is dried, pyrolyzed, burned, and melted. Even if the biomass is insufficient, the waste generated from the combustion of the waste at the bottom of the furnace with the air, oxygen, or oxygen-enriched air that is thrown in along with the waste from the top of the furnace and blown from the blower tuyeres at the bottom of the furnace Due to the oxyfuel gas, the massive and strong biomass that partially exists forms a grate-like layer at the lower part of the shaft furnace. Others pulverize before reaching the lower part of the shaft furnace, get on the upward flow in the shaft furnace, and scatter from the upper part of the furnace together with combustible gas and combustible dust caused by combustible waste. A dust remover is installed on the downstream side of the furnace to collect the scattered biomass and combustible dust, and the mixture of the collected biomass and dust is fed into the furnace together with air, oxygen and oxygen-loaded air from the lower tuyere of the shaft furnace. By blowing it in and burning it in front of the lower tuyere, the powdered material can be directly converted into a melting heat source.

発明者らの実験によれば、投入されたバイオマスが、シャフト炉下部で高温火格子を形成するためには、木炭やおがくずを圧縮成型後乾留処理したおが炭等のように、投入するバイオマスが限定され、また、鶏糞や産業廃棄物起因の木質チップ等の場合は、粉砕装置及び加圧加熱成型装置の設置や、運転条件の調整が必要となる事がわかっている.このように、廃棄物溶融炉にバイオマスを使用する場合、高温の火格子を維持するには、粉状バイオマス、塊状バイオマスともに、エネルギーを消費し、成型、破砕などが必要となり、エネルギーの有効活用の観点から、より幅広く、かつ経済的なバイオマスの利用が望まれている。   According to the inventors' experiment, in order for the input biomass to form a high-temperature grate at the lower part of the shaft furnace, the input biomass, such as charcoal or the like that has been carbonized and subjected to dry distillation treatment after compression molding of charcoal and sawdust In the case of chicken manure or wood chips caused by industrial waste, it is known that it is necessary to install a crushing device and a pressure heating molding device and to adjust the operating conditions. Thus, when using biomass in a waste melting furnace, to maintain a high-temperature grate, both powdery biomass and bulk biomass consume energy, and need to be molded, crushed, etc., and effective use of energy In view of the above, it is desired to use biomass more broadly and economically.

そこで、本発明では、シャフト炉出口にサイクロン等の除じん器を設け、その除じんした可燃性ダストを羽口から空気、酸素若しくは酸素富化空気とともに吹き込むことによって、炉底部に到達するまでに飛散してしまったバイオマス粉をシャフト炉炉底部で燃焼させ、炉底部の高温火格子の消耗抑制を図り、溶融熱源として利用することにより、幅広いバイオマスの使用が可能になる。   Therefore, in the present invention, a dust remover such as a cyclone is provided at the shaft furnace outlet, and the dust combustible dust is blown together with air, oxygen, or oxygen-enriched air from the tuyere to reach the furnace bottom. A wide range of biomass can be used by burning the scattered biomass powder at the bottom of the shaft furnace furnace, suppressing consumption of the high-temperature grate at the bottom of the furnace, and using it as a heat source for melting.

さらに、その場合、炉外に飛散したバイオマス粉は、シャフト炉内で下降する過程で細粒化し、シャフト炉から飛散するときには、100μm程度の気流搬送に適した粒径となり、破砕などの処理は不要である。この発明により、炉内に装入したバイオマスのうち、高温火格子を形成可能なバイオマスは炉下部で高温火格子を形成し、形成できないバイオマスは、炉外に飛散した後、羽口から吹き込まれ、羽口前で燃焼し、溶融熱源となることで、より効率的なバイオマスの利用が可能となる。   Furthermore, in that case, the biomass powder scattered outside the furnace is finely divided in the process of descending in the shaft furnace, and when scattered from the shaft furnace, the particle size is suitable for air current conveyance of about 100 μm, and processing such as crushing is not possible. It is unnecessary. According to the present invention, among the biomass charged into the furnace, biomass capable of forming a high-temperature grate forms a high-temperature grate at the lower part of the furnace, and biomass that cannot be formed is blown from the tuyere after being scattered outside the furnace. By burning in front of the tuyere and becoming a heat source for melting, more efficient use of biomass becomes possible.

この時、下段羽口での酸素濃度は、溶融を効率的に行うために25%以上であることが望ましく、逆に40%以上にしても、溶融温度を上げることができない。これは、羽口近傍のガス温度は、酸素濃度を上昇させると上昇するが、2000度レベルになると、ガスの乖離反応等や吸熱反応が活発になって、それ以上温度は上昇しなくなるため、酸素濃度の上昇は高価な酸素の使用を抑制するために40%程度が効率的である。   At this time, the oxygen concentration at the lower tuyere is preferably 25% or more for efficient melting, and conversely, even if it is 40% or more, the melting temperature cannot be raised. This is because the gas temperature in the vicinity of the tuyere rises when the oxygen concentration is increased, but when it reaches the 2000 degree level, the gas dissociation reaction and the endothermic reaction become active, and the temperature does not rise any further. The increase in the oxygen concentration is about 40% efficient in order to suppress the use of expensive oxygen.

さらに、羽口から吹き込まれた粉状バイオマスを下段羽口前で効率的に燃焼させるためには、下段羽口における酸素比を適正に保つことが効果的である。   Furthermore, in order to efficiently burn the powdery biomass blown from the tuyere in front of the lower tuyere, it is effective to keep the oxygen ratio at the lower tuyere appropriate.

発明者らの実験によれば、酸素比が1未満の場合、下段羽口から吹き込まれたバイオマスのうち、燃焼しないものがあり、これらは、炉内を上昇し、上段羽口部で燃焼するか、再飛散する。すなわち、下段羽口から吹き込まれたバイオマスが有効活用されていないこととなる。その場合、炉頂から投入するバイオマスの量を調整することで、除じん器における捕集量、すなわち、下段羽口から吹き込むバイオマスの量を容易に制御可能である。   According to the experiments by the inventors, when the oxygen ratio is less than 1, some of the biomass blown from the lower tuyere does not burn, and these rise in the furnace and burn at the upper tuyere. Or re-scatter. That is, the biomass blown from the lower tuyere is not effectively used. In that case, by adjusting the amount of biomass introduced from the top of the furnace, the amount collected in the dust remover, that is, the amount of biomass blown from the lower tuyere can be easily controlled.

また、投入するバイオマスが、例えば建築廃材チップなどのように、高温火格子を形成し難い形状をしている場合は、最低限のコークスを使用することで、化石燃料起因のCOの排出量を最低限とした溶融処理が可能となる。ここで、最低限とは、高温火格子を維持するための最低限の量であり、発明者らの実験によれば、処理対象廃棄物の1%程度で十分である。これでも、従来と比較して、大幅な使用量の削減となっている。さらには、単体では高温火格子を形成し得ないバイオマスでも、コークスとともに使用することで、溶融熱源として利用できることから、化石燃料の使用量削減及び幅広いエネルギーの活用という2つの面から有効である. In addition, when the biomass to be input has a shape that makes it difficult to form a high-temperature grate such as a building waste material chip, the amount of CO 2 emitted from fossil fuels can be reduced by using the minimum coke. It is possible to perform a melting process with a minimum of. Here, the minimum is the minimum amount for maintaining the high-temperature grate, and according to the experiments by the inventors, about 1% of the waste to be treated is sufficient. Even in this case, the amount of use is greatly reduced as compared with the conventional case. Furthermore, even biomass that cannot form a high-temperature grate by itself can be used as a heat source for melting by using it with coke, so it is effective from the two aspects of reducing the amount of fossil fuel used and utilizing a wide range of energy.

本発明により、シャフト炉方式の廃棄物溶融炉においては、COフリーのバイオマスを投入することによって、高温溶融を維持するために必要な、コークスやLNG、灯油等の化石燃料の消費量が大幅に抑制できるため、直接的に化石燃料起源のCO発生が抑制できるだけでなく、幅広いバイオマス起源の燃料の有効利用を行うことができる。また、溶融炉後段でボイラーによる蒸気回収発電を行えば、電気エネルギーへの変換も可能であり、その結果(1)所内の消費電力をまかない、購入する電力量を抑制できる、とともに(2)電力会社等に送電を行うことによって電力会社等の化石燃料を用いた発電を間接的に抑制することになって結果的に化石燃料起源のCO発生を抑制できる。 According to the present invention, in a shaft furnace type waste melting furnace, the consumption of fossil fuels such as coke, LNG, and kerosene required to maintain high temperature melting is greatly increased by introducing CO 2 -free biomass. Therefore, it is possible not only to directly suppress the generation of CO 2 derived from fossil fuels but also to effectively use a wide range of biomass-derived fuels. In addition, if steam recovery power generation with a boiler is performed at the latter stage of the melting furnace, conversion to electric energy is also possible. As a result, (1) the power consumption in the site can be reduced, the amount of power purchased can be suppressed, and (2) power By transmitting power to a company or the like, power generation using fossil fuel by an electric power company or the like is indirectly suppressed, and as a result, generation of CO 2 originating from fossil fuel can be suppressed.

図1は本発明による方法を実施する廃棄物溶融処理設備を示す図で、図2に示す従来の廃棄物溶融処理設備に加え、シャフト炉出口に除じん器15を設けている以外は全く同じである。そこで、同一構成に同一符号を付して、その説明は省略する。図1は既に可燃性ダスト吹き込み用に実機化されているものと基本的には同じであり、設備的には十分実現可能である。除じん器15では、溶融炉本体1から飛散したバイオマス粉と、廃棄物起因の可燃性ダストが同時に捕集され、ダスト吹き込み装置16を経由して下段羽口2から吹き込まれる。   FIG. 1 is a diagram showing a waste melting treatment facility for carrying out the method according to the present invention, which is exactly the same except that a dust remover 15 is provided at the shaft furnace outlet in addition to the conventional waste melting treatment facility shown in FIG. It is. Therefore, the same components are denoted by the same reference numerals and description thereof is omitted. FIG. 1 is basically the same as that which has already been put into practice for injecting combustible dust, and is sufficiently feasible in terms of equipment. In the dust remover 15, biomass powder scattered from the melting furnace main body 1 and combustible dust due to waste are simultaneously collected and blown from the lower tuyere 2 through the dust blowing device 16.

シャフト炉式廃棄物溶融炉に廃棄物、石灰石、バイオマスを装入し、上段送風羽口から空気を、下段送風羽口から酸素富化空気を吹き込んで廃棄物を溶融処理する実験を実施した。   An experiment was conducted in which waste, limestone, and biomass were charged into a shaft furnace type waste melting furnace, and the waste was melted by blowing air from the upper blower tuyere and oxygen-enriched air from the lower blower tuyere.

バイオマスは、川で採取した流木を天日乾燥後100mm以下に破砕し、乾留炉に装入して、無酸素雰囲気下で1000℃、5時間で乾留した炭化物を使用した。   Biomass was obtained by crushing driftwood collected from the river to 100 mm or less after drying in the sun, charging into a carbonization furnace, and carbonizing carbonized at 1000 ° C. for 5 hours in an oxygen-free atmosphere.

原料が流木であるため、直径200mm程度の丸太から直径2mm程度の小枝など、その大きさは幅広く、20mmの篩分け及び熱間強度CSR測定を行ったところ、結果は表1のようになった。ここで、熱間強度CSRとは、第3版 鉄鋼便覧II、製銑・製鋼(社団法人 日本鉄鋼協会編)の202頁、表4.23に記載されている(熱間静置反応+常温回転試験)法によるものであり、シャフト炉式廃棄物溶融炉においては、この値が大きいほど、シャフト炉下部で高温火格子を形成しやすいことを示している。発明者らの実験結果によれば、シャフト炉下部で高温火格子を形成するには、CSRが20以上あれば十分であることがわかっている.

Figure 0004276559
Since the raw material is driftwood, the size is wide, from logs with a diameter of about 200 mm to twigs with a diameter of about 2 mm, etc. When 20 mm sieving and hot strength CSR measurement were performed, the results were as shown in Table 1. . Here, the hot strength CSR is described in Table 4.23 on page 202 of the 3rd edition Steel Handbook II, Steelmaking and Steelmaking (edited by the Japan Iron and Steel Institute) (hot standing reaction + normal temperature). In the shaft furnace type waste melting furnace, the higher this value is, the easier it is to form a high-temperature grate at the lower part of the shaft furnace. According to the experimental results of the inventors, it has been found that a CSR of 20 or more is sufficient to form a high-temperature grate at the lower part of the shaft furnace.
Figure 0004276559

このバイオマス炭化物を使用した試験を実施し、比較のため、コークスを熱源とした試験も行った。操業条件及び試験結果を表2に示す。

Figure 0004276559
A test using this biomass carbide was conducted, and for comparison, a test using coke as a heat source was also conducted. The operating conditions and test results are shown in Table 2.
Figure 0004276559

表2に示すように、どちらの条件でもスラグ温度が1500℃以上で操業できている。また、ダストの捕集量もバイオマスが飛散した分増加しており、それらは下段羽口から吹き込まれ、熱源として有効に利用されているのがわかる。尚、今回使用したバイオマスは固定酸素が90%とほぼコークス並であり、同量装入した場合、ほぼスラグ温度が同じになることから、このバイオマスは100%コークスと置換可能であることがわかる。   As shown in Table 2, the slag temperature can be operated at 1500 ° C. or higher under either condition. In addition, the amount of dust collected increased as the biomass was scattered, and it was found that they were blown from the lower tuyere and were effectively used as a heat source. In addition, the biomass used this time is 90% of fixed oxygen, which is almost equivalent to coke. When the same amount is charged, the slag temperature is almost the same, so it can be seen that this biomass can be replaced with 100% coke. .

この実施例は、建築廃材チップと、コークスの混合使用の例である。建築廃材チップは、φ10mm×100mm程度のチップで、乾留操作を行わないまま、炉内に装入した。表3に操業条件と結果を示す。

Figure 0004276559
This example is an example of mixed use of building waste material chips and coke. The building waste chip was a chip of about φ10 mm × 100 mm, and was placed in the furnace without performing the dry distillation operation. Table 3 shows the operating conditions and results.
Figure 0004276559

実際の試験では、コークスのみ使用の場合と比較して、スラグ温度が同程度となるように、炉頂から装入する建築廃材チップの量を調整したところ、表3のような結果となった。条件が整い、比較的良質な塊状バイオマスが入手可能な場合は、コークスの替わりとして使用することは当然可能である。この例では、化石燃料起因のCO排出量はゼロとは出来ないものの、従来と比較して、1/3と大輻に低減できている。尚、この例では、コークスとバイオマスを事前に混合し、一つのホッパより炉内に供給したが、別々のホッパを設置し、それぞれ単独に炉内に装入しても良い。 In the actual test, the amount of building waste chips charged from the top of the furnace was adjusted so that the slag temperature would be about the same as when using only coke, and the results shown in Table 3 were obtained. . If conditions are set and relatively high quality bulk biomass is available, it can naturally be used instead of coke. In this example, the amount of CO 2 emitted due to fossil fuel cannot be reduced to zero, but it can be reduced to 1/3 compared to the conventional case. In this example, coke and biomass are mixed in advance and supplied into the furnace from one hopper. However, separate hoppers may be installed and charged separately in the furnace.

本発明の操業方法を実施するシャフト炉式廃棄物溶融設備を示す図である。It is a figure which shows the shaft furnace type waste melting equipment which enforces the operating method of this invention. 従来のシャフト炉式廃棄物溶融処理設備を示す図である。It is a figure which shows the conventional shaft furnace type waste melting processing equipment.

符号の説明Explanation of symbols

1:溶融炉本体
1a:シャフト部
1b:廃棄物
2:下段羽口
3:上段羽口
4:コークス
5:朝顔部
6:乾燥帯
7:熱分解帯
8:燃焼溶融帯
10:炉底部
11:装入装置
12:排ガス管
13:出滓口
14:熱分解残渣
15:除じん器
16:ダスト吹き込み装置
17:バイオマス
1: Melting furnace body 1a: Shaft portion 1b: Waste 2: Lower tuyere 3: Upper tuyere 4: Coke 5: Morning glory 6: Drying zone 7: Pyrolysis zone 8: Combustion melting zone 10: Furnace bottom 11: Charger 12: Exhaust gas pipe 13: Outlet 14: Thermal decomposition residue 15: Dust remover 16: Dust blower 17: Biomass

Claims (6)

上段羽口および下段羽口を設け、上段羽口より廃棄物乾燥用の空気を、下段羽口より燃焼溶融用の酸素若しくは酸素富化空気を送風するシャフト炉方式の廃棄物溶融炉に廃棄物及びバイオマスを投入し、廃棄物を乾燥、熱分解、燃焼、溶融処理する廃棄物の溶融処理方法において、
シャフト炉下部で廃棄物を還元燃焼することによって発生した無酸素燃焼ガスによって一部存在する塊状で強度のあるバイオマスは、シャフト炉下部で火格子の層を形成し、それ以外のものは、シャフト炉下部に到達前にシャフト炉内の上昇流によってシャフト炉上部より、可燃性ガス及び可燃性ダストとともに飛散させ、シャフト炉後流側に設置した除塵器で捕集したバイオマスとダストの混合物をシャフト炉の下段羽口から酸素若しくは酸素富化空気とともに吹き込み、下段羽口前で燃焼させて粉状物を直接的に溶融熱源に転換することを特徴とするバイオマスを利用する廃棄物溶融処理方法。
Waste is provided in a shaft furnace type waste melting furnace that has upper and lower tuyere and blows air for drying waste from the upper tuyere and oxygen or oxygen-enriched air for combustion melting from the lower tuyere In addition, in the waste melting method, the biomass is charged and the waste is dried, pyrolyzed, burned, and melted.
Biomass with a strength in bulk present in part by the oxygen-free combustion gas generated by reducing the combustion of waste in a shaft furnace lower portion, and forming a layer of grate in a shaft furnace bottom, and the other ones, the shaft before reaching the furnace bottom portion than the shaft furnace top by the upward flow of the shaft furnace, is scattered together with the combustible gas and combustible dust, the mixture of the collected biomass and dust in dust collector installed in the shaft furnace downstream side A waste melting treatment method using biomass, which is blown together with oxygen or oxygen-enriched air from the lower tuyere of the shaft furnace and burns in front of the lower tuyere to directly convert the powdered material into a melting heat source .
下段羽口の酸素濃度が25%〜40%であることを特徴とする請求項1記載のバイオマスを利用する廃棄物溶融処理方法。 The waste melting treatment method using biomass according to claim 1, wherein the lower tuyere has an oxygen concentration of 25% to 40% . 除じん器によって捕集された可燃性ダストの量が、下段羽口から送風される酸素量に対して一定比率の範囲になるように、炉頂より投入するバイオマスの量を調整することを特徴とする請求項1または2記載のバイオマスを利用する廃棄物溶融処理方法。 The amount of biomass input from the top of the furnace is adjusted so that the amount of combustible dust collected by the dust remover falls within a range of a certain ratio to the amount of oxygen blown from the lower tuyere. A waste melting method using biomass according to claim 1 or 2 . コークスとバイオマスを混合して、溶融炉内へ装入することを特徴とする請求項1〜3のいずれか1項に記載のバイオマスを利用する廃棄物溶融処理方法。 The waste melting treatment method using biomass according to any one of claims 1 to 3, wherein coke and biomass are mixed and charged into a melting furnace . コークスとバイオマスをそれぞれ単独で、溶融炉内へ装入することを特徴とする請求項1〜4のいずれか1項に記載のバイオマスを利用する廃棄物溶融処理方法。 The waste melting method using biomass according to any one of claims 1 to 4, wherein coke and biomass are each charged into a melting furnace alone . コークスの装入量が、固形炭素ベースで廃棄物処理量の2.5%以下とすることを特徴とする請求項4または5のいずれか1項に記載のバイオマスを利用する廃棄物溶融処理方法。 The waste melting treatment method using biomass according to any one of claims 4 and 5, wherein the charge amount of coke is 2.5% or less of the waste treatment amount on a solid carbon basis. .
JP2004059821A 2004-03-03 2004-03-03 Waste melting treatment method using biomass Expired - Lifetime JP4276559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059821A JP4276559B2 (en) 2004-03-03 2004-03-03 Waste melting treatment method using biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059821A JP4276559B2 (en) 2004-03-03 2004-03-03 Waste melting treatment method using biomass

Publications (2)

Publication Number Publication Date
JP2005249279A JP2005249279A (en) 2005-09-15
JP4276559B2 true JP4276559B2 (en) 2009-06-10

Family

ID=35029915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059821A Expired - Lifetime JP4276559B2 (en) 2004-03-03 2004-03-03 Waste melting treatment method using biomass

Country Status (1)

Country Link
JP (1) JP4276559B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093069A (en) * 2005-09-28 2007-04-12 Nippon Steel Engineering Co Ltd Waste melting furnace operating method
JP5344308B2 (en) * 2009-12-14 2013-11-20 Jfeエンジニアリング株式会社 Gasification and melting apparatus and operation method thereof
JP2012145272A (en) * 2011-01-12 2012-08-02 Jfe Engineering Corp Waste gasification melting treatment method
JP5794662B2 (en) * 2011-01-13 2015-10-14 新日鉄住金エンジニアリング株式会社 Waste melting treatment method
CN103765102B (en) * 2011-05-23 2015-04-15 杰富意工程株式会社 Waste-melting method
JP5811501B2 (en) * 2011-11-17 2015-11-11 Jfeエンジニアリング株式会社 Waste melting treatment method
JP6153089B2 (en) * 2014-03-31 2017-06-28 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
JP6299466B2 (en) * 2014-06-17 2018-03-28 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
JP6299467B2 (en) * 2014-06-17 2018-03-28 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
WO2023181585A1 (en) * 2022-03-22 2023-09-28 一般財団法人科学技術振興育英財団 Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method

Also Published As

Publication number Publication date
JP2005249279A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4377824B2 (en) Waste melting treatment method using biomass
JP4076233B2 (en) Method and apparatus for gasification and melting treatment of solid waste
JP3916179B2 (en) High temperature gasification method and apparatus for waste
KR20000023542A (en) Manufacturing method and the apparatus of trash solid fuel
JP4276559B2 (en) Waste melting treatment method using biomass
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
CN113915619A (en) Waste fan blade treatment device for rotary kiln and plasma melting furnace
JP5319980B2 (en) Method for producing coke for waste melting furnace
JP2007321520A (en) Heat using method generated in biomass power generation facility
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4397783B2 (en) Waste disposal method using molded lump
JPH11294726A (en) Waste treatment method
JP2007093069A (en) Waste melting furnace operating method
JP4829708B2 (en) Waste melting treatment method
JP4486377B2 (en) Waste melting treatment method using powdery biomass
JP4051329B2 (en) Waste gasification and melting treatment method
JP4734776B2 (en) Organic or hydrocarbon waste recycling method and blast furnace equipment suitable for recycling
JP2000192129A (en) Operation of converter
JP4377826B2 (en) Waste melting treatment method
JP2006170609A (en) Gasification and gasification combustion method of solid waste
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
KR20000023550A (en) Method of manufacturing sintered ore for blast furnace
JP4791889B2 (en) Waste melting treatment method
JP5794662B2 (en) Waste melting treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Ref document number: 4276559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250